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1 Introduction

Computed Tomography (CT) is a widely used medical device in clinical practice. It is a

technique using X-ray to produce cross-sectional images of piecewise of the human body.

The main technique is illuminating the human body through a single axial X-ray rotation.

Because different biological tissues have different X-ray absorption(or radiodensity), X-ray

will partially transmit through the human body and be captured by the detector. Different

absorption coefficients are converted into different grayscale CT images to display [2]. As a

non-invasive method, CT scanning can distinguish smaller differences in tissue density than

conventional X-ray, which decreases the use of cerebral angiography and pneumography.

In 1973, the first images of direct visualization of cerebral infarction were published [3],

which revealed the promise of CT scanning. With the evolution of CT(e.g., spiral CT and CT

angiography), it benefited the assessment of disease and anatomy [4]. Because human eyes

have capable of missing some important information, with the aid of computer science, the

Region of Interest can be segmented from the medical image [5], [6].

Though computer science is fundamental for radiology, not until the 1990s, the improved

CT scan combined with 3D technology [7] was applied in the realm of treatment planning.

With visual capacities expanding, treatment has become intuitive and now is used as the

virtual endoscopy [8] before surgery.

3D reconstruction inherently volumetric data are called Volume Rendering Technique

(VRT), which is mainly divided into Iso-surface(Indirect) Volume Rendering (IDVR) and

Direct Volume Rendering (DVR). The detailed literature review of IDVR and DVR will be

compared in the next chapter. DVR observes the data directly from the original data set,

which provides the algorithm with the opportunity to modify the Transfer Function (TF)

dynamically. Some methods allow the internal structure of the dataset to be visualized in
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1 Introduction

a semi-transparent way. Ray-casting [9, 10] is most widely used for large-scale volumetric

data. The algorithm was done by simulating light transporting through space then projecting

on the screen. Transfering the numerical data into optical properties[11], such as color and

opacity, can guide the user to focus on a specific subset of the volumetric data.

VRT is also widely applied in the art field to enhance visual effects [12]. Many visual effects

in nature are irregular, such as fluids, clouds, and smoke, etc. They are challenging to model

with conventional geometric elements, and the simulation with particle systems cannot be

perfect.

1.1 Motivation

Although VRT is versatile, especially the traditional ray-cast method which can be applied

to the transparent illumination model for the above art effects, the transparent illumination

of the model focuses on the display of lighting effects and being artistic. Volume rendering

medical data focuses on the intimate details of the material, which requires realistic while

researching on volumetric data is a cumbersome task. For example, dealing with neurons

and skin data tend to have elaborate structures. The research of TF design has been three

decades, but there is no precise modified data to describe which TF is suitable for which type

of volumetric data as such.

Furthermore, setting appropriate optical parameters to segment the Region of Interest(ROI)

usually involves a process of repeated error attempts [13] and inefficient manual parameter

adjustments. The last thing is large-scale medical data, which cannot be calculated in parallel

through the same logical structure. The process often relies on logical judgment, which causes

branching, and it isn’t straightforward to be optimized. Those factors make volume rendering

scientific data in the graphics engine unpopular.

With Augmented/Virtual Reality technologies sprung, those technologies have been applied

in a critical part of medical applications. Such as Interactive Augmented Reality realizes on

the Da Vinci robot, which provided guiding assistance to intraoperative surgeons [14] to

gain safety. Although graphic engines become mainstream to implement Augmented/Virtual

Reality, the mentioned constraints remain; Game engines are optimized in hardware for mesh
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1 Introduction

rendering and currently do not support DVR by default. Therefore, doing VRT medical

images needs to rely on the third-party open-source library or 3D construction software

support. Such as the novel plugin [15] [16] were provided for Unity, which used The

Visualization Toolkit (VTK) to support pre-processing medical dataset.

Those limits raise my research interest. Whether there exists an intuitive approach: the

rules are used by radiologists and surgeons for analyzing CT images, which can combine

with the advantage of graphic engines to efficiently do VRT on medical data. And that

means doing VRT on medical data without thrid-party library support in graphic engines.

The implementation must consider specific strategies to design effective TF(visualization)

and comprehend the applicable scope of each algorithm(performance); Ultimately, a 3D

visualization system for medical images is realized in the graphic engines.

1.2 Goals of the Thesis

The main goal of the thesis is to implement DVR of CT data in the Unreal Engine 4 (UE4).

Below are the individual objectives that will be achieved in this work.

1. Investigate the raw(CT) data to understand the point of view from radiologists and

doctors when they assess CT images. Design a simple and intuitive method to segment

ROI.

2. Investigate and implement techniques to pre-process and transform CT data into a

format suited for DVR in the Unreal Engine. Based on cleaned data, TF will be designed

for highlighting different ROI.

3. Develop and integrate a shader-based Direct Volume Renderer into the Unreal Engine

using state-of-art lighting and shading algorithms focusing on high visual quality.

4. Optimize the DVR for Virtual Reality capable performance. There are two main

reasons why doing VRT on medical data in the graphic engines is not popular. One

is complicated TF adjustment, which is accounted for in 1 and 2. The other one is

programming on the GPU, where branching is costly. Consequently, utilizing massive
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parallel programming with minimum branching and acceleration data structures in the

shader pipeline can help us maintain performance.

1.3 Thesis Structure

In the following chapter, it will cover the fundamental VRT and assess whether those

methods are suitable for the rendering mechanism in the working game engine. The third

chapter deals with the upcoming challenges. Based on those obstacles, it gives concrete

approaches in detail. The fourth chapter modifies and implements the existing approaches

and provides an explanation for the essential implemented-algorithm, which is based on the

whole implementation stream. The last two chapters describe current results, including visual

and performance comparison, and discuss further possible improvements.

4



2 Fundamentals

2.1 Volume Rendering Techniques

Volume rendering is a technique used for the visualization of volume data. Volume data

mostly consists of voxels. A voxel represents a value encoding color information on a fixed

grid in 3D space, and voxels are often stored as a multidimensional array. Volume data is

normally split into several slices, and each slice is stored as an image. Therefore, volume

rendering often deals with 3D objects visualization via 2D images. Based on the data set and

visual result, VRT is classified into two groups: IDVR and DVR.

Indirect Volume Rendering

IDVR displays volume data via the iso-surface method. Iso-surface was extracted with a

specific threshold form dataset. There were many ways to construct iso-surface. The most

commonly used method was Marching Cubes (MC) [17]. The principle of MC was to treat a

series of 2D data as a 3D data field and extracted certain domain values of a substance then

connect into triangles in a certain topology. It processed each voxel in the volumetric field and

determined the iso-surface construction form inside the voxel according to the value of each

vertex. There were two main calculations for the iso-surface construction: the approximation

of iso-surface in the voxel and the normal vector of each vertex of the triangle.

For immense data, the iso-surface construction is time-consuming for the first time. Once

the iso-surface model is constructed, it is speedy to rotate and zoom the perspective. Therefore,

there is no need to get access to the volume data. The model is required to rebuild if the

iso-value is adjusted. Besides, you can also use a 2D cross-sectional view to examine the

volume data, which can clearly show the details on a specific plane. However, it is impossible

to examine the volume data of the entire space at the same time.

5



2 Fundamentals

Direct Volume Rendering

In contrast to IDVR, the DVR does not require pre-processing, it observes data directly. And

TF guides the user to pay attention to a specific subset of volume data, which helps the user

to understand volume data effectively. The most software-based approach is the Ray Casting

(RC) [10, 9] in DVR.

The basic principle of the RC had a normalized process that was provided by the list, as

shown below. A ray was directly drawn from the pixel of the screen, and rays passed through

the grid of the volume data. Adjacent points were obtained by interpolation of the color and

opacity(TF) during the data classification phase. Colour and opacity were accumulated in

sequence until the light passed through the volume, or the opacity reached 1.

• For each pixel

– Cast a ray into volume

– Interpolate data values from the voxel

– Classify data values into optical properties

– Composite optical properties

– Return final pixel color

Generally, the memory cost and number of operations of MC is higher than RC [18]. Even

if a surface representation can be generated by MC, but the iso-surface extraction requires

complicated calculations, which is the reason why it’s not possible to change the surface

threshold interactively with MC [19]. Therefore, DVR is proved to be more efficient.

2.1.1 Ray-Casting & Shear-warp

The Shear-warp[21] was to decompose the 3D visual transformation into a 3D shear transfor-

mation and a 2D deformation transformation. The volumetric data was shear according to

the shear transformation matrix then projected into the shear space to form an intermediate

image. Finally, the intermediate image was warped to generate the resulting image. The most

important feature of the algorithm was to select the slice data and projection data according

to the three-axis(x, y, z) of view direction when the view direction changes, the projection

6



2 Fundamentals

direction did not necessarily change through deformation transformation. The conversion

of the sampling process from 3D space into a 2D plane dramatically reduces the amount of

calculation.

We have to keep in mind that the goal of applying VRT on medical data is as good as

possible. Shear-warp achieves a relatively fast processing speed by sacrificing sampling

accuracy. Still, the potential quality of the image generated by this method is worse than

that produced by the RC way. Furthermore, a limitation of Shear-warp is that the 3D data

transforms into the intermediate coordinate system. When transforming, the view direction

must coincide with one of the axes in the 3D coordinate system; otherwise, its advantage no

longer exists.

DVR considers data as physical properties, but understanding data is not the only optimal in

terms of physical realism. For this reason, various acceleration algorithms have been proposed

for the RC method, such as Early-Ray Termination [22] and spatial data structures[23, 24],

which reduce the amount of calculation and improve the rendering speed.

2.1.2 Optical Model

RC is a DVR algorithm based on image sequences. From the viewing plane, a line of sight

is emitted in a fixed direction and passes through the entire image sequence. It sampled to

obtain numerical values which are converted to optical properties such as color and opacity.

So clearly, one of the important parts of DVR was determining how light reached the image

plane, doing this, we assumed voxels have the contribution to participating medium. We can

imagine mediums are particles that can absorb and emit light. To calculate how much light

can reach the viewing plane, we can simulate different optical models, and the most common

is using absorption and emission model[25] to achieve it.

Absorption Model

The absorption model Fig. 2.1 assumes each particle has an area A = πr2, the number of

particles per unit volume is ρ, cylindrical slab with the base area E and thickness ∆s. I carries

the amount of energy. The Equation 2.1 is to solve the function I so that we know at any step

of the ray energy, and when ray arrives at the image plane, the function I works as the value

7



2 Fundamentals

Figure 2.1: The absorption model illustrates the light passing through a cylindrical slab, and

the participating medium only absorbs light.

that is a color of the pixel. Knowing function I can be solved by its Ordinary Differential

Equation (ODE).
dI(s)

ds
=
−I(s) ∗ A∆ρ(s)

∆s
= −Aρ(s)I(s) (2.1)

The Equation 2.2 tells us the amount of light will be allowed to go through, it is equal to the

initial energy I0 and multiplies by the exponential decay, the amount of decay depends on

the density of particle ρ with t times of the area of the particle. ρ times A is replaced by a

single variable called τ, which is typically called the extinction coefficient and is related to

the density of the particle. Because we do not model density and size directly, in this term, it

is replaced by a new variable called τ. This e to the power of minus integral of the extinction

coefficient can be seen as transparency.

I(s) = I0 ∗ e−
∫ s

0 ρ(t)Adt = I0 ∗ e−
∫ s

0 τ(t)dt (2.2)

Emission Model

Fig. 2.1 is reused, the difference of emission model is that assumes each particle glows lights

diffusely and intensity of the glow is C. Then glow per unit area is CAE∆sρ/E = CA∆sρ.

Similar to the absorption model, now the goal is computing how much light of particle injects

into the ray. And same as previous, we can solve Equation 2.3 with ODE.

dI
ds

= C(s)Aρ(s) = C(s)τ(s) = g(s) (2.3)

In Equation 2.4 I, the energy of light is going to continue to change until it reaches the image

plane. The solution for I(s) is the initial energy carried by light plus the contribution from all

8



2 Fundamentals

the particles along the ray.

I(s) = I0 +
∫ s

0
g(t)dt = I0 +

∫ s

0
C(t)τ(t)dt (2.4)

Add emission and absorption together is the most commonly used optical model in DVR.

Equation 2.5 explains how much light is going to change along the ray from back to the image

plane. The first term is emission, we have an intensity C multiply extinction coefficient, and

the second term is absorption; the negative sign is the particle will absorb the light. We can

rewrite it as g(s)− τ(s)I(s).

dI
d(s)

= C(s)τ(s)− Aρ(s)I(s) = g(s)− τ(s)I(s) (2.5)

Equation 2.5 is solved by ODE to get Equation 2.6. I(D) calculates the final value of the ray

when it travels D distance(see Fig. 2.2). The first term is absorption; it includes background

energy I0 goes through the image plane, and energy will be absorbed because of extinction

property. The second term is the integral contribution of g(s) function.
∫ D

0 g(s) goes through

g at a different position along the ray. But whenever the particle emits light, it needs to go

through again exponential decay caused by the particle in front of it e−
∫ D

s τ(t)dt before the

light reaches the image plane.

s=0 s=D

Figure 2.2: The initial light with energy I0 travels D distance to reach our eye(image plane).

I(D) = I0 ∗ e−
∫ D

0 τ(t)dt +
∫ D

0
g(s)e−

∫ D
s τ(t)dtds (2.6)

2.1.3 Transfer Functions

In DVR, we mapped a sample data value at the fixed position and decided optically-physical

properties for each data value. Usually, there is no feasible method to obtain emission and

absorption properties from data value directly. Consequently, TF design here was to assign

optical attributes to data values for emphasis salient data structure and deemphasis others.
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2 Fundamentals

The process of finding TF is essentially classifying voxel, identifying features, and giving

different attributes, which are also called classification [26].

From the optical equation, we can map TF in the rendering equation, The α(opacity) is

determined based on the coefficient of extinction τ. Instead of modeling it out, we take the

whole exponential term as 1− α [27]. Then integrate the energy contribution of current from

each sample point, and this represents the color.

Finding TF is still tedious work because sophisticated features do not just involve a single

particular range, and some features are not easy to display without a lot of tweaking. We

listed existing techniques which were common strategies for designing at a TF:

1. Trial and error[28]: Manually controlled the color and opacity of each sampled value

using a graphic user interface. [29] provided intuitive user interfaces for non-expert

users.

2. Histogram assisting (1D TF): Data values were divided into finite clusters and counted

their frequency. Different clusters can be assigned with different colors and opacity [30].

The drawback of 1D TF is an unambiguous visualization of the target structures and

can not be produced. [31] measured intensities of osseous tissues and contrast medium

and got mixed due to occurring partial volume effects.

3. Multi-dimension TF: The proposal method [32, 33] tried to plot data value and gradi-

ent(First derivative of data value) in an XY plane. It mainly solved boundaries among

complex features. [34] demonstrated the benefit for 2D TF and successfully viewed vas-

cular structures in examination data. [35] used multi-dimension TF to classify variants

MRI data.

2.1.4 Composition Schemes

Recap RC algorithm. The casting ray sampled and generated optical properties; the process

for blending was called composition schemes before getting the final color. There were some

commonly employed: MIP [36] that can be generated rapidly but only used a small fraction

of data because of lacking depth information; Alpha blending [9, 11] was often implemented
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by using the Riemann sum(Equation 2.6) to discretize the continuous function.

Co = αs ∗ Cs + (1− αs)Cd (2.7)

Equation 2.7 is the alpha blending equation. αs represents the transparency of the transparent

object. Cs, Cd and Co respectively represent the original colour of the transparent object,

original colour of the target object and the observing colour value. The process of a ray

passing through the volume can be sorted from the front to the back:

Ci
∆ = C∆

i−1 + (1− αi−1)Ci (2.8)

αi
∆ = α∆

i−1 + (1− α∆
i−1)αi

or reversed from the back to the front:

Ci
∆ = Ci + (1− α∆

i )C
∆
i+1 (2.9)

α∆
i = αi + (1− α∆

i )α
∆
i+1

Ci and αi are the color values and opacity obtained by sampling on the volume texture, which

is the data contained in the voxels; Ci
∆ and αi

∆ represent the accumulated color values and

opacity.

2.1.5 Ray-Casting Optimization Methods

The light passes through the cube is the process of light passing through the volume texture.

Generally, we pre-computed the travel distance when the ray entered and exits the cube, and

also accumulated the step size from ray sampling each time in the volume. Utilizing this to

know when we can stop ray to march. Based on it there are many techniques to accelerate

RC.

Early ray termination

The process of passing through the volume texture is Riemann integral. For each ray the

transparency is set as 0 in the begin, the sampling volume texture coordinates are calculated.

Stops compositing of further sample locations until the light is cast out of the cube or the

accumulated transparency reaches 1.[37]
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Skip blank space

R. Yagel et. al[23] utilized spatial information about the contents of volumetric data to

adapt the sampling distance between two sampling locations in order to not compute empty

voxels. In this algorithm, the volume can be subdivided into uniform-size blocks [38] or

encoded to the Octree [39], the main idea of the Octree recursively divided space into equal 8

sub-space then based on its dividing decision strategy to keep dividing or set as a leaf node.

A comprehensive analysis of Octree [40] and storage of voxel data structure was discussed.

With the stunning result, Ruijters and Vilanova [41] implemented the Octree to speed up

rendering of brick by skipping empty space.

2.2 Standard Illumination and Shadowing

Phong and Blinn-Phong

Various rendering effects in Shader naturally involve the use of various lighting models.

Phong and Blinn-Phong [42] are common default lighting rendering methods in computer

graphic software. Both local illuminations consider three terms:

I = Iambient + Idi f f use + Ispecular (2.10)

Figure 2.3: A diagram showed the vectors used in calculating Phong and Blinn-Phong shading.

N: the surface normal, I: vector in the direction of a light source, R: vector in

the direction of optimal light reflection, V: vector in the direction of viewer, H:

"halfway" vector, a vector in the direction of (V + I)/2.

The detail of both equations can see Equation 2.11 and Equation 2.12 with diagram Fig. 2.3.

12
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ka, kd, ks are scalar constant between 0 and1, Ia, Id, Is are color and intensity of the global

light, and ma, md, ms are color of the material. In the Phong model, the angle between R

and V cannot exceed 90 degrees, the cos will become negative, and lighting error will occur.

Blinn-Phong defines the "halfway" vector to solve the problem, and under the same conditions,

the highlight range of Blinn-Phong is larger than that of Phong, and the realistic effect of the

Phong lighting model is better. The variables of both equations can be computed.

IPhong = ka Ma Ia + Kd Md Id(I · N) + ks Ms Is(V · R)Shininess (2.11)

IBlinn−Phong = ka Ma Ia + Kd Md Id(I · N) + ks Ms Is(H · N)Shininess (2.12)

Ambient Occlusion

Ambient occlusion [43] is a global shadowing method, which means that light from each

point affects other points in the scene. Compare to local shading methods such as Phong /

Blinn Phong shading. Ambient light occlusion can add realism because rays are projected

"up" from surface points relative to the surface from all directions, which takes into account

the brightness of the light due to surface light occlusion relative to the light source.

2.3 Rendering in Unreal Engine 4

This section lists the coverage and division of UE4 from the macro functions of the rendering

engine. It does not involve the implementation details of each functional module—reference

to the official Graphics Programming Overview [44]. The input of the renderer is the original

geometry and material data. The renderer converts the geometry and material data into a

rendering API, which is named as Render Hardware Interface (RHI). The RHI is a separate

module that includes support data, rendering state, Shader, and parameters of Shader. These

data are assembled into a RenderPipeline to execute. Finally, the rendering result is exchanged

to the Rendering Target (RT).

The Generation of Shader

Shader generation compiles the node graph in the material editor into High-Level

13
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Shading Language (HLSL) code. The material editor avoids the selection problem of

the shading stage. Most of the generated shaders work in the Pixel Shader (PS) stage.

In the material editor, MaterialExpression will submit the corresponding HLSL code

to FHLSLMaterialTranslator and replace it with the code in the material template. In

the end, we will get Shadermap.

Drawing process

The code generated by the material editor is a small part of the Shader. In UE4, there

are several Passes in one rendering. The renderer gives the corresponding Shader for

PASS based on DrawingPolicy. Take Deferred renderer as an example; during the

Runtime phase, it extracts various rendering data in GBuffer for various PASS. Those

Passes are drawn with MaterialMeshShader and GlobalShader. Hence, the editing

part in the material editor only involves the "material expression." The functional

form of the PASS determines what kind of data for each PASS needs to input in

Vertex Shader (VS) and PS.

2.4 Overview of Digital Imaging Communications in Medicine

The body absorbs some energy(radiation) when X-ray passes through. The left energy

hits the detector behind the body, and then detector records the physical energy of

the ray as an electrical signal, which is quantified by a mathematical calculation.

In 1982, The lack of uniform standards became an obstacle to exchange information

between various medical imaging equipment. American College of Radiology and

National Electrical Manufacturers Association [45] formulated a standard for the

digitized transfer, display, and storage of medical images. It is called Digital Imaging

Communicaitions in Medicine (DICOM) and as the benchmark for medical image

exchange between hospitals and international. The standard DICOM defines imaging,

consist of the format of related information and exchange method. Using this

standard, people could establish an input/output in medical imaging equipment.

Based on the DICOM 3.0 standard, each image carries a large amount of information,
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Figure 2.4: DICOM data elements and the content of each basic unit.

which can be divided into four categories: Patient, Study, Series, and Image. A Tag

can identify each item of information. The tag is composed of two hexadecimal

numbers(Group, Element). Such as (0010, 0010) represents the Patient’s name. As

Fig. 2.4 shown, each item of information is packaged into basic unit Data Element

which consists of four parts [46]:

i Tag: Two hexadecimal numbers, DICOM data element can represent uniquely by

tag.

ii VR: Used in the standard DICOM to describe types of data elements. There are

27 in total.

iii VL: The length(in bytes) of data in the data field of the data element.

iv VF: Contains the value of this data element.

2.4.1 Analysis of Computed Tomography Data

Every CT scan contains at least a hundred slices. Among those data elements, the

most important tag is the pixel elements. Each pixel is assigned a value that is the

average of all attenuation values. However the raw pixel value of DICOM has no

practical meaning, so we usually transfer this value into the Hounsfield scale, all the

CT values can be computed as follow:

HU = pixel_val ∗ rescale_slope + rescale_intercept (2.13)
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Figure 2.5: Hounsfield Unit Scale

Pixel_val reflects the electron density of the imaged tissue at ith location(pixel). The

two tag values rescale_slope and rescale_intercept can be read directly from DICOM

header information. Hounsfield Unit (HU) is the CT value of the ith pixel. The range

of CT values for specific tissues of the human body is fixed. The Fig. 2.5 illustrates

most common HU usage in clinical and radiology [47].

2.4.2 Hounsfield Scale and Windows

Mr. Godfrey Hounsfield [48] compared the assigned values to the water attenuation

value, and since then, all data were named in Hounsfield and reflected in the

Hounsfield scale table. This Hounsfield gauge assigns the attenuation value of water

to zero (HU). The general CT range is -1000 to 2000 HU, but some of modern scanners

rise to 4000 HU. HU number is converted into a digital image by assigning a greyscale

intensity with +1000 (white) and -1000 (black) at both ends of the spectrum. The eyes

of humans can only distinguish 20 different from the grey level. Even CT images
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display differences, but the eyes cannot detect it. Therefore, radiologists [49] by

adjusting window width and window level to border tissues fall within the greyscale

of the image, Table 2.1 provides general used tags information for viewing medical

images. Fig. 2.6 explains that the adjusted window and level setting express a range

of CT values in grayscale, which can be recognized by the human eyes.

Table 2.1: A description of the used tags table.

Tag Keyword Tag Description

(7FE0,0010) Pixel Data A data stream of the pixel samples that comprise the Image.

(0018,0050) Slice Thickness Nominal slice thickness, in mm.

(0028,0010) Rows Number of rows in the image.

(0028,0011) Columns Number of columns in the image.

(0028,1052) Rescale Intercept
The value b in relationship between stored values (SV)

and the output units

(0028,1053) Rescale Slope m in the equation specified by Rescale Intercept

(0028,1050) Window Center Center of the window

(0028,1051) Window Width Width of the window
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Figure 2.6: Adjusted windows with preset values of window centre and width.
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In the previous chapter, well-known techniques in VRT were reviewed. Current work

implemented a straight-forward approach called Ray Marching (RM) in VRT. This

chapter covers the challenges that we faced and the approaches that were used to

tackle each challenge. A state of art graphic engine, UE4, was chosen to realize DVR.

Additionally, the current thesis was based on the work of Ryan Brucks [1], which is an

implementation of a simple form of volume rendering in UE4 for general volumetric

effects.

3.1 Challenge

DICOM
CT Data

Data
Pre-Process

Generate
Textures

Import
UE4

DVR using
custom shader

Figure 3.1: My Program Flow

The core of VRT we pursued only showed body details rather than surface details.

The differences between the two visual results and algorithms were shown in chapter 2.

According to the 3D volumetric data, the technique of displaying all the body details

on the 2D image at the same time is called DVR. With DVR, the overall distribution

of multiple substances can be displayed in one image, and the control of opacity

can reflect the iso-surface. Fig. 3.1 shows an overview of the required subtasks for
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importing raw medical images into UE4. The most vital steps are discussed in

detailed:

1. Dara Pre-processing.

It is possible to write our DICOM reader in UE4 without the support of a

third-party library. However, to avoid the complications that may come with the

large data set, data were first transformed into texture format before importing

into UE4. This transformation turned the 16-bit unsigned integer DICOM data

into 8-bit unsigned integer texture format data. This allows us to use a lookup

table from HU to distinguish tissues. Unfortunately, this format transformation

inside the Unreal Engine transfers all the values into floating-point values.

This introduced difficulties in feature segmentation and overlapping HU range

between tissues. Accordingly, pre-processing and cleaning the data became

critical for further segmentation, The goal for data cleaning and pre-processing

was to keep as much feature from each image slice as possible, so that the user

can easily select the corresponding tissues by manipulating the HU in the UE4.

2. Design an efficient shader for DVR.

In UE4, the texture operations are under the pixel shader pipeline. Therefore,

the intuitive way was to utilize pixel shader to sample texture data. Those could

be implemented in the material editor. The advantage of realizing DVR in the

graphic engine was that it allows customized shader adoption. Furthermore,

the ray-marching-based DVR can be implemented in the acceleration hardware.

Understanding PS in the UE4 was not only handling different vertex and pixel

but also preventing branching and inefficient algorithm.

3.2 Approach for Obtaining Volumetric Data

Before generating textures for reconstructing the medical data set, it was necessary

to parse the imported medical images. An important part of the work was to obtain

information stored in the images. The previous steps used information tags from
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Table 2.1 to acquire meaningful HU values. Although one could generate multi-

windows through window adjustment, using multi-windows on the same image was

not an ideal method. J. Mandell et al. [50] proposed to use a relative attenuation-

dependent image overlay to visualize the full range of CT in one view. This approach

facilitated threshold division so that the bones and soft tissues can be successfully

separated by the CT values.

3.3 Shader and 3D Texture

U

V

W

0

U

V

Render Box

2D sequence map

Figure 3.2: Simulate the rendering object through custom UVs sampling sequence map.

With radiological knowledge, cleaned CT data and 2D sequence texture were

generated. Accordingly, our independent VS and PS could be designed to render

medical images in the material editor. Regarding the data transmission from VS to PS,

only custom UVs were required. It transmitted a fixed float2 data type. We, therefore,

used a 2D sequence map and then stacked this sequence map into a volume texture

[1]. As shown in Fig. 3.2, a 2D sequence map was first generated, and then 3D voxel

texture was generated through custom UVs sampling. A 3D unit cube was then used

to simulate its UVW. Ultimately a bounding box of the rendered object was obtained

and turned into a unit cube.
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3.4 Algorithmn

The previous sections explained how the medical data was pre-processed and sampled

into voxel in UE4. The remaining approaches were the customized shader, which

covered algorithms to reach our goal. This included texture-sampling along the

ray, feature-extraction, visual quality enhancement and expected feature of interest,

enhance visual quality and empty space skipping.

3.4.1 Ray-Marching-Based Volume Rendering

RM is a variant of RC. Especially, the method we were using was RC for DVR.

Traditional RC calculates all intersection points and return the color from the closest

intersection point to each pixel on the screen. In RM, ray considers whether to hit

the object after movement instead of calculating all intersection points. Step size is

a crucial point that determines accuracy. Firstly, there is a 3D volume texture. N

rays are emitted from the camera, and each ray has its sampling step size. Secondly,

when the ray enters the volume, it takes a sample for every step, computes TF value,

and then blends with the value accumulated by the ray. The procedure is the same

as mentioned in the subsection 2.1.4; the only difference is taking advantage of the

various step size in RM.

Utilizing RM samples 2D sequence texture, we only obtained pixel values and did

not know the vertices of the models. To change the structure of the model, we needed

to construct the model data in the PS. RM can draw a lot of objects without any vertex

data. It creates its own rendering rule in the PS. The reason for that RM can render

the correct pattern is due to the reversibility of the light path. In other words, the

light emitted from the light source scatters and eventually enters the camera with the

same effect as coloring and sampling the rays emitted from the camera.

This algorithm is suitable for implementation on the GPU, because the calculation

of each ray is independent and parallel, and the GPU has an inherent advantage of

parallel computations. The disadvantage is that the amount of each calculation is
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large; due to that, it has to consider lighting, shadow and TF at each step. Although

hardware acceleration (RM technique) was used, the fact that the micro thread of

a Wrap required different branches was still a critical issue. It happens when the

condition uses dynamic values, that is, the compiler only knows the values in the

runtime, which causes branching on the GPU, which prevents it from being able to

make the most out of the simultaneous calculations. This condition is vicious and

needs to be avoided.

3.4.2 Local Illumination and Shadow

Local Illumination

Although absorption with an optical emission model can create decent simulation,

this doesn’t account for the light reflection of surrounding objects. An object which

does not emit light by itself can be seen because it reflects light from elsewhere.

Creating a "perfect" lighting model can be very complicated. In literature, people

usually use the approximation of actual lighting methods for VRT, such as Phong or

Blinn-Phong section 2.2. In volume shading, there is no vertex normal information;

instead, we computed the gradient of the scalar field as the normal vector. In a scalar

field f (x), normal vector can acquire form Gradient 5 f (x) that is perpendicular to

isosurface. Central differences are one of the numerical computations of the gradient:

Gx = Vx+1,y,z −Vx−1,y,z

Gy = Vx,y+1,z −Vx,y−1,z

Gz = Vx,y,z+1 −Vx,y,z−1

(3.1)

Through Equation 3.1, the further gradient needs to be normalized, then can be ap-

plied as normal vector. Frida H. et al [51] proposed Local Ambient Occlusion (LAO)

for direct volume rendering method, instead of taking conventional approach to com-

pute gradient 5 f (x) for normal vector, it considers integral absorption coefficient(α).

The advantage with LAO can avoid the fully shadowed area that may hide relevant
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information. Shadow Strategy

Although the above illumination model is straightforward to implement, few disad-

vantages exist. The critical disadvantage is that it cannot reflect the shadows between

objects. Shadows can make the scene look much more realistic and allow the observer

to obtain the position relationship between objects. Because the shadow is the result

of the light being blocked, the conventional method is casting a secondary ray to

check whether a light source can "see" this intersection. When the light of a light

source cannot reach the surface of an object due to the blocking of other objects, then

the object is in the shadow [52].

Regarding semi-transparent volumes, they give rise to soft shadows due to light

absorption. The self-shadow for opacity volume has been proposed [53], which

calculates a histogram of the density field to generate cluster bins and construct

1D visibility function along the viewing ray. The visibility function [54] has also

been used in depth shadow map paper, which is known as transmittance function.

Through this method, the cluster bins have different shadow contributions.

E = L0exp[−α(s)d] (3.2)

The transmittance function can be modeled with Beer-Lambert law. The Equation 3.2

expresses transmitted radiance E as that of incident light L0, which exponentially

decays as a function of distance it travels, with α being the absorption coefficient.

3.4.3 Artefacts

VRT usually has a trade-off between quality and performance. Hence, there are more

or less noticeable artifacts in the resulting image based on variant stages of VRT [37].

Identifying the sources of artifacts can help to find the method which can produce a

high-quality image. Aliasing artifacts are visible at the edges of the slice polygons,

and the viewport-aligned slice can remove it. Additionally, color-bleeding artifacts

occur during interpolation, and pre-multiply colors by their corresponding opacity

value before interpolation can suppress it. The most tricky artifact is the wood-grain
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artifacts, it happens if the insufficient sampling rate is used, and numerical integration

does not hold for high opacity. This can be solved by increasing the sampling rate.

However, since our RM approach already demanding on the computation effort and

the CT data are usually large, we should avoid expensive readback of it from the GPU

memory. In order to achieve the best in both quality and performance, we adopted

Slab

Figure 3.3: Pre-Integral Slab: A slab of the volume between two slices.

work from Pre-integral [55] to reduce wood-grain effects. The conventional method

takes the front sample value(s f ) and back sample value(sb) directly via TF that easily

introduces high frequency during ray integration. Pre-integration calculates the exact

line integral between pair samples on the slab(see Fig. 3.3) to generate continuous

scalar field: sl(x) = s f +
x
l (sb − s f ). The pre-integrated Look-Up Table (LUT) can be

analytically integrated to incorporate all features of the TF between s f and sb in order

to avoid problematic product of Nyquist frequencies [56]. The integral equation can

be rewritten as Equation 3.3.

I(D) = I0 ∗ e−
∫ D

0 τ(sl(t))dt +
∫ D

0
g(sl(s))e−

∫ D
s τ(sl(t))dtds (3.3)

However, CT scan provides a longitudinal section, this kind of section usually

contains plenty of empty pixels, and the adjusted sampling length does not have

extra sampling between pair samples. Hence, the pre-integral cannot work for all

cases. Stochastic Jitter can hide wood-grain artifacts without adding sampling and is

the best approach for all data. The coherence between pixels that becomes manifest

in artifacts can be hidden by noise. Jitter randomly offsets the ray sampling position.
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3.4.4 Sparse Voxel Octrees

The step size can be adjusted in RM technique when ray visiting empty sub-space

needs to take a big stride forward to skip redundant computing. Hierarchical partition

on three-dimensional space is a standard method to handle complicated geometry

scene and VRT data. Here, the Octree is applied as our hierarchical spatial scheme.

After the pre-processing data stage, we saved the CT values as an 8 bits greyscale.

And through sampling 2D sequence map, the voxels distributed in the unit cube.

Therefore, the taken subdivision strategy was based on the average density of voxels

in the sub-space. Then the store Octree was used as texture type because ultimately,

the tree is traversed directly in the material editor. That also means the tree should

be full octave, which can be stored as a linear array without using the pointer. For

the traversal strategy, a top-down arithmetic method [57] was used, which selected

child sub-space from the current one. The selection was based on the parameter of

the ray and comprised simple comparison, which reduced numbers of instructions

in PS. The only note is that the UE4 coordinate system is different from the general

system, which will be explained in the next chapter in detail.

Branch-on-Need Octree Construction

The ideal condition is constructing a full Octree, then store the tree as an array(texture),

which can be identified without using any pointers. Unfortunately, most of the data

volume doesn’t have dimensionally equal size, and additionally, the size of the data

is at the scale of a power of 2. As a result, a fully created Octree was not possible.

Take volumetric data with 16x8x4 resolution as example, Table 3.1 display non-full

Octree subdivision in each level. We can follow Equation 3.4 to calculate the total

number of tree nodes for the volume with resolution S in each dimension. Therefore,

this example has 1 + 8 + 8 ∗ 8 + 8 ∗ 8 ∗ 4 + 8 ∗ 8 ∗ 4 ∗ 2 = 814 nodes and node data

ratio derived from Equation 3.4 optimal node ratio is (S3−1
7 )/S3 ≈ 0.1428(optimal).
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Level(No. nodes) Subdivided

Level 1(8) 8x4x2

Level 2(8) 4x2x1

Level 3(4) 2x1x1

Level 4(2) 1x1x1

Table 3.1: No. of nodes in each level for non-full Octree with 16x8x4 resolution

In final, non-full Octree ratio is 812/512 ≥ 0.1428(optimal).

80 + 81 + · · ·+ 8(log S−1)2
=

S3 − 1
7

(3.4)

Larger node data ratio has more considerable overhead because each node does

not always have eight children. It is thus difficult to predict the position of a child

node, which stores pointers that represent additional space overhead. Wilhelms and

Van Gelder [58] proposed Branch-on-Need Octree (BONO) method, which allows

zero-padding imaginary overlay (power of 2) volume to perform a partition with

imaginary volume. This way, the ratio of nodes can be minimized to reduce space

overhead.
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Figure 4.1: Implementation pipeline.

This chapter describes adjustment and of our method, as shown in Fig. 4.1. The

data pre-process block. Here will give elaboration based on Fig. 4.1 in order. The data

pre-process block was running under the python3 environment and saved as .npy

format. The cleaned data was saved as a 2D sequence map for Alpha TF purpose,

gradient map for different illuminating methods, and texture for construction of

octree. The main implementation of ray-marching-based VRT on medical images

used the Unreal Engine 4.22.3 version. We eliminated the aliasing artifact and

acquired the current sampling frame separately based on the viewing-aligned plane

approach and "1DTo2D" function introduced by Rayan B [1].

4.1 Pre-procsssing - Blended Window

With the rapid growth of DICOM analysis in clinical medicine, we now have greater

needs as well as the ability to develop frameworks that support the DICOM API.
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In this work, we employed PYDICOM modules supported in Python to read files,

since it is mainly used to manipulate various data elements of DICOM files. Usually,

Keyword Values

Slice Thickness 3.0

Rows 512

Columns 512

Rescale Intercept -1024

Rescale Slope 1

Window Center [40, 700]

Window Width [350, 1800]

Table 4.1: The Patient ID: 01_13 used tag values table.

one CT scan of the patient is a folder, there are a sequence of DICOM files under

the folder, and each file is called a slice. In the pre-processing block contains several

steps. Those steps were merged as Initilization function(see algorithm 1). First of all,

scan a patient’s catalog and load all the slices; Secondly, sort all slices based on the

switched z-direction and extract all used tags values(Table 4.1); In the third step some

scanners have a cylindrical scan range, but their images are rectangular. Values that

fall outside the boundaries have a fixed value of -2000, and those values are reset

to 0, which is the same as the HU value of Air. Then, return to HU by multiplying

the rescaled slope and adding the intercept (Through reading tag header can extract

those values); The last step, use the blended window (algorithm 2) to produce images.

Take patient ID: 01_13 as an example, Fig. 4.2 displays the histogram about the

value and image after passing HU on the first slice. The data under the first slice is

ranging from -1024 to 1372, which indicates that the bone value is included. In order

to segment bone and keep tissues at the same time, we computed the bone window,

soft-tissue window, and lung window by algorithm 2. As illustrated in Fig. 4.3, after

creating all windows, we set a soft-tissue window as the main window. We blended it

with the bone window where the attenuation is low and the lung window where the

attenuation is high together into a single gray-scale image. The advantage of setting a
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Algorithm 1: Initialization
Input: dir_path

Output: A set of tag values

Result: Save cleaned data as .npy

1 load_files = dicom.read_file(dir_path);

2 load_files.sort(key = lambda x: int(x.InstanceNumber));

3 try:

4 extract tag values;

5 except:

6 print(exception occurs);

7 for idx ← 0; i < Num_o f _Slices; idx+ = 1 do

8 load_files[idx][load_files[idx] == -2000] = 0;

9 if slope != 1 then

10 load_flies[idx]← slope*load_flies[idx].astype(float64);

11 load_flies[idx]← load_flies[idx].astype(int16);

12 end

13 load_files[idx] += (intercept);

14 end

15 save(load_files);

16 return tag values set

Figure 4.2: Histogram of the first slice P01_13 HU data. Data range[-1024, 1372] distributes

into 50 bins.
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Algorithm 2: Blended window
Input: Window Center WC = [c1, c2], Window Width WW = [w1, w2], npy_path

Output: Blended window array

1 npy_file = read(npy_path);

2 Bone_Window = Windows(WC[1], WW[1], npy_file);

3 SoftTissue_Window = Windows(WC[0], WW[0], npy_file);

4 Lung_Window = Windows(WC[1], WW[0], npy_file);

5 for Each pixel do

6 if retained low attenuation then

7 SoftTissue_Window += Lung_Window ;

8 else if retained high attenuation then

9 SoftTissue_Window= Bone_Window ;

10 end

11 return SoftTissue_Window;

Retained high attenuation Retained low attenuation

Bone Window Softissue Window Lung Window

Figure 4.3: The diagram demonstrates the window blending algorithm, which fixes the soft-

tissue window as the primary layer. Only relatively high attenuation information is

retained from the bone window, which replaces the corresponding pixel locations

in the soft-tissue window. On the lung window, only relatively low attenuation is

summed with the underlying soft-tissue window.
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soft-tissue window as the main window is that it allows the information of essential

organs(Fig. 2.5), including kidney, liver, brain matters, etc. remained after blending as

its HU locates between -150 to 150.

4.1.1 Pre-computing Transfer Function of Alpha

(a) (b)

Figure 4.4: Histogram comparison of different blended windows approach. (a) was imple-

mented with [50] approach: the soft-tissue window is man window and blend

with lung and bone windows (b) considered soft-tissue and lung windows only,

in order to generate Alpha TF in advance.

Although Jacob M. et al. [50] proposed method can get the visual segmentation,

blending values of bone are close to and overlap with values of tissue. The ideal

case for reducing the consumption of computing is to set the scalar values to be as

alpha TF directly when importing the texture into UE4. Because of DVR, to render

semi-transparent results, the ideal distribution from dark to light in grayscale is

lung, tissues, and bone in order. The above ≈ 390 of the soft-tissue window was

set to near white, which covers the range of bone(Refer to Fig. 2.5). The proposal

classification of bone should be near white, lung near black, and soft tissues locate

in the middle. The default setting of the soft-tissue window already segmented two

categories: soft-tissue and bone. The remaining is to replace the same pixel location

of the lung window to the soft-tissue window.
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Therefore, based on algorithm 2, only soft-tissue window, and lung window are

considered and comparing pixel location to replace empty values to the HU of lung

ultimately. Fig. 4.4 compares histograms between the three-blended window and two-

blended window. The two-blended window has clear clusters than the three-blended

window.

4.2 Custom Ray-Marching

This section describes "ray-marching-based VRT" block in Fig. 4.1 diagram. After

creating the medical images, we can import them into the material editor. Due to the

material editor is graphical and node-based shader, code can be added in "custom

node"; However, it doesn’t support "LOOP" node to read hundreds of image, the

intuitive way is to save images as sequence map(flipbook) or import the video file as

a media texture. In Fig. 4.1, the "2D sequence map" block aims to produce such kind

of texture maps, and the concept of the stack can do it. The most important thing is,

"HOW" to sample it after importing to the editor.

Determine raymarching fragments

Under the custom node, each viewing ray needs to sample its corresponding UV

coordinate in the sequence map. In order to shift UV on the 2D sequence map and

estimate the corresponding voxel in 3D space at the same time, a proxy geometry

is required. That is, to determine which pixel on the 2D screen belongs to which

volume texture. It is reminiscent of a bounding box. The proxy geometry can use the

node "BoundingBoxBased_0-1_UVW" to simulate local UVW, the slice-thickness tag

value is considered to adjust W length:

W_length = slicethickness ∗ Num_o f _Slices (4.1)

W_min = W_length/2

W_max = (1−W_length/2)
(4.2)
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Algorithm 3: Raymarching Fragments
Input: W_min,W_max, PlaneAligned, LocalCamPos,CamVector

Output: entrypos, boxthickness

1 intersection1 = front intersection align box(W_min, LocalCamPos, CamVector);

2 intersection2 = back intersection align box(W_max, LocalCamPos, CamVector);

3 t0 = min(intersection1);

4 t1 = max(intersection2);

5 //viewing-align plane [1];

6 planeoffset = 1-frac( ( t0 - length(LocalCamPos-.5) ) * MaxSteps);

7 t0 += (planeoffset / MaxSteps) * PlaneAligned;

8 t0 = max(0, t0);

9 boxthickness = max(0, t1 - t0);

10 entrypos = localcampos + (max(0,t0)* CamVector);

11 return float4(entrypos, boxthichness);

Equation 4.2 calculates the minimum and maximum W position, respectively(Note

the CT slice is square; therefore, we only need to beware of Z-axis). As long as

a correct bounding box size is obtained, the next step is to compute the first/last

sample point base on the viewing-align plane; this part adopted [1] approach directly.

In the end, only the fragments are covered by the bounding box on the screen, which

needs to be raymarching. The function displayed in algorithm 3.

Raymarching direction and step length

Given the sampling position, each step length and the maximum number of sampling

steps were pre-computed for each viewing ray. Equation 4.3 depict sampling step

size, the XY stores the number of rows and columns in the 2D sequence map, XY

product is divided by Wlength to acquire local slice thickness. To get adjusting step

length need to multiply local slice thickness with normalized local camera vector.

StepSize = W_length/(XY.x ∗ XY.y),

StepSize∗ = localcameraDir.
(4.3)

And we can divide boxthickness by local slice thickness to get the maximum amount

of sampling. Through both pre-computed values can fix the sampling rate as low as
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possible. That suppresses redundant sampling between slices.

Sample Transfer Function

Until now, the essential parameters for the custom node were possessed. The

next is performing UV movement to extract stored alpha. algorithm 4 depicts

from sampling texture values to interpolation. The inPos.xy
XY can get the unit UV

for sampling 2D sequence map. Sampling which slice is decided by the z-axis.

ceil((inPos.z−W_min)/StepSize) can have current sample slice index in sequence

map. "Convert1dto2d" [1] converts locating z frame that has been laid out in a 2D

sequence map into a UV position. Both front slice UV and back slice UV are ready;

we can apply it to a sampling function for interpolation. In the end, algorithm 4

returns interpolated α value between the front slice and back slice. Note that Tex (2D

sequence map) is set as bilinear filter when the sample position does not hit the pixel

center. Therefore, interpolation is tri-linear.

Algorithm 4: GetAlphaTF
Input: Texture Tex, XY, inPos, MaxSteps, StepSize

Output: α

1 zframe← ceil((inPos.z - W_min) / StepSize);

2 zphase← frac((inPos.z - W_min) / StepSize);

3 uv = frac(inPos.xy) / XY;

/* Convert1dto2d provided by [1] tutorial */

4 curframe = Convert1dto2d(xy.x, zframe) / XY;

5 nextframe = Convert1dto2d(xy.x, zframe + 1) / XY;

6 S f = SampleLevel(Tex, uv + curframe);

7 Sb = SampleLevel(Tex, uv + nextframe);

8 α = lerp(S f , Sb, zphase);

9 return α

algorithm 5 sums up previous steps and provides the fundamental RM, the

transmittance(1-opacity) is the index of early ray termination. The main loop included

the illumination approach, which will be explained in the next subsection.
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Algorithm 5: Ray-marching-based VRT
Input: Texture Tex, XY, CurPos, MaxSteps, W_length

1 StepSize = (W_length/XY.x*XY.y); StepSize *= CamVector;

2 transmittance← 1;

3 for i← 0 to MaxSteps do

4 if CurPos not in bounding_box or transmittance == 0 then

5 break;

6 α = GetAlphaTF(Tex, XY, CurPos, MaxSteps, StepSize);

7 if α > air then

8 rgb = GetRGBTF(α);

9 if shadow then

10 for s← 0 to i do

11 acc_α += GetShadow(Tex, XY, ShadowPos, MaxSteps, StepSize);

12 ShadowPos += ShadowDir*ShadowStep;

13 end

14 if α == bone then

15 color += exp(-acc_α)*rgb*α*transmittance;

16 transmittance *= α;

17 else if α == tissues then

18 α *= Density;

19 color += exp(-acc_α)*rgb*α*transmittance;

20 transmittance *= α;

21 else if α == lung then

22 α *= Density;

23 color += exp(-acc_α)*rgb*α*transmittance;

24 transmittance *= α;

25 CurPos += StepSize;

26 end

27 opacity← 1 - transmittance ;

28 return color, opacity
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4.2.1 Visual Enhancement

Deep Shadow Map

In algorithm 5, "Getshadow()" applied Equation 3.2 to accumulate amount of atten-

uation from the sampling position to the light source. The accumulated value was

limited, which also took the current hitting sampling medium and transmittance into

account to set the threshold.

Illumination models

Current work provided three different illumination methods: SM*, BP* and LAO*.

SM* has been introduced in the above paragraph. BP* enables Blinn-Phong reflection,

which is a standard approach in computer graphics as described in section 2.2.

To compute LAO, Equation 2.6 is revisited again, the formulation of g at closer

look can be Equation 2.12. LAO is a way to enhance the ambient term A. Therefore,

Equation 2.6 can be rewritten as:

Ax(x) =
1
M

M

∑
m=1

gm

m−1

∏
i=1

(1− αi). (4.4)

The ambient term A considers a local neighborhood, a sphere centered at voxel

location x, Ak(x) represents incident light ray with combined LAO A(x). gm repre-

sents the light contribution at sample point m along the ray. αi is current TF opacity

at sample position i. The 1
M ∑M

m=1 gm is equal to 1 because of 1/M scaling. The whole

Equation 4.4 can be simplified to ∏m−1
i=1 (1− αi), then all incident light ray are taken

into account, the equation can be rewritten:

A(x) =
1
K

K

∑
k=1

ωk Ak(x), (4.5)

where ωk is the weighting term for directional ambient light. Ultimately, the A(x) is

associated with α TF and directional weighting. The directional light vectors can be

randomly generated by "Rejection Sampling" described in algorithm 6.

Anti Artefacts

Three different methods were provided to suppress artifacts according to the needs,
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Algorithm 6: Random directions with Reject Sampling

1 while TRUE do

2 x = RandomFloat(-1, 1);

3 y = RandomFloat(-1, 1);

4 z = RandomFloat(-1, 1);

5 if x*x + y*y + z*z > 1 then

/* if(Dot(float3(x,y,z), N) < 0);

down direction will be adjusted druing sampling. */

6 return normalized(float3(x,y,z));

7 end

the cause for the formation of artifacts was described in subsection 3.4.3. Supersam-

pling anti-aliasing (SSAA) renders a draw with a higher resolution, which is used

in the anti-aliasing border. SSAA splits each pixel into several sub-pixels and uses

samples from each sub-pixel center to produce the output. In the implementation,

a simple 2x2 grid algorithm was used. In the RM, each casting ray corresponds

to each pixel of the screen. The only need is firing more than one ray for each

pixel.algorithm 7 that computes image gradient in both horizontal and vertical di-

rections cannot be applied inside dynamic branching and loops because dynamic

loops are already included in our RM approach. Instead of that, the derivative was

computed outside the loops and generate four ray entry positions. The pre-computed

derivative positions can be used inside dynamic loops and marched as RM approach.

The Pre-integral approach is to reduce wood-grain artifacts; however, the valid

proportion is under linear scalar function between two sampling points. Precisely

our sampling is tri-linear. So, there are remaining wood-grain artifacts. Through

adding a small offset to the sampling position of rays in the view direction can hide

wood-grain artifacts, this technique is called Stochastic Jitter. The offset is determined

by Sv_Position where the pixel position (x,y) is in normalized vertex coordinates.

Oversampling is the alternative to remove wood-grain artifacts. Oversampling in
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Algorithm 7: 2x2 Ordered grid supersampling

/* per pixel screen space partial derivatives */

1 dx← ddx(TexCoord.xy) * 0.25; /* horizontal offset */

2 dy← ddy(TexCoord.xy) * 0.25; /* vertical offset */

/* supersampled 2x2 ordered grid */

3 inPos1← (inPos.xy + dx + dy, inPos.z);

4 inPos2← (inPos.xy - dx + dy, inPos.z);

5 inPos3← (inPos.xy + dx - dy, inPos.z);

6 inPos4← (inPos.xy - dx - dy, inPos.z);

7 return sets of inPos;

VRT means sampling at a higher rate than the intended rate, due to the adjusted

sampling step size and amount that fix the sampling rate into the minimum. An

incremental sampling rate between two sample slices can reduce the sudden change

in the depth between neighboring opaque fragments belonging to the same pixel.

4.2.2 Branching Prevention

We assumed custom nodes had been minimized constants and less number of in-

structions so we can explore branch problem only. Branch statements(for, if-else, while)

involve instruction jumps and cause the pipeline to stall on the GPU. The branches in

the shader can be divided into static branches and dynamic branches. The difference

is the value of condition statement takes static uniform variable or dynamic value,

that is, the compiler knows the value only at run-time. Dynamic branching causes

the GPU is done in batches; the GPU fails to maximize the use of simultaneous

calculations. Instead, the calculations are performed twice with the overhead of

creating "warp" and copying data, which should be avoided.

Although the branch statement is required in many scenarios, there are several

ideas used to improve it:

1. The trick method skips the if : step replaces the if statement.
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2. Optimized by compiler: The compiler can optimize branches under some

condition. The statement contains only constants or uniform parameters. The

static data and uniform data will not change, the compiler can judge and compile

optimization.

3. Unroll code: For example, after testing, if can generate two branches; it may be

faster to execute the instructions of both branches than to use if.

Also, note that unless the branch is skipping over significantly more lines of code

than a single texture read will probably reduce performance and not improve it.

4.3 Octree

Given dataset, each CT slice contains at least 40% empty space. Using a hierarchical

structure to perform leaping empty space have been proved that can improve per-

formance. The concept of the Octree has been introduced in subsection 3.4.4. This

section includes approaches of the Octree construction and shifting UV coordinates

to traverse the tree.

4.3.1 Tree Construction

1
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Figure 4.5: Labeled nodes of octree in Z-up left-handed coordinates

The strategy implements BONO on constructing and saves tree as texture type:
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1. Saving structure: Each pixel contains RGB with uint8 data-type. RG stores the

child index of the current node, and B stores the average density of sub-space.

Extra memory for traversal is allocated to record the number of slices in sub-

space. Therefore, each child holds three pixels, each row stored eight children,

and the column contains the total number of nodes.

2. Z-up left-handed coordinates: The construction should be base on UE4 coordi-

nate system. Fig. 4.5 depicts labeled nodes in Z-up left-handed coordinates.

3. Termination criteria: Maximum Octree depth or minimum/maximum density

matches threshold in sub-space.

Condition [R, G, B] [R, G, B] [R, G, B]

Leaf node [0,0,0] [slices,0,0] [0, 0, density]

Can be subdivided [0,0,0] [0,0,0] [ptr, idx, density]

Table 4.2: Each child contains three pixels, the memory usage is based on two conditions.

Leaf nodes: the average of density below or higher thresholds, or tree reaches the

maximum depth. Node gives the number of slices and average of density in current

sub-space; Nodes can be subdivided: Node provides pointer of the row which is

the location of the current node’s children.

algorithm 8 explains whole Octree construction. The basic idea was that if a node

can be subdivided, then AABB values of the current sub-space was stored in its

child(label 0), then allocated new "children row" and concatenated into constructing

tree. The AABB values were extracted for further subdivision when column_idx

and row_idx visited it. Until row_idx visited all rows(child nodes), the construction

terminated. The saving policy of nodes can refer to Table 4.2.

4.3.2 Traversal

The traversal is based on [57] top-down arithmetic. There are a few things need to

beware: To extract accurate RGB value, need to load texture as linear and compute
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Algorithm 8: BONO Construction Procedure

1 Begin

2 struct {

3 float r,g,b;

4 } Node;

5 Function Calculate_density(vmin, vmax, imgs_arr, child_idx):

6 avg← 0 ;

/* Get the accurate voxels occuping space */

7 f ront_idx ← f loor((vmin[2]−W_min)/thickness);

8 back_idx ← f loor((vmax[2]−W_min)/thickness);

9 space← (back_idx− f ront_) ∗ abs(vmax[1]− vmin[1]) ∗ abs(vmax[0]− vmin[0]));

10 r1, r2, c1, c2 = computeRowColumn(vmin, vmax, child_idx); /* Compute column

and row of start and finish on pixel in sub-space. */

11 for depth← f ront_idx to back_idx do

12 img← imgs_arr[depth];

13 for row← r1 to r2 do

14 rows← img[row];

15 avg+ = sum(rows[c1 : c2])

16 end

17 end

18 avg/ = space;

19 return avg, slices;

20 Function InitOctree(img_arr):

21 child← TRUE;

22 Octree← {Node}25
i=1;

23 row_idx ← 0; column_idx ← 0;

/* Initial root UVW box size */

24 Octree[0][0] = [0, 0, W_min]←; Octree[0][1] = [512, 512, W_max];

25 idx ← −1;
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26

27 while child do

28 xyz←Octree[0][0:1];

29 for row_idx ← 0; column_idx < 24; column_idx+ = 3 do

/* compute labelled child AABB box and label, the partition fills

W to 512 */

30 sub_xyz, idx = computesubbox(xyz, row_idx);

31 subdivide← abs(sub_xyz[0][0]− sub_xyz[1][0]);

32 avg_density, slices = Calculate_density(sub_xyz[0], sub_xyz[1], img_arr, idx);

33 if subdivide ≤ subdivide_threshold||ceil(avg_density) ≤

minDensity||ceil(avg_density) ≥ maxDensity then

34 Octree[row_idx][column_idx + 1] = [slices, 0, 0];

35 Octree[row_idx][column_idx + 2] = [0, 0, avg_density];

36 else

/* Create next child index, concatenate into parent node */

37 next_child←{Octree}25
i=1;

38 child_ptr = (Octree.shape[0] + 1)%255;

39 child_idx = int((Octree.shape[0])/255);

40 next_child[0][0 : 1]← sub_xyz;

41 Octree[row_idx][column_idx + 2] = [child_ptr, child_idx, avg_density];

42 Octree← concatenate((Octree, next_child), axis = 0)

43 row_idx ++;

44 if row_idx ≥ Octree.shape[0] then

45 child← FALSE

46 saveImage(Octree);

47 End
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Figure 4.6: The diagram shows the relationship between the initial node and sub-node in

z-up left-hand coordinates. The digits from the first to the last in order indicates

X-axis, Y-axis and Z-axis, and 0 and 1 indicate the negative and positive direction

respectively.

unit UV; otherwise, the stored values of the pointer will be incorrect; Revelles J. et

al. [57] used left-handed Cartesian coordinates. The method adopted was to assign

the binary bits 000-111 from 0-7 labeled nodes and through an associated bit to find

the next intersection node. The order of the child nodes is fixed, Fig. 4.6 depicts the

relationship between sub-node and initial node after converting into UE4 coordinate

system.

The Octree traversal is described in Fig. 9, the entire procedure is similar to the

original proposal, except different coordinates and returning leaf node condition.

As long as shader successfully traversed the tree and sampled accurate pixel values,

the last step was to apply the conditional policy(Fig. 4.2). When RG values in the

third pixel of the child are 0, that means leaf node; however, B represents average

density, which determines whether sub-space can be skipped. If B is nearly empty,

the function returns the No. jumping slices, and -1 tells the custom node to skip the

current sub-space. On the other hand, the non-empty space condition still returns the

number of slices to the ray, which marches until it visits the next sub-space.

43



4 Implementation

Algorithm 9: Octree traversal

1 Begin

2 Function First_node(tx0, ty0, tz0, txm, tym, tzm, rayDir):

3 node_idx← 0;

4 farest← max(tx0, max(ty0, tz0));

5 if YZ plane then

6 if tym < tx0 then

7 node_idx | = 2;

8 if tzm < tx0 then

9 node_idx | = 1;

10 if rayDir.x < 0 then

11 node_idx | = 4;

12 else if XZ plane then

13 if txm < tz0 then

14 node_idx | = 4;

15 if tym < tz0 then

16 node_idx | = 2;

17 if rayDir.y < 0 then

18 node_idx | = 1;

19 end

20 else if XY plane then

21 if txm < ty0 then

22 node_idx | = 4;

23 if tzm < ty0 then

24 node_idx | = 1;

25 if rayDir.z < 0 then

26 node_idx | = 2;

27 end

28 return node_idx;
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26

27 Function OctreeProcess(OctreeTex, rayO, rayD, UVWbox0, UVWbox1, uv):

28 curV← 1, kid← -1;

29 IDX← 0, uv_← 0 ;

30 for depth← 0tomaxDepth do

/* compute entry/exit plane and t1, t0 */

31 if t1 ≤ t0||t1 ≤ 0 then

32 break

33 uv_.y← uv.y*curV;

/* shift to next node */

34 kid = First_node(entry_plane.xyz, middle_plane, rayD);

35 if kid then

36 uv_.x = WhichKid(uv.x, kid);

37 node← SampleLevel(OctreeTex, uv_, 0);

38 if node.r == 0 and node.g == 0 then

/* leaf node */

39 uv_.x = WhichKid(uv.x, kid);

/* movement stores in second pixel */

40 movements = SampleLevel(OctreeTex, uv_, 0);

41 if node.b == empty then

42 IDX← float2(-1, movement);

43 else

44 IDX← float2(1, movement);

45 break;

46 else

47 boxUVW0 = compute sub-space UVW(kid, UVWbox0, UVWbox1);

48 curV← node.r ∗ 255 + node.g ∗ 2552;

49 return IDX
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5.1 Visualization

Data_ID No. Slices Device Source Data_ID No. Slices Device Source

p08_1b14 47 CT Anonymous p01_04 150 CT Anonymous

p03_78e 81 CT Anonymous p09_24f 165 CT Anonymous

p02_360 100 CT Anonymous p03_788 256 CT Anonymous

p09_24d 119 CT Anonymous p05_f21 279 CT Anonymous

p06_12f9 134 CT Anonymous p07_16c1 317 CT Anonymous

Table 5.1: Used DICOM Files covered nine variant patients, the Data_ID was sorted by the

number of slices from low to high. The data from patient 01-03 were used for

section 5.1, and the entire dataset were used for evaluation part.

The visual results were compared to two open-source software systems: RadiAnt

DICOM Viewer and VTK(Visualization Toolkit). VTK is mainly used for 3D computer

graphics, image processing, and scientific visualization. It provides technical support

for researchers to engage in visual application development. Table 5.1 presents eight

obtained anonymous patient DICOM data. Each folder contains thoracic cavity scans

of the body with different sections, amount, and thickness.

5.1.1 Ground Truth

Four different data-sets comparison results with RadiAnt and VTK are shown in:

Fig. 5.1, Fig. 5.2, Fig. 5.3 and Fig. 5.4. The order is sorted from low to high according to

the number of slices. The LAO* had clear contour and depth perception with different
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.1: The ground-truth comparison with RadiAnt and VTK used the data ID: p03_78e.

The columns show different implementation results: Current work approach

LAO*((a), (d), (g)), Radiant((b), (e), (h)) and VTK((c), (f) ,(i)). The rows represent a

different ROI: lung and skin((a) - (c)), bone((d) - (f)) and all((g) - (i)) in order.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.2: The ground-truth comparison with RadiAnt and VTK used the data ID: p02_360.

The columns show different implementation results: Current work approach

LAO*((a), (d), (g)), Radiant((b), (e), (h)) and VTK((c), (f) ,(i)). The rows represent a

different ROI: lung and skin((a) - (c)), bone((d) - (f)) and all((g) - (i)) in order.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.3: The ground-truth comparison with RadiAnt and VTK used the data ID: p01_04.

The columns show different implementation results: Current work approach

LAO*((a), (d), (g)), Radiant((b), (e), (h)) and VTK((c), (f) ,(i)). The rows represent a

different ROI: lung and skin((a) - (c)), bone((d) - (f)) and all((g) - (i)) in order.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.4: The ground-truth comparison with RadiAnt and VTK used the data ID: p03_788.

The columns show different implementation results: Current work approach

LAO*((a), (d), (g)), Radiant((b), (e), (h)) and VTK((c), (f) ,(i)). The rows represent a

different ROI: lung and skin((a) - (c)), bone((d) - (f)) and all((g) - (i)) in order.
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visual modes. As Fig. 5.2(h)(i), Fig. 5.3(h)(i) and Fig. 5.4(h)(i)) shown, the visual results

of RadiAnt and VTK displayed overlapped organs without comprehensive relative

position for bone and tissues mode.

The rendering algorithm of VTK is maximum intensity projection (MIP) [36], which

only collects maximum emissions along with casting rays. The advantage of MIP is

all contours are visible equally but are independent of their depth order.

5.1.2 Volume Rendering for Art versus Scientific Data

(a) Standford Bunny (b) Cave Cloud

(c) LAO* (d) Radiant (e) RB*

Figure 5.5: (a),(b) use RB* to perform volume rendering art effects. Medical dataset p02_360

is used for visual comparison (c)-(e). (c) enables LAO*, (d) enables RadiAnt as

ground-truth. (e) enables RB*.

We have mentioned that the graphic engine usually utilizes volume rendering
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technique to implement complex art effects(e.g., cloud, fog and fire). Here, the

tutorial by Ryan Brucks [1](RB*) was followed to perform volumetric rendering in

UE4 and it was compared with Radiant and our approach(LAO*).

Volume rendering Standford bunny and cloud (Fig. 5.5(a)(b)) display decent visual

effect. When the same algorithm was applied on the p02_360 as an example, the

Fig. 5.5(e) shows the inappropriate blending color and incorrect organ positions, that

was compared with ground-truth Fig. 5.5(d) from Radiant. After considering tag

values from DICOM and TF design, Fig. 5.5(c) illustrates better representation of

medical data.

5.1.3 Different Illumination Result

(a) (b) (c)

(d) (e) (f)

Figure 5.6: Ray-marching-based VRT uses p02_360 with different illumination methods. (a)(d)

LAO* (b)(e) BP* (c)(f) SM*. The figures only consider one light source. Position of

light source is behind the rendering target.

The current work implemented various illumination approaches (LAO*, BP* and

SM*) to enhance visualization. The Fig. 5.6 displays the visual results with different
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ROI. SM* can have proper visualization with high opacity medium (Fig. 5.6(c)). When

it encountered low opacity tissues(e.g. skin and lung) the boundary disappeared

(Fig. 5.6(f)). The Fig. 5.6(e) shows that BP* solved missing boundary. However, when

light position is behind the RT, as Fig. 5.6(b) display, RT became totally dark. The

Fig. 5.6(a) displays that the bone was visible in detail with LAO*. The LAO* prevented

fully occlusion, also kept the advantage of BP*.

5.1.4 Removed Artifacts

(a) (b) (c) (d)

Figure 5.7: The first 4 slices take from p02_360. Due to the longitudinal section, pre-integration

can easily get empty pair.

The current thesis provided two methods to remove wood-grain artifacts. Due to

each sample, step length and maximum steps have been adjusted base on the scan

thickness and ray direction. In the beginning, this adjustment saved performance

and simulates the correct organ position. Because of the low sampling rate, the Pre-

integration cannot take its advantage to remove artifacts. Especially implementing

with longitudinal section scan dataset(e.g., p03_78e, p02_360). In Fig. 5.7(a)-(d), there

exists 0 scalar value(air) in the pair sample points with adjusted step length. That

means no extra samples in the slab to neutralize the empty scalar values.

Therefore, we suggested Stochastic Jitter to remove wood-grain artifacts without

increasing the sampling rate. The example explains that different sections and slices-

density caused the remaining artifacts. Fig. 5.8 (a)-(d) were rendered with lower

amount of longitudinal-section slices. Fig. 5.8 (e)-(h) were implemented with higher

number of cross-section slices. (a) and (e) were rendered without any approach to
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.8: The visual comparison of handling artifacts in an efficient way. (a)-(d) use p03_78e

with longitudinal-section 81 slices and 3 mm slice thickness. (e)-(h) use p03_788

with cross-section 256 slices and 1.5 mm slice thickness. (a)(e) Without any visual

optimization. (b)(f) Pre-Integral. (c)(g) Pre-Integral + Jitter. (d) Pre-Integral + 3

times sampling rate. (h) Pre-Integral + 2 * sampling rate.

remove wood grain, but (a) displays visible artifacts. (b) and (f) both had remaining

artifacts after using Pre-integral. Without adding a sampling rate, Stochastic jitter can

suppress woos grain, as seen in (c) and (g). On the other hand, without using jitter,

the lower amount of longitudinal-section slices (d) needed a higher number sampling

rate than (h) to remove wood-grain artifacts.

Regarding of anti-aliasing, the Fig. 5.9(a) had smoother edge resolution from 2x2

sub-pixel pattern in comparison to Fig. 5.9(b), which had notable edge gradient

resulting.
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(a) (b)

Figure 5.9: The visual comparison of removing anti-aliasing. (a) 2x2 ordered grid SSAA, (b)

without SSAA.

5.2 Performance

The performance evaluation was done under Windows 10 using an Intel Core i7 4790,

32GB RAM, and a Nvidia Titan V. The Unreal Engine Version is 4.22.3. The testing

used eight anonymous patients with ten different amount of slices (See Table 5.1).

The amount of slices ranged from 47 to 317. Due to the restriction of the maximum

size of importing texture in Unreal Engine, we resized two datasets below or equal to

8192x8192.

5.2.1 High-quality Illumination versus Performance

In the previous visual comparison, RB* approach cannot reach high-quality visu-

alization with medical images. Current work provides decent visual quality. This

section analyses whether our illumination methods need to trade performance off.

The theoretical complexity of our DVR algorithm (for all illumination methods) is

O(m ∗ n) where m is the fixed resolution of the viewport and n is the number of

samples, per ray, which is the dynamic and is mainly influenced by the number of
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slices, sampling rate, and Octree. Without increasing sampling rate, n is correlated

to the number of slices. The three illumination methods unfolded the loop and

pre-computed shadow values inside the 2D sequence map; therefore, complexity

regarding their Big-O notation is the same. PS executes under the GPU, and sampling

is the process by which the GPU reads the texture information from memory. That

typically needs between 100 and 1000 clock cycles, which is hundreds of times more

than usual instruction execution. Algorithm utilized tri-linear interpolation to sample

value. Each sampling slice used a bilinear filter to extract value and then interpolated

with the next sampling slice. Hence, sampling is crucial in runtime. On the other

hand, RB* does not use TF; its shadow requires large sampling that has a big impact

on performance.

Figure 5.10: Performance comparison with various amount of slices: Three illumination

methods(LAO*, SM*, BP*) and RB* without SSAA.

As Fig. 5.10 illustrates, as the number of slices increasing, the performance dropped

dramatically using RB*. During this evaluation, the 279 and 317 slices were resized to

8192x5734 and 8192x6553, respectively. Both have a smaller resolution than 256 slices.
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There was no obvious difference between the three illumination methods when the

number of slices was below 100. The LAO* dropped slightly from 100 to 256 number

of slices. When rendering 279 slices, RB* slumped up to 13 ms, BP* and LAO* slightly

decreased but still kept acceptable performance, and SM* remained.

5.2.2 Octree

In general, the performance had visibly dropped when rendering with a high amount

of slices and complicated illumination methods. Instead of only performing early

ray termination, we also utilized hierarchical data structure(Octree) to leap blank

space. LAO*, when rendering below 100 amount of slices, had high performance. To

observe the advantage of the Octree, we implemented SSAA for evaluation.

The Fig. 5.11(a) analyzes performance improvement with Octree under SSAA con-

dition. The gained performance had a slight correlation with the number of slices

when the slices were higher than 150. The main purpose of Octree in the current

thesis was to skip empty space. Therefore, for better understanding, Fig. 5.11 (b)

shows the correlation between improved performance and empty ratio. The gained

performance of 279 slices was higher than 256 slices even though its empty ratio

was lower. The overall improved performance cannot have a positive correlation

with the empty ratio, which was also influenced by the amount of slices/image size.

This phenomenon can be observed in Fig. 5.11(b), the 279 slices had a smaller empty

ratio than 256 slices, but its gained performance was higher than 256. Because the

image size of the amount 256 was far greater than that of amount 279. The statics

information for evaluation can be seen in Table 5.2.

Although the performance can be improved via Octree, the scalar value of skin

was nearly empty and average density as subdivision standard caused low opacity

medium to be skipped under certain viewing angle as shown in Fig. 5.12(b).

57



5 Results

(a)

(b)

Figure 5.11: (a)Performance comparison: Under 2x2 SSAA and LAO* compared various

amount of slices with/without skipping empty space (b) The improved perfor-

mance and empty space ration from (a).
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DataSet Description
Datasize

and type

Empty

ratio
Millisecond(ERT)

SSAA+LAO* No SSAA

no skipping octree SM* BP* LAO* RB*

p03_78e

512x512x81

ST: 3mm

Images: 3.9MB(8bit)

Octree: 30.5KB(8bit)
76.1% 5.7 5.7 5.7 5.7 5.7 7.2

p02_360

512x512x100

ST: 3mm

Images: 4.2MB(8bit)

Octree: 60.9KB(8bit)
60.9% 6 5.6 5.7 5.7 5.7 7.5

p01_04

512x512x150

ST: 1.5mm

Images: 4.5 MB(8bit)

Octree: 60.9KB(8bit)
40.3% 6 5.8 5.7 5.8 6.2 7.6

p03_788

512x512x256

ST: 1.5mm

Images: 6.8MB(8bit)

Octree: 60.9KB(8bit)
57.1% 7.8 6.2 5.8 5.9 6.8 9.8

p08_1b14

512x512x47

ST: 2mm

Images: 1.3 MB(8bit)

Octree: 76.1KB(8bit)
49% 5.7 5.7 5.7 5.7 5.7 6.5

Table 5.2: Dataset statistics for the volumes used the evaluation of methods. All the evaluations

are under early ray termination(ERT). This table contains whether leaping blank

space with SSAA octree, and novel three illumination methods(SM*, BP*, LAO*)

compare with RB* provided by UE4
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DataSet Description
Datasize

and type

Empty

ratio
Millisecond(ERT)

SSAA+LAO* No SSAA

no skipping octree SM* BP* LAO* RB*

p06_12f9

512x512x134

ST: 3mm

Images: 3MB(8bit)

Octree: 60.9KB(8bit)
51.1% 6.0 5.7 5.7 5.7 6 6.9

p07_16c1

512x512x317

ST: 1.5mm

Images: 5.3MB(8bit)

Octree: 76.1KB(8bit)
58.5% 11.5 7.6 5.75 6.1 7.9 13.2

p09_24f

512x512x165

ST: 3mm

Images: 3.4MB(8bit)

Octree: 60.9KB(8bit)
54.7% 6.9 5.9 5.8 5.8 6.3 7.6

p09_24d

512x512x119

ST: 3mm

Images: 7.7 MB(8bit)

Octree: 30.5KB(8bit)
48.9% 6 5.7 5.7 5.7 6 7

p05_f21

512x512x279

ST: 1.5mm

Images: 5.4 MB(8bit)

Octree: 38.1KB(8bit)
54.2% 11.5 8.3 5.7 5.7 8.3 13.05

Table 5.3: Dataset statistics for the volumes used the evaluation of methods. Continue from

previous page
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(a) (b)

Figure 5.12: Visual comparison with non-Octree and Octree (a) enable SSAA and LAO* (b)

enable SSAA, LAO* and Octree.
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6 Conclusion & FutureWork

6.1 Conclusion

The current thesis successfully implements DVR into UE4, which is fast enough for

real-time viewing and Virtual Reality, and at the same time, it provides high visual

quality.

From the blended window algorithm, knowledge from radiology to segment ROI

was utilized. The most important tissues, such as organs and bones, were successfully

segmented out. Similarly, the scalar value can be extracted and used for opacity TF

and shadow directly.

Different illumination methods were deployed to enhance visual quality. Through

branching prevention and pre-computed opacity TF and under high-level LAO

rendering even performs fast.

About performance and artifacts, both jitter and increasing sampling rate can

remove wood-grain artifacts. Stochastic jitter only needs to be applied before starting

the sampling loop, which not only saves a lot of computing but also suits for any

CT section. Although the SSAA suppressed aliasing, most of the time, the aliasing

artifacts were not notable. SSAA can be an optional function for visual enhancement.

Octree was constructed successfully, which rendered faster than without deploying

octree under SSAA condition.

Through well understanding DICOM information, current work can pre-compute

step length and the maximum number of steps for each viewing ray to prevent redun-

dant sampling and keep the correct model shape. In performance comparison, RB*[1]
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simulated realistic shadow and implemented with plenty of sampling instruction due

to which the number of slices impacts the performance. The overall LAO* can have

better performance and visual precision than RB* for rendering the variant number

of medical data.

Regarding visual comparison with the open-source library and DICOM application,

high-quality screenshots were provided in section 5.1. In the visual comparison with

VTK, VTK used different blending method; the result only can prove that the MIP

cannot segment high complex structure. RadiAnt provided different color for tissues;

However, there were no proper shadow mapping on them (only bone mode has

shadow), and it was hard to tell depth, on glowing organs. LAO did not have the

above shortcomings and gave a clear internal structure in semi-transparency.

Therefore, as shown in current works, both visualization and performance tell, it

is possible doing VRT under the game engines without relying on the open-source

library.

6.2 Future Work

There are numerous opportunities for future work.

The raw data through pre-processed then was saved as images. Because of texture

format, the intuitive way was to use the material editor, but this method can also be

a restriction. The maximum number of importing size for texture is 8190x8190 in

Unreal Engine. Via resizing 2D sequence map may lose resolution, which we did for

p07_16c1 and p05_f21, the alternative way is adjusting custom node, that can read

multiple 2D sequence textures to solve it temporarily. The suggestion can be store

cleaned data as a text file then interpreted as a texture inside UE4.

Regarding TF for medical diagnosis needs further improvement. The current

approach can acquire essential ROI, and the viewer cannot see a particular organ or a

complicated structure. That can be improved by using 2D/multi-dimension TF. The

data we possessed only scanned chest to limbs because the advantage of considering
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higher dimensional TF can handle a variant range of HU such as the head. The

other option to optimize ROI is performing supervised machine learning [59] to

classify multi-material. The material topology of objects [60] allowed viewers to select

render objects and depict adjacent materials in a volume. For further photo-realistic

illumination, the cinematic rendering technique can also be applied in VRT.

The current Octree aimed to skip empty space. The subdivision standard caused a

low-opacity medium to be skipped. We can see empty space as an irregular shape

and apply irregular grid algorithm [61] to build the spatial structure. This method

not only skipped empty space accurately but also merged the same medium(tissue),

which can reduce the cost of ray sampling.

64



List of Figures

2.1 Absorption model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Traveling Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Blinn-Phong model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 DICOM data elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Hounsfield Unit Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Adjusted windows with preset values . . . . . . . . . . . . . . . . . . . 17

3.1 My Program Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Custom UVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Pre-Integral Slab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Implementation pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Histogram of the first slice . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Native blended window algorithm . . . . . . . . . . . . . . . . . . . . . 30

4.4 Histogram comparison of different blended windows approach. . . . 31

4.5 Z-up left-handed coordinates . . . . . . . . . . . . . . . . . . . . . . . . 39

4.6 The relationship between the initial node and sub-node in z-up left-

hand coordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1 The ground-truth comparison with RadiAnt and VTK used the data

ID: p03_78e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 The ground-truth comparison with RadiAnt and VTK used the data

ID: p02_360. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

65



List of Figures

5.3 The ground-truth comparison with RadiAnt and VTK used the data

ID: p01_04. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4 The ground-truth comparison with RadiAnt and VTK used the data

ID: p03_788. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.5 The visual comparison with RB*[1] and our approaches. . . . . . . . . 51

5.6 Visual comparison with different illumination methods. . . . . . . . . 52

5.7 The first 4 slices take from p02_360. Due to the longitudinal section,

pre-integration can easily get empty pair. . . . . . . . . . . . . . . . . . 53

5.8 Using different methods to remove wood-grain artifacts. . . . . . . . . 54

5.9 Comparison of anti-aliasing. . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.10 Performance comparison with various amount of slices . . . . . . . . . 56

5.11 Performance comparison with Octree and non-Octree . . . . . . . . . . 58

5.12 Visual comparison with non-Octree and Octree . . . . . . . . . . . . . 61

66



List of Tables

2.1 An description for used tags table . . . . . . . . . . . . . . . . . . . . . 17

3.1 Non-full Octree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Used Tag Table Values which were extracted from patient ID: 01_13 . 28

4.2 Stored nodes policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1 Used DICOM Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Dataset statistics-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Dataset statistics-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

67



Bibliography

[1] RyanB. Authoring Pseudo Volume Textures. Oct. 2016. url: https://shaderbits.com/

blog/authoring-pseudo-volume-textures.

[2] A. Cantatore and P. Müller. “Introduction to computed tomography”. In: 2011.

[3] G. D. Rubin. “Computed Tomography: Revolutionizing the Practice of Medicine for

40 Years”. In: Radioligy 273.25 (Oct. 2014). doi: https://doi.org/10.1148/radiol.

14141356.

[4] E. H. Dillon, M. S. van Leeuwen, M. A. Fernandez, B. C. Eikelboom, and W. P. Mali.

“CT angiography: application to the evaluation of carotid artery stenosis.” In: Radiology

189.1 (Oct. 1993). doi: https://doi.org/10.1148/radiology.189.1.8372196.

[5] J. M. Goo, T. Tongdee, R. Tongdee, K. Yeo, C. F. Hildebolt, and K. T. Bae. “Volumetric

Measurement of Synthetic Lung Nodules with Multi–Detector Row CT: Effect of Various

Image Reconstruction Parameters and Segmentation Thresholds on Measurement

Accuracy”. In: Radiology 235.3 (June 2005). doi: https://doi.org/10.1148/radiol.

2353040737.

[6] T. Kobayashi, X. W. Xu, H. MacMahon, C. E. Metz, and K. Doi. “Effect of a computer-

aided diagnosis scheme on radiologists’ performance in detection of lung nodules on

radiographs.” In: Radiology 199.3 (June 1996).

[7] E. K. Fishman, D. Magid, D. R. Ney, E. L. Chaney, S. M. Pizer, J. G. Rosenman, D. N.

Levin, M. W. Vannier, J. E. Kuhlman, and D. D. Robertson. “Three-dimensional imaging.”

In: Radiology 181.2 (Nov. 1991). doi: https://doi.org/10.1148/radiology.181.2.

1789832.

68

https://shaderbits.com/blog/authoring-pseudo-volume-textures
https://shaderbits.com/blog/authoring-pseudo-volume-textures
https://doi.org/https://doi.org/10.1148/radiol.14141356
https://doi.org/https://doi.org/10.1148/radiol.14141356
https://doi.org/https://doi.org/10.1148/radiology.189.1.8372196
https://doi.org/https://doi.org/10.1148/radiol.2353040737
https://doi.org/https://doi.org/10.1148/radiol.2353040737
https://doi.org/https://doi.org/10.1148/radiology.181.2.1789832
https://doi.org/https://doi.org/10.1148/radiology.181.2.1789832


Bibliography

[8] G. D. Rubin, C. F. Beaulieu, V. Argiro, H. Ringl, A. M. Norbash, J. F. Feller, M. D.

Dake, R. B. Jeffrey, and S. Napel. “Perspective volume rendering of CT and MR

images: applications for endoscopic imaging.” In: Radiology 199.2 (May 1996). doi:

https://doi.org/10.1148/radiology.199.2.8668772.

[9] M. Levoy. “Display of Surfaces from Volume Data”. In: IEEE Comput. Graph. Appl. 8.3

(May 1988), pp. 29–37. issn: 0272-1716. doi: 10.1109/38.511. url: https://doi.org/

10.1109/38.511.

[10] H. T. UY and L. T. UY. “IEEE Computer Graphics and Applications”. In: 4 (1984).

[11] N. Max. “Optical Models for Direct Volume Rendering”. In: IEEE Transactions on

Visualization and Computer Graphics 1.2 (June 1995), pp. 99–108. issn: 1077-2626. doi:

10.1109/2945.468400. url: https://doi.org/10.1109/2945.468400.

[12] J. Fong, M. Wrenninge, C. Kulla, and R. Habel. “Production Volume Rendering: SIG-

GRAPH 2017 Course”. In: ACM SIGGRAPH 2017 Courses. SIGGRAPH ’17. Los Angeles,

California: Association for Computing Machinery, 2017. isbn: 9781450350143. doi:

10.1145/3084873.3084907. url: https://doi.org/10.1145/3084873.3084907.

[13] H. Pfister, W. Lorensen, C. Bajaj, G. Kindlmann, W. Schroeder, L. Avila, K. Raghu,

R. Machiraju, and L. Jinho. “The Transfer Function Bake-Off.” In: Computer Graphics and

Applications, IEEE 21 (June 2001), pp. 16–22. doi: 10.1109/38.920623.

[14] L. Soler, S. Nicolau, P. Pessaux, D. Mutter, and J. Marescaux. “Real-time 3D image

reconstruction guidance in liver resection surgery”. In: Hepatobiliary Surgery and Nutrition

3.2 (2014).

[15] R. Bruggmann. Unity R© Volume Rendering – Plug-in zum Rendern von medizinischen Daten.

Oct. 2016. doi: 10.13140/RG.2.2.19248.05124.

[16] G. Wheeler, S. Deng, N. Toussaint, K. Pushparajah, J. A. Schnabel, J. M. Simpson, and

A. Gomez1. “Virtual interaction and visualisation of 3D medical imaging data with

VTK and Unity”. In: Healthc Technol Lett. 5.5 (Oct. 2018), pp. 148–153. doi: 10.1049/htl.

2018.5064.

69

https://doi.org/https://doi.org/10.1148/radiology.199.2.8668772
https://doi.org/10.1109/38.511
https://doi.org/10.1109/38.511
https://doi.org/10.1109/38.511
https://doi.org/10.1109/2945.468400
https://doi.org/10.1109/2945.468400
https://doi.org/10.1145/3084873.3084907
https://doi.org/10.1145/3084873.3084907
https://doi.org/10.1109/38.920623
https://doi.org/10.13140/RG.2.2.19248.05124
https://doi.org/10.1049/htl.2018.5064
https://doi.org/10.1049/htl.2018.5064


Bibliography

[17] W. Lorensen and H. Cline. “Marching Cubes: A High Resolution 3D Surface Construc-

tion Algorithm”. In: ACM SIGGRAPH Computer Graphics 21 (Aug. 1987), pp. 163–. doi:

10.1145/37401.37422.

[18] D. Bartz and M. Meiner. “Voxels versus Polygons: A Comparative Approach for Volume

Graphics”. In: (Jan. 2000). doi: 10.1007/978-1-4471-0737-8_10.

[19] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P. .-.-. Sloan. “Interactive ray tracing

for isosurface rendering”. In: (Oct. 1998), pp. 233–238. issn: 1070-2385. doi: 10.1109/

VISUAL.1998.745713.

[20] M. Meiundefinedner, J. Huang, D. Bartz, K. Mueller, and R. Crawfis. “A Practical

Evaluation of Popular Volume Rendering Algorithms”. In: Proceedings of the 2000 IEEE

Symposium on Volume Visualization. VVS ’00. Salt Lake City, Utah, USA: Association for

Computing Machinery, 2000, pp. 81–90. isbn: 1581133081. doi: 10.1145/353888.353903.

url: https://doi.org/10.1145/353888.353903.

[21] P. Lacroute and M. Levoy. “Fast Volume Rendering Using a Shear-Warp Factorization

of the Viewing Transformation”. In: Proceedings of the 21st Annual Conference on Computer

Graphics and Interactive Techniques. SIGGRAPH ’94. New York, NY, USA: Association

for Computing Machinery, 1994, pp. 451–458. isbn: 0897916670. doi: 10.1145/192161.

192283. url: https://doi.org/10.1145/192161.192283.

[22] H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler. “The VolumePro Real-

Time Ray-Casting System”. In: Proceedings of the 26th Annual Conference on Computer

Graphics and Interactive Techniques. SIGGRAPH ’99. USA: ACM Press/Addison-Wesley

Publishing Co., 1999, pp. 251–260. isbn: 0201485605. doi: 10.1145/311535.311563. url:

https://doi.org/10.1145/311535.311563.

[23] R. Yagel and Z. Shi. “Accelerating volume animation by space-leaping”. In: Proceedings

Visualization ’93. Oct. 1993, pp. 62–69. doi: 10.1109/VISUAL.1993.398852.

[24] J. Danskin and P. Hanrahan. “Fast Algorithms for Volume Ray Tracing”. In: Proceedings

of the 1992 Workshop on Volume Visualization. VVS ’92. Boston, Massachusetts, USA:

Association for Computing Machinery, 1992, pp. 91–98. isbn: 0897915275. doi: 10.1145/

147130.147155. url: https://doi.org/10.1145/147130.147155.

70

https://doi.org/10.1145/37401.37422
https://doi.org/10.1007/978-1-4471-0737-8_10
https://doi.org/10.1109/VISUAL.1998.745713
https://doi.org/10.1109/VISUAL.1998.745713
https://doi.org/10.1145/353888.353903
https://doi.org/10.1145/353888.353903
https://doi.org/10.1145/192161.192283
https://doi.org/10.1145/192161.192283
https://doi.org/10.1145/192161.192283
https://doi.org/10.1145/311535.311563
https://doi.org/10.1145/311535.311563
https://doi.org/10.1109/VISUAL.1993.398852
https://doi.org/10.1145/147130.147155
https://doi.org/10.1145/147130.147155
https://doi.org/10.1145/147130.147155


Bibliography

[25] N. Max. “Optical models for direct volume rendering”. In: IEEE Transactions on Vi-

sualization and Computer Graphics 1.2 (June 1995), pp. 99–108. issn: 2160-9306. doi:

10.1109/2945.468400.

[26] M. Meißner, H. Pfister, R. Westermann, and C. Wittenbrink. “Volume visualization and

volume rendering techniques”. In: (Jan. 2000).

[27] P. Ljung, J. Krüger, E. Groller, M. Hadwiger, C. D. Hansen, and A. Ynnerman. “State of

the Art in Transfer Functions for Direct Volume Rendering”. In: Computer Graphics Forum

35.3 (2016), pp. 669–691. doi: 10.1111/cgf.12934. eprint: https://onlinelibrary.

wiley.com/doi/pdf/10.1111/cgf.12934. url: https://onlinelibrary.wiley.com/

doi/abs/10.1111/cgf.12934.

[28] H. Pfister, B. Lorensen, C. Bajaj, G. Kindlmann, W. Schroeder, L. S. Avila, K. M. Raghu, R.

Machiraju, and Jinho Lee. “The transfer function bake-off”. In: IEEE Computer Graphics

and Applications 21.3 (May 2001), pp. 16–22. issn: 1558-1756. doi: 10.1109/38.920623.

[29] C. Rezk Salama, M. Keller, and P. Kohlmann. “High-Level User Interfaces for Transfer

Function Design with Semantics”. In: IEEE transactions on visualization and computer

graphics 12 (Oct. 2006), pp. 1021–8. doi: 10.1109/TVCG.2006.148.

[30] G. Kindlmann and J. W. Durkin. “Semi-automatic generation of transfer functions for

direct volume rendering”. In: IEEE Symposium on Volume Visualization (Cat. No.989EX300).

Oct. 1998, pp. 79–86.

[31] N. Young, N. W. C. DorschR, J. Kingston, G. Markson, and J. McMahon. “Intracranial

aneurysms: evaluation in 200 patients with spiral CT angiography”. In: Eur Radiol

11.123 (2001). issn: 0938-7994. doi: https://doi.org/10.1007/s003300000523.

[32] J. Kniss, G. Kindlmann, and C. Hansen. “Interactive volume rendering using multi-

dimensional transfer functions and direct manipulation widgets”. In: Proceedings Visual-

ization, 2001. VIS ’01. Oct. 2001, pp. 255–562. doi: 10.1109/VISUAL.2001.964519.

[33] J. Kniss, G. Kindlmann, and C. Hansen. “Multidimensional transfer functions for inter-

active volume rendering”. In: IEEE Transactions on Visualization and Computer Graphics

8.3 (July 2002), pp. 270–285. issn: 2160-9306. doi: 10.1109/TVCG.2002.1021579.

71

https://doi.org/10.1109/2945.468400
https://doi.org/10.1111/cgf.12934
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12934
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12934
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12934
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12934
https://doi.org/10.1109/38.920623
https://doi.org/10.1109/TVCG.2006.148
https://doi.org/https://doi.org/10.1007/s003300000523
https://doi.org/10.1109/VISUAL.2001.964519
https://doi.org/10.1109/TVCG.2002.1021579


Bibliography

[34] F. V. Higuera, N. Sauber, B. Tomandl, C. Nimsky, G. Greiner, and P. Hastreiter. “Au-

tomatic adjustment of bidimensional transfer functions for direct volume visualiza-

tion of intracranial aneurysms”. In: Medical Imaging 2004: Visualization, Image-Guided

Procedures, and Display. Ed. by R. L. G. Jr. Vol. 5367. International Society for Op-

tics and Photonics. SPIE, 2004, pp. 275–284. doi: 10.1117/12.535534. url: https:

//doi.org/10.1117/12.535534.

[35] J. Kniss, J. P. Schulze, U. Wössner, P. Winkler, U. Lang, and C. Hansen. “Medical

Applications of Multi-Field Volume Rendering and VR Techniques”. In: Eurographics /

IEEE VGTC Symposium on Visualization. Ed. by O. Deussen, C. Hansen, D. Keim, and D.

Saupe. The Eurographics Association, 2004. isbn: 3-905673-07-X. doi: 10.2312/VisSym/

VisSym04/249-254.

[36] L. Mroz, H. Hauser, and E. Gröller. “Interactive High-Quality Maximum Intensity

Projection”. In: Computer Graphics Forum 19.3 (2000), pp. 341–350. doi: 10.1111/1467-

8659.00426. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-

8659.00426. url: https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-

8659.00426.

[37] K. Engel, M. Hadwiger, J. M. Kniss, A. E. Lefohn, C. R. Salama, and D. Weiskopf. “Real-

Time Volume Graphics”. In: ACM SIGGRAPH 2004 Course Notes. SIGGRAPH ’04. Los

Angeles, CA: Association for Computing Machinery, 2004, 29–es. isbn: 9781450378017.

doi: 10.1145/1103900.1103929. url: https://doi.org/10.1145/1103900.1103929.

[38] K. Xie, J. Yang, and Y. Zhu. “Real-time visualization of large volume datasets on

standard PC hardware”. In: Computer Methods and Programs in Biomedicine 90.2 (2008),

pp. 117–123. issn: 0169-2607. doi: https://doi.org/10.1016/j.cmpb.2007.12.006.

url: http://www.sciencedirect.com/science/article/pii/S0169260707003112.

[39] J. Kruger and R. Westermann. “Acceleration Techniques for GPU-Based Volume Ren-

dering”. In: Proceedings of the 14th IEEE Visualization 2003 (VIS’03). VIS ’03. USA: IEEE

Computer Society, 2003, p. 38. isbn: 0769520308.

[40] S. Laine and T. Karras. “Efficient Sparse Voxel Octrees”. In: IEEE transactions on visual-

ization and computer graphics 17 (Oct. 2010), pp. 1048–59. doi: 10.1109/TVCG.2010.240.

72

https://doi.org/10.1117/12.535534
https://doi.org/10.1117/12.535534
https://doi.org/10.1117/12.535534
https://doi.org/10.2312/VisSym/VisSym04/249-254
https://doi.org/10.2312/VisSym/VisSym04/249-254
https://doi.org/10.1111/1467-8659.00426
https://doi.org/10.1111/1467-8659.00426
https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.00426
https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.00426
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-8659.00426
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-8659.00426
https://doi.org/10.1145/1103900.1103929
https://doi.org/10.1145/1103900.1103929
https://doi.org/https://doi.org/10.1016/j.cmpb.2007.12.006
http://www.sciencedirect.com/science/article/pii/S0169260707003112
https://doi.org/10.1109/TVCG.2010.240


Bibliography

[41] D. Ruijters and A. Vilanova. “Optimizing GPU volume rendering”. In: Journal of WSCG

14.1-3 (2006), pp. 9–16.

[42] J. F. Blinn. “Models of Light Reflection for Computer Synthesized Pictures”. In: Pro-

ceedings of the 4th Annual Conference on Computer Graphics and Interactive Techniques.

SIGGRAPH ’77. San Jose, California: Association for Computing Machinery, 1977,

pp. 192–198. isbn: 9781450373555. doi: 10.1145/563858.563893. url: https://doi.

org/10.1145/563858.563893.

[43] K. Suffern. Ray Tracing from the Ground Up. USA: A. K. Peters, Ltd., 2007. isbn:

1568812728.

[44] I. Epic Games. Graphics Programming Overview. 2004-2020. url: https://docs.unrealengine.

com/en-US/Programming/Rendering/Overview/index.html.

[45] R. Bibb, D. Eggbeer, and A. Paterson. “2 - Medical imaging”. In: Medical Modelling

(Second Edition). Ed. by R. Bibb, D. Eggbeer, and A. Paterson. Second Edition. Oxford:

Woodhead Publishing, 2015, pp. 7–34. isbn: 978-1-78242-300-3. doi: https://doi.org/

10.1016/B978-1-78242-300-3.00002-0. url: http://www.sciencedirect.com/

science/article/pii/B9781782423003000020.

[46] N. E. M. A. (NEMA) and D. S. Committee. Digital Imaging and Communications in

Medicine. url: https://www.dicomstandard.org/.

[47] A. Kalra. “Developing FE Human Models From Medical Images”. In: Jan. 2018, pp. 389–

415. isbn: 9780128098318. doi: 10.1016/B978-0-12-809831-8.00009-X.

[48] M. Lev and R. Gonzalez. “17 - CT Angiography and CT Perfusion Imaging”. In:

Brain Mapping: The Methods (Second Edition). Ed. by A. W. Toga and J. C. Mazziotta.

Second Edition. San Diego: Academic Press, 2002, pp. 427–484. isbn: 978-0-12-693019-1.

doi: https://doi.org/10.1016/B978-012693019-1/50019-8. url: http://www.

sciencedirect.com/science/article/pii/B9780126930191500198.

[49] L. MH, F. J, G. JJ, H. ST, H. GJ, K. WJ, and G. RG. “Acute stroke: improved nonenhanced

CT detection–benefits of soft-copy interpretation by using variable window width and

73

https://doi.org/10.1145/563858.563893
https://doi.org/10.1145/563858.563893
https://doi.org/10.1145/563858.563893
https://docs.unrealengine.com/en-US/Programming/Rendering/Overview/index.html
https://docs.unrealengine.com/en-US/Programming/Rendering/Overview/index.html
https://doi.org/https://doi.org/10.1016/B978-1-78242-300-3.00002-0
https://doi.org/https://doi.org/10.1016/B978-1-78242-300-3.00002-0
http://www.sciencedirect.com/science/article/pii/B9781782423003000020
http://www.sciencedirect.com/science/article/pii/B9781782423003000020
https://www.dicomstandard.org/
https://doi.org/10.1016/B978-0-12-809831-8.00009-X
https://doi.org/https://doi.org/10.1016/B978-012693019-1/50019-8
http://www.sciencedirect.com/science/article/pii/B9780126930191500198
http://www.sciencedirect.com/science/article/pii/B9780126930191500198


Bibliography

center level settings.” In: Radiology 213.1 (Oct. 1999). doi: 10.1148/radiology.213.1.

r99oc10150.

[50] J. Mandell, B. Khurana, L. Folio, H. Hyun, S. Smith, R. Dunne, and K. Andriole. “Clinical

Applications of a CT Window Blending Algorithm: RADIO (Relative Attenuation-

Dependent Image Overlay)”. In: Journal of Digital Imaging 30 (Jan. 2017). doi: 10.1007/

s10278-017-9941-1.

[51] F. Hernell, P. Ljung, and A. Ynnerman. “Local Ambient Occlusion in Direct Volume

Rendering”. In: IEEE Transactions on Visualization and Computer Graphics 16.4 (July 2010),

pp. 548–559. issn: 2160-9306. doi: 10.1109/TVCG.2009.45.

[52] T. Ritschel, C. Dachsbacher, T. Grosch, and J. Kautz. “The State of the Art in Interactive

Global Illumination”. In: Comput. Graph. Forum 31.1 (Feb. 2012), pp. 160–188. issn:

0167-7055. doi: 10.1111/j.1467-8659.2012.02093.x. url: https://doi.org/10.

1111/j.1467-8659.2012.02093.x.

[53] T. Lokovic and E. Veach. “Deep Shadow Maps”. In: Proceedings of the 27th Annual

Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’00. USA: ACM

Press/Addison-Wesley Publishing Co., 2000, pp. 385–392. isbn: 1581132085. doi: 10.

1145/344779.344958. url: https://doi.org/10.1145/344779.344958.

[54] T. Mertens, J. Kautz, P. Bekaert, and F. Van Reeth. “A Self-Shadow Algorithm for

Dynamic Hair using Density Clustering.” In: Jan. 2004, pp. 173–178. doi: 10.1145/

1186223.1186278.

[55] K. Engel, M. Kraus, and T. Ertl. “High-Quality Pre-Integrated Volume Rendering Using

Hardware-Accelerated Pixel Shading”. In: Proceedings of the ACM SIGGRAPH Conference

on Computer Graphics (June 2001). doi: 10.1145/383507.383515.

[56] H. Nyquist. “Certain Topics in Telegraph Transmission Theory”. In: Transactions of the

American Institute of Electrical Engineers 47.2 (Apr. 1928), pp. 617–644. issn: 2330-9431.

doi: 10.1109/T-AIEE.1928.5055024.

[57] J. Revelles, C. Ureña, M. Lastra, D. Lenguajes, S. Informaticos, and E. Informatica. “An

Efficient Parametric Algorithm for Octree Traversal”. In: (May 2000).

74

https://doi.org/10.1148/radiology.213.1.r99oc10150
https://doi.org/10.1148/radiology.213.1.r99oc10150
https://doi.org/10.1007/s10278-017-9941-1
https://doi.org/10.1007/s10278-017-9941-1
https://doi.org/10.1109/TVCG.2009.45
https://doi.org/10.1111/j.1467-8659.2012.02093.x
https://doi.org/10.1111/j.1467-8659.2012.02093.x
https://doi.org/10.1111/j.1467-8659.2012.02093.x
https://doi.org/10.1145/344779.344958
https://doi.org/10.1145/344779.344958
https://doi.org/10.1145/344779.344958
https://doi.org/10.1145/1186223.1186278
https://doi.org/10.1145/1186223.1186278
https://doi.org/10.1145/383507.383515
https://doi.org/10.1109/T-AIEE.1928.5055024


Bibliography

[58] J. Wilhelms and A. Van Gelder. “Octrees for Faster Isosurface Generation”. In: ACM

Trans. Graph. 11.3 (July 1992), pp. 201–227. issn: 0730-0301. doi: 10.1145/130881.130882.

url: https://doi.org/10.1145/130881.130882.

[59] K. P. Soundararajan and T. Schultz. “Learning Probabilistic Transfer Functions: A

Comparative Study of Classifiers”. In: Computer Graphics Forum 34.3 (2015), pp. 111–120.

doi: 10.1111/cgf.12623. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.

1111/cgf.12623. url: https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.

12623.

[60] O. Sharma, T. Arora, and A. Khattar. “Graph-Based Transfer Function for Volume

Rendering”. In: Computer Graphics Forum (May 2019). doi: 10.1111/cgf.13663.

[61] A. Pérard-Gayot, J. Kalojanov, and P. Slusallek. “GPU Ray Tracing Using Irregular

Grids”. In: Comput. Graph. Forum 36.2 (May 2017), pp. 477–486. issn: 0167-7055. doi:

10.1111/cgf.13142. url: https://doi.org/10.1111/cgf.13142.

75

https://doi.org/10.1145/130881.130882
https://doi.org/10.1145/130881.130882
https://doi.org/10.1111/cgf.12623
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12623
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12623
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12623
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12623
https://doi.org/10.1111/cgf.13663
https://doi.org/10.1111/cgf.13142
https://doi.org/10.1111/cgf.13142

	Acknowledgments
	Contents
	Introduction
	Motivation
	Goals of the Thesis
	Thesis Structure

	Fundamentals
	Volume Rendering Techniques
	Ray-Casting & Shear-warp
	Optical Model
	Transfer Functions
	Composition Schemes
	Ray-Casting Optimization Methods

	Standard Illumination and Shadowing
	Rendering in Unreal Engine 4
	Overview of Digital Imaging Communications in Medicine
	Analysis of Computed Tomography Data
	Hounsfield Scale and Windows


	Concept
	Challenge
	Approach for Obtaining Volumetric Data
	Shader and 3D Texture
	Algorithmn
	Ray-Marching-Based Volume Rendering
	Local Illumination and Shadow
	Artefacts
	Sparse Voxel Octrees


	Implementation
	Pre-procsssing - Blended Window
	Pre-computing Transfer Function of Alpha

	Custom Ray-Marching
	Visual Enhancement
	Branching Prevention

	Octree
	Tree Construction
	Traversal


	Results
	Visualization
	Ground Truth
	Volume Rendering for Art versus Scientific Data
	Different Illumination Result
	Removed Artifacts

	Performance
	High-quality Illumination versus Performance
	Octree


	Conclusion & FutureWork
	Conclusion
	Future Work

	List of Figures
	List of Tables
	Bibliography

