
Tetrahedron-Tetrahedron Intersection
and Volume Computation Using Neural

Networks

Erendiro Sangueve Njunjuvili Pedro
Student No.: 1160555

A dissertation submitted in partial fulfilment of the
requirements for the degree of Master of Science, Area of Artificial

Intelligence Engineering

Supervisor:
Dr. Gabriel Zachmann, Full Professor, University of Bremen
Dr. Carlos Fernando da Silva Ramos, Full Professor, Institute of Engineering, Poly-
technic of Porto

Technical Supervision:
Dr. Jorge M. Santos, Coordinating Professor, Institute of Engineering, Polytechnic
of Porto
Dr. René Weller, Coordinating Professor, University of Bremen
Navid Mirzayousef Jadid, Researcher, University of Bremen
Thomas Hudcovic, Researcher, University of Bremen

Evaluation Committee:
President:
Dr. António Constantino Lopes Martins, Coordinating Professor at the School of Engineering,
Polytechnic Institute of Porto

Members:
Dr. Luiz Felipe Rocha de Faria, Coordinating Professor at the School of Engineering, Polytechnic
Institute of Porto
Dr. Gabriel Zachmann, Full Professor, University of Bremen

Porto, July 1, 2025

Dedicatory

To those looking for beautiful questions.

iii

Abstract

This thesis introduces a framework for fast, learning-based analysis of tetrahedron-tetrahedron
interactions, combining scalable dataset generation with an efficient neural model. At its core
is TetrahedronPairDatasetV1, a curated collection of one million labeled tetrahedron pairs with
ground truth intersection status and volumes, filling a longstanding gap in geometry learning.

Built on this dataset, we present TetrahedronPairNet, a neural architecture that adapts PointNet
and DeepSets for processing tetrahedron pairs. The model simultaneously predicts intersection
classification and intersection volume, achieving real-time performance: over 98% classification
accuracy and a mean absolute error of ≈ 0.0012 in volume estimation (R2 = 0.68). It processes
over 30,000 samples per second with full preprocessing—orders of magnitude faster than classical
algorithms.

Unlike traditional symbolic approaches, TetrahedronPairNet is robust to degenerate configura-
tions and requires no handcrafted geometry logic. Its fully batched, differentiable design supports
seamless integration into simulation pipelines, CAD tools, and learning-based physics engines.

This work reframes geometric intersection as a data-driven inference task, laying the foundation for
scalable, real-time, and intelligent geometry processing across computational design, simulation,
AR/VR, and scientific computing.

Keywords: Point Cloud Analysis, Multi-Layer Perceptron, 3D Object Interaction Modeling, Geo-
metric Deep Learning, Narrow Phase Collision Detection, Predicate Powered Learning

v

Resumo

Esta dissertação propõe uma nova abordagem para a análise rápida e baseada em aprendizagem
de interações entre pares de tetraedros, aliando geração escalável de dados a uma arquitetura
neural eficiente. No centro deste trabalho encontra-se o TetrahedronPairDatasetV1, um conjunto
de dados cuidadosamente construído com um milhão de pares de tetraedros rotulados, contendo
informações de interseção e volumes. Este dataset vem colmatar uma lacuna histórica na area de
processamento geométrico.

Com base neste dataset, desenvolvemos o TetrahedronPairNet, uma arquitetura neural que adapta
conceitos do PointNet e do DeepSets para processar tetrahedros. O modelo prevê simultaneamente
a existência de interseção e o volume correspondente, alcançando uma precisão superior a 98%
na classificação e um erro absoluto médio de aproximadamente 0.0012 na estimativa de volume
(R2 = 0.68). É capaz de processar mais de 30,000 amostras por segundo, superando de forma
significativa os métodos algorítmicos tradicionais.

Diferentemente das abordagens simbólicas clássicas, o TetrahedronPairNet é robusto a configu-
rações degeneradas e não depende de lógica geométrica artesanal. A sua estrutura totalmente
batched e diferenciável permite a integração direta em pipelines de simulação, ferramentas CAD
e motores físicos baseados em aprendizagem.

Esta investigação reconceptualiza a interseção geométrica como uma tarefa de inferência baseada
em dados, estabelecendo as bases para uma nova geração de algoritmos geométricos — escaláveis,
em tempo real e dotados de inteligência adaptativa. Para além do modelo e do dataset, a dis-
sertação apresenta contribuições metodológicas, incluindo um gerador parametrizável de dados
(TetrahedronPairGenerator), uma pipeline modular de aprendizagem automática (Tetrahedron-
PairML) e uma análise aprofundada do desempenho e da generalização do modelo.

Os resultados experimentais validam o modelo em múltiplos regimes de dados, métricas de clas-
sificação e regressão, bem como escalabilidade computacional. As aplicações abrangem desde
simulações físicas interativas, sistemas CAD/CAM em tempo real e experiências imersivas em
AR/VR, até à computação científica e robótica autónoma, onde a necessidade de raciocínio es-
pacial em tempo real é crítica.

Ao substituir lógica simbólica por inferência aprendida, esta dissertação contribui para um novo
paradigma em geometria computacional, onde algoritmos são treinados — não programados — e
onde a inteligência geométrica é uma capacidade emergente, pronta para ser explorada em escala
industrial e científica.

Palavras-chave: Point Cloud Analysis, Multi-Layer Perceptron, 3D Object Interaction Modeling,
Geometric Deep Learning, Narrow Phase Collision Detection, Predicate Powered Learning

vii

Acknowledgement

First and above all, I want to thank you—for the perseverance, dedication, and genuine passion
that carried you through this journey. For wanting to learn, for learning how to learn, and for
choosing to embrace the process, even when it meant facing failure and the feeling of inadequacy.
Thank you.

To my friends and family, whose unwavering support was indispensable throughout this jour-
ney—Alberta, Olavio, Neele, Elmer, Alda, Altino, and Edmira—thank you for all your support
and your care. You are a great source of strength to me.

In the academic realm, I want to thank, first and foremost, Professor Gabriel Zachmann—for
everything, truly. For introducing me to a topic that turned out to be one of the most fascinating
questions I’ve had the pleasure to study. For making me even more passionate about the field of
computer graphics. For your patience and understanding with my struggles with deadlines, and for
allowing me to take the time I needed to write this thesis properly. Your guidance opened doors
to discoveries I never imagined possible.

To Navid—for your brilliant insights that constantly pushed my thinking in new and exciting di-
rections. To Thomas—for generously sharing your precious time and expertise when I needed it
most. To Professors Carlos and Jorge—for the conversations, perspectives, and guidance that
shaped my thought process.

To the entire CGVR lab at Bremen University—thank you. I truly wouldn’t have been able to
learn and grow as much without your collaborative spirit and intellectual support. You created an
environment where curiosity could flourish.

To my sister Edmira—for the amazing conversations about statistical learning that clarified my
thinking and reminded me why I fell in love with mathematics in the first place.

And most of all, to Neele—my girlfriend and closest collaborator. Not only for your tireless reviews
and deep, thoughtful conversations about this work, but for your unwavering support through it
all. Your patience, encouragement, love, and belief—in this project and in me—made all the
difference.

Gratitude is the feeling that overflows from me right now, and it belongs to each of you.

ix

Contents

List of Algorithms xix

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Problem statement . 3
1.3 Research Questions and Objectives . 4
1.4 Scientific Contributions . 4
1.5 Document Structure . 5

2 Ethical Considerations and Personal Motivations 7
2.1 Personal Motivation and Research Context . 7
2.2 Potential Use Case: Collision Detection . 7
2.3 Transparency . 9
2.4 Ethical Assessment . 11

3 Research 13
3.1 Premier . 13

3.1.1 What is a Tetrahedron? . 13
3.1.2 Why Care About Tetrahedrons? . 14
3.1.3 Why Tetrahedron–Tetrahedron Intersection Status? 14
3.1.4 Why Compute the Volume of Intersection? 15
3.1.5 The Problem . 17

3.2 Data . 23
3.2.1 Representation . 23
3.2.2 Diversity . 24
3.2.3 Augmentation . 26
3.2.4 Transformations . 26

3.3 Neural Networks for 3D Point Clouds . 26
3.3.1 Overview . 26
3.3.2 DeepSets (2017) . 28
3.3.3 PointNet (2017) . 28
3.3.4 Pointwise MLP Methods . 28

PointNet++, 2017 [52] . 29
PointMLP, 2022 [56] . 29
PointNeXt, 2022 [57] . 30

3.4 Publicly Available Point Cloud Datasets . 31
3.5 Evaluation Metrics . 31

3.5.1 Classification Metrics . 31
3.5.2 Regression Metrics . 33

Absolute Error Metrics . 33
Distributional Correctness . 33
Categorical Agreement . 33

3.5.3 Efficiency Metrics . 34

xi

3.6 Comparative Analysis . 34
3.7 Related Work . 36

3.7.1 A Machine Learning Framework for Volume Prediction (2019) 36
3.7.2 Polytopes and Machine Learning (2021) 36

3.8 Complementary Work: Tetrahedral kDet, Linear Time Collision Detection for
Tetrahedral Meshes . 37
3.8.1 Algorithm Overview . 38
3.8.2 Potential Integration with Machine Learning 38

3.9 Conclusions, Research Gaps, and Challenges . 39
3.9.1 Overview . 39
3.9.2 Addressing Research Questions . 39

4 Development 41
4.1 Data Generator . 41

4.1.1 Dataset Structure . 41
4.1.2 Quality . 42

Coordinate Precision . 42
Tetrahedron Construction . 42
Labels Generation . 43
Validation and Inspection . 43

4.1.3 Diversity and Generation Algorithms . 43
No Intersection . 44
Point Contact . 45
Segment Intersection . 46
Polygon Intersection . 47
Polyhedron Intersection . 48

4.1.4 Efficiency . 49
4.1.5 System Architecture . 49

4.2 ML Pipeline . 50
4.2.1 Pipeline Architecture . 50
4.2.2 Core Design Principles . 51

5 Experiments and Estimations 53
5.1 Capacity . 53

5.1.1 Results . 55
5.2 Data Types Distributions . 56

5.2.1 Results . 56
5.3 Volume Sampling Strategy . 58

5.3.1 Algorithmic Implementation . 59
5.3.2 Results . 62

5.4 Volume Scaling Factor . 63
5.4.1 Results . 63

5.5 Combined MLP . 65
5.5.1 Results . 65

5.6 Model Scaling . 66
5.6.1 Results . 66

5.7 Data Scaling . 66
5.7.1 Results . 67

5.8 Inference Speed . 67
5.9 Raw MLP Overview . 67
5.10 Predicate Powered Learning . 69

xii

5.10.1 Transformations . 69
5.10.2 TetrahedronPairNet . 71
5.10.3 Augmentations . 72

Sorting . 72
Permutations . 73

5.11 Hyperparameter Tuning . 73
5.11.1 Final Optimization Pass . 73

5.12 TetrahedraPairDatasetV1 . 75
5.12.1 Design Philosophy and Configuration . 75

Core Dataset Properties . 75
Data Structure and Representation . 75

5.12.2 Spatial Distribution and Geometric Foundations 75
Coordinate Space Design . 75
Volume Distribution Strategy . 76

5.12.3 Intersection Analysis and Label Distribution 77
Intersection Volume Characteristics . 77
Volume Scale Analysis . 78

5.12.4 Geometric Symmetry and Balance . 78
Volume Relationship Analysis . 78
Size Relationship Categories . 79

6 Evaluation and Results Discussion 81
6.1 Error Analysis . 81

6.1.1 Classification Performance . 81
6.1.2 Regression Performance . 82
6.1.3 Consistency . 83

6.2 Simulation Proxy Evaluation . 83
6.2.1 Setup . 83
6.2.2 Results . 84

6.3 Comparison with Traditional Methods . 85
6.4 Limitations . 85
6.5 Deployment Scenarios . 86

7 Conclusion 89
7.1 Impact . 89

7.1.1 Why This Was Previously Infeasible . 89
7.2 Architectural Contributions . 89
7.3 Application Potential . 90
7.4 Future Work . 90
7.5 Concluding Remarks . 90

Bibliography 93

A Model Capacity Full Experiments 97

A Dataset Generator System 99

xiii

List of Figures

1.1 Intersection of tetrahedra. Stella octangula, a compound formed by the intersec-
tion of two equal tetrahedra, with the same centroid and opposite orientations.
Source:[20]. 3

3.1 A tetrahedron showing its fundamental geometric properties: four triangular faces,
six edges, and four vertices . 13

3.2 The progression of simplices across dimensions: from a single point (0D) to a line
segment (1D), triangle (2D), and tetrahedron (3D). Each represents the minimal
geometric structure that can fully span its respective dimensional space, with the
tetrahedron being the fundamental building block of three-dimensional geometry. . 14

3.3 Five canonical intersection types between two tetrahedra: (0) No intersection—completely
disjoint tetrahedra; (1) Point intersection—contact at a single vertex; (2) Segment
intersection—shared edge between tetrahedra; (3) Polygon intersection—shared
triangular face; (4) Polyhedron intersection—overlapping volumes creating a shared
polyhedral region. 24

3.4 4-free tetrahedron (blue); red area marks the Minkowski-sum1 of said tetrahedron
and a sphere half the diameter of its minimum enclosing sphere; a 4-free polyhedron
intersects at most 3 "larger" polyhedra (determined by the minimum enclosing
sphere) with said Minkowski-sum. Source:[14] . 37

4.1 Examples of tetrahedra pairs with no intersection. 45
4.2 Examples of tetrahedra pairs with single-point contact intersections. 46
4.3 Examples of tetrahedra pairs intersecting along a shared edge, showing various

orientations and contact configurations. 47
4.4 Examples of tetrahedra intersecting precisely over a shared triangular face, demon-

strating various orientations and contact configurations. 48
4.5 Examples of tetrahedra pairs exhibiting volumetric overlap. 49
4.6 Complete machine learning pipeline workflow showing the progression from raw

tetrahedron data generation through model training, evaluation, and deployment. . 50

5.1 AUC vs. Number of Parameters . 54
5.2 Linear uniform sampling strategy results. The figure compares the same data

visualized in linear and logarithmic scales. The distribution shows oversampling
toward high-volume regions, leading to imbalanced coverage across the volume
spectrum. 60

5.3 Log-uniform sampling strategy results. The figure compares the same data visu-
alized in linear and logarithmic scales. Log-uniform sampling achieves significantly
more balanced coverage across volume magnitudes, with a more even distribution
in log space. However, perfect uniformity is constrained by the limitations of the
underlying raw data. 62

5.4 Multi-layer perceptron architecture for dual-task tetrahedron intersection analysis.
The network processes two tetrahedra (T1 and T2), each represented by 12 input
coordinates. A shared feature extraction layer is followed by two specialized heads:
one for intersection classification and the other for volume regression. 68

xv

5.5 Schematic diagram of TetrahedronPairNet (M). 71
5.6 Distribution of vertex coordinates for T1 and T2. All coordinates are uniformly

distributed in [0, 1], confirming unbiased spatial sampling. 76
5.7 Volume distributions for T1 and T2. Log-uniform sampling ensures comprehensive

coverage across multiple orders of magnitude, from 10−11 to 10−1. 76
5.8 Joint distribution of T1 and T2 volumes. Concentration in the upper-right re-

gion indicates that most geometric interactions occur when both tetrahedra have
moderate to large volumes. 77

5.9 Joint volume distribution (V1, V2) across 1 million samples, showing balanced rep-
resentation of intersecting and non-intersecting configurations. 77

5.10 Distribution of volume differences between T1 and T2, showing controlled asym-
metry that promotes learning diversity while maintaining numerical stability. 78

A.1 Full architectural diagram of the dataset generator system. Each module is func-
tionally isolated and interacts through explicit data interfaces. 100

xvi

List of Tables

3.1 Classical methods for tetrahedron–tetrahedron intersection testing. 16
3.2 Methods for intersection volume computation. Nef polyhedra provide exact results;

Monte Carlo emphasizes scalability. 16
3.3 Alternative representations of a tetrahedron and their characteristics 23
3.4 Intersection Types and Likelihood Estimates . 25
3.5 Overview of widely-used point cloud classification datasets 31
3.6 Classification evaluation metrics and interpretation 32
3.7 Confusion matrix notation and definitions . 32
3.8 Absolute regression error metrics . 33
3.9 Cohen’s Kappa components and formula . 34
3.10 Interpretation scale for Cohen’s Kappa . 34
3.11 Efficiency metrics for inference performance . 34
3.12 Comparison of point cloud classification models on ModelNet40 and ScanObjectNN

datasets. 35

4.1 Structure of each dataset sample, including input and output spaces. 41
4.2 Coordinate Precision Metrics . 42
4.3 CGAL Components Overview . 42
4.4 Tetrahedron Validation Criteria . 43
4.5 Validation and Inspection Methods . 44
4.6 Canonical Interaction Modes and Validation Methods 44

5.1 Fixed experimental settings . 54
5.2 Architectural configurations explored . 55
5.3 Layer-sizing heuristics used in the study . 55
5.4 Summary of findings on model capacity . 55
5.5 Fixed experimental parameters for evaluating data generation strategies. 56
5.6 Model accuracy on five test sets across training data distributions showing iterative

hypothesis testing and refinement. 57
5.7 Performance comparison across key experimental configurations. 57
5.8 Volume Sampling Strategies and Their Characteristics 62
5.9 Scaling factors and resulting volume ranges . 63
5.10 Fixed configuration for volume prediction . 63
5.11 Overall performance under different scaling regimes 63
5.12 Interval-wise performance for 100 (No scaling) . 64
5.13 Interval-wise performance for 100 (No scaling) . 64
5.14 Interval-wise performance for 103 (Best observed performance) 64
5.15 Interval-wise performance for 104 (Over-scaled regime) 64
5.16 Combined model architecture (∼36K parameters). 65
5.17 Training configuration for the combined model. 65
5.18 Test performance of the baseline model. 66
5.19 Scaled-up model architecture (∼70K parameters). 66
5.20 Test performance of the scaled-up model . 66

xvii

5.21 Performance with 1M training samples. 67
5.22 Inference speed benchmarks on CPU (LibTorch, single-threaded). 67
5.23 Final combined MLP model configuration summary. 69
5.24 Performance of MLP after Unitary Tetrahedron Transformation. 70
5.25 Performance of MLP after Principal Axis Transformation. 71
5.26 TetrahedronPairNet (M) default configuration. 72
5.27 Performance of TetrahedronPairNet (M) after Principal Axis Transformation. . . . 72
5.28 TetrahedronPairNet (L) architecture configuration. 74
5.29 Final model training setup and performance summary. 74
5.30 Core dataset properties and design rationale for TetrahedraPairDatasetV1. . . . 75
5.31 Structure and semantic meaning of individual dataset samples. 75
5.32 Coordinate uniformity validation for tetrahedron vertices. Close alignment between

expected and observed statistics confirms quality of uniform sampling process. . . 76
5.33 Intersection distribution providing balanced learning scenarios across geometric re-

lationship types. 78
5.34 Scaled volume categories emphasizing smaller intersections while maintaining ad-

equate representation of larger overlaps. 78
5.35 Volume difference statistics demonstrating controlled asymmetry that enhances

learning without introducing extreme bias. 79
5.36 Size relationship distribution ensuring numerical stability while providing sufficient

geometric diversity. 79

6.1 Classification performance of TetrahedronPairNet (L) on the test set, broken down
by intersection types and aggregated metrics. 81

6.2 Regression performance of TetrahedronPairNet (L) on the test set, broken down
by intersection types. 82

6.3 Granular regression performance of TetrahedronPairNet (L) across binned inter-
section volumes in the polyhedron subset. 82

6.4 Classification and regression consistency (%) of TetrahedronPairNet (L) under
vertex (pointwise) and tetrahedron-level permutations. 83

6.5 Classification and volume regression performance 84
6.6 Runtime performance and error distribution . 84
6.7 Comparison of Proposed Model vs. Traditional Methods 85

A.1 Comparison of model configurations with corresponding AUC scores 98

xviii

List of Algorithms

3.1 kDet Algorithm for Detecting Intersections in Tetrahedral Meshes 38
4.1 Non-Intersecting Tetrahedra . 44
4.2 Tetrahedra with Vertex Contact . 45
4.3 Tetrahedra with Edge Contact . 46
4.4 Tetrahedra with Face Contact . 47
4.5 Sampling tetrahedra with volume intersection via rejection sampling. 48
5.1 Linear Uniform Volume Sampling . 59
5.2 Log-Uniform Volume Sampling with Geometric Augmentation 61
5.3 Unitary Tetrahedron Transformation . 70
5.4 Principal Axis Transformation via PCA . 70

xix

Chapter 1

Introduction

1.1 Context and Motivation

“I think the universe is pure geometry — basically, a beautiful shape twisting around and dancing
over space-time.” - Antony Garrett Lisi

For millennia, geometry, the study of shapes and spatial relations, has been a pivotal force in shaping
how humanity conceptualizes and addresses challenges. From the Pyramids of Giza, where ancient
architects applied geometric principles for remarkable precision [1], to the present-day advance-
ments in medical imaging technology employing geometric algorithms [2],it is an understatement
to declare geometry as less than omnipresent.

As time progressed, the study of geometry underwent transformative phases that significantly ex-
panded its scope and applicability. In its early stages, geometric shapes were rudimentarily sketched
in sand, providing insights into their inherent properties. However, the study was initially limited,
focusing primarily on two fundamental measurements: angle and distance [1]. A pivotal shift oc-
curred with the introduction of coordinates to represent points in space. This innovation enabled
geometric shapes to be more easily described algebraically, marking a profound convergence of al-
gebra and geometry, transforming the way mathematicians approached and understood geometric
concepts [3]. In the mid-20th century, as computing power surged, computers were more deeply
integrated into the realm of mathematics. A rising contingent of mathematicians began employing
them to create examples, scrutinize theorems, and even construct proof [3]. It was during this
period that the field of computational geometry emerged, focusing on developing algorithms and
data structures for solving problems involving geometric shapes and structures [4].

Simultaneously, as these advancements unfolded, the field of machine learning (ML) grew [5]. ML
focuses on developing computer systems that can learn and adapt by leveraging data, without the
need for explicit instructions. [6]. Neural network-based machine learning, in particular, excelled
at approximating functions in very high dimensions with remarkable efficiency and accuracy. The
success of these methods led to an increasing trend in applying them to a broad spectrum of
problems including computational mathematics [7]. Despite these achievements, computational
geometry and algebra remain fields in which machine learning has not been integrated to its
full potential [8]. For instance, calculating the volume of high-dimensional geometric shapes is
computationally expensive, and randomized approaches are often used in practical applications [8].
Integrating machine learning into such problems could leverage data-driven insights to enhance
efficiency and accuracy.

A notable example of such geometric problems is finding the intersection of polytopes—geometric
figures defined by their vertices, edges, and facets. This problem is fundamental in addressing
real-world issues across diverse fields. For example, in logistics and supply chain management, the
intersection of polytopes can model feasible solutions for optimizing transportation routes. This
includes considering important factors such as time constraints, the ability to reject customers,

1

Chapter 1. Introduction

and vehicle capacity [9]. In finance, particularly in portfolio optimization, polytope intersections
can model critical strategies by capturing constraints involved in selecting asset combinations that
maximize returns while minimizing risk. This ensures compliance with requirements on asset alloca-
tion, expected returns, and risk tolerance [10]. Conservation planning also benefits from polytope
intersections, as they represent spatial configurations that adhere to ecological constraints. This
facilitates the design of effective conservation strategies [11]. In game theory, polytope inter-
sections are employed to model feasible strategies for players, considering constraints and their
objectives. This is especially relevant in scenarios involving multi-agent systems and strategic
decision-making because they provide a geometric framework to model and analyze the common
feasible strategies. This allows for a concise representation of shared decision spaces, helping to
understand and predict outcomes in complex strategic interactions [12]. In applications like virtual
prototyping for automotive crashes, for instance, this enhances safety design, and substantially
reduces the need for physical prototypes, which can be costly and resource-consuming to operate
[13], ultimately expediting the development of safer vehicles and contributing to advancements
in automotive engineering and safety standards. As a direct consequence, this could lead to a
noticeable reduction in both the frequency and severity of automotive accidents.

As we can see, in a broader sense, when faced with a set of linear constraints 1 that must satisfy
specific criteria, finding an efficient solution to this problem can be immensely valuable.

The specific problem of tetrahedron-tetrahedron intersection and volume computation is common
in the context of representing and processing 3D geometric objects [14]. In the field of computer
graphics, a mesh is a representation of a three-dimensional object or surface composed of vertices,
edges, and faces. Meshes provide a way to represent and model complex 3D shapes [15]. Tetra-
hedral meshes consist of tetrahedra, or triangular pyramids, figures with four triangular faces, four
vertices, and six edges each (see figure 1.1). They serve as efficient representations for arbitrar-
ily complex volumetric objects in 3D space [16]. They are widely used in simulations, collision
detection algorithms, and various other computational tasks [17]. In scenarios involving multiple
intersecting tetrahedra, as seen in collision detection algorithms, it is essential to calculate precise
intersections in order to accurately model and predict object behavior in simulated environments.
Knowledge of the volume of the intersection enables simulation systems to apply appropriate forces
or constraints to objects, ensuring realistic and physically plausible responses to collisions [18].

As ML algorithms reshape the way we tackle geometric problems [19], this work aims to go beyond
mere model development, and aspires to propose a framework for tackling these problems through
the lens of ML. In doing so, it seeks to expand the toolkit for solving such problems, uncovering new
connections and approaches. The outcomes of this thesis could lead to advancements that directly
or indirectly benefit industries relying on geometric computations, such as logistics, finance, game
theory, simulations, and other computational tasks. Yet, beyond any utilitarian application, there
is a deep personal satisfaction in uncovering the elegant intricacies within geometry.

1Linear constraints are mathematical expressions (typically inequalities like a1x1 + · · · + anxn ≤ b or equations)
that define boundaries in space. The solution space satisfying all constraints forms a polyhedron (bounded polytope).

2

1.2. Problem statement

1.2 Problem statement

This thesis develops a neural network-based model to predict the intersection of two tetrahedra
and estimate the intersection volume within a unit cube. The problem is divided into two tasks:

1. Intersection Prediction: A binary classification problem2 where the model determines if
two tetrahedra intersect (yes/no).

2. Intersection Volume Estimation: A regression problem3 where the model estimates the
volume of the intersection.

Figure 1.1: Intersection of tetrahedra. Stella octangula, a compound formed by the
intersection of two equal tetrahedra, with the same centroid and opposite orienta-

tions. Source:[20].

2Binary Classification Problem: A problem where the output has only two possible values
3Regression Problem: A problem where the output is a continuous value.

3

Chapter 1. Introduction

1.3 Research Questions and Objectives

The following Research Questions (RQs) guide this work:

• RQ1 - How can a dataset of tetrahedra pairs be generated to train a neural network for
intersection prediction and volume estimation?

• RQ2 - Which neural network models are most suitable for accurately determining if two
tetrahedra intersect and the volume of the intersection?

• RQ3 - How does the performance of neural networks compare to traditional methods for
tetrahedron-tetrahedron intersection and volume computation?

The objectives (OB) of this thesis are defined as follows:

• OB1 - Analyze current methods and algorithms for tetrahedron-tetrahedron intersection
detection and volume computation.

• OB2 - Create a dataset of tetrahedra pairs with labeled intersection status and intersection
volume, ensuring diverse and representative configurations.

• OB3 - Design and implement a neural network model for predicting whether two tetrahedra
intersect and estimating the intersection volume of two tetrahedra.

• OB4 - Compare the proposed models with state-of-the-art methods in terms of accuracy,
efficiency, and scalability.

1.4 Scientific Contributions

The work presented in this thesis introduces several technical and scientific contributions to the
intersection of computational geometry and machine learning:

• Creation of a Diverse 1M-Scale Dataset: A large-scale dataset comprising one million
tetrahedron pairs was generated, covering a wide range of intersection types, spatial orien-
tations, volumes, and other configurations (read 3.2.2, 5.12).

• Parametrizable Dataset Generator: A high-performance C++ command-line tool was de-
veloped to generate millions of samples with configurable distributions of intersection types,
bounding volumes, and output formats. The generator has been used to produce over 20
million samples (read 4.1).

• Configurable Machine Learning Pipeline: An end-to-end, modular, and parametrizable
machine learning pipeline was designed for large-scale geometric reasoning tasks. It includes
support for logging, data filtering, normalization, and integration with custom loss functions
and evaluation metrics (read 4.2).

• MLP and TetrahedronPairNet Architectures: Two distinct architectures were explored:
a baseline multi-layer perceptron (MLP) trained without explicit invariance handling, and
TetrahedronPairNet, a dedicated neural model for processing point clouds of tetrahedron
pairs. Both performing joint classification (intersection prediction) and regression (volume
estimation) with compact architecture and high throughput (read ??).

• Python and C++ Inference Wrappers: Lightweight inference wrappers were implemented in
both Python and C++ to facilitate deployment and integration into simulation environments.
These interfaces handle data normalization, output decoding, and aim to replicate real-world
performance conditions.

4

1.5. Document Structure

• Scientific Availability: All code, data, models, and pretrained weights are intended to be
made publicly available to the scientific community, subject to licensing and publication
constraints.

The purpose and function of each of these components will be further clarified and contextualized
in the following sections.

1.5 Document Structure

This document is organized into seven chapters, each building upon the previous to form a coherent
narrative addressing the research problem, methodology, and outcomes.

Chapter 2 – Ethical Considerations begins with a critical examination of the ethical implications
surrounding mathematical and algorithmic research. It explores how theoretical contributions are
influenced by—and impact—social, cultural, and historical contexts, emphasizing the need to
recognize implicit biases and societal consequences.

Chapter 3 – Research introduces core concepts relevant to the thesis, starting with a brief primer
on geometric learning and an analysis of desirable data characteristics. It then surveys the state of
the art in 3D point cloud neural networks, highlights suitable architectural choices for this problem
space, and presents a comparative analysis of existing datasets and evaluation metrics.

Chapter 4 – Development details the technical contributions of the thesis, including a high-
performance, parametrizable data generator for producing tetrahedron pair samples (Tetrahedron-
PairGenerator) and a scalable, modular machine learning pipeline designed for geometric reasoning
on large datasets (TetrahedronPairML).

Chapter 5 – Experiments outlines the experimental design, training procedures, hardware con-
figurations, and other essential settings for reproducibility. It provides a detailed analysis of model
performance under various data regimes and architectural configurations, and also explores a newly
created dataset for 3D point cloud understanding in tetrahedra pairs (TetrahedronPairDataset).

Chapter 6 – Evaluation discusses evaluation results using multiple metrics, focusing on overall
accuracy, mean accuracy, and AUC for classification, as well as MAE, MAPE, kappa value, and
bin accuracy for volume estimation, computational throughput, and generalization capacity.

Chapter 7 – Conclusion summarizes key contributions, discusses limitations, and proposes direc-
tions for future research. Broader implications and open questions are also addressed.

5

Chapter 2

Ethical Considerations and Personal
Motivations

Mathematics is often perceived as neutral, detached from ethical considerations [21]. However, this
view overlooks how deeply mathematical developments are intertwined with society. Ideas do not
emerge from the ether; they are shaped by human thought, societal needs, cultural influences, and
historical contexts [22]. Likewise, mathematical theories, algorithms, and models extend beyond
academic journals, they impact technology, science, social policies, and economic strategies [23].
These influences carry biases, some obvious, others subtle and hard to detect. The effects of these
biases can ripple through society, affecting individuals and communities in unpredictable ways [24–
27]. Therefore, despite my research tackling a fundamentally theoretical problem, it is crucial
to understand it within its broader context, considering both its potential consequences and the
ethical responsibilities involved. In this chapter, I will discuss the context of this thesis, reflect on
my own biases, and explore the potential applications of my work.

2.1 Personal Motivation and Research Context

This research stems from my interest in geometry and computer graphics and my desire to explore
how machine learning can be integrated within these fields. Before my Erasmus exchange at
Bremen University, I contacted the Computer Graphics and Virtual Reality (CGVR) Labs to discuss
potential topics and co-supervision. They recommended focusing on "tetrahedron-tetrahedron
intersection and volume computation using ML", a topic that aligns with both my interests and
the lab’s research agenda. This problem is a common challenge in the field, detecting tetrahedra
intersections and calculating the volume of these intersections are crucial for ensuring accurate
simulations.

The expertise of the CGVR lab was crucial in shaping this research. During my time at Bremen
University, their specialists in machine learning and computer graphics provided essential support
for refining and debugging my algorithms and offered computational resources that significantly
influenced my approach. This thesis would not have been possible without their support and
contributes to the lab’s ongoing collision detection projects.

2.2 Potential Use Case: Collision Detection

As explored in opening section of this chapter, even the most abstract problems in mathematics
can eventually find their way into the real world—sometimes with surprising consequences. This
chapter takes one such path and follows it to a practical example: using machine learning to detect
collisions between 3D shapes.

7

Chapter 2. Ethical Considerations and Personal Motivations

The Technical Setup

Imagine a digital scene made of tiny blocks—specifically, tetrahedra. In many fields like robotics,
virtual reality, and physics simulations, these tetrahedra are used to build complex objects and
environments [14, 17]. But just like in the physical world, we need to make sure that things don’t
crash into each other when they’re not supposed to. That is where collision detection comes in.

In general, this problem is split into two phases [28]:

1. A broad phase, which quickly filters out pairs of shapes that are clearly far apart and can’t
intersect.

2. A narrow phase, which takes the remaining pairs and performs detailed checks to see if they
actually touch or overlap.

Our model is designed for the second part—the narrow phase. It doesn’t try to understand the
whole scene. Instead, it focuses on a much simpler question: “Given two tetrahedra, do they
intersect? And if so, by how much?” This makes the problem both easier to train and faster to
compute.

Why Machine Learning?

Traditional collision detection algorithms are rule-based and exact (see more in 3.1,3.1.3 and
3.1.4). But they are also slow, especially when applied to millions of pairs. Machine learning offers
a different approach: instead of following hard-coded rules, the model learns patterns from many
examples. The trade-off is speed versus accuracy.

This works well most of the time. But not all the time.

When It Fails

There are two ways a machine learning model can make mistakes:

1. It gets bad input—maybe from noisy sensors, missing data, or even deliberately corrupted
data.

2. It gets good input, but still makes the wrong call because of its training limitations.

Unlike a hand-written algorithm, an ML model doesn’t "know" geometry in the classical sense. It
has seen many examples and learned a kind of fuzzy intuition. That is powerful, but also fragile.
And when we’re talking about systems that operate in the real world, even a small mistake can
have big consequences.

Real-World Consequences

Lets take a few examples:

• Autonomous Vehicles: A collision detection error could cause a robot or car to misjudge its
environment. That might lead to a minor bump—or something much worse.

• Industrial Robots: If a robot arm moves into an area it thought was clear, it might crash
into equipment or even a person. That’s a safety risk and an operational failure.

• Virtual Reality: Here the stakes are lower, but still meaningful. Poor collision detection can
make virtual objects pass through each other, which ruins immersion and realism. In training
simulations, that can undermine the whole learning experience.

8

2.3. Transparency

In all these situations, a failure by the model breaks something more than just geometry—it breaks
trust.

Thinking Ethically

This is why ethics and safety are not just afterthoughts—they are built into the core of the design.
When we choose machine learning over rule-based methods, we’re not just optimizing for speed.
We’re also taking on a new kind of responsibility.

Because now, our system’s behavior depends not only on math, but on the data we feed it, the
decisions we make about model architecture, and how well we have tested it in difficult scenarios.

Mitigating the Risks

To reduce the chance of failure, several strategies are important:

• Data Validation: Catch mistakes before the model even sees them.

• Robustness Testing: Train and test the model on edge cases—rare shapes, unusual overlaps,
strange orientations.

• Explainability: Use tools that help us understand why the model made a certain prediction.

• Uncertainty Estimation: Let the model tell us when it is unsure, so we can step in.

• Fallback Systems: If things get too uncertain, switch back to classical algorithms or ask a
human to check.

These strategies are part of a larger philosophy: design systems that fail gracefully. If we accept
that mistakes will happen, then our job is to make sure those mistakes are caught, understood,
and corrected—before they become dangerous.

By building these safeguards into our models, we bridge the gap between clever code and responsible
deployment. It is not just about making something that works. It is about making something we
can trust.

2.3 Transparency

Transparency is foundational to trustworthy research. It supports accuracy, reproducibility, and
credibility by allowing others to trace key decisions, understand methods, and critique conclusions.
In this thesis, transparency has served both as a scientific principle and an ethical stance.

Throughout this work, I have aimed to make influences visible—how prior research shaped the ap-
proach, why specific models or methods were chosen, and where trade-offs were made. Transparent
documentation also makes it easier to identify hidden biases, design flaws, or oversights—many of
which are inevitable, especially under constraints like time, expertise, or computational resources.

Research Documentation

To clarify the role of each source, references have been grouped in the appendix into three cate-
gories:

• Checked: Briefly consulted to extract general ideas or support minor points.

• Analyzed: Closely read for key insights, directly informing this work’s arguments and meth-
ods.

9

Chapter 2. Ethical Considerations and Personal Motivations

• Foundational: Studied in depth, with repeated engagement. These shaped the core framing
of the research.

Additional metadata describes each source’s relevance (e.g., Intersection Prediction, Volume Es-
timation) and thematic focus (e.g., Machine Learning, Algorithmic, or Argumentative). This
structure helps readers quickly locate the conceptual building blocks of the thesis.

Source Access

Several key papers were paywalled. To access them, I used Sci-Hub. While I recognize the tension
this creates around intellectual property, the broader ethical principle—open access to scientific
knowledge—remains central. In many regions and institutions, the barrier isn’t interest or ability,
but economics. Science should be accessible, not exclusive.

Open Source

All source code developed in this research will be released under an open-source license. This
enables others to verify results, test extensions, or repurpose the methods in different contexts.

Accessibility and Plurality

This thesis is written with a wide audience in mind: researchers, practitioners, and curious learners
alike. Where possible, I have prioritized clarity—using plain language, adding footnotes for less
familiar concepts, and including supplementary explanations in the appendix. To further support
accessibility, I also asked a proofreader outside the field to review the text and provide feedback
on its readability.

Still, accessibility is not universal. Cultural context, language, background knowledge, and personal
interest all shape how research is understood. English remains the dominant language of academic
science, and with that comes a form of exclusion. On a personal note, I am reminded that someone
like my own mother will likely never read this thesis—not due to a lack of curiosity, but because
the language itself forms a barrier.

True accessibility goes beyond simplification it requires inclusivity. That means actively seeking
feedback from diverse readers and being mindful of the perspectives that may be missing. This
work is an invitation to dialogue, and I welcome engagement from voices across backgrounds,
disciplines, and experiences.

Environmental Considerations

One overlooked ethical dimension of this research is energy use. Model training and dataset
generation can consume substantial resources—especially when conducted without a strategy.
Machine learning currently lacks clear standards for environmental efficiency, and experimentation
often leads to waste.

In one case, I trained a model for nearly two weeks, chasing marginal gains over a shorter 3-day
baseline. Early loss metrics already suggested diminishing returns, but I ignored them. That was
a mistake—wasteful and unnecessary.

Although this research is small-scale compared to industry models, the same principles apply. We
can and should be more deliberate.

10

2.4. Ethical Assessment

Suggested Guidelines for Sustainable Research

• Review First: Before running experiments, survey the field. Prioritize promising baselines
over brute-force exploration.

• Use Early Stopping: Monitor learning dynamics and terminate underperforming runs.

• Track Energy Use: Tools like CarbonTracker or PowerMeter help quantify and reduce
emissions.

• Favor Lean Models: Use smaller architectures, distillation, pruning, and quantization where
possible.

• Optimize Data Generation: Avoid redundancy. Focus on diverse, representative samples
and estimate the minimum data needed to reach stable performance.

• Collaborate: Share pretrained models, datasets, and infrastructure to reduce duplicated
effort.

Small changes at the individual level, if adopted broadly, can shift the culture of ML research
toward greater sustainability.

2.4 Ethical Assessment

Ethical Intentionality

This thesis is grounded in a simple belief: that research should aim to reduce harm and expand
human well-being. Every equation, model, and design decision must be interpreted not only in
technical terms, but also in ethical ones.

Ethical Vigilance

Intent matters, but it is not enough. Well-meaning technologies can still cause harm when misap-
plied. Several risks deserve explicit attention:

• Dual Use: Algorithms developed for benign geometric tasks could, in other contexts, be
repurposed for surveillance, automated targeting, or other harmful applications. This isn’t
a hypothetical concern, it is an active risk. Researchers and policymakers must proac-
tively define and restrict such uses. For example, initiatives like the Stop Killer Robots
campaign (https://www.stopkillerrobots.org/) advocate for preemptive regulation of
autonomous weapons and other dual-use systems.

• Over-Reliance: There’s a growing temptation to treat model outputs as authoritative. Es-
pecially in safety-critical domains, this is dangerous. Machine learning models are tools—they
should support, not replace, human judgment. Over-reliance erodes accountability and hides
uncertainty.

Being ethically vigilant means anticipating misuse, not just reacting to it. It requires designing
systems with failure in mind, encouraging critical interpretation of outputs, and promoting policies
that align technical progress with societal responsibility.

Mitigation Through Process

This work includes several built-in safeguards:

• Transparency: Methods, limitations, and failure modes are documented. Users should
understand where the model can go wrong.

11

https://www.stopkillerrobots.org/

Chapter 2. Ethical Considerations and Personal Motivations

• Iterative Evaluation: Ethical concerns evolve. Regular feedback and post-deployment re-
view are essential.

• Interdisciplinary Dialogue: Ethics isn’t a solo discipline. Input from domain experts, ethi-
cists, and impacted communities improves foresight.

Responsible Innovation

The success of research should not be measured only by technical performance, but by its real-world
implications. This project represents a small step toward more intelligent, adaptable geometric
models—but the deeper goal is to build tools that serve people and protect values.

In the end, this work is not just about detecting shape intersections. It’s about navigating the
space where technology meets ethics—and doing so with clarity, humility, and intent.

12

Chapter 3

Research

3.1 Premier

This section serves as a conceptual entry point. It doesn’t aim to replace mathematical rigor but
offers an intuitive guideline for the geometric objects at the center of this work.

3.1.1 What is a Tetrahedron?

Take four triangles. Connect them edge to edge so that each face touches the others, and each
corner joins exactly three faces. The result is a tetrahedron—the simplest possible 3D shape.
It has four triangular faces, six edges, and four vertices (see Figure 3.1). Unlike pyramids with
polygonal bases,1 a tetrahedron is made entirely of triangles [29]. There is no "base"—all faces
are equivalent. In its most symmetric form, a regular tetrahedron, all faces are equilateral, and
all edges are the same length. The name comes from the Greek tetra- (four) and hedra (face or
base),[30] literally: "four-faced."

Figure 3.1: A tetrahedron showing its fundamental geometric properties: four tri-
angular faces, six edges, and four vertices

Simple—but not trivial. The tetrahedron’s minimalism is its strength. It appears in nature, physics,
chemistry, and computation 1, precisely because its structure is both efficient and robust.

1A polygonal base refers to the flat bottom face of a 3D shape, typically a polygon like a square, pentagon, or
hexagon. For example, a square pyramid has a square base and triangular sides.

13

Chapter 3. Research

3.1.2 Why Care About Tetrahedrons?

In geometry, each new dimension requires one additional point to define a shape that fully escapes
the previous one’s limitations.[31] These minimal sets of points, when connected, form what are
known as simplices: the most elementary building blocks of that space (see Figure 3.2).

• 0D: A single point—presence without extent

• 1D: Two points—defining a line, but still confined

• 2D: Three points not in the same line—defining a triangle and enclosing area

• 3D: Four points not in the same plane—defining a tetrahedron and enclosing volume

Each simplex marks the minimum configuration required to span its dimension. In this sense, the
tetrahedron is to 3D space what the triangle is to 2D: the smallest, most rigid, and most stable
volumetric structure.

Figure 3.2: The progression of simplices across dimensions: from a single point (0D)
to a line segment (1D), triangle (2D), and tetrahedron (3D). Each represents the
minimal geometric structure that can fully span its respective dimensional space, with
the tetrahedron being the fundamental building block of three-dimensional geometry.

This dimensional progression demonstrates the tetrahedron’s fundamental role:

Dimension Points Simplex Defines
0D 1 Point Position

1D 2 Line Distance

2D 3 Triangle Area

3D 4 Tetrahedron Volume

The tetrahedron thus emerges not by design, but by necessity. Its simplicity makes it universal. It
is the canonical container of three-dimensional space.

3.1.3 Why Tetrahedron–Tetrahedron Intersection Status?

Tetrahedrons are the simplest shapes that enclose volume in three-dimensional space[29]. Because
any complex 3D object can be decomposed into a collection of tetrahedrons, determining whether

14

3.1. Premier

two arbitrary solids intersect can be reduced to checking pairwise intersections between their
constituent tetrahedrons[17].

This makes tetrahedron–tetrahedron intersection a foundational problem in computational geom-
etry. If we can reliably determine whether two tetrahedrons intersect, we can scale that solution
to possibly handle any polyhedral geometry.

Yet despite the tetrahedron’s simplicity, the intersection problem is surprisingly intricate (3.2.2).
Two tetrahedrons can interact in many ways: full containment, partial overlap, face-to-face align-
ment, edge contact, or touching at a single vertex[29, 32, 33]. A robust intersection algorithm
must detect all these configurations accurately.

The primary challenge lies in numerical precision and algorithmic efficiency [34]. Floating-point
arithmetic,2 though fast, introduces rounding errors that can undermine geometric tests. These
errors become especially problematic in degenerate or near-degenerate cases—when tetrahedrons
are nearly coplanar, barely touching, or aligned along nearly parallel planes. Under such conditions,
even minuscule numerical deviations can lead to large logical errors: overlaps may be missed, or
false positives may occur[34].

Some modern algorithms mitigate these issues by postponing floating-point operations until the
final stage. They evaluate geometric predicates—such as orientation and in-sphere tests—using
exact arithmetic, and convert to approximate representations only when necessary.

A robust intersection test must therefore satisfy four critical criteria:

• Edge-Case Handling: Detect degenerate configurations like shared vertices or coplanar
faces.

• Numerical Stability: Remain reliable despite rounding errors and representational noise.

• Efficiency: Scale to real-time or large-scale scenarios involving millions of checks.

• Generality: Support arbitrary positions, orientations, and aspect ratios.

The following table reviews some classical intersection algorithms, comparing their trade-offs across
robustness, performance, and implementation complexity.

3.1.4 Why Compute the Volume of Intersection?

Determining whether two tetrahedrons intersect is useful but in many applications, a simple yes-
or-no answer is not enough. What often matters is how much they intersect. This is where
computing the volume of intersection becomes essential.

Whether in physics simulations, material science, or mesh-based modeling, the quantity of overlap
influences outcomes such as force computations, structural analysis, and spatial occupancy [18].

Unlike regular shapes, whose volumes can be calculated with closed-form formulas, the intersection
of two tetrahedrons forms an irregular convex polyhedron. Its structure depends entirely on how
the tetrahedrons intersect. There is no general formula; the volume must either be explicitly
constructed or estimated [38].

Two main strategies are commonly used:
2Floating-point arithmetic is a method of representing real numbers in computers using a finite number of bits.

While efficient, it introduces rounding errors due to limited precision, which can lead to inconsistencies in geometric
computations.

15

Chapter 3. Research

Method Summary

GJK Algorithm Iteratively builds simplices within the Minkowski difference 1of
two shapes. Early termination occurs if a simplex encloses the
origin, indicating intersection. Efficient for convex polytopes
but sensitive to numerical precision near boundaries [35].

SAT Algorithm Tests potential separating axes derived from face normals and
edge cross products. If no axis separates projected inter-
vals, intersection occurs. [36] optimized this for tetrahedrons
by reusing face-query results, avoiding exhaustive edge-pair
checks [37].

McCoid-Gander
Algorithm

Transforms one tetrahedron into a canonical reference frame,
reducing 3D intersection checks to 2D projections. Tests ver-
tex containment via barycentric coordinates and edge-face in-
tersections, prioritizing robustness over speed [33].

1 The Minkowski difference of sets A and B is A − B = {a − b | a ∈ A, b ∈ B}. If it
contains the origin, A and B intersect.

Table 3.1: Classical methods for tetrahedron–tetrahedron intersection testing.

• Exact geometric methods compute the precise shape of the intersecting region. The
resulting polyhedron is then decomposed into smaller tetrahedra or simpler components, and
their volumes are summed to yield the total intersection volume.

• Approximate methods, such as Monte Carlo integration, avoid reconstructing the intersec-
tion geometry altogether. Instead, they estimate the volume probabilistically by randomly
sampling points within a bounding region and testing for containment.

Both approaches come with challenges. Exact methods require robust geometric predicates, care-
ful handling of degenerate cases, and efficient triangulation schemes. Monte Carlo approaches
must balance sampling density, convergence rate, and computational cost to achieve acceptable
accuracy. Computing intersection volume transforms geometric contact into a measurable quan-
tity—bridging the gap between shape and interaction. It is a critical capability for turning geometry
into simulation.

The table below summarizes classical and modern strategies used to approach this task.

Method Principle and Tradeoffs

Nef Polyhedra Represents tetrahedrons as boolean combinations of 3D half-
spaces. Applies logical operators (AND) to compute intersec-
tions, then decomposes the result into sub-volumes. Rigorous
but computationally intensive [39].

Monte Carlo Estimates volume via random sampling: generates points
within a bounding region and scales the fraction inside both
tetrahedrons by the total volume. Efficient but trades preci-
sion for speed [38, 40].

Table 3.2: Methods for intersection volume computation. Nef polyhedra provide
exact results; Monte Carlo emphasizes scalability.

16

3.1. Premier

3.1.5 The Problem

As stated previously in 1.2, given two arbitrary tetrahedrons within a unit cube, we aim to address
two fundamental tasks: (1) determine whether they intersect, and (2) compute the volume of
their intersection using a machine learning model.

Traditionally, both tasks are addressed through explicit geometric computation, specifically, by
constructing the polyhedron formed by the intersection of the two tetrahedra (see Table 4.3). If
such a polyhedron exists, the tetrahedra intersect, and its volume can be computed analytically [39].
Conversely, if no valid intersection shape is found, the volume is zero.

In other words, the geometric computation of intersection volume implicitly encodes both inter-
section status and overlap quantity. However, this process becomes computationally expensive at
scale.3

Instead of relying on explicit geometric methods, We propose a data-driven approach: approxi-
mating this computation using a neural network trained on sampled pairs of tetrahedrons. The
network is trained to map the 3D vertex coordinates of two tetrahedrons directly to:

• A binary label indicating intersection status (classification), and

• A continuous value representing the volume of intersection (regression).

This approach bypasses the need for polyhedron construction entirely. By learning the latent
geometric patterns that govern intersection behavior, the model provides fast and scalable predic-
tions. While this comes at the cost of analytical precision, it significantly accelerates inference,
crucial for applications requiring real-time collision checks or high-throughput geometry processing.

What is Machine Learning?

Machine learning refers to the design of computational systems that autonomously solve tasks by
transforming data into structured knowledge through experience [41, 42]. Crucially, "learning" in
this context does not imply memorizing training data, but rather discovering generalizable patterns
that apply to previously unseen instances [42]. The performance of a machine learning model is
fundamentally determined by the quality and quantity of the data it learns from, which serves as
ground truth [6, 41, 42].

In this work, exact geometric algorithms are used to compute ground-truth solutions for arbitrary
pairs of tetrahedrons, enabling the creation of large, high-quality labeled datasets. This makes
supervised learning, a paradigm that maps inputs to known outputs, a natural choice, with sufficient
labeled data, supervised models can achieve high predictive accuracy [41, 43].

The primary class of models employed in this thesis are Neural Networks, a computational frame-
work composed of layers of interconnected artificial neurons. Neural Networks are particularly
effective at modeling complex, non-linear relationships in high-dimensional data [41, 44]. They
offer advantages in scalability, expressive power, and training efficiency as we are going to explore
in future sections.

Although the focus here is on Neural Networks, the techniques and analytical frameworks devel-
oped are model-agnostic and provide a solid foundation for future exploration using alternative
machine learning methods.

3Imagine executing this loop-constructing intersection shapes—merely to determine intersection status and com-
pute volume for millions of samples within seconds.

17

Chapter 3. Research

Supervised Learning Fundamentals

Supervised learning aims to find a mapping function that relates inputs to outputs using labeled
data [41, 43–45]. The input space represents all features describing each data point—in this case,
features like the coordinates of the vertices of two tetrahedra [42]. The output space contains
the target values, such as whether the tetrahedra intersect (a binary outcome) or the volume of
their intersection (a continuous value between 0 and 16

4). The goal is to identify a function that
minimizes the difference between the model’s predictions and the true labels [41, 42]. But how do
we discover such a function? Here are the fundamental ingredients

Dataset
The dataset is the foundation for learning. It consists of input-output pairs that capture the
relationship we want the model to learn. Its quality, size, and diversity are critical for general-
ization—ensuring the model performs well not just on training data but also on unseen examples
[41].

Loss Function
To guide learning, we need a way to quantify prediction errors. A loss function measures how far
predictions deviate from actual outcomes, providing feedback that the learning algorithm uses to
improve model accuracy [41].

Hypothesis Class
The hypothesis class is the set of candidate functions considered to solve the problem. It encodes
assumptions, or inductive bias, about the underlying relationship. Choosing an appropriate hypoth-
esis class is crucial: if the true function lies outside this set, no amount of training will yield good
results [41].

Learning Algorithm
The learning algorithm searches within the hypothesis class to minimize the loss function, effectively
selecting the best function that represents the data’s input-output mapping [41].

The learning process proceeds as follows:

1. Split the dataset into training and testing subsets.

2. The learning algorithm explores candidate hypotheses.

3. It evaluates predictions against actual outputs using the loss function.

4. Based on feedback, it iteratively refines its hypothesis until convergence.

Four key insights emerge from this framework:

• Data quality is paramount. Flawed or unrepresentative data undermines learning regardless
of algorithmic sophistication.

• The hypothesis class must be well-chosen to contain good approximations of the true func-
tion.

• The loss function directs learning. Poorly designed losses can mislead optimization.
4The maximum volume of a tetrahedron contained within the unit cube [0, 1]3 is 1

6
. This is because the largest

tetrahedron can be formed by choosing the three vertices along the edges from the origin to the points (1, 0, 0),
(0, 1, 0), and (0, 0, 1), together with the origin (0, 0, 0). The volume of a tetrahedron defined by points a, b, c, and
d is given by 1

6
|det (b− a, c− a, d− a)|. Substituting these points, the determinant equals 1, so the volume is 1

6
.

No larger tetrahedron can fit inside the unit cube because these points maximize the spatial extent along the cube’s
edges.

18

3.1. Premier

• The learning algorithm’s efficiency and strategy determine how effectively it navigates the
hypothesis space.

These components are tightly interconnected—weakness in any one can cripple the whole process,
while strength in all enables powerful, accurate models.

Two types of errors characterize learning outcomes [41–43]:

• Estimation Error: The gap caused by the algorithm’s failure to find the best hypothesis,
often due to limited data or algorithmic constraints.

• Approximation Error: The inherent error when the hypothesis class cannot perfectly represent
the true function, no matter how well trained.

The primary goal is to minimize both estimation and approximation errors, aiming not only for
good performance on the training data but also for strong generalization to unseen data.

How can we evaluate the generalizability of a trained model? We use a validation dataset—a
separate set of samples drawn from the same distribution as the training data. Performance on
this validation set provides an estimate of how well the model will perform on new, unseen data.
Strong validation results indicate good potential for generalization.

How can we be confident that strong validation performance implies generalization to other data?
Probably Approximately Correct (PAC) learning theory [41, 46]offers a partial explanation. It
states that for certain hypothesis classes, given sufficiently large training data, the model’s error
on new samples from the same distribution will likely be close to its training or validation error.
This concept is quantified by sample complexity—the amount of data needed to guarantee low
error with high confidence. Importantly, PAC guarantees apply only when new data follows the
same distribution as the training data; they do not ensure success on fundamentally different
(out-of-distribution) data.

While PAC bounds are often conservative compared to empirical requirements, they provide foun-
dational theoretical guarantees. Recent work even demonstrates that complex neural networks can
be PAC-learnable under certain conditions.

Statistical learning theory further shows that some infinite hypothesis classes are PAC-learnable.
Successful learning depends on carefully choosing the hypothesis class and balancing bias versus
variance to achieve uniform convergence—where minimizing loss on sufficiently large datasets
leads to consistent performance on any data from that distribution [42].

This naturally raises deeper questions: Why are some hypothesis classes PAC-learnable and others
not? Which hypothesis classes are PAC-learnable? Is it possible to learn effectively without prior
assumptions about the hypothesis class?

These foundational questions lie beyond the current scope but are essential to a full understanding
of machine learning.5

Next, we explore neural networks in more detail.

Neural Networks Fundamentals

Artificial Neural Networks, or simply Neural Networks, inspired by the brain’s architecture, are
computational models designed to recognize patterns and approximate complex functions [8, 41,

5In brief: hypothesis classes differ in richness—the number of meaningfully distinct solutions they can represent.
Infinitely rich classes are not PAC-learnable. Only those with finite VC dimension are. And no, we cannot learn
without assumptions—the No Free Lunch theorem guarantees this.

19

Chapter 3. Research

44, 47]. The core unit is the perceptron, which computes a weighted sum of inputs, adds a bias,
and applies a non-linear activation to produce an output [44, 48].

Traditionally, perceptrons define linear decision boundaries6 that partition the feature space by
thresholding weighted inputs [49]. This allows classification by activating when inputs exceed the
threshold.

Perceptrons also handle regression by replacing the threshold with continuous activations, out-
putting values across a range instead of binary classes. In simple linear regression, a perceptron’s
output is a weighted sum plus bias—essentially a linear function. Stacking perceptrons into mul-
tilayer networks extends this to model complex, highly non-linear relationships between inputs and
continuous outputs [44].

Multilayer perceptrons (MLPs) with non-linear activations can approximate virtually any continuous
function. Training minimizes a loss function—commonly Mean Squared Error (MSE)—to reduce
the difference between predicted values and targets. This makes neural networks versatile for
regression tasks, from predicting volumes or intersection areas to time-series forecasting.

Arranged in layers, MLPs transform inputs through successive nonlinear mappings, enabling them
to approximate intricate decision surfaces. This power is key for challenging problems like geometric
intersection detection [44].

More recently, neural networks are valued not just for decision boundaries but for representation
learning—automatically extracting abstract features that capture complex, non-linear patterns
[43]. For geometric tasks such as tetrahedron-tetrahedron intersection, this means learning spa-
tial relationships between vertices and edges without manual feature engineering, improving both
detection and volume estimation.

A network’s parameters—weights and biases—define its hypothesis class, the set of functions it
can represent. The core challenge is optimizing these parameters to find the best approximation
within this vast function space.

The ability of neural networks to establish decision boundaries and perform representation learning
hinges on their training process. Training involves adjusting the network’s weights and biases to
minimize the discrepancy between its predictions and the desired outcomes—a process known as
optimization. Most optimization processes rely on automated differentiation techniques, with the
most widely used method being backpropagation.

The optimization process works in three phases:

• Forward Pass: The network takes an input, works through its layers step by step, and
produces an output. It then compares this output to the correct answer (the target) and
calculates the loss.

• Backward Pass: The algorithm figures out how much each parameter contributed to the
error. It uses a technique called the chain rule to trace the error backward through the
network. The idea is that the final output is directly or indirectly intertwined with all the
values of weights and biases of the network, much like a chain. The challenge is to quantify
their impact and progressively adjust them to obtain better results. This is achieved by
calculating the partial derivatives7 of the weights or biases concerning the loss function.

• Parameter Update: After calculating all partial derivatives, we use an optimizer, an algo-
rithm that adjusts the parameters to reduce the loss in the least amount of steps. Examples

6A decision boundary is a surface or curve separating different classes in the input space, marking where predicted
labels switch.

7A derivative is a mathematical operation that quantifies the rate of change; a partial derivative tells us how
much a change in a single parameter of a multi-parameter function affects the overall value of the function.

20

3.1. Premier

of popular optimizers include SGD, MomentumSGD, and Adam, with Adam being widely
used due to its efficiency and adaptability. Although detailed discussions on optimizers are
beyond the scope of this thesis, it is important to note that optimizers rely on hyperparame-
ters such as the learning rate and batch size, which are chosen based on the specific problem
through experimentation.

Through this iterative process, the network learns to minimize the loss function, improving its ability
to fit the data and make accurate predictions [44]. This process, however, cannot guarantee finding
the best possible function (global minimum); instead, it often converges to a local minimum. Most
of the time, these local minima perform well in practice.

Why Neural Networks?

Neural networks are celebrated for their flexibility and representational power. In fact, they can
approximate any arbitrary continuous function. The Universal Approximation Theorem formalizes
this by stating that a feedforward neural network with at least one hidden layer can approximate
continuous functions on a compact subset of Rn, given sufficient neurons and suitable activation
functions [41, 44]. This theorem underscores the potential of neural networks to model highly
complex patterns and relationships in data, making them invaluable in a wide array of machine
learning tasks.

Predicate-Powered Learning

In theory, with enough high-quality data and computational power, even a simple two-layer MLP
could approximate any function [41]. Yet, despite growing datasets and increasing computational
resources, practitioners consistently seek ways to embed prior knowledge into the learning process
to improve both optimization efficiency and model generalization [41, 50].

Recently, a paradigm shift in statistical learning encourages moving away from brute-force searches
across vast function spaces. Instead, focusing on a domain-informed search approach [46]. This
emerging methodology, known as predicate-powered learning, introduces the use of predicates,
fundamental truths or core concepts that are highly relevant to the problem at hand. Predicates
serve as guiding principles within the learning process thus enhancing model performance.

By defining relevant predicates, we effectively constrain the search space, allowing the model
to converge faster and more accurately toward meaningful solutions [51]. This predicate-based
approach aligns with the broader goals of statistical learning: not only to approximate functions
but also to do so in a way that reflects the essential structure and nuances of the problem domain.

[51] shows three main mechanisms through which predicates can influence learning:

1. Input Transformation: Predicates can transform the input data in a way that filters out
irrelevant information, ensuring that only pertinent features remain. This allows the model
to focus on essential aspects of the data.

2. Hypothesis Class: Predicates can be used to construct a learnable mapping function that
inherently disregards irrelevant information.

3. Algorithmic Guidance: Predicates can guide the tuning of the mapping function through
constraints imposed during the training process. A strategy further discussed in [46].

21

Chapter 3. Research

In all these mechanisms, predicates help steer the learning algorithm towards more efficient and
relevant solutions, significantly reducing computational costs while improving model performance.

Predicates of the problem

The following invariances and constraints characterize the fundamental properties any intersection
test or volume calculation between two tetrahedra must respect:

• Rotational Invariance: The intersection status and volume between two tetrahedra remain
unchanged under any simultaneous rotation of both tetrahedra.

• Translational Invariance: The intersection status and volume between two tetrahedra are
unaffected by any joint translation. Shifting both tetrahedra by the same vector in space
does not alter the intersection outcome.

• Scale Invariance: If both tetrahedra are uniformly scaled, the intersection status remains
unchanged, and the volume of intersection scales in proportion to the determinant of trans-
formation.

• Reflection Invariance: The outcome is the same if both tetrahedra are reflected across a
plane.

• Permutation Invariance: The vertex labeling of a tetrahedron is arbitrary, so permuting the
vertices should not alter the outcome, also intersecting T1 with T2 is the same as intersecting
T2 with T1.

• Volume Constraints: The volume of intersection between the two tetrahedra must fall
within the range of 0 to 16 .

22

3.2. Data

3.2 Data

3.2.1 Representation

The way a tetrahedron is represented fundamentally shapes both the computational efficiency and
the algorithmic strategies applicable to geometric tasks. Different representations offer trade-offs
between geometric fidelity, expressiveness, and computational complexity. Table 3.2.1 summarizes
the most common formats and their associated characteristics.

Representation Description and Applications

Cartesian Coordinates Each vertex defined as (x, y , z). Intuitive and efficient for basic
computations and transformations.

Spherical Coordinates Encodes vertices using radius r and angles (θ, φ). Useful for
rotational tasks and spherical projections.

Plücker Coordinates Edges represented as 6D vectors capturing direction and mo-
ment. Key in projective geometry and line-space reasoning.

Half-Space Intersection Defined by intersecting four face-bounding planes. Efficient for
collision detection and containment checks.

Mesh Representation Explicit vertices, edges, and faces with topological structure.
Detailed but redundant for simple polyhedra.

Graph Representation Complete graph K4 structure over vertices. Suitable for combi-
natorial and topological analysis.

Nef Polyhedra Boolean operations over half-spaces enable exact and robust
modeling for constructive geometry.

Table 3.3: Alternative representations of a tetrahedron and their characteristics

While simple formats like Cartesian coordinates are computationally light and easy to use, they
encode minimal structure, often requiring models to infer geometric relationships implicitly. In
contrast, richer formats—such as meshes or graphs—embed geometric and topological structure
directly, aiding tasks that benefit from explicit connectivity but introducing additional computa-
tional overhead [41].

I would argue that for most tetrahedron-focused applications, vertex-based representations strike
the best balance between expressiveness and efficiency. A tetrahedron is uniquely defined by
its four vertices; since the connectivity forms a complete graph (K4)8, edges and faces can be
derived algorithmically, making additional storage unnecessary. This property also makes point-
based representations ideal for use in both classical geometric algorithms and modern deep learning
models designed for point clouds.

Point Clouds as a Minimal Representation

3D point clouds, a set of unordered points in three-dimensional space, provide a minimal repre-
sentation that avoids storing explicit connectivity [15]. For a tetrahedra pair, this corresponds to
precisely eight points in R3, fully defining the shape without redundancy.

8A complete graph K4 means that every vertex is connected to every other vertex by an edge. So, with 4 vertices,
there are edges between each pair, making 6 edges in total. This fully connects the shape without ambiguity.

23

Chapter 3. Research

Despite these advantages, point clouds also come with some hurdles. The lack of inherent structure
means that relationships such as adjacency or orientation are not explicitly encoded. This places
a greater burden on the learning algorithm to infer spatial relationships purely from coordinate
data [41]. Additionally, because the points are unordered, any learning algorithm must treat
permutations of the same tetrahedron identically. Capturing this permutation invariance in model
design is non-trivial and requires deliberate architectural choices [52, 53].

Nonetheless, for simple 3D shapes like tetrahedra, point clouds represent a balance between sim-
plicity and expressiveness. They provide just enough information to capture geometry while min-
imizing redundancy, making them an effective foundation for learning-based methods in tasks
involving spatial reasoning, such as intersection detection and volume estimation.9

3.2.2 Diversity

Intersection Types and Geometric Likelihoods

The spatial relationship between two tetrahedra can fall into five canonical cases, adapted from
Li and Chen [32] and Zinani [54]. These intersection types range from complete separation to
volumetric overlap, as illustrated in Figure 3.3.

Figure 3.3: Five canonical intersection types between two tetrahedra: (0) No inter-
section—completely disjoint tetrahedra; (1) Point intersection—contact at a single
vertex; (2) Segment intersection—shared edge between tetrahedra; (3) Polygon
intersection—shared triangular face; (4) Polyhedron intersection—overlapping vol-

umes creating a shared polyhedral region.

Table 3.4 summarizes these intersection cases and their relative probabilities under different sam-
pling conditions.

In uniform random sampling (e.g., selecting all vertex coordinates from [0, 1]), most tetrahedra are
small (expected volume ≈ 0.01), and the probability of intersection is low. Even in the rare case
where both tetrahedra are maximally large (e.g., unitary tetrahedra), overlap remains geometrically
improbable.

9If you were to solve the intersection problem analytically, you would only need the vertices of the tetrahedra
because the edges and faces can be precisely calculated from these points. This means vertices contain all the
essential information to understand the shape’s geometry.

24

3.2. Data

Table 3.4: Intersection Types and Likelihood Estimates

Case Description Likelihood Estimate

None (0) Disjoint tetrahedra
High (especially in
random sampling)

Point (1)
Intersection at a
single vertex

Low in random sampling;
high in simulations

Segment (2) Common edge shared
Lower than Point;

moderate in contact cases

Polygon (3) Shared triangle face
Unlikely unless face-to-face

contact occurs

Polyhedron (4) Shared volume
Less likely than Case 0 in uniform
sampling; common in simulations

However, in simulated environments (e.g., collision detection or physics engines), one tetrahedron
is often static while the other is moved or projected toward it. In such settings, the most probable
first contact is a vertex-to-face interaction (Case 1: Point), followed by shallow overlaps (Case
4: Polyhedron). Deep face-to-face intersections (Case 3: Polygon) are least likely in dynamic
simulation due to strict spatial alignment requirements.

Volume Distribution Bias in Random Sampling

A naive method for generating intersecting tetrahedra is to sample all vertex coordinates uniformly
in [0, 1]. However, this introduces a statistical bias: smaller intersection volumes occur far more
frequently than larger ones. As shown in Zinani [54], the average volume of a randomly sampled
tetrahedron in the unit cube is approximately ≈ 0.0138, and volumes exceeding 0.1 are extremely
rare.

This imbalance affects model learning: frequent small volumes dominate the training set, lead-
ing to reduced accuracy on rare, high-volume cases. While generating a massive dataset increases
coverage, it is computationally inefficient. A better solution is to deliberately oversample underrep-
resented cases during data generation—achieving diversity through controlled, distribution-aware
sampling.

In summary, the classification function space defined by two tetrahedra is exponentially large due to
the high input dimensionality and coordinate precision, making broad and representative sampling
essential for effective generalization. Furthermore, the likelihood of different intersection types is
not uniform—it strongly depends on the sampling regime. In purely random sampling within the
unit cube, most pairs are disjoint, and even when they intersect, smaller overlaps are far more
probable than large ones. By contrast, simulation-based sampling, where one tetrahedron moves
toward another, biases the distribution toward more meaningful intersection events like point or
volumetric contact. Finally, the distribution of intersection volumes is heavily skewed toward near-
zero values, which can distort model learning if not corrected. Ensuring dataset diversity—across
both intersection categories and volume scales—is therefore not only desirable but necessary for
building a model capable of robust geometric reasoning.

25

Chapter 3. Research

3.2.3 Augmentation

To further enhance model robustness, augmentation techniques can embed the geometric invari-
ances defined in Section 3.1. Two key strategies are tetrahedronwise and pointwise permutations,
which expose the model to semantically equivalent but differently ordered configurations. These
transformations increase data diversity without altering geometry. Alternatively, sorting strategies
can enforce input consistency across samples:

• Order-Based Sorting : Sorting vertices or entire tetrahedra by spatial coordinates (e.g.,
x-axis) or using space-filling curves10 introduces structured coherence that can benefit gen-
eralization.

• Size-Based Ordering: Standardizing the input by presenting the larger tetrahedron first
reduces asymmetry and may stabilize predictions.

• Difficulty-Based Curriculum: Organizing training samples by geometric complexity or model
uncertainty supports curriculum learning, accelerating convergence and improving final per-
formance.

Because the problem is permutation-invariant—within each tetrahedron and across the pair—such
augmentations can help learning robust and generalizable representations without requiring explicit
architectural enforcement.

3.2.4 Transformations

Beyond data augmentation, geometric transformations can reframe the input space into a more
structured form. One such method is the Unitary Tetrahedron Transformation, where one tetra-
hedron is normalized to a fixed reference configuration—a unitary tetrahedron—and the second
tetrahedron is represented in this transformed space11. In practice, since the first tetrahedron
serves as the reference, only the second tetrahedron needs to be fed into the model.

Similarly, affine or rigid-body transformations—such as Principal Component Analysis (PCA) align-
ment—can reduce geometric variance and standardize spatial context.

These transformations are evaluated in detail in Section 5.10.1, where we assess their impact on
performance and convergence. In general, mapping inputs into a canonical form simplifies the
learning task and promotes better generalization. However, even with normalization, the input,
in the form of point clouds, remains unstructured and unordered. This poses unique challenges
for neural networks, which must be architected to handle the discrete and irregular nature of 3D
spatial data.

We now turn to the development of such architectures.

3.3 Neural Networks for 3D Point Clouds

3.3.1 Overview

Challenges in Processing Point Clouds

10Space-filling curves (e.g., Hilbert or Z-order) are continuous mappings from 1D to multi-dimensional space that
preserve locality. They provide a deterministic way to impose spatial order on unordered points.

11The transformation space refers to the geometric embedding in which the reference tetrahedron is mapped to
a canonical form. This typically involves an affine linear transformation, including translation, rotation, scaling, and
shearing.

26

3.3. Neural Networks for 3D Point Clouds

Point clouds are not evenly distributed, some areas are dense with details, while others are sparse,
leaving gaps. Point clouds are unstructured, with no fixed spacing between points. They are also
unordered, meaning the order in which points are stored does not change what they represent.
These irregular, unstructured, and unordered properties make processing point clouds complex and
require specialized methods to analyze them effectively [15, 48].

Early Approaches to Point Cloud Processing

In the past, these challenges were addressed by crafting domain-specific features. These hand-
crafted features were used to augment the dataset and train traditional machine learning models
[15, 48]. However, this approach faced significant limitations:

• Poor Adaptability: Feature extraction was often specific to certain scenarios and lacked
generalization across diverse datasets.

• Dependence on Expert Knowledge: Designing effective features required deep expertise
in the domain, making the process time-consuming and inaccessible to non-experts.

• Susceptibility to Noise: Real-world point clouds often include noise, outliers, and missing
data, reducing the robustness of traditional approaches.

Advances in computing power and data processing have paved the way for deep learning trans-
forming point cloud analysis. Deep learning methods, unlike traditional ones, can automatically
learn features directly from data, making them more adaptable and robust [41, 44].

Transition to Deep Learning: Converting Point Clouds to Structured Representations

Some approaches opt to adapt point cloud data to well-established architectures such as Con-
volutional Neural Networks (CNNs)12 and Graph Neural Networks (GNNs)13 by converting point
clouds into structured formats such as voxels, 2D projections, or graphs.

Voxelization maps objects onto a 3D volumetric grid14, enabling the use of 3D CNNs. However,
this introduces quantization errors15 and incurs high memory overhead.

Multi-view projections convert point clouds into 2D images from multiple viewpoints16, allowing
processing with conventional CNNs. While this simplifies the task, it risks loss of spatial information
and introduces a dependency on optimal view selection.

Graph-based methods represent point clouds as graphs, where points are nodes connected by
edges based on spatial proximity or other criteria. This structure enables the use of GNNs, albeit
at the cost of increased computational complexity17 [48].

While these approaches leverage the strengths of well-established architectures, their reliance on
data conversion adds overhead and can limit performance in applications requiring high inference

12CNNs are deep learning models particularly effective for processing data with a grid-like topology, such as images.
13GNNs operate on graph structures, enabling the modeling of relationships between entities through nodes and

edges.
14A voxel (volumetric pixel) is the 3D equivalent of a pixel, representing a value on a regular grid in three-

dimensional space.
15Quantization error refers to the loss of precision due to discretizing continuous space into finite voxel units.
16Each projection corresponds to a rendered view of the 3D structure from a specific camera angle.
17Graph-based learning often involves operations like message passing and neighborhood aggregation, which scale

poorly with graph size.

27

Chapter 3. Research

speed and scalability. These limitations have driven the development of methods that directly
process raw point cloud data, as discussed in the followings.

3.3.2 DeepSets (2017)

In 2017, Manzil Zaheer, Satwik Kottur, Siamak Ravanbhakhsh et al. introduced DeepSets in [53], a
novel deep learning framework designed to handle machine learning tasks on sets. Unlike traditional
neural networks that operate on fixed-dimensional vectors, DeepSets addresses problems where the
input data is a set and objective functions must be invariant to the permutation of elements within
the set.

The core theoretical contribution of DeepSets is a theorem demonstrating that any permutation-
invariant function can be decomposed into a specific form:

ρ

(∑
x∈X
φ(x)

)
,

where φ and ρ are suitable transformations. This structural insight allows for the design of deep
network architectures that can process sets of varying sizes. The model works by transforming
each element xm in the set into a representation φ(xm), summing these representations, and then
processing the aggregated result through a network ρ.

DeepSets also defines conditions for permutation equivariance, enabling the creation of deep layers
where permuting input elements leads to a corresponding permutation of output labels. This is
achieved through specific parameter-sharing schemes, such as using max-pooling operations that
are commutative. The versatility of DeepSets has been demonstrated across various applications,
including population statistic estimation, point cloud classification, set expansion, and outlier de-
tection.

3.3.3 PointNet (2017)

In 2017, Charles R. Qi, Hao Su et al. introduced PointNet in [55], a groundbreaking neural
network for direct point cloud processing. PointNet processes point clouds by applying learnable
rigid transformations using the T-Net module, extracting point-wise features through shared fully
connected layers for each point, and aggregating global features using a maximum pooling function.
While revolutionary, PointNet has limitations, such as its inability to capture local relationships
between points, which reduces its effectiveness for certain datasets.

3.3.4 Pointwise MLP Methods

Since then, the field has advanced significantly, giving rise to many new architectures. These meth-
ods are generally based on convolution operations, graphs, attention, pointwise MLP processing or
other techniques. For a detailed explanation of these methods, please refer to [15]. In this study,
we focus on pointwise MLP methods for the following reasons:

• Relevance to Our Dataset: Most other methods emphasize local feature extraction to
address PointNet’s weaknesses. However, for our dataset, pairs of tetrahedrons, the simplest
3D shapes, fine-grained local feature extraction is unnecessary.

• Efficiency: Many advanced architectures require substantial computational resources and
memory. Simpler methods are lightweight and more practical for efficient processing. In fact
most real world applications tend to use the PointNet-based architectures.

28

3.3. Neural Networks for 3D Point Clouds

• Dataset Simplicity: State-of-the-art methods are typically evaluated on complex datasets,
achieving high accuracy. Our dataset is much simpler, and most methods are expected to
perform well without added complexity.

• Simplified Design: these methods prioritize simplicity to boost inference speed without
sacrificing performance. These streamlined architectures deliver results comparable to more
complex approaches, making them ideal for our needs.

• Accessibility and Usability: Simpler architectures are easier to experiment with and under-
stand. By choosing a straightforward approach, we make it easier for others to engage with
this research and contribute to future development.

These methods employ shared MLPs to transform points into higher-dimensional feature repre-
sentations. Since point clouds are inherently unordered, these architectures utilize symmetric ag-
gregation functions—such as sum, max pooling or average pooling—to generate a global feature
vector that remains invariant to permutations of the input points.

PointNet++, 2017 [52]

Building on the success of PointNet, this work addresses one of its major limitations: the lack of
awareness of local relationships between points. Inspired by the success of CNNs and their ability
to capture local patterns, PointNet++ adopts a hierarchical approach. Just as CNNs begin by
focusing on small image details and progressively abstract larger patterns, PointNet++ processes
points in smaller groups first and gradually captures more global features.

The architecture operates by selecting small neighborhoods of points, extracting features from
these neighborhoods, grouping them into larger sets, and then extracting higher-level features.
This hierarchical process continues until the entire point set is processed.

The Three Fundamental Stages:

1. Sampling: The point set is partitioned into smaller subsets using the Furthest Point Sampling
(FPS) method. This approach selects centroids such that each centroid is as far as possible
from all previously selected points. These centroids represent the groups to be processed.

2. Grouping: For each centroid, the K nearest points are selected to form a group. The value
of K can vary across different groups.

3. Feature Extraction: The features of each group are extracted using the original PointNet
architecture. This process produces a compact representation of each group.

This hierarchical process of sampling, grouping, and feature extraction aims to ensure that both
local and global geometric features are effectively captured across the point set.

PointMLP, 2022 [56]

PointMLP addresses the computational cost of elaborate local feature extractors in point cloud
processing by leveraging only residual MLPs, focusing on both efficiency and accuracy. Inspired by
PointNet++, it introduces two key innovations, a geometric affine transformation module to learn
a canonical geometric representation of points. Residual MLPs with batch normalization and max
pooling for efficient, permutation-invariant feature extraction.

Stages of PointMLP

The architecture follows the same stages as PointNet++:

29

Chapter 3. Research

1. Grouping: Performed via Farthest Point Sampling (FPS).

2. Sampling: Groups points using K nearest neighbors (KNN).

3. Feature Extraction: Introduces the primary innovations:

• Geometric Affine Transformation Module: Replaces PointNet’s T-Net by normalizing
and transforming local features with learnable affine linear transformation.

• Residual Point Blocks: Processes points through a sequence of residual MLP layers.
Each layer consists of batch normalization, an activation function, and residual connec-
tions. These blocks capture complex feature interactions, followed by a max pooling
operation to aggregate features.

PointNeXt, 2022 [57]

PointNeXt revisits PointNet++ and modernizes it with updated training, data augmentation tech-
niques, scaling strategies and minor architectural changes.

Key Enhancements

• Data Augmentation: Includes whole point sampling, jittering, random scaling, color dropping,
and other techniques.

• Optimization: Employs label smoothing, uses AdamW instead of Adam, and adopts cosine
decay for learning rate scheduling instead of step decay.

• Scaling: Incorporates receptive field scaling by adopting a larger radius for neighborhood
queries and model scaling by adding more set abstraction blocks.

The impact of each technique is documented in the paper.

Architectural Changes Compared to the original PointNet++, PointNeXt introduces the following
improvements:

1. An initial MLP layer to preprocess input features.

2. Feature extraction via MLPs and max pooling, replacing PointNet and removing the T-Net
module.

3. Addition of inverted residual MLP modules to mitigate vanishing gradients and improve
network efficiency.

These seemingly simple changes result in a lightweight, high-performance model.

30

3.4. Publicly Available Point Cloud Datasets

3.4 Publicly Available Point Cloud Datasets

There are many publicly available datasets used to evaluate the efficiency of point cloud under-
standing models annotated with ground-truth labels. Below, we describe some of the most widely
used datasets [15]:

Dataset Year Samples Classes Data Type and Source

ModelNet40 2015 12,311 40 Mesh-derived synthetic
objects

ModelNet40-C 2015 185,000 15 Point cloud synthetic
objects

ModelNet10 2015 4,899 10 Mesh-derived synthetic
objects

Sydney Urban Objects 2015 588 14 Real-world point cloud
scans

ShapeNet 2015 51,190 55 Mesh-based synthetic
shapes

ScanNet 2017 12,283 17 RGB-D real-world
scenes

ScanObjectNN 2019 2,902 15 Real-world object point
clouds

Table 3.5: Overview of widely-used point cloud classification datasets

Datasets representing objects as meshes typically sample points uniformly from their surfaces, then
center and scale objects to fit within a unit sphere. Commonly, over 1,000 points per object are
sampled to capture fine detail.

As Table 3.5 shows, these datasets often include more classes and larger point counts than ours,
posing more complex challenges. Strong performance on these benchmarks generally suggests
good generalization potential to our dataset.

To date, no publicly available datasets focus specifically on tetrahedron-tetrahedron interactions.

3.5 Evaluation Metrics

This section presents a comprehensive evaluation framework to assess model performance from
both technical and practical standpoints. For classification tasks, we focus on predictive correct-
ness, fairness across classes, and discriminative ability. For regression, our emphasis is on absolute
deviation and consistency with the target distribution. Based on these goals, we adopt the following
set of metrics.

3.5.1 Classification Metrics

Loss Function

31

Chapter 3. Research

We explore Binary Cross Entropy with Logits as the primary loss for classification. This for-
mulation combines the sigmoid activation and cross-entropy loss into a single, numerically stable
operation, making it especially suitable for binary classification tasks with raw logit outputs.18

LBCE = − (y · log(σ(ŷ)) + (1− y) · log(1− σ(ŷ)))

Where:

• y ∈ {0, 1} is the true label,

• ŷ ∈ R is the raw model output (logit),

• σ(ŷ) = 1
1+e−ŷ

is the sigmoid activation.

Evaluation Metrics Table 6.5 summarizes classification metrics that assess correctness and
discriminative power:

Metric Formula Interpretation

Overall Accuracy
(OA)

OA = TP+TN
TP+TN+FP+FN Fraction of total correct predic-

tions.

Mean Class Accu-
racy (mAcc)

mAcc = 1
C

∑C
i=1

TPi
TPi+FNi

Average per-class recall, address-
ing class imbalance.

Area Under ROC
Curve (AUC)

AUC =
∫ 1
0 TPR(FPR) d(FPR) Overall ability to distinguish

classes across thresholds.

Table 3.6: Classification evaluation metrics and interpretation

Notation for confusion matrix components is in Table 3.5.1:

Symbol Term Definition

TP True Positives Correct positive predictions
TN True Negatives Correct negative predictions
FP False Positives Incorrect positive predictions
FN False Negatives Incorrect negative predictions

TPR (Sensitivity) True Positive Rate TP
TP+FN : Proportion of positives correctly identi-
fied

FPR False Positive Rate FP
FP+TN : Proportion of negatives misclassified

Table 3.7: Confusion matrix notation and definitions

18Unlike separate sigmoid + BCE implementations, BCEWithLogitsLoss prevents floating-point underflow/over-
flow for extreme logit values (e.g., very large positive or negative predictions). This ensures more stable gradient
flows during backpropagation, which improves convergence in practice. Additionally, its design aligns directly with
binary decision tasks, as it maps unbounded inputs to [0, 1] probabilities while penalizing misclassifications based on
their confidence.

32

3.5. Evaluation Metrics

3.5.2 Regression Metrics

Loss Function

We use Root Mean Log Squared Error (RMLSE) as the regression loss, prioritizing relative error
over absolute. This suits intersection volume predictions spanning several magnitudes.

LRMLSE =

√√√√1
n

n∑
i=1

(log(1 + yi)− log(1 + ŷi))2

Where:

• yi , ŷi are true and predicted values,

• log(1 + ·) prevents instability near zero.

Absolute Error Metrics

Absolute errors quantify prediction deviations in original volume units, crucial for practical impact
assessments. They complement relative errors by reflecting true scale differences.

Metric Formula Interpretation

Mean Absolute Error
(MAE)

MAE = 1
N

∑N
i=1 |yi − ŷi | Average absolute deviation in

original units.

Table 3.8: Absolute regression error metrics

Distributional Correctness

To evaluate how well the model predicts intersection volumes across different value ranges, we
introduce Mean Bin Accuracy. This metric complements standard regression error by assessing
the model’s ability to assign predictions to the correct discretized volume bin, thereby capturing
categorical correctness beyond raw numerical proximity.

We discretize the continuous volume range into N bins (e.g., logarithmic or uniform), then compute
accuracy per bin based on whether predicted volumes fall into the same bin as the ground truth.
Formally:

Bin Accuracyi =
#{correct bin matches in i}

#{ground truth samples in bin i} , Mean Bin Accuracy =
1

N

N∑
i=1

Bin Accuracyi

This metric helps reveal distributional biases—e.g., models performing well on high-volume inter-
sections but poorly on sparse or low-overlap cases.

Categorical Agreement

Cohen’s Kappa quantifies agreement between predicted and true volume categories while adjusting
for chance agreement. It reflects the reliability of volume classification beyond accuracy alone. This
serves as a measure of robustness.

33

Chapter 3. Research

Component Formula Description

Cohen’s
Kappa (κ)

κ = po−pe
1−pe Agreement beyond chance expec-

tation.

Observed
Agreement
(po)

po =
1
N

∑C
i=1Oi i Fraction of exact class matches.

Expected
Agreement
(pe)

pe =
∑C
i=1

(∑C

j=1
Oi j

N ·
∑C

j=1
Oj i

N

)
Chance-level agreement from class
marginals.

Table 3.9: Cohen’s Kappa components and formula

Kappa Value Interpretation

1.00 Perfect agreement
0.80–0.99 Almost perfect
0.60–0.79 Substantial
0.40–0.59 Moderate
0.20–0.39 Fair
0.00–0.19 Slight

0.00 No agreement beyond chance
<0.00 Less than random agreement

Table 3.10: Interpretation scale for Cohen’s Kappa

3.5.3 Efficiency Metrics

In addition to accuracy, computational performance is essential, particularly in resource-constrained
or real-time environments.

Metric Units Description and Importance

Latency Milliseconds (ms) End-to-end time per sample. Key for real-
time applications.

Throughput Samples per second
(SPS)

Processing speed for batched workloads.

Model Size Megabytes (MB) Storage footprint, affecting deployability.

Table 3.11: Efficiency metrics for inference performance

Collectively, these metrics form a holistic framework for evaluating models in terms of accuracy,
fairness, robustness, and deployment feasibility—especially within geometric modeling contexts.

3.6 Comparative Analysis

Table 3.6 summarizes the performance of several influential point cloud classification models eval-
uated on two widely-used benchmarks: ModelNet40 and ScanObjectNN. These datasets represent

34

3.6. Comparative Analysis

synthetic and real-world challenges, respectively, providing a balanced view of model effectiveness.

Accuracy vs. Throughput Trade-offs

PointNet [55], the pioneering method for direct point cloud processing, achieves a baseline overall
accuracy (OA) of 89.2% on ModelNet40 and 68.2% on ScanObjectNN, with exceptionally high
throughput (4212 instances/sec). This highlights its efficiency and simplicity but also its limitations
in capturing fine local structures, especially in noisy real-world data like ScanObjectNN.

PointNet++ [52] improves accuracy substantially by incorporating local neighborhood information
through hierarchical grouping, reaching 91.9% OA on ModelNet40 and 77.9% on ScanObjectNN.
However, this comes with a significant throughput drop (1872 instances/sec), reflecting the com-
putational cost of local feature extraction.

More recent pointwise MLP-based architectures, such as PointMLP [56] and PointNeXt [57], push
accuracy further, especially on the challenging ScanObjectNN dataset, achieving up to 88.4% OA.
PointNeXt balances improved accuracy (87.7%) and throughput (2040 instances/sec), whereas
PointMLP prioritizes accuracy at the cost of much lower throughput (191 instances/sec).

It is important to note that throughput heavily depends on the hardware used for testing. Since
reported results come from independent studies, machine-independent throughput comparisons
cannot be reliably provided.

Insights for Model Selection

The choice of model depends on application requirements:

• For scenarios demanding high-speed inference on relatively clean or synthetic data, PointNet
remains a competitive choice.

• When local geometric relationships are critical, PointNet++ and PointNeXt offer a strong
accuracy boost with moderate computational overhead.

• For highest accuracy in real-world, noisy environments, recent MLP-based models like PointMLP
are preferred despite their higher computational cost.

In contexts involving simpler datasets or resource-constrained applications, these trade-offs should
be carefully evaluated, balancing accuracy, inference speed, and hardware availability.

Model Year ModelNet40 (OA %) ScanObjectNN (OA %) Throughput (instances/sec)
PointNet [55] 2017 89.2 68.2 4212.0
PointNet++ [52] 2017 91.9 77.9 1872.0
PointMLP [56] 2022 94.1 85.4 191.0
PointNeXt [57] 2022 93.2 87.7 2040.0

Table 3.12: Comparison of point cloud classification models on ModelNet40 and
ScanObjectNN datasets.

35

Chapter 3. Research

3.7 Related Work

3.7.1 A Machine Learning Framework for Volume Prediction (2019)

In 2019, Umutcan Önal and Zafeirakis Zafeirakopoulos investigated the use of machine learning to
predict the volumes of polytopes, addressing both classification (volume comparison) and regression
(volume estimation) tasks. Their approach involved representing polytopes via vertex coordinates
and applying models such as random forests and neural networks. To accommodate varying
numbers of vertices and dimensionality, they employed autoencoders for feature extraction, enabling
both modular and end-to-end learning pipelines. The dataset comprised 19,000 polytopes.

For training, they used Binary Cross-Entropy loss, a learning rate of 0.001, the Adam optimizer, and
trained over 30 epochs. Models trained on fixed-dimension inputs consistently outperformed those
designed for variable dimensions. Interestingly, joint models that performed both classification and
regression achieved better comparison accuracy but at the cost of slightly lower R2 scores for
regression. Another notable finding was that input normalization degraded performance—contrary
to common machine learning practice.

Their best model achieved a volume comparison accuracy of 0.9631 and an R2 score of 0.9980
for volume estimation. To the best of our knowledge, this is the earliest application of machine
learning to polytope volume prediction.

3.7.2 Polytopes and Machine Learning (2021)

[58]

This study applies supervised learning models—including MLPs, CNNs, and Random Forests—to
predict geometric properties of lattice polytopes using Plücker coordinates as input features. The
Plücker-based representation outperformed vertex-based alternatives, achieving over 90% accuracy
in predicting volumes within an acceptable range, and demonstrating moderate success in reflexivity
classification.19 The experiments encompassed both 2D and 3D polytopes.

However, the work omits several critical implementation details, such as coordinate precision,
volume resolution, or inference latency. Furthermore, the structural and statistical properties of the
problem space are not explored. Consequently, while the study offers a valuable proof of concept,
it lacks the depth and transparency necessary for deployment in downstream or production-grade
applications.

19The authors argue that Plücker coordinates better preserve volumetric information by encoding edge-level rela-
tionships.

36

3.8. Complementary Work: Tetrahedral kDet, Linear Time Collision Detection for Tetrahedral
Meshes

3.8 Complementary Work: Tetrahedral kDet, Linear Time Collision
Detection for Tetrahedral Meshes

From a theoretical standpoint, detecting collisions between two polygonal objects is straightfor-
ward: check every polygon of one object against every polygon of the other [17]. However, in
practice, this brute-force approach is computationally infeasible for most applications. This com-
plexity arises from the theoretical possibility of fitting an infinite number of 2D polygons into a
confined 3D volume, because of that, in theory, there can be an infinite amount of collision checks
necessary for an intersection test. However, such scenarios are largely artificial and uncommon in
practical applications [14, 17]. A challenge in collision detection lies in determining the number
of potentially colliding polygons within a 3D scene. Significant effort has therefore been directed
toward developing acceleration data structures that minimize the number of potentially colliding
polygon pairs to be tested [17].

In 2017, [17] introduced kDet, a parallel linear-time collision detection algorithm for polygonal
meshes designed to run on GPUs. It focuses on scenarios where each polygon interacts only with
a limited number of others in its environment, introducing the concept of k-freeness:

• A polygon p is k-free if fewer than k polygons meet the following criteria:

1. Have a larger minimum enclosing sphere than p.

2. Intersect the volume formed by sweeping a sphere of diameter d/2 around p.

Figure 3.4: 4-free tetrahedron (blue); red area marks the Minkowski-sum1 of said
tetrahedron and a sphere half the diameter of its minimum enclosing sphere; a 4-
free polyhedron intersects at most 3 "larger" polyhedra (determined by the minimum

enclosing sphere) with said Minkowski-sum. Source:[14]

37

Chapter 3. Research

20 Simplifying further, the polygons considered for k-freeness are those that are equal to or larger
than the polygon in question. A set of polygons is considered k-free if every polygon pi ∈ A satisfies
these conditions. The algorithm’s key idea is to check collisions only against nearby polygons that
are “larger.”

Many real-world problems require managing internal structures rather than just surfaces, which
polygons alone cannot adequately represent. To address this, the concept of k-freeness was
expanded to tetrahedral meshes. In 2023, [14] extended kDet to volumetric 3D objects with
tetrahedral meshes. They demonstrated that the algorithm retains its linear runtime property
and proved that for a k-free set of polyhedra, the maximum number of intersections between a
polyhedron p and larger polyhedra pj ∈ P is qk , where q is the minimum number of spheres of
diameter d/2 needed to fully cover each polyhedron.

3.8.1 Algorithm Overview

The kDet algorithm for tetrahedral meshes proceeds as follows:

Algorithm 3.1 kDet Algorithm for Detecting Intersections in Tetrahedral
Meshes

1: Insert all tetrahedra into a hierarchical grid
2: Traverse the grid to collect all potential collision pairs via k-freeness predicate
3: Remove duplicate tetrahedron pairs
4: for all unique tetrahedron pairs (Ti , Tj) do
5: Perform intersection test on (Ti , Tj)
6: if Ti intersects Tj then
7: Add (Ti , Tj) to the intersection list
8: end if
9: end for

10: return List of intersecting tetrahedron pairs

By leveraging the geometric properties of individual objects rather than their configurations (i.e.,
focusing on object size rather than position and orientation), kDet achieves near-linear runtime
and close-to-constant time performance when executed in parallel [17]. This efficiency makes it a
valuable tool for collision detection in 3D environments.

3.8.2 Potential Integration with Machine Learning

While kDet excels at efficiently identifying potentially colliding tetrahedron pairs, its final step relies
on traditional intersection tests. This work proposes augmenting kDet by running intersection tests
on the GPU alongside it. A trained neural network could potentially predict collision outcomes for
all identified pairs simultaneously, taking advantage of parallel computation to improve both speed
and scalability.

20The Minkowski sum of two sets is the collection of all points obtained by adding each point in one set to each
point in the other.

38

3.9. Conclusions, Research Gaps, and Challenges

3.9 Conclusions, Research Gaps, and Challenges

3.9.1 Overview

In computer graphics, geometric algorithm development for tasks such as tetrahedron-tetrahedron
intersection and volume computation often relies on explicit queries tailored to solve specific prob-
lems. While baseline algorithms for these tasks exist, practitioners continually optimize them to
enhance their applicability, robustness, resource efficiency, and performance. This optimization
process demands a deep understanding of the problem, the limitations of existing methods, and
occasionally, the invention of novel approaches—leveraging human expertise to improve algorithmic
efficiency.

However, this approach is inherently challenging, time-intensive, and constrained by human capacity
to devise increasingly efficient queries. In his essay [59], The Bitter Lesson, Rich Sutton highlights
how the most significant advances in intelligent systems have resulted from adopting automated
search methods over handcrafted solutions. Extending this principle to geometric algorithms offers
the opportunity to transition from optimizing explicit queries to discovering them through data-
driven learning processes.

Recent years have witnessed the rise of deep learning, with numerous architectures designed for
3D data. Despite this progress, in our research, limited research has applied these techniques to
traditional geometric algorithms. Using neural networks for tasks such as tetrahedron-tetrahedron
intersection and volume computation could enable a unified model to handle these heterogeneous
computations simultaneously and at scale. As data availability and computational power grow,
these methods are expected to improve, decoupling optimization from direct human expertise.
Human insight would remain critical, but its focus should shift to constraining the search space for
machine learning algorithms, following a predicate-powered learning approach.

This paradigm introduces trade-offs. Machine learning models are inherently data-driven and
cannot guarantee finding the best predictor, potentially introducing errors compared to traditional
geometric algorithms. Minimizing this error is essential. Furthermore, ensuring the robustness,
generability, and reliability of these models requires extensive testing to understand their limitations.

3.9.2 Addressing Research Questions

RQ1 How can a dataset of tetrahedra pairs be generated to effectively train a neural network for
intersection prediction and volume estimation?

A point cloud representation of tetrahedron vertices appears to be a suitable choice for this task
due to it’s simplicity, low storage requirement and sufficiency to represent tetrahedrons. To ensure
model generalization, the dataset must exhibit diversity: various intersection types, tetrahedron
sizes, vertex permutations, tetrahedron permutations, different orientations, and different volume
distributions. Randomization techniques and data augmentation can help enrich the data.

RQ2 Which neural network architectures are most suitable for accurately predicting whether two
tetrahedra intersect and, if so, estimating the intersection volume?

Designing an effective model for this task requires alignment with the underlying geometric and
mathematical structure of the problem. The following constraints and design objectives inform
architectural choices:

• Permutation Invariance: The model must be invariant to the ordering of vertices within
each tetrahedron and to the ordering of the two tetrahedra themselves. This ensures that

39

Chapter 3. Research

predictions are consistent under arbitrary input permutations. Symmetric aggregation func-
tions—such as max pooling or summation—are commonly used to enforce this, as seen in
architectures like PointNet and DeepSets.

• Transformation Invariance: The model’s output should remain stable under simultaneous
transformations of both tetrahedra, including scaling, rotation, reflection, and translation.
Shearing is also relevant, as affine transformations modify volume according to the deter-
minant of the transformation matrix.21 Geometric modules such as the Geometric Affine
Module (GAM) from PointMLP or T-Net from PointNet can be incorporated to canonicalize
inputs and enhance invariance.

• Volume Constraint: The predicted intersection volume must lie within a geometrically valid
range. For tetrahedra within the unit cube, the theoretical upper bound is 16 . However,
achieving this bound is rare in practical scenarios. To enforce this constraint, outputs can
be bounded using a scaled sigmoid function or regularized via loss penalties for out-of-range
predictions. Volume normalization via input rescaling may also aid generalization across
varying data distributions.

• Scalability and Efficiency: The architecture must support efficient training and inference,
particularly for large-scale datasets or real-time applications. Residual connections and hi-
erarchical encoders can improve gradient flow and representation capacity. Starting from
a minimal architecture and progressively adding complexity enables controlled ablation and
performance tracking.

These design principles ensure that the model not only achieves high predictive performance but
also respects the problem’s intrinsic geometric structure and invariants.

RQ3 How does the proposed model compare to existing state-of-the-art methods for tetrahedron-
tetrahedron intersection detection and volume computation in terms of accuracy, speed, and scal-
ability?

This question is addressed in the following chapters through empirical benchmarks and comparative
analysis.

21In 3D, an affine transformation can stretch, rotate, reflect, shear, or translate a shape. The determinant of its
matrix quantifies how volume is scaled.

40

Chapter 4

Development

4.1 Data Generator

As discussed in Section 3.2.1, the raw minimal representation of our problem consists of a point
cloud containing the vertices of two tetrahedra, along with two associated labels describing their
spatial interaction. The dataset is structured as follows:

4.1.1 Dataset Structure

Component Description Details
Tetrahedrons Each sample represents a pair

of tetrahedra
Each tetrahedron is defined by 4 ver-
tices, each with 3D coordinates

Features 24 total input features (12 per
tetrahedron)

Column naming: Tt_Vv_α, where t ∈
{1, 2}, v ∈ {1, 2, 3, 4}, α ∈ {x, y , z}

Coordinates Normalized to [0, 1]3 Values are generated independently
using an i.i.d. uniform distribution

HasIntersection Binary classification output 0 = no intersection, 1 = intersection
(including touching)

IntersectionVolume Regression target output Non-negative scalar: 0 if touching,
> 0 if overlap exists

Input Space Feature space R24, corresponding to 24 normalized
3D coordinates

Output Space Label space HasIntersection ∈ {0, 1}; Intersec-
tionVolume ∈ R≥0

Table 4.1: Structure of each dataset sample, including input and output spaces.

The objective of the data generator is to explore the configuration space of tetrahedron pairs. It
must independently cover both intersecting and non-intersecting cases across diverse geometric
configurations.

To that end, the generator is designed around three core pillars as we discuss in the next sections:

• Quality: Ensure geometric validity through checks such as minimum volume and normalized
coordinates.

• Diversity: Sample broadly across orientations, sizes, translations, and intersection types.

• Efficiency: Enable large-scale generation with minimal computational overhead.

41

Chapter 4. Development

4.1.2 Quality

A trustworthy dataset begins with high-fidelity geometric representation and mathematically precise
labels. We address two primary sources of potential error: coordinate representation and label
construction.

Coordinate Precision

All vertex positions are sampled uniformly from the unit cube [0, 1]3, using C++’s native double
type (64-bit floating-point with ∼16 decimal digits of precision). This provides approximately 1016

distinct values per coordinate within [0, 1].

Precision Metric Value
Decimal digits of precision ∼ 16
Distinct values per coordinate ∼ 1016
Total representable configurations ≫ 3× 10360

Table 4.2: Coordinate Precision Metrics

1

This enormous configuration space supports dense sampling across spatial relationships while main-
taining numerical stability in near-degenerate edge cases, enabling accurate capture of phenomena
like grazing contacts and near-coplanar face interactions.

The Challenge of Floating-Point Arithmetic

Standard floating-point arithmetic introduces rounding errors and limited precision, critical in nearly
degenerate geometric cases. These inaccuracies can cause incorrect geometric predicates, mis-
classifying intersections or producing erroneous volumes 3.1.3.

CGAL Solution

The Computational Geometry Algorithms Library (CGAL) provides high-precision geometric com-
putation with robust algorithms for intersection detection and volume computation. Its key feature
is exact arithmetic, guaranteeing correctness even for constructive geometry computations.

CGAL Compo-
nent

Purpose Characteristics

Kernels Define geometric primi-
tive representation

Double-based (fast) vs. Exact
(EPEC - mathematically correct)

Predicates Boolean geometric
queries

Exact decisions on spatial relation-
ships, minimizing floating-point er-
rors

Primitives Fundamental geometric
shapes

Low-level building blocks (points,
lines, tetrahedrons)

Table 4.3: CGAL Components Overview

Tetrahedron Construction

Each tetrahedron is constructed by independently sampling four points from the unit cube [0, 1]3,
using CGAL’s Tetrahedron_3 primitive. The following validation criteria are applied to ensure
geometric soundness:

1∼ 3× 10360 vastly exceeds the estimated 1080 particles in the observable universe.

42

4.1. Data Generator

Validation Step Method Purpose

Degeneracy Check is_degenerate() predicate Ensures that tetrahedra have
non-zero volume (no coplanar or
collinear vertices)

Efficiency Priority No minimum volume enforced Maximizes sample generation
rate by not filtering small, valid
tetrahedra in a raw phase gen-
eration.

Validity Threshold Volume(T) > ϵmachine Prevents floating-point collapse;
ϵ ≈ 10−15

Table 4.4: Tetrahedron Validation Criteria

Labels Generation

Each tetrahedron pair is labeled using a two-part exact-computation pipeline:

1. Binary Intersection Flag: Computed using CGAL::do_intersect(T1, T2), which identi-
fies any overlapping region (volume, face, edge, or vertex contact).

2. Intersection Volume: Computed using the following exact geometric pipeline:

• Construct symbolic intersection via Nef_polyhedron_3.

• Convert the result to a triangulated surface mesh.

• Compute exact volume using CGAL::Polygon_mesh_processing::volume.

• Cast the final result to double only at the final step for storage.

The ground truth labels are generated using exact predicates and robust CGAL primitives:

• Vertex Coordinates: All vertices are sampled independently from a uniform distribution
without approximation.

• Intersection Status: Determined using exact geometry predicates, with no floating-point
error propagation.

• Intersection Volume: Computed entirely with exact arithmetic, with the only loss of pre-
cision occurring when converting the final volume to float. This truncation introduces a
maximum error of ∼ 10−15, well below thresholds relevant to simulation or graphics appli-
cations.

As a result, the dataset can be considered numerically exact, with negligible precision loss restricted
to the final output representation.

Validation and Inspection

4.1.3 Diversity and Generation Algorithms

Naïve sampling of tetrahedra pairs uniformly in [0, 1]3 often produces trivial or rare intersection con-
figurations. To ensure diverse geometric relationships, we construct samples across five canonical
interaction modes. Each mode leverages targeted heuristics for sample generation and is rigorously
verified using CGAL predicates, summarized in Table 4.6.

43

Chapter 4. Development

Validation Type Method Purpose
Automated Filters Logical consistency checks Eliminate invalid samples (e.g.,

positive volume with zero inter-
section flag)

Manual Inspection Visual review of 30-50 random
samples

Verify geometric label correct-
ness and absence of degener-
ate tetrahedra

Table 4.5: Validation and Inspection Methods

Interaction Mode Generation Strategy Verification Method
No Intersection Generate random pairs until

disjoint
CGAL::do_intersect returns
false

Point Contact Place T2 vertex on T1 face,
sample others away

Verify single-point intersection via
intersection size = 1 vertex

Edge Intersection Align edges from T1 and T2,
offset remainder

Confirm edge-only contact
through degenerate volume and
shared edge segment

Face Intersection Place T2 face coplanar with T1
face

Validate planar face contact using
orientation predicates

Volume Intersection Stratified sampling via inverse
binning: subdivide [a, b] into n
bins and generate N samples
with target volumes uniformly
distributed across bins

Use Nef_polyhedron_3 for pre-
cise boolean intersection and ver-
ify resulting volume falls into the
target bin. Most intersections
yield small volumes without con-
straint

Table 4.6: Canonical Interaction Modes and Validation Methods

The following subsections describe the generation algorithms for each interaction mode, demon-
strating how diversity is systematically enforced through geometric constraints and targeted sam-
pling.

No Intersection

Algorithm 4.1 Non-Intersecting Tetrahedra
1: repeat
2: Generate random tetrahedra T1, T2
3: Check disjointness with CGAL::do_intersect
4: until No overlap detected
5: return (T1, T2)

Sampling two tetrahedra uniformly in a unit cube typically yields disjoint pairs due to spatial sparsity,
making this process efficient. Figure 4.1 shows examples.

44

4.1. Data Generator

Figure 4.1: Examples of tetrahedra pairs with no intersection.

Point Contact

The point contact case represents the most geometrically constrained intersection type, where
two tetrahedra touch at exactly one vertex.

Algorithm 4.2 Tetrahedra with Vertex Contact
1: Generate T1 arbitrarily
2: Place one vertex of T2 on a face of T1
3: Compute face normal n⃗ and ensure outward orientation: if n⃗ · (apex− face_vertex) > 0, then
n⃗ ← −n⃗

4: Construct local spherical coordinate system with n⃗ as z-axis
5: Sample remaining vertices using spherical coordinates (θ, φ) ∈ [−π/2 + ϵ, π/2− ϵ]
6: For each vertex: calculate rmax for direction, sample r ∈ [ϵ, rmax]
7: Transform to global coordinates and validate vertices lie outside T1
8: Verify exactly one-point intersection

The key insight is using a local spherical coordinate system oriented by the face normal to ensure
vertices are placed in the correct hemisphere, preventing volumetric overlap while maintaining
contact. The algorithm employs timeout mechanisms and epsilon values for numerical stability
and constraint satisfaction (Figure 4.2).

45

Chapter 4. Development

Figure 4.2: Examples of tetrahedra pairs with single-point contact intersections.

Segment Intersection

Algorithm 4.3 Tetrahedra with Edge Contact
1: Generate T1 arbitrarily
2: Select a triangular face of T1 and place first vertex of T2 on this face
3: Generate second vertex of T2 by projecting a random point onto the same face plane
4: Compute face normal n⃗ and ensure outward orientation
5: Construct local spherical coordinate system with n⃗ as z-axis
6: Sample remaining two vertices using spherical coordinates (θ, φ) ∈ [−π/2 + ϵ, π/2− ϵ]
7: For each vertex: calculate rmax for direction, sample r ∈ [ϵ, rmax]
8: Transform to global coordinates and validate vertices lie outside T1
9: Verify intersection restricted to shared edge/segment

The edge intersection algorithm creates a shared line segment between two tetrahedra by placing
two vertices of T2 on the same face plane of T1. This ensures the tetrahedra intersect along a
common edge rather than at a single point. The remaining vertices are positioned using the same
spherical coordinate approach as point contact, but with two vertices constrained to the face plane
to guarantee linear intersection geometry.

46

4.1. Data Generator

Figure 4.3: Examples of tetrahedra pairs intersecting along a shared edge, showing
various orientations and contact configurations.

Polygon Intersection

Algorithm 4.4 Tetrahedra with Face Contact
1: Generate T1 arbitrarily
2: Select a triangular face of T1 and define its plane
3: Project three random points onto this face plane to form T2’s triangular face
4: Calculate centroid of the three projected points
5: Compute face normal n⃗ and ensure outward orientation
6: Construct local spherical coordinate system with n⃗ as z-axis
7: Sample fourth vertex using spherical coordinates (θ, φ) ∈ [−π/2 + ϵ, π/2− ϵ]
8: Calculate rmax from centroid, sample r ∈ [ϵ, rmax]
9: Transform to global coordinates and validate vertex lies outside T1

10: Verify face contact

The polygon intersection algorithm creates a shared triangular face between two tetrahedra by
placing three vertices of T2 coplanar with a selected face of T1. The fourth vertex is positioned
using spherical coordinates centered at the face centroid, ensuring it lies in the hemisphere opposite
to T1 to prevent volumetric overlap while maintaining face contact.

47

Chapter 4. Development

Figure 4.4: Examples of tetrahedra intersecting precisely over a shared triangular
face, demonstrating various orientations and contact configurations.

Polyhedron Intersection

Algorithm 4.5 Sampling tetrahedra with volume intersection via rejection
sampling.

1: repeat
2: Generate random tetrahedra T1, T2
3: Check intersection using CGAL::do_intersect
4: until Volume overlap detected
5: return (T1, T2)

Due to the extremely low probability of non-volumetric intersections (e.g., face-face, edge-edge,
or vertex-only contact) when uniformly sampling tetrahedra in [0, 1]3, a simple rejection sampling
approach suffices. The algorithm keeps generating pairs until an intersection is detected—almost
always corresponding to true volumetric overlap, rather than degenerate contact.

This efficiency is primarily due to the convex nature of tetrahedra: any detected intersection
between two randomly sampled tetrahedra nearly always involves overlapping volumes.

48

4.1. Data Generator

Figure 4.5: Examples of tetrahedra pairs exhibiting volumetric overlap.

This structured framework ensures systematic coverage of all fundamental geometric intersection
types, balancing mathematical rigor and computational practicality.

4.1.4 Efficiency

To enable scalable generation of large geometric datasets, the system is optimized for computa-
tional performance:

• C++ Core: Implemented entirely in C++ for fast execution and efficient memory usage.2

• Parallelism: The modular pipeline supports multithreading via std::thread, enabling con-
current sampling, validation, and labeling with minimal synchronization overhead.

• CMake Integration: Structured as a CMake project for portability and straightforward
integration with CGAL and other C++ libraries.

4.1.5 System Architecture

The dataset generation system follows the architecture illustrated in Figure A.1 (see Appendix A).

The ApplicationRunner manages execution flow and system initialization, while the Configuration
module centralizes all generation parameters, including dataset size, volume bounds, and intersec-
tion distributions. The DatasetGenerator serves as the coordination engine, orchestrating sample
generation and applying rejection sampling to maintain uniform intersection volume distributions.

Core geometric processing is handled by the TetrahedronFactory, which creates random tetrahe-
dron pairs for specific intersection types, and GeometryUtils, which performs intersection detection
and volume calculations. Output operations are managed by the BaseWriter for multi-format se-
rialization and the ProgressTracker for runtime monitoring during large-scale generation runs.

2C++ enables low-overhead, high-performance computation ideal for geometry processing.

49

Chapter 4. Development

This architecture emphasizes component isolation and configurability, forming a robust founda-
tion for generating large-scale, statistically controlled datasets used in the experimental validation
described in the subsequent sections.

4.2 ML Pipeline

The machine learning pipeline transforms raw tetrahedron data into predictive models for geo-
metric intersection analysis through a structured three-stage workflow: data processing, model
training, and evaluation. This iterative process continues until achieving a properly tuned model,
as illustrated in Figure 4.6.

Figure 4.6: Complete machine learning pipeline workflow showing the progression
from raw tetrahedron data generation through model training, evaluation, and de-

ployment.

4.2.1 Pipeline Architecture

The pipeline consists of seven key components that handle the complete lifecycle from raw geo-
metric data to deployed models:

CPipelineOrchestrator serves as the central controller, coordinating all pipeline stages through
YAML configuration files. It manages data preprocessing, model construction, training, and eval-
uation with configurable stage skipping and supports both standard training and fine-tuning work-
flows.

CDataProcessor handles geometric data preprocessing including stratified sampling based on in-
tersection volumes, data augmentation through point permutations and tetrahedron swapping, and
geometric transformations for canonical alignment and normalization.

GeometryUtils provides core geometric operations for tetrahedron manipulation, implementing
spatial sorting strategies (Morton codes, difficulty-based curriculum learning), coordinate transfor-
mations, and vectorized operations for efficient large-scale processing.

CArchitectureManager manages neural network construction, dynamically selecting between spe-
cialized architectures (TetrahedronPairNet, MLP, DeepSet, TPNet) and implementing permutation-
invariant processing blocks designed for geometric learning tasks.

50

4.2. ML Pipeline

CModelTrainer executes training with geometric-aware loss functions, curriculum learning inte-
gration, and multi-task optimization strategies. It features GPU-accelerated training loops with
real-time monitoring and automated visualization generation.

CEvaluator performs comprehensive validation measuring both geometric consistency (permuta-
tion invariance) and predictive performance (classification and regression metrics) across different
intersection types and hardware platforms.

CArtifactManager manages experimental reproducibility through timestamped artifact storage,
model optimization for deployment (TorchScript conversion, C++ export), and structured experi-
ment tracking with configuration versioning.

4.2.2 Core Design Principles

This modular architecture, built around geometric awareness, reproducibility, and comprehensive
evaluation, provides the foundation for the extensive experimental validation detailed in the follow-
ing chapter. The pipeline’s flexible design enables rapid iteration through different architectural
approaches, data augmentation strategies, and training methodologies—essential capabilities for
navigating the complex optimization landscape of geometric learning problems.

What follows is a curated set of the most instructive experiments. This isn’t an exhaustive logbook,
it’s a highlight reel. Each section focuses on a specific dimension of model behavior that revealed
useful patterns or helped us avoid dead ends. These insights helped shape both the final model
and the thinking behind it.

51

Chapter 5

Experiments and Estimations

AI/ML engineering isn’t about uncovering perfect answers—it’s about building things that actually
work. It’s closer to bridge-building than to math proofs: messy, iterative, and grounded in real-
world constraints. There are no universal rules or guaranteed recipes—just tools, trade-offs, and
trial-and-error. As Ilya Sutskever aptly said, “The geometric mean of physics and biology is deep
learning.”1 Throughout this project, we ran a large number of experiments. Most didn’t lead to
breakthroughs. Many weren’t even formally recorded. But all of them, failures included, played
a critical role in developing our design intuition, trimming the configuration space, and steadily
improving model performance.

What follows is a curated set of the most instructive experiments. This isn’t an exhaustive logbook,
it’s a highlight reel. Each section focuses on a specific dimension of model behavior that revealed
useful patterns or helped us avoid dead ends. These insights helped shape both the final model
and the thinking behind it.

5.1 Capacity

Note: The experiments in this section were conducted outside the main ML pipeline described in
Section 4.2, using a prototyping setup in Google Colab. The objective was rapid iteration, not
production-grade performance. All experiments were implemented in TensorFlow within a single
Colab notebook. Results were stored in Google Drive without version control, limiting traceability.
The data distribution used here differs from the final pipeline’s regime, but these early-stage tests
were valuable for identifying general capacity trends and informing architectural design choices.

In neural network design, capacity refers to a model’s ability to approximate complex functions. It
is governed by the number of trainable parameters, architectural depth and width, and activation
dynamics [44]. While higher capacity increases representational power, it also raises the risk of
overfitting—especially when the training data fails to adequately represent the input space.

These experiments explored how varying model capacity affects learning and generalization. The
training dataset contained 1 million examples, with an even 50/50 split between intersecting and
non-intersecting tetrahedron pairs. Two disjoint datasets, each with 1 million samples, were used
for validation and testing. Performance metrics reported below refer exclusively to the test set.

To reduce variance and improve generalization, the dataset was made large enough to approximate
the true input distribution empirically. This leverages the Law of Large Numbers,2 helping to reveal
whether performance limitations stem from underfitting or architectural bottlenecks.

1Sutskever, co-founder of OpenAI, alludes here to deep learning being equal parts grounded theory and empirical
messiness.

2The Law of Large Numbers ensures that as sample size increases, the empirical distribution of data converges
to the underlying true distribution—reducing variance and improving generalization.

53

Chapter 5. Experiments and Estimations

This section investigates how capacity influences binary classification performance in a Multi-Layer
Perceptron (MLP), using Area Under the ROC Curve (AUC) as the performance metric. The
primary goal is to identify a configuration that achieves a favorable trade-off between representa-
tional power and computational efficiency, and that can later serve as a foundation for multitask
learning—particularly when extending to regression tasks such as intersection volume estimation.

Parameter Value

Data distribution 50% no intersection, 50% polyhedron intersection
Training samples 1,000,000
Validation samples 1,000,000
Test samples 1,000,000
Epochs 20
Batch size 32
Learning rate 0.001
Optimizer Adam
Loss function Binary Cross-Entropy
Activation ReLU

Table 5.1: Fixed experimental settings

Figure 5.1: AUC vs. Number of Parameters

The architectural search space varied both in depth (number of hidden layers) and width (neurons
per layer). Depth was limited to 1–3 hidden layers, and widths ranged from 8 to 2048 neurons.
Several common structural heuristics were applied to define multilayer configurations.

54

5.1. Capacity

Factor Values

Network depth (hidden layers) 1, 2, 3
Layer width (neurons/layer) 8 to 2048
Heuristics See Table ??

Table 5.2: Architectural configurations explored

Heuristic Example Configuration

Constant size [64, 64], [128, 128, 128]
Progressive doubling [32, 64], [64, 128]
Progressive halving [64, 32], [128, 64, 32]
Mirrored contraction-expansion [64, 32, 64], [128, 64, 128]

Table 5.3: Layer-sizing heuristics used in the study

5.1.1 Results

The summary of key findings is shown in Table ??, while detailed trends are plotted in Figure 5.1.

Observation Insights

Performance improves from 1
to 2 layers

A second hidden layer significantly boosts AUC by en-
abling more expressive representations.

Minimal gains from 2 to 3 lay-
ers

Adding a third layer yields only marginal improvement,
suggesting diminishing returns.

Wider layers help more at low
capacity

For shallow models, increasing width improves perfor-
mance more than adding depth.

Progressive halving performs
best

This layout consistently produces the best AUC across
comparable sizes.

Progressive doubling per-
forms worst

Compresses early features too quickly, likely harming
early-stage expressiveness.

Constant and mirrored heuris-
tics are comparable

Both show stable performance under size-matched
conditions.

Optimal parameter range is
19k–36k

Balances accuracy, inference cost, and memory foot-
print effectively.

Table 5.4: Summary of findings on model capacity

These results suggest that architectures with around 19,000–36,000 parameters and two hidden
layers strike the best trade-off between performance and efficiency. While larger models (e.g.,
100k+ parameters) may offer slightly higher AUCs, the marginal gains rarely justify the increased
computational burden.

From a practical standpoint, despite the limited generability due to training and testing on just
two dataset generation strategies—the results demonstrate that with 1 million training samples, it
is possible to reach a discriminatory performance near 97% AUC. This indicates that even simple
feedforward networks can achieve high discriminatory power over geometrically complex inputs,
provided the input representation and data volume are adequate.

55

Chapter 5. Experiments and Estimations

Note: Unless stated otherwise, from this point on all experiments were conducted on a Linux
system (Ubuntu 20.04, kernel 5.15) with an Intel i7-12700H CPU (2.7 GHz), 8 logical cores,
7.5 GB RAM, and an NVIDIA GeForce MX330 GPU (2 GB VRAM, CUDA 12.1). The ML pipeline
described in Section 4.2 was implemented in Python 3.8 using PyTorch 2.3.

Results are available at https://github.com/ErendiroPedro/tetrahedron_pair_ML; each ex-
periment is fully traceable with version-controlled configurations. Note that due to random weight
initialization, identical pipeline configurations may yield slightly different results. However, repeated
runs produce consistent average performance.

5.2 Data Types Distributions

To understand how different data generation methods affect model performance and generalization,
we ran a series of controlled experiments. Building on the capacity analysis in Section 5.1, which
indicated an optimal model size around 20K–36K parameters, we selected a Multi-Layer Perceptron
(MLP) with three hidden layers of 128 neurons each ([128, 128, 128]), totaling approximately 36K
parameters.

The objective here is to evaluate how the composition of training data influences generalization,
particularly across varying intersection types. Each experiment utilizes a training dataset with a
distinct distribution of intersection categories (3.2.2), while keeping the training and validation
sizes fixed at 100,000 samples each. This setup ensures that any performance differences stem
from the nature of the data distribution itself rather than the dataset size. The experimental
parameters remain consistent and are listed in Table ??.

Parameter Value

Model & Architecture
Model Type Multi-Layer Perceptron (MLP)
Topology 3 hidden layers, 128 neurons each
Total Parameters ∼36,000
Activation Function ReLU

Data & Samples
Training Samples 100,000 (composition varies per experiment)
Validation Samples 100,000
Test Samples 5 distinct sets of 100,000 samples each

Training Parameters
Epochs 20
Batch Size 32
Optimizer AdamW
Learning Rate 0.001
Loss Function Binary Cross-Entropy With Logits

Table 5.5: Fixed experimental parameters for evaluating data generation strategies.

In the paper [57], similar hyperparameter settings were recommended.

5.2.1 Results
Each training distribution is represented as a five-element tuple, denoting the percentage of samples from: (No
Intersection, Point Intersection, Segment Intersection, Polygon Intersection, Polyhedron Intersection). The trained
models were then evaluated across five corresponding test sets. Performance results are summarized in Table ??.

56

https://github.com/ErendiroPedro/tetrahedron_pair_ML

5.2. Data Types Distributions

Training Distribution No Int. Point Int. Segment Int. Polygon Int. Polyhedron Int. Mean Accuracy

Initial Baseline Experiments
(50,50,0,0,0) 0.9706 0.9789 0.9370 0.3542 0.0359 0.6553
(50,0,50,0,0) 0.9699 0.9739 0.9777 0.4219 0.0762 0.6839
(50,0,0,50,0) 0.9452 0.8975 0.8985 0.8730 0.3367 0.7902
(50,0,0,0,50) 0.9811 0.0760 0.1880 0.2728 0.8688 0.4773

Hypothesis 1: Balanced mix improves overall accuracy
(50,10,15,20,5) 0.9571 0.9403 0.9437 0.7964 0.6591 0.8593
Result: +6.9% vs baseline; Polygon/Polyhedron remain weakest

Hypothesis 2: Increase complex intersection data
(50,5,7,22,16) 0.9326 0.9220 0.9298 0.8262 0.8494 0.8920
Result: +3.8% vs H1; Trade-off between simple and complex types

Hypothesis 3: Further increase complex weighting
(50,4,5,23,18) 0.9384 0.9198 0.9191 0.8314 0.7880 0.8793
Result: -1.3% vs H2; Diminishing returns observed

Hypothesis 4: Optimized distribution
(50,5,7,20,18) 0.8912 0.9591 0.9630 0.8907 0.9012 0.9210
Result: +2.9% vs H2; Achieved peak performance

Table 5.6: Model accuracy on five test sets across training data distributions showing
iterative hypothesis testing and refinement.

Intersection Type Best Baseline Hypothesis 2 Hypothesis 4

No Intersection 0.9706 0.9326 0.8912
Point Intersection 0.9789 0.9220 0.9591
Segment Intersection 0.9777 0.9298 0.9630
Polygon Intersection 0.8730 0.8262 0.8907
Polyhedron Intersection 0.8688 0.8494 0.9012

Mean Accuracy 0.7902 0.8920 0.9210

Table 5.7: Performance comparison across key experimental configurations.

57

Chapter 5. Experiments and Estimations

This iterative search highlights a clear trajectory toward improved model generalization. The final distribution,
(50,5,7,20,18), achieved the highest mean accuracy over the five datasets of 0.9210, while maintaining a minimum
per-category accuracy above 0.89. This indicates balanced learning across all intersection types.

Remarkably, the model trained on this mixed distribution often outperformed models trained exclusively on individual
categories, achieving better polygon and polyhedron accuracy than those trained on 50% pure data from those types.
This suggests the model learns more generalizable geometric features rather than overfitting to category-specific
patterns.

Based on this evidence, the (50,5,7,20,18) training distribution will serve as the default in all subsequent experi-
ments3.

With the classification tasks addressed, we now turn our attention to the regression problem.

5.3 Volume Sampling Strategy
For geometric intuition, consider that the volume of a unitary tetrahedron—one whose vertices define a maximal-
volume configuration inside the unit cube—is 1

6
≈ 0.1667, or roughly 17% of the cube’s volume. This serves as

a theoretical upper bound for intersection volume. Such configurations are extremely rare in practice, requiring
near-perfect overlap of the two tetrahedra. As a geometric reference, a unit cube can accommodate exactly six
non-overlapping unitary tetrahedra.

In contrast, the expected volume of a randomly sampled tetrahedron inside the unit cube is approximately 0.0138
[54], or about 1.4% of the cube’s volume. When two such tetrahedra intersect, their intersection volume is typically
much smaller—since both large volume and precise spatial alignment must occur simultaneously. Empirical results
show that intersection volumes greater than 2 · 10−2 are exceedingly rare and usually require deliberate sampling.
On the other end, volumes smaller than 5 · 10−5 are underrepresented due to sampling difficulties at fine spatial
resolution.

This volume range has direct implications for the regression task. Very small intersections become indistinguishable
to the model if not properly represented, effectively limiting the minimum volume the model can learn to resolve.
Thus, this range sets the resolution floor for the regression task.

To ensure numerical stability and effective learning, we constrain all intersection volumes to lie within [10−7, 10−2].
The lower bound of 10−7 is selected to remain above the numerical precision threshold of float32. Any values
outside this range are clipped or scaled.

This raises a natural question: How can we ensure that the model generalizes well to larger volumes, despite their
statistical rarity in the training data?

The key lies in the geometric concept of similarity. Just as all triangles remain similar under uniform scaling,4

tetrahedra also preserve their shape under isotropic transformations.5 As long as shape and spatial relationships are
preserved, the model can generalize across different volume scales—even for rarely seen large-volume cases—because
their relative configurations resemble those seen during training.

To train the regression head, we need to sample intersection volumes across a wide range. However, a linearly uniform
sampling strategy is problematic: it disproportionately favors high-volume intersections and severely under-samples
the low-volume regime. This occurs because the interval [10−7, 10−2] spans five orders of magnitude, and linear
sampling distributes samples uniformly in absolute terms—not on a logarithmic scale. As a result, most sampled
volumes cluster near the upper bound (around 10−2), while the lower bound (around 10−7) is sparsely populated.

This imbalance introduces two issues. First, the model is underexposed to small-volume cases, which are both more
common in real-world data and more sensitive to small perturbations. Second, learning accurate regression targets
in this low-volume region becomes numerically harder due to the limited dynamic range of float32, which reduces
precision at smaller scales. Without adequate data coverage in this range, the model struggles to generalize and
maintain stability near the lower limit.

3Alternative ballparked configuration, such as (43,3,5,22,27), also yielded strong results (minimum accuracy 0.83,
overall 0.89) and merit future exploration.

4Two triangles are similar if their corresponding angles are equal and their sides are proportional—this holds even
when one is a scaled version of the other.

5A tetrahedron remains similar to itself under any uniform scaling operation (e.g., doubling the distance between
all vertices), meaning its relative geometry is unchanged.

58

5.3. Volume Sampling Strategy

To mitigate this, we adopt a log-uniform6 sampling strategy. Instead of dividing the range into linearly spaced
bins, we partition the logarithmic volume scale into equal-width intervals. This ensures each order of magnitude is
uniformly sampled, balancing representation across small and large volumes. However, additional techniques—such
as targeted augmentation—may still be required to ensure full coverage, especially near the extremes.

To implement log-uniform sampling, we discretize the log10-transformed volume range into 100 bins. Each bin
spans equal width in log space, ensuring balanced exposure across all orders of magnitude. The choice of 100
bins provides a high-resolution approximation of the continuous log-uniform distribution while keeping computational
overhead manageable; this value can be treated as a tunable hyperparameter depending on the desired granularity. In
instances where the raw data is too sparse to populate all bins according to this scheme, we apply targeted geometric
augmentations to generate new, valid samples, thereby enforcing the desired log-uniform distribution across the entire
volume range.

5.3.1 Algorithmic Implementation
To formalize our sampling approach, we define two distinct strategies. The first is a baseline Linear Uniform
sampler, which serves to highlight the data imbalance issue. The second is our proposed Log-Uniform sampler, which
incorporates a multi-tiered augmentation system to guarantee full data coverage across all orders of magnitude.

Linear Uniform Sampling Strategy. Algorithm 5.1 describes the process for sampling uniformly in linear space. This
method creates bins of equal absolute width (e.g., [0, 0.001], [0.001, 0.002], . . .) and fills them to a target count,
oversampling from neighboring bins if any bin remains under-populated.

Algorithm 5.1 Linear Uniform Volume Sampling

1: procedure UniformVolumeSample(source, Vrange , nbins , Ntrain, Nval)
2: ▷ Initialize with linear-space parameters
3: Vmin, Vmax ← Vrange
4: bin_edges ← linspace(Vmin, Vmax , nbins + 1)
5:

6: ▷ Phase 1: Setup and Initial Collection
7: Calculate target counts (Ttrain,i , Tval,i) for each bin i .
8: Initialize empty lists: Strain[i] and Sval [i] for each bin i = 1 . . . nbins .
9: Collect all available real samples from source into their respective linear bins, up to the

target counts.
10:

11: ▷ Phase 2: Handle Unfilled Bins with Oversampling
12: for i = 1 . . . nbins do
13: if bin i is not full then
14: Nneeded ← calculate needed samples for bin i .
15: Ssource ← collect samples from adjacent bins (±1,±2, . . .).
16: if Ssource is insufficient then
17: Ssource ← collect samples from all other populated bins.
18: end if
19: Oversample Nneeded items from Ssource and add them to bin i .
20: end if
21: end for
22:

23: ▷ Phase 3: Finalize and Write Output
24: Flatten, normalize, and write final samples to output files.
25: return final files and counts.
26: end procedure

6Log-uniform sampling selects values such that each step is a constant multiplicative factor. For example, this
ensures the number of samples between 10−4 and 10−3 is the same as between 10−3 and 10−2, ensuring all orders
of magnitude are equally represented.

59

Chapter 5. Experiments and Estimations

Figure 5.2: Linear uniform sampling strategy results. The figure compares the same
data visualized in linear and logarithmic scales. The distribution shows oversampling
toward high-volume regions, leading to imbalanced coverage across the volume spec-

trum.

Log-Uniform Sampling Strategy. Algorithm 5.2 details our primary strategy. It operates in log-space to ensure
each order of magnitude receives equal representation. When real data is insufficient to populate a bin, it activates
a cascade of augmentation techniques (Algorithm ??), prioritizing geometrically similar samples before creating new
ones.

60

5.3. Volume Sampling Strategy

Algorithm 5.2 Log-Uniform Volume Sampling with Geometric Augmentation

1: procedure LogUniformVolumeSample(source, Vrange , nbins , Ntrain, Nval)
2: ▷ Initialize with log-space parameters
3: logmin ← log10(Vrange [0]); logmax ← log10(Vrange [1])
4: bin_edges ← logspace(logmin, logmax , nbins + 1)
5:

6: ▷ Phase 1: Exhaustive Collection of Real Samples
7: Calculate target counts (Ttrain,i , Tval,i) for each bin i .
8: Initialize empty lists: Strain[i] and Sval [i] for each bin i = 1 . . . nbins .
9: Collect all available real samples from source into their respective log-bins, up to the target

counts.
10:

11: ▷ Phase 2: Intelligent Geometric Augmentation
12: for i = 1 . . . nbins do
13: if bin i is not full then
14: Nneeded ← calculate needed samples for bin i .
15: Asamples ← empty list for augmented samples.
16:

17: // Strategy 1: Augment from within the bin
18: Add GenerateGeometricVariants(Strain[i] ∪ Sval [i], Nneeded) to Asamples .
19:

20: // Strategy 2: Borrow from adjacent bins
21: if |Asamples | < Nneeded then
22: Add BorrowFromAdjacentBins(i , S, Nneeded) to Asamples .
23: end if
24:

25: // Strategy 3: Handle empty bins by oversampling
26: if bin i was empty and |Asamples | < Nneeded then
27: Add OversampleFromNearestBin(i , S, Nneeded) to Asamples .
28: end if
29:

30: Add samples from Asamples to Strain[i] and Sval [i] to meet targets.
31: end if
32: end for
33:

34: ▷ Phase 3: Finalize and Write Output
35: Flatten, normalize, and write final samples, then return .
36: end procedure

61

Chapter 5. Experiments and Estimations

Figure 5.3: Log-uniform sampling strategy results. The figure compares the same
data visualized in linear and logarithmic scales. Log-uniform sampling achieves sig-
nificantly more balanced coverage across volume magnitudes, with a more even
distribution in log space. However, perfect uniformity is constrained by the limita-

tions of the underlying raw data.

5.3.2 Results
Table ?? summarizes the key characteristics of different volume sampling approaches, while (see Fig 5.3) provides
visual evidence of their distribution properties. The comparison demonstrates why log-uniform sampling is essential
for balanced training across the five-order-of-magnitude volume range.

Strategy Scale Key Characteristics Primary Use

Linear Uniform Linear Concentrates 95% of sam-
ples in upper decade (10−3

to 10−2); severely under-
samples low volumes

Baseline showing abso-
lute space bias

Linear Uniform Log Exposes extreme sparsity
in lower decades; confirms
magnitude-based sampling
imbalance

Diagnostic visualization
of coverage gaps

Log Uniform Log Achieves the most equal
representation across all
decades; maintains consis-
tent sample density in log
space

Optimal training distri-
bution

Table 5.8: Volume Sampling Strategies and Their Characteristics

Linear uniform sampling allocates approximately 90% of training samples to volumes above 10−3, leaving the critical
low-volume regime (10−7 to 10−4) with insufficient coverage for robust learning. This imbalance directly impacts
model performance, as small-volume intersections—which are both more common in practice and more sensitive to
numerical precision—become poorly represented.

In contrast, log-uniform sampling distributes samples evenly across each order of magnitude, ensuring that the
model receives adequate exposure to the full spectrum of intersection volumes. This balanced approach is crucial
for maintaining regression accuracy across the entire dynamic range, particularly in the numerically challenging
low-volume regime where float32 precision becomes a limiting factor.

Despite the improvements offered by log-uniform sampling, this strategy alone is insufficient to fully mitigate the
challenges of learning in the low-volume regime.

62

5.4. Volume Scaling Factor

5.4 Volume Scaling Factor
RMLSE 3.5.2 is well-suited for zero-inflated targets and outlier robustness. However, when most target volumes
are extremely small—as in our dataset—it induces distorted gradients. Training on raw intersection volumes led
to model outputs clustered around zero or the mean of the lowest bin. This behavior stems from the logarithmic
compression of low values, which penalizes overestimates more harshly than underestimates, biasing the model toward
underprediction.

To address this, we apply scalar amplification to target volumes prior to training. Scaling shifts magnitudes into a
range where RMLSE provides stronger and more informative gradients.

We evaluate the impact of different scaling factors on model convergence and generalization. Using the same
MLP architecture as in prior sections (three hidden layers of 128 units each, 36K parameters), we train on 100K
polyhedron-intersection samples per split. Only the scaling factor applied to the target volumes is varied.

Scaling Factor Min Volume Max Volume Description

100 1.7× 10−7 2.0× 10−2 No scaling
103 1.7× 10−4 20.0 Moderate
104 1.7× 10−3 200.0 Aggressive

Table 5.9: Scaling factors and resulting volume ranges

Parameter Value

Model MLP ([128, 128, 128]), ReLU
Samples 100K train / 100K val / 100K test (polyhedra only)
Sampling Log-linear uniform
Optimizer AdamW (lr = 0.001)
Training 20 epochs, batch size 32
Loss Root Mean Log Squared Error (RMLSE)

Table 5.10: Fixed configuration for volume prediction

5.4.1 Results
Aggregate Performance

Scaling Factor MAE (Test) Bin Accuracy Observation

100 (None) 0.0005 0.1113 Predicts mean of smallest bin
103 0.0024046 0.18895 Best overall generalization
104 0.0031896 0.14983 Poor large-volume performance

Table 5.11: Overall performance under different scaling regimes

Granular Performance: Interval [0, 0.01]

The following tables provide a fine-grained breakdown of prediction accuracy across this low-volume interval.

63

Chapter 5. Experiments and Estimations

Interval MAE Samples Correct Pred. Bin Acc.

0.00000–
0.00111

0.0005559 11,130 11,130 1.000

0.00111–
0.01000

Gets better as predictions approach zero; >88K sam-
ples, 0 correct

Table 5.12: Interval-wise performance for 100 (No scaling)

Interval MAE Samples Correct Predictions Bin Accuracy

0.00000–0.00111 0.0005559 11,130 11,130 1.000
0.00111–0.01000 — >88,000 0 0.000

Table 5.13: Interval-wise performance for 100 (No scaling)

Interval MAE Samples Correct Predictions Bin Accuracy

0.00000–0.00111 0.001020 11130 7845 0.705
0.00111–0.00222 0.001615 11124 2035 0.183
0.00222–0.00333 0.001871 10972 1836 0.167
0.00333–0.00444 0.002066 11119 1749 0.157
0.00444–0.00556 0.002333 11135 1517 0.136
0.00556–0.00667 0.002602 11138 1280 0.115
0.00667–0.00778 0.002950 11121 1089 0.098
0.00778–0.00889 0.003373 11128 866 0.078
0.00889–0.01000 0.003805 11133 678 0.061

Table 5.14: Interval-wise performance for 103 (Best observed performance)

Interval MAE Samples Correct Predictions Bin Accuracy

0.00000–0.00111 0.000604 11130 9209 0.827
0.00111–0.00222 0.001187 11124 2226 0.200
0.00222–0.00333 0.001793 10972 1113 0.101
0.00333–0.00444 0.002454 11119 747 0.067
0.00444–0.00556 0.003118 11135 533 0.048
0.00556–0.00667 0.003788 11138 431 0.039
0.00667–0.00778 0.004519 11121 308 0.028
0.00778–0.00889 0.005239 11128 243 0.022
0.00889–0.01000 0.005983 11133 173 0.016

Table 5.15: Interval-wise performance for 104 (Over-scaled regime)

The unscaled configuration (100) consistently predicts near-zero values due to the extremely narrow raw volume
range. This leads to under-performance in higher-volume intervals, where the model fails to generalize beyond its
dominant prediction mode.

64

5.5. Combined MLP

At the other extreme, scaling by 104 yields initially high bin accuracy (82.7% in the first interval) but rapidly declines
in performance, with accuracy dropping below 2% in subsequent bins. This behavior indicates that excessive scaling
amplifies small volumes disproportionately, biasing the model toward minimal predictions and severely impairing its
capacity to learn the full volume distribution.

Moderate scaling (103) offers the best trade-off. It retains strong performance in the low-volume regime (70.5%
accuracy in the first bin) while preserving resolution across later intervals. This balanced representation leads to
more stable convergence and improved generalization across the entire spectrum.

5.5 Combined MLP
We now move to a model that can do perform both tasks at once. Our architecture is a multi-layer perceptron
(MLP) that starts with a shared encoder to process all input features. After this shared part, the network splits into
two separate "heads", one for classification (intersection or not) and another for regression (predicting volume). We
train it on the previous analyzed configurations. The model architecture follows below

Component Layer Sizes

Shared Representation [128]
Classification Head [128, 1]
Regression Head [128, 1]
Activation ReLU (except final layers)

Table 5.16: Combined model architecture (∼36K parameters).

the classification head gives raw output scores (logits) used in binary cross-entropy loss (‘BCEWithLogits‘). The
regression head gives a single number representing the predicted volume

To train the model, we combine both objectives equally:

Lcombined = 0.5 · LBCEWithLogits + 0.5 · LRMLSE

This balanced loss encourages the model to do well at both tasks—without favoring one too much.

Setting Value

Data Settings
Data Type Distribution (50, 5, 7, 20, 18) Volume Scaling
103

Volume Binning 100 bins
Train / Validation / Test 100k / 100k / 100k (intersection cases only)

Training Parameters
Epochs 20
Batch Size 32
Optimizer AdamW
Learning Rate 0.001
Loss Function 0.5 · BCE+ 0.5 · RMSLE

Table 5.17: Training configuration for the combined model.

5.5.1 Results
In general, the combined model is capable of performing both tasks simultaneously, with a performance drop observed
in each. Two key differences from previous experiments should be noted:

1. The current model predicts two outputs, which may require additional capacity to effectively handle both
tasks.

65

Chapter 5. Experiments and Estimations

Metric Value Observation

Classification Accuracy 0.8574 Worse than single-task baseline
MAE (Intersection Volume) 0.00388 Worse than single-task baseline
Mean Bin Accuracy (10 bins) 0.12842 Worse than single-task baseline

Table 5.18: Test performance of the baseline model.

2. For the regression component, earlier tests utilized 100K intersecting samples, whereas the current setting
includes only 18K samples (i.e., 18% of the data).

In the following sections, we explore whether scaling the model architecture or adjusting the data distribution can
help recover or even improve performance.

5.6 Model Scaling
To investigate the impact of capacity on multi-task learning, we trained a larger model containing approximately
70k parameters. This architecture features a shared representation block followed by wider task-specific heads for
classification and regression. All training procedures and data configurations remain consistent with prior experiments.

Component Layer Sizes

Shared Representation [128]
Classification Head [128, 128, 1]
Regression Head [128, 128, 1]
Activation ReLU (except final layers)

Table 5.19: Scaled-up model architecture (∼70K parameters).

5.6.1 Results

Metric Value Performance

Classification Accuracy 0.8592 Better than baseline, worse than single-task
MAE (Intersection Volume) 0.0035955 Better than baseline, worse than single-task
Mean Bin Accuracy (10 bins) 0.13819 Better than baseline, worse than single-task

Table 5.20: Test performance of the scaled-up model

Performance across metrics shows small improvements over the previous multi-task architecture, though still trailing
behind dedicated single-task models. Classification accuracy was sometimes higher than the baseline during a few
experimentation, but results varied depending on initialization. This variability suggests that constraining the joint
loss might help stabilize convergence, and performance is likely to benefit from further data scaling.

The classification head appears to benefit from the joint setup, leveraging shared features shaped by regression
supervision. This implicit regularization seems to refine the representation space, leading to more reliable decision
boundaries even in a multi-task context.

However, the regression task continues to underperform. The main limitation remains the size of the training data:
out of 100K total samples, only ∼18K involve non-zero intersection volumes. This restricts the regression head’s
exposure to informative gradients, particularly in high-volume regions where samples are rare. As a result, the model
struggles to generalize well on the tails of the volume distribution.

5.7 Data Scaling
To mitigate the performance limitations caused by label sparsity—particularly for the regression task—we expanded
the training set from 100K to 1 million samples. This yielded approximately 180K intersecting cases (∼18%),

66

5.8. Inference Speed

significantly increasing the density of informative samples without altering the underlying data distribution. The
model architecture and training protocol remained unchanged to isolate the effect of dataset size.

5.7.1 Results

Metric Value Notes

Mean Classification Accuracy 0.947 +2.6% absolute improvement over previous best
MAE (Intersection Volume) 0.003198 Still worse than single-task

Mean Bin Accuracy (10 bins) 0.16122 Still worse than single-task

Table 5.21: Performance with 1M training samples.

Scaling the data notably improves classification accuracy and mean bin accuracy, with the latter showing a meaningful
gain in predictive granularity across the volume spectrum. The regression mean absolute error also improves slightly,
but still not reaching parity with the best earlier results despite the multi-task setting.

These improvements suggest that access to more diverse and frequent intersection examples allows the model to
generalize better, particularly on rare volume cases. At the same time, classification performance benefits from richer
shared features due to the additional supervisory signals.

Overall, data scaling proves more effective than model scaling alone in mitigating the sparsity-induced bottlenecks
inherent to multi-task learning—particularly for the regression head, which benefits directly from denser gradient
updates in high-volume regimes.

Importantly, the final combined model not only surpasses the performance of both single-task baselines but also
demonstrates a more refined geometric understanding of the decision boundary between intersecting and non-
intersecting cases. This suggests that the shared representation, regularized via joint optimization, is capable of
capturing richer spatial patterns across tasks than either model could in isolation.

5.8 Inference Speed
To evaluate real-time deployment feasibility, we benchmarked the inference latency of the model on a standard CPU
setup (Intel i7-12700H, 2.7 GHz) using single-threaded LibTorch in C++. The evaluation was performed on 100,000
randomly sampled inputs from the polyhedron test set, with results averaged over 50 runs. Latency was measured
across different batch sizes to assess scalability.

Batch Size Time per Sample (ms) Samples per Second

32 0.016202 61,722
64 0.015306 65,331

1024 0.009205 108,636
2048 0.001534 110,079

Table 5.22: Inference speed benchmarks on CPU (LibTorch, single-threaded).

No performance degradation is observed up to a batch size of 2048. The architecture’s simplicity enables consistent
sub-millisecond per-sample latency, making it well-suited for real-time pipelines, tight inference loops, and deployment
on resource-constrained systems such as embedded CPUs or edge devices. Its compact structure also facilitates low
memory overhead and straightforward integration into production systems.

5.9 Raw MLP Overview
The final model architecture is the result of extensive empirical tuning across network capacity, data diversity,
binning strategies, and volume scaling. It is a lightweight, multi-task MLP designed for simultaneous intersection
classification and volume regression. The figure below illustrates the architecture, followed by a summary table of
key parameters. Additional results are presented in Chapter 6.

67

Chapter 5. Experiments and Estimations

Figure 5.4: Multi-layer perceptron architecture for dual-task tetrahedron intersection
analysis. The network processes two tetrahedra (T1 and T2), each represented by
12 input coordinates. A shared feature extraction layer is followed by two specialized

heads: one for intersection classification and the other for volume regression.

68

5.10. Predicate Powered Learning

Aspect Setting

Architecture
Shared Layers [128]
Classification Head [128, 128, 1] (Logits)
Regression Head [128, 128, 1] (Linear)
Total Parameters ∼70,000

Training Setup
Training Size 1M samples
Training Distribution [50%, 5%, 7%, 20%, 18%]
Volume Range [1e-7, 1e-2]
Volume Scaling Factor 103

Number of Bins 100
Epochs / Batch Size 20 / 32
Optimizer AdamW (LR = 0.001)
Loss Function 0.5 · BCE+ 0.5 · RMLSE

Performance
Mean Classification Accuracy (across 5 data types) 94.70%
Min Class Accuracy (No Intersection) 92.04%
Max Class Accuracy (Polyhedron Intersection) 97.44%
Regression MAE (Test, original scale) 0.003198
Mean Bin Accuracy (10 bins) 16.12%
Latency (CPU, 1 thread, batch of 2048) 1.53µs
Throughput (CPU, 1 thread, batch of 2048) 110,079 samples/s
Model Size (.pt) 579.91 KB
Model Weights (JSON) 100.95 KB

Table 5.23: Final combined MLP model configuration summary.

5.10 Predicate Powered Learning
While brute-force strategies can yield surprisingly competitive results due to the priors we incorporate, they remain
computationally inefficient and oblivious to the problem’s inherent structure7. To build a model that generalizes
instead of memorizing, we design our ML to explicitly encode the problem’s geometric structure and logical invariants,
as detailed in Section 3.1. We begin with the data.

5.10.1 Transformations
we explore geometric transformations that normalize the input domain. These transformations aim to reduce vari-
ance, align data with a canonical frame, and embed inductive biases related to spatial relationships. Two key
strategies are evaluated:

• Unitary Tetrahedron Transformation

• Principal Axis Transformation

Unitary Tetrahedron Transformation While a tetrahedron is defined by 4 vertices in R3, its geometric
configuration introduces unnecessary degrees of freedom for learning. Instead of predicting intersections between
arbitrary tetrahedra, we map the reference tetrahedron T1 to a unitary frame—a fixed tetrahedron with maximum
volume inside the unit cube—thus simplifying the geometric context.

7Currently, our model treats the input as a flat list where the first 12 coordinates represent T1 and the next 12
represent T2, without awareness of the underlying geometry. We know more about the problem and should leverage
that knowledge.

69

Chapter 5. Experiments and Estimations

Algorithm 5.3 Unitary Tetrahedron Transformation

Require: Two tetrahedra T1 (reference), T2, each defined by 4 vertices in R3
Ensure: Transformed T ′2 relative to unitary frame and volume correction factor

1: Anchor Geometry: Select T1 as the reference frame
2: Translate: Center T1 by subtracting its centroid or anchor vertex
3: Construct Basis: Compute edge vectors of T1 relative to base vertex
4: Affine Mapping: Derive transformation matrix A that maps T1 → unitary tetrahedron
5: Apply Transformation: Compute T ′2 = A · (T2 − v0), where v0 is the reference vertex of T1
6: Model Input: Use T ′2 as input to the model; omit T1 (it is fixed in this space)
7: Volume Recovery: Multiply model output by | det(A)| to rescale predicted volume8

Why apply this transformation? It reduces learning complexity by reframing the problem: Does a given tetrahedron
intersect a fixed unitary tetrahedron, and what is the volume of that intersection? This affine transformation
preserves intersection relationships and linearly scales volumes, simplifying both classification and regression tasks.

Metric Value Notes

Mean Classification Accuracy 0.9687 +2.2% improvement over raw input
MAE (Intersection Volume) 0.0022872 Better than raw input
Mean Bin Accuracy (10 bins) 0.20299 +4.2% improvement over raw input
Total Inference Time 967.56 ms Includes preprocessing and forward pass
Preprocessing Time 27.2079 ms ∼3% of total time
Forward Pass 940.3521 ms ∼97% of total time
Time per Sample 0.009676 ms Batch size: 2048

Table 5.24: Performance of MLP after Unitary Tetrahedron Transformation.

This transformation significantly improves regression metrics by reducing geometric variance and focusing the model
on essential structural information. The method is efficient and easily vectorized for batch processing.

Principal Axis Transformation An alternative normalization technique involves aligning the input with its
intrinsic orientation. Principal Component Analysis (PCA) provides a data-driven method to rotate the object into
a canonical pose without altering scale.

Algorithm 5.4 Principal Axis Transformation via PCA

Require: Two tetrahedra T1, T2, each defined by 4 vertices in R3
Ensure: Rotated tetrahedra T ′1, T

′
2 aligned to principal axes of T1

1: Compute centroid of T1
2: Translate vertices of T1 and T2 so centroid of T1 is at origin
3: Perform PCA on T1 vertices to extract principal directions (eigenvectors)
4: Construct rotation matrix R from sorted eigenvectors of covariance matrix
5: Rotate T ′1 = R · T1 and T ′2 = R · T2

This transformation reduces rotational variance, letting the model focus on other geometric relationships.9

Applying PCA yields the best overall performance. The canonical orientation helps both regression and classification
by exposing a more structured representation to the model.

9Unlike the unitary transformation, PCA does not transform the space itself; rather, it provides a specific viewpoint
by aligning the data with its principal axis.

70

5.10. Predicate Powered Learning

Metric Value Notes

Mean Classification Accuracy 0.9700 +3.3% improvement over raw input
MAE (Intersection Volume) 0.001738 Best result overall
Mean Bin Accuracy (10 bins) 0.25751 +6.8% improvement over raw input
Total Inference Time 1292.9411 ms Includes preprocessing and forward pass
Preprocessing Time 182.4222 ms ∼14% of total time
Forward Pass 1110.5188 ms ∼86% of total time
Time per Sample 0.012929 ms Batch size: 2048

Table 5.25: Performance of MLP after Principal Axis Transformation.

Comparison. Both transformations significantly outperform the raw input baseline, each with distinct trade-offs.
The Unitary Tetrahedron method is computationally efficient and effectively reduces affine variance, making it
suitable for latency-sensitive scenarios. In contrast, the Principal Axis Transformation incurs higher computational
cost but consistently delivers superior accuracy, especially for regression tasks. Additionally, because it preserves the
original coordinate system, feature representations remain interpretable in the input space. Accordingly, we adopt
the Principal Axis Transformation for all subsequent experiments.

Next, we examine how to exploit the geometric structure of the problem within the model architecture itself.

5.10.2 TetrahedronPairNet
TetrahedronPairNet is a neural architecture tailored to infer intersection properties from one or two 3D tetrahedra.
Inspired by DeepSets, PointNet, and related architectures 3.3, it is explicitly constructed to learn functions that are
permutation-invariant with respect to both vertex ordering and tetrahedron pairing. This inductive bias ensures that
the model respects geometric symmetries inherent in the input domain.

The architecture can be extended to encode additional structural priors—such as symmetry, translation invariance,
and locality—through the integration of geometric transformation modules [55, 56].

Figure 5.5: Schematic diagram of TetrahedronPairNet (M).

71

Chapter 5. Experiments and Estimations

The model operates in three main stages:

• Per-Vertex Encoding: Each of the eight input vertices (2 tetrahedra × 4 vertices) is processed independently
by a shared MLP. A residual connection from the original 3D coordinates to the final MLP layer enhances
geometric fidelity and stabilizes gradient flow.

• Tetrahedral Pooling: Encoded vertex features within each tetrahedron are aggregated using a symmetric
function—max by default—to yield a fixed-length, order-invariant representation. This is passed through a
second MLP to capture higher-order intra-tetrahedron interactions.

• Pairwise Refinement & Global Residual: For paired inputs, the individual tetrahedron embeddings are con-
catenated and passed through another MLP to model inter-tetrahedron interactions. In parallel, the raw input
(12D or 24D) is projected through a shallow residual path and added to the fused representation. This final
embedding is passed through shared processing layers and bifurcated into classification and regression heads.

TetrahedronPairNet is modular and tunable. Aggregation functions (max, sum, mean) and MLP widths/depths can
be configured to match task complexity and compute constraints. Unless otherwise stated, the configuration below
is used in all experiments:

Variant Vtx MLPs Tet MLPs Pair MLP Shared Cls Hd Reg Hd Params Size (KB)
M [24, 24] [48, 48] [96, 96] [96] [128, 1] [128, 1] ∼64K 475.88

Table 5.26: TetrahedronPairNet (M) default configuration.

Metric Value Notes

Mean Classification Accuracy 0.9764 +0.64% improvement over simple mlp
MAE (Intersection Volume) 0.001500 Better than simple mlp
Mean Bin Accuracy (10 bins) 0.29196 +3.4% improvement over simple mlp
Total Inference Time 3099 ms Includes preprocessing and forward pass
Preprocessing Time 804 ms ∼26% of total time
Forward Pass 2294 ms ∼74% of total time
Time per Sample 0.030992 ms Batch size: 2048

Table 5.27: Performance of TetrahedronPairNet (M) after Principal Axis Transfor-
mation.

By explicitly leveraging geometric symmetries within the model architecture, TetrahedronPairNet is able to extract
more meaningful structure from the input data. As a result, it consistently outperforms a baseline simple MLP in
both classification and regression tasks. In particular, the model exhibits significantly higher bin accuracy, reflecting
improved discrimination across intersection volume ranges and thus more reliable volume predictions. Despite its
richer architecture, inference remains efficient due to batch-optimized processing, and the overall model size is
smaller.

Perhaps increasing model capacity and dataset size might further enhance performance, but we are also interested
in studying whether other aspects of the modeling pipeline can unlock additional gains.

5.10.3 Augmentations
In this section, we explore augmentation strategies aimed at improving generalization and robustness by manipulating
sample order and permutations of the input. While such techniques are common in a lot of data-driven pipelines,
their effect is nuanced in the context of geometric intersection tasks.

Sorting

An often-overlooked factor in dataset design is the order in which data samples are presented to the model. Both
spatial and temporal sequencing can subtly influence learning dynamics and convergence behavior.

We distinguish two principal axes of sorting:

72

5.11. Hyperparameter Tuning

• X-axis (Spatial Sorting): Refers to the internal ordering of features within each sample. For example,
tetrahedron vertices may be sorted by distance to the origin or by coordinate values. While such heuristics
may seem intuitive, they can introduce geometric biases that impair model generalization, especially when the
sorting logic encodes implicit assumptions about symmetry or structure.

• Y-axis (Temporal Sorting): Refers to the order in which samples are presented during training. Sorting based
on scalar attributes—such as intersection volume, centroid distance, or bounding box overlap—can induce
curriculum-like effects. While this may accelerate early learning, it risks biasing the model toward overfitting
to early-stage patterns and failing to adapt to more complex samples encountered later.

In our experiments, spatial sorting (X-axis) yielded marginal to no performance gains and occasionally increased
inference time. Its impact varied with model architecture, suggesting that inductive biases related to feature locality
may be model-dependent.

Temporal sorting, especially by intersection volume, consistently led to premature convergence on low-volume or
non-intersecting cases. This impaired the model’s ability to learn high-overlap scenarios and complex boundary
interactions.

Overall, sorting can be considered a tunable hyperparameter, but in our setup, its utility was limited. We adopted
randomized sample ordering for all training runs, which provided the most stable and generalizable results across
tasks and model sizes.

Permutations

Permutation-based augmentation aims to synthetically increase dataset diversity by reordering elements within each
sample (e.g., permuting vertex indices or swapping tetrahedron order). This can, in theory, promote invariance to
representation changes and enhance generalization.

However, capacity-limited training runs showed that such permutations underperformed compared to using entirely
new synthetic samples. Our data generation pipeline is sufficiently fast and diverse, reducing the need to reuse
existing examples via transformation.

When applied, permutation augmentations were restricted to underrepresented regions of the input space to address
local overfitting. Despite these targeted uses, we found no consistent benefit compared to baseline training with
more synthetic data.

We initially hypothesized that enforcing permutation consistency would improve learning stability. However, the
model naturally encounters equivalent permutations across the dataset due to random sampling, which may already
encourage sufficient invariance without explicit enforcement.

While we acknowledge that optimal sorting and permutation schemes could theoretically improve performance, none
of the tested strategies yielded meaningful gains. Therefore, our final configuration excludes both sorting and
permutation augmentations in favor of randomized, untransformed sample ordering.

5.11 Hyperparameter Tuning
Throughout our experiments, we adopted a broad definition of hyperparameters, extending beyond model architecture
to include data distribution, training dynamics, and pipeline configuration. The system was treated as a set of
interdependent tunable parameters, each influencing performance in subtle and often non-linear ways.

Tuning was performed iteratively through manual adjustments to key variables such as dataset complexity, model
size, and loss weighting. These changes were guided by empirical observations rather than an exhaustive search,
prioritizing rapid iteration over full coverage of the configuration space.

5.11.1 Final Optimization Pass
In the final phase of experimentation, our primary focus was improving regression performance using insights gathered
from earlier stages. We began by increasing model capacity, selecting a larger variant, and doubling the dataset size
from 1 million to 2 million samples. We also extended the number of training epochs to 50 and increased the batch
size to 2048 to accelerate convergence. The goal was to assess how well the current pipeline scaled under more
demanding conditions and whether further performance gains could still be unlocked.

Below we detail the configuration and setup used in the final model, along with the corresponding performance
metrics.

73

Chapter 5. Experiments and Estimations

Variant Vtx MLPs Tet MLPs Pair MLP Shared Cls Hd Reg Hd Params Size (MB)
L [48, 48] [48, 48] [48, 48] [128] [128, 1] [128, 1] ∼77K 714.3

Table 5.28: TetrahedronPairNet (L) architecture configuration.

Aspect Setting

Architecture (TetrahedronPairNet L)
Vertex MLPs [48, 48]
Tetrahedron MLPs [48, 48]
Pairwise MLP [48, 48]
Shared Layers [128]
Classification Head [128, 1] (Logits)
Regression Head [128, 1] (Linear)
Total Parameters ∼77,000
Model Size (.pt) 714,339 KB

Training Setup
Training Dataset 2M samples
Volume Range [10−7, 10−2]

Volume Scaling Factor 103

Epochs / Batch Size 50 / 2048
Optimizer AdamW (LR = 0.001)
Loss Function 0.5 · BCE+ 0.5 · RMSLE

Performance Metrics
Mean Classification Accuracy 98.58%
MAE (Intersection Volume, Original Scale) 0.001190
Mean Bin Accuracy (10 bins) 0.34832
Latency (CPU, 1 thread, batch of 2048) 27,28 µs
Throughput (CPU, 1 thread, batch of 2048) 36,651 samples/s

Table 5.29: Final model training setup and performance summary.

From these experiments (Table 5.29), we observe a consistent improvement across all performance metrics. The
larger model and increased dataset size contribute to greater accuracy and lower regression error, albeit with a slight
trade-off in inference speed. Provided that sufficient data and computational budget are available, further scaling is
expected to yield additional gains, indicating headroom for even more performant models.

With the model architecture and optimization strategy finalized, we now introduce TetrahedraPairDatasetV1, a
dataset purpose-built for supervised learning on 3D tetrahedral intersections. It supports both binary intersection
classification and continuous volume regression, while preserving geometric variability and offering precise statistical
control over the volume distribution.

74

5.12. TetrahedraPairDatasetV1

5.12 TetrahedraPairDatasetV1
TetrahedraPairDatasetV1 is a carefully curated dataset of 1 million 3D tetrahedron pairs designed for supervised
learning on geometric intersection problems. The dataset supports two complementary tasks: binary intersection
classification and continuous regression of intersection volume, providing a comprehensive foundation for 3D geo-
metric reasoning.

5.12.1 Design Philosophy and Configuration
The dataset prioritizes geometric interpretability and algorithmic robustness through several key design decisions. No
data augmentations, permutations, or vertex reorderings are applied, preserving the natural geometric relationships
inherent in tetrahedral configurations. This approach maintains vertex order integrity and avoids coordinate-based
sorting, ensuring that models learn from raw, unaltered geometric data.

Core Dataset Properties

Property Value Rationale
Size 1,000,000 samples (.csv) Sufficient scale for deep learning
Coordinate Precision double High numerical accuracy
Input Features 24 (12 per tetrahedron) Complete vertex representation
Labels 2 (binary, continuous) Multi-task learning support
Intersection Distribution [50%, 5%, 7%, 20%, 18%] Balanced learning scenarios
Volume Sampling log_uniform_volume Wide scale coverage
Volume Binning 100 bins in [10−7, 0.02] Fine-grained volume discretiza-

tion
Scaling Factor 103 Numerical stability
Augmentation None Geometric authenticity
Transformation None Natural coordinate space

Table 5.30: Core dataset properties and design rationale for
TetrahedraPairDatasetV1.

Data Structure and Representation

Each sample contains 24 coordinates representing two complete tetrahedra, formatted as Tt_Vv_α where t ∈ {1, 2}
identifies the tetrahedron, v ∈ {1, 2, 3, 4} specifies the vertex, and α ∈ {x, y , z} denotes the coordinate axis. This
systematic naming convention ensures consistent geometric interpretation across all samples.

The dual-label structure enables both classification and regression tasks: HasIntersection provides binary labels
(0 for no intersection, 1 for intersection or contact), while IntersectionVolume offers continuous targets (0 for
touching configurations, > 0 for overlapping volumes).

Component Description Details
Features 24 coordinates (12 per tetra-

hedron)
Format: Tt_Vv_α, where t ∈ {1, 2},
v ∈ {1, 2, 3, 4}, α ∈ {x, y , z}

HasIntersection Binary classification label 0: no intersection; 1: intersection or
contact

IntersectionVolume Continuous regression target = 0 if touching; > 0 if overlapping

Table 5.31: Structure and semantic meaning of individual dataset samples.

5.12.2 Spatial Distribution and Geometric Foundations

Coordinate Space Design

Tetrahedron vertices are uniformly sampled within the unit cube [0, 1]3, creating diverse and unbiased spatial con-
figurations. This uniform distribution ensures comprehensive coverage of the geometric space while maintaining
computational tractability.

75

Chapter 5. Experiments and Estimations

Figure 5.6: Distribution of vertex coordinates for T1 and T2. All coordinates are
uniformly distributed in [0, 1], confirming unbiased spatial sampling.

Metric Expected Observed
Mean 0.500 0.500040
Standard Deviation ≈ 0.289 0.283301

Table 5.32: Coordinate uniformity validation for tetrahedron vertices. Close align-
ment between expected and observed statistics confirms quality of uniform sampling

process.

Volume Distribution Strategy

The dataset employs log-uniform volume sampling to capture the full spectrum of geometric scales encountered in
real-world applications. This distribution strategy addresses the challenge that uniform vertex sampling naturally
biases toward smaller volumes, potentially underrepresenting larger geometric structures.

Figure 5.7: Volume distributions for T1 and T2. Log-uniform sampling ensures
comprehensive coverage across multiple orders of magnitude, from 10−11 to 10−1.

The volume ranges span: T1 volumes in [10−8, 10−1] and T2 volumes in [10−11, 10−2]. The joint volume distribution
reveals a natural concentration in the upper-right region (10−5 to 10−1), indicating that most meaningful geometric
interactions occur when both tetrahedra have moderate to large volumes.

76

5.12. TetrahedraPairDatasetV1

Figure 5.8: Joint distribution of T1 and T2 volumes. Concentration in the upper-
right region indicates that most geometric interactions occur when both tetrahedra

have moderate to large volumes.

5.12.3 Intersection Analysis and Label Distribution

Intersection Volume Characteristics

The dataset maintains a balanced 50-50 split between intersecting and non-intersecting samples, preventing classifi-
cation bias while ensuring comprehensive coverage of both positive and negative cases. This distribution captures the
full spectrum of geometric relationships, from complete separation through edge contact to full volumetric overlap.

Figure 5.9: Joint volume distribution (V1, V2) across 1 million samples, showing
balanced representation of intersecting and non-intersecting configurations.

77

Chapter 5. Experiments and Estimations

Category Count (%) Geometric Significance
Total Samples 1,000,000 Complete dataset
Non-Intersecting 500,000 (50.0%) Separated tetrahedra
Intersecting (Total) 500,000 (50.0%) Contact or overlap

Touching Only 320,000 (32.0%) Surface/edge contact
Overlapping 180,000 (18.0%) Volumetric intersection

Table 5.33: Intersection distribution providing balanced learning scenarios across
geometric relationship types.

Volume Scale Analysis

The intersection volumes span approximately 5.3 orders of magnitude, from 1.00 × 10−4 to 2.00 × 101 (after 103

scaling), with a median volume of 4.47×10−2. This wide range ensures that models learn to handle both microscopic
intersections and substantial overlaps.

Category Scaled Range Count (%) Interaction Type
Small (< 10−1) < 10−4 101,907 (57%) Fine-scale interactions
Medium (10−1–101) 10−4–10−2 72,858 (40%) Moderate overlaps
Large (> 101) > 10−2 5,235 (3%) Substantial intersections

Table 5.34: Scaled volume categories emphasizing smaller intersections while main-
taining adequate representation of larger overlaps.

5.12.4 Geometric Symmetry and Balance

Volume Relationship Analysis

The relative volumes between tetrahedron pairs significantly impact model generalization. The dataset exhibits a
controlled asymmetry with T1 being larger in 62.4% of cases versus T2 in 37.6%, creating a 1.66 ratio imbalance
that provides learning diversity without extreme bias.

Figure 5.10: Distribution of volume differences between T1 and T2, showing con-
trolled asymmetry that promotes learning diversity while maintaining numerical sta-

bility.

78

5.12. TetrahedraPairDatasetV1

Metric Value Implication
Range [−0.1671, 0.1671] Bounded variation
Mean 0.003928 Slight T1 bias
Standard Deviation 0.017754 Controlled variation
T1 Larger 624,465 (62.4%) Moderate asymmetry
T2 Larger 375,535 (37.6%) Sufficient diversity
Ratio Imbalance 1.66 Manageable bias

Table 5.35: Volume difference statistics demonstrating controlled asymmetry that
enhances learning without introducing extreme bias.

Size Relationship Categories

Category Count (%) Numerical Impact
Small Differences (< 0.01) 556,894 (55.7%) High stability
Medium Differences (0.01–0.1) 442,801 (44.3%) Moderate variation
Large Differences (> 0.1) 305 (0.0%) Minimal extremes

Table 5.36: Size relationship distribution ensuring numerical stability while providing
sufficient geometric diversity.

This distribution ensures that most tetrahedron pairs have similar volumes, promoting numerical stability and algo-
rithmic robustness while still including sufficient asymmetric cases to prevent overfitting to balanced configurations.

79

Chapter 6

Evaluation and Results Discussion

Until now, model development has primarily focused on component-level tuning and architectural design. This
chapter presents a comprehensive evaluation of the final model’s behavior, emphasizing its reliability, throughput,
and suitability for real-time tetrahedral intersection tasks. The analysis is structured around core performance metrics
and practical deployment criteria.

We begin by analyzing classification and regression results, followed by a detailed examination of latency, general-
ization capacity, and limitations. Finally, we compare the learned model against traditional geometric algorithms to
highlight trade-offs between accuracy and computational cost.

6.1 Error Analysis
The model exhibits negligible representational error on the order of 10−15, stemming from inherent limitations of
float64 floating-point precision. Beyond this numerical floor, classification and regression performance depend
primarily on the geometry of the tetrahedral pairs and the quality of the learned latent representation.

Below, we analyze errors in each task for our best-trained model, TetrahedronPairNet (L).

6.1.1 Classification Performance

Dataset Subset Samples Accuracy

No Intersection 100,000 97.40%
Point Intersection 100,000 98.07%
Segment Intersection 100,000 99.20%
Polygon Intersection 100,000 98.61%
Polyhedron Intersection 100,000 99.63%

Overall Accuracy 500,000 98.58%
Mean Accuracy — 98.58%
AUC — 0.9813

Table 6.1: Classification performance of TetrahedronPairNet (L) on the test set,
broken down by intersection types and aggregated metrics.

Table 6.1 presents the main results for the classification task. An overall accuracy of 98.58% implies approximately
15 misclassifications per 1,000 predictions—sufficiently low for most 3D geometric processing pipelines.

The mean accuracy of 98.58%, computed uniformly across intersection types, shows that performance is stable
across different geometric configurations, not just dominated by majority classes.

An AUC of 0.9813 indicates strong discrimination ability under varying decision thresholds, with a low overlap between
positive and negative classes.

In summary, TetrahedronPairNet (L) demonstrates high classification fidelity and generalization across diverse inter-
section types, making it a reliable component for real-time tetrahedral analysis.

81

Chapter 6. Evaluation and Results Discussion

6.1.2 Regression Performance
The regression task involves estimating the intersection volume between two tetrahedra—a more complex challenge
than binary classification, particularly when non-zero volumetric overlap is present. Table 6.2 shows the detailed
results.

Dataset Subset Samples MAE R2 κ Mean Bin Accuracy (10 bins)

No Intersection 100,000 6.22× 10−7 0 0 0.99992
Point Intersection 100,000 2.34× 10−8 0 0 1.00000
Segment Intersection 100,000 3.81× 10−7 0 0 0.99993
Polygon Intersection 100,000 2.99× 10−6 0 0 0.99962
Polyhedron Intersection 100,000 1.19× 10−3 0.68348 0.41463 0.34832

Table 6.2: Regression performance of TetrahedronPairNet (L) on the test set, bro-
ken down by intersection types.

In subsets where the ground truth volume is zero (no, point, segment, polygon), the model demonstrates exceptionally
low MAE—typically below 10−6—and near-perfect bin accuracy. These cases reflect strong reliability in detecting
the absence of volumetric intersection. The R2 and κ scores are zero, simply due to the lack of variance in the
targets.

The Polyhedron Intersection subset presents the real regression challenge, requiring accurate prediction of contin-
uous, non-zero volumes. Here, the model achieves:

• MAE of 1.19 × 10−3, meaning average prediction errors are on the order of 0.0012—small in a unit-cube
context, but potentially significant in high-precision applications.

• R2 of 0.683, indicating that 68% of the variance in true volumes is explained by the model.
• Cohen’s κ of 0.415, showing moderate agreement between predicted and true volume classes.
• Mean bin accuracy of 34.8%, reflecting challenges in assigning predictions to the correct quantized volume

class, especially near bin boundaries.

To analyze this behavior more deeply, we partition the polyhedron subset into equal-width volume intervals (Ta-
ble 6.3).

Volume Interval MAE MSE Samples Bin Accuracy

[0.0000, 0.0011) 3.42× 10−4 3.59× 10−7 11,130 86.09%
[0.0011, 0.0022) 6.64× 10−4 8.52× 10−7 11,124 47.48%
[0.0022, 0.0033) 9.14× 10−4 1.46× 10−6 10,972 35.07%
[0.0033, 0.0044) 1.11× 10−3 2.03× 10−6 11,119 30.03%
[0.0044, 0.0055) 1.28× 10−3 2.70× 10−6 11,135 26.60%
[0.0055, 0.0066) 1.45× 10−3 3.36× 10−6 11,138 23.69%
[0.0066, 0.0077) 1.56× 10−3 3.90× 10−6 11,121 22.93%
[0.0077, 0.0088) 1.66× 10−3 4.37× 10−6 11,128 21.10%
[0.0088, 0.0100] 1.73× 10−3 4.70× 10−6 11,133 20.50%

Table 6.3: Granular regression performance of TetrahedronPairNet (L) across binned
intersection volumes in the polyhedron subset.

From this finer-grained view, three insights emerge:

• Excellent accuracy in small overlaps: For volumes below 0.0011, the model achieves high precision (MAE =
3.42× 10−4) and 86% bin accuracy, showing clear strength in estimating minor contacts.

• Performance drops with volume: As intersection size grows, both MAE and MSE increase, while bin accuracy
drops—from 47% in the next bin down to 20% in the topmost one. This illustrates a clear decline in precision
with volumetric complexity.

• Latent resolution bottleneck: The sharp decline in bin accuracy suggests that the model’s internal represen-
tation lacks the resolution needed to capture fine-grained geometric cues in high-overlap scenarios.

In sum, TetrahedronPairNet (L) excels at detecting small or zero-volume interactions, but struggles to maintain
precision as volume increases. This trade-off highlights the need for improved latent representations or volume-
aware learning objectives.

82

6.2. Simulation Proxy Evaluation

6.1.3 Consistency
To evaluate the robustness of TetrahedronPairNet to input permutations, we assess its consistency across two
dimensions: classification and regression outputs, under both pointwise and tetrahedronwise permutations. This
tests the model’s invariance to vertex reordering and tetrahedron swapping. A consistency rate of 100% indicates
perfect invariance; lower values reveal sensitivity to input ordering.

For the regression task, exact numerical agreement is neither expected nor required due to floating-point imprecision.
Instead, a prediction is considered consistent if it satisfies both a relative error threshold (rtol = 0.1) and an absolute
error threshold (atol = 0.001) compared to the original output. This dual-threshold rule tolerates minor fluctuations
for small volumes, while enforcing stricter agreement for larger ones. It balances numerical tolerance with practical
reliability in downstream applications. Table 6.4 details the results for the consistency test.

Subset Samples Classification (%) Regression (%)

Pointwise Tetrawise Pointwise Tetrawise

No Intersection 100,000 100.00 2.61 100.00 0.68
Point Intersection 100,000 100.00 98.07 100.00 15.38
Segment Intersection 100,000 100.00 99.20 100.00 14.47
Polygon Intersection 100,000 100.00 98.61 100.00 13.31
Polyhedron Intersection 100,000 100.00 99.63 100.00 0.41

Table 6.4: Classification and regression consistency (%) of TetrahedronPairNet (L)
under vertex (pointwise) and tetrahedron-level permutations.

Classification Consistency. Pointwise permutation invariance is perfect across all subsets—each classification
decision remains unchanged under vertex reordering. Tetrahedronwise classification consistency is also very high,
exceeding 98% across all intersection types. This indicates that the model’s binary decision function is largely
unaffected by reordering of tetrahedral inputs.

Regression Consistency. The regression task is more sensitive to input ordering. While pointwise permutation
consistency remains perfect under the defined thresholds, tetrahedronwise consistency varies significantly across
subsets. In particular, the no intersection and polyhedron intersection cases exhibit the lowest consistency scores.
In practice, this means that swapping the order of the tetrahedra often changes the predicted intersection volume
by more than the 0.001 threshold. This behavior reveals a structural weakness: the model lacks true permutation
invariance and relies on the implicit ordering of its inputs, which introduces variability in its volumetric predictions.

These consistency evaluations are performed entirely on synthetic data sampled from the same distribution used
during training. Such a controlled environment simplifies many corner cases and may obscure robustness issues
that would arise under real-world conditions. In the next section, we investigate the model’s behavior in a more
challenging, out-of-distribution setting that better reflects practical deployment scenarios.

6.2 Simulation Proxy Evaluation
To evaluate the practical behavior of TetrahedronPairNet under dynamic and near-realistic conditions, we developed
a C++-based proxy simulation. This framework approximates runtime behavior in scenarios involving continuous
movement and varying geometric configurations.

6.2.1 Setup
The simulation models a dynamic scene where one tetrahedron is in motion:

1. Two initially non-intersecting tetrahedra are generated within a bounded 3D domain.

2. A translation is applied incrementally to one tetrahedron, moving it across the space.

3. At each timestep, the model is queried to classify intersection status and estimate the intersecting volume.

4. The end-to-end latency, including data preprocessing and model inference, is recorded.

To run this evaluation, we load a pre-generated dataset and convert all inputs to tensor format. The scripted model
is then loaded and evaluated. Input normalization is applied to fit all coordinates inside a unit cube, with additional

83

Chapter 6. Evaluation and Results Discussion

preprocessing such as Principal Axis Transformation (PAT) applied conditionally, depending on the training regime.
Although these preprocessing steps introduce latency, they are crucial for achieving high-quality predictions. For
convenience and performance, two model wrappers were implemented in both C++ and Python, abstracting away
all low-level details from the end user.

6.2.2 Results
The evaluation on 10,000 samples achieved 98.01% accuracy with strong volume regression performance and prac-
tical runtime characteristics. Table 6.5 and Table 6.6 summarize the key findings.

Metric Overall No Intersection Intersection Unit

Samples 10,000 6,665 3,335 –
Accuracy 0.9801 – – –
Precision 0.9612 – – –
Recall 0.9799 – – –
F1-Score 0.9705 – – –

MAE 5.621× 10−5 0.000 1.685× 10−4 volume units
RMSE 1.212× 10−4 0.000 2.098× 10−4 volume units

Table 6.5: Classification and volume regression performance

Runtime Performance Error Analysis

Component Value Range Length Percentage

Preprocessing 19.13 ms [3729–3795] 67 0.67%
Inference 249.20 ms [7064–7195] 132 1.32%
Total 268.32 ms Total Errors 199 1.99%

Per sample 0.027 ms Errors occur in contiguous ranges
Throughput 37,269 samples/s near tetrahedron contact zones

Table 6.6: Runtime performance and error distribution

The results demonstrate strong performance across all metrics. High recall (0.9799) ensures effective intersection
detection, while low regression errors (RMSE < 2.1 × 10−4) confirm stable volume prediction. With a throughput
of 37K samples per second, the model supports real-time applications. Mispredictions occur in contiguous ranges
near-contact scenarios, indicating systematic failure modes tied to geometric ambiguity—highlighting targets for
future refinement in close-proximity edge cases.

A natural question arises: how can we be confident the model will generalize beyond the training data’s infinite possible
tetrahedron configurations? Inspired by similarity principles in geometry, we propose that the model implicitly learns
a form of “tetrahedral similarity.” This means that when arbitrary tetrahedra are rescaled to the training distribution’s
scale, accurate predictions remain feasible—even if original sizes vary widely. Though this remains to be empirically
confirmed, it frames the model’s robustness conceptually.

From a theoretical standpoint, statistical learning theory predicts that strong results on a well-curated dataset will
generalize to new samples drawn from the same distribution [41]. Our diverse training set, encompassing many
intersection scenarios and configurations, reinforces this expectation.

Together, these observations suggest the model goes beyond memorization, learning structural representations that
reliably extrapolate to unseen but statistically similar tetrahedron pairs, within the scope of the generative assumptions
made during training.

Building on this, the next section compares our learned approach to traditional geometric methods for tetrahedron
intersection and volume estimation. Classical methods provide exact results but suffer from computational complexity
and limited scalability, while our model offers a pragmatic trade-off—slightly reduced precision in exchange for orders-
of-magnitude faster inference and real-time throughput.

84

6.3. Comparison with Traditional Methods

6.3 Comparison with Traditional Methods
Table 6.7 highlights the key differences between our learned model and classical geometric approaches for tetrahedron–
tetrahedron intersection detection and volume estimation.

Metric Traditional Geometric
Methods

Our Learned Model

Classification Accuracy 100% (Exact) ∼98% (Empirical)

Regression Accuracy (Volume
Estimation)

Exact (machine preci-
sion limited)

Approximate, average ab-
solute error 0.001190 on
intersection cases (ex-
plains 68% variance)

Inference Speed Slow (complex geomet-
ric predicates)

Fast (≈30,000 sam-
ples/s, batch size 2048,
single-thread CPU)

Batching Support Limited or none Fully supported

GPU Native Rare or unsupported Yes, GPU-deployable

Memory Footprint Variable Compact (<500 KB)

Robustness Exact but compu-
tationally expensive;
approximate methods
brittle due to floating-
point errors

Reliable in typical cases;
challenges in close
proximity; limited inter-
pretability

Table 6.7: Comparison of Proposed Model vs. Traditional Methods

Traditional methods offer exact guarantees but at significant computational cost and limited scalability. In contrast,
our model offers an efficient approximation: high classification and regression accuracy with orders-of-magnitude
faster inference. This makes it especially suited for real-time, high-throughput scenarios where small trade-offs in
precision are acceptable.

6.4 Limitations
The evaluation reveals several critical limitations to consider for deployment:

Performance Degradation with Volume Complexity: The model’s accuracy declines as intersection volume in-
creases—achieving 86% bin accuracy for small overlaps (<0.0011 volume units) but dropping to 20% for larger
intersections. This limits utility in applications demanding high precision across all overlap scales.

Tetrahedronwise Permutation Sensitivity: Despite perfect pointwise permutation invariance, regression consistency
under tetrahedronwise permutations falls as low as 0.41% for intersecting and 0.68% for non-intersecting cases,
causing inconsistent predictions when tetrahedra are swapped.

Close-Proximity Failure Modes: Systematic failures cluster near contact zones, affecting 1.99% of predictions
where geometric ambiguity peaks—critical for robust boundary detection.

Black-box Interpretability: As a learned, non-symbolic model, it lacks explicit geometric reasoning or intermediate
representations, complicating debugging and integration with symbolic systems.

Training Distribution Dependence: Validated only on synthetic data matching training distribution; generalization
to real-world meshes with differing size, aspect ratios, or pathologies remains unverified. The “tetrahedral similarity”
hypothesis requires empirical support.

85

Chapter 6. Evaluation and Results Discussion

Preprocessing Coupling: Accuracy tightly depends on consistent normalization and canonicalization; deviations
between training and deployment degrade performance, creating a fragile pipeline.

Volume Resolution Floor: The minimum reliably predicted volume (10−7) may be insufficient for extremely small
intersections or high-precision tasks.

Statistical Nature: Unlike exact geometric methods, the model’s probabilistic outputs (1.42% classification error,
volume prediction uncertainty) complicate integration where guaranteed correctness is required.

Robust validation, comprehensive monitoring, and careful failure mode consideration are essential. Performance
guarantees must not be assumed outside the validated training distribution without extensive empirical verifi-
cation.

6.5 Deployment Scenarios
TetrahedronPairNet delivers exceptional computational performance: over 37,000 tetrahedron pairs processed per
second on a single CPU thread, with 10,000 samples completed in under 270 milliseconds. This represents a paradigm
shift in geometric processing efficiency.

The model’s compact architecture (under 500 KB) supports deployment across a wide range of hardware plat-
forms—from edge devices like Raspberry Pi to high-performance AI accelerators such as NVIDIA Jetson—democratizing
advanced geometric computation in resource-constrained environments. Its batch-optimized design further unlocks
substantial gains on GPUs, making it well-suited for large-scale simulations and real-time graphics applications.

Performance by Application Domain
Ultra-High Throughput Applications benefit most from the model’s real-time speed. Use cases include physics
engines, VR/AR collision detection, and interactive simulations, where sub-millisecond inference and 98.01% classi-
fication accuracy enable responsive experiences at scales that were previously impractical.

Importantly, the model’s systematic failure modes—particularly in close-contact zones—are well understood. These
limitations can be mitigated through robust safeguards such as fallback to exact methods and confidence-based
prediction filtering, ensuring system reliability even in ambiguous configurations.

Medium-Throughput Workflows such as adaptive mesh refinement, CAD model validation, or dynamic geometry
optimization, capitalize on the model’s regression performance: explaining 68% of variance in intersection volumes
with a mean absolute error of 1.19 × 10−3. This accuracy–speed trade-off is suitable for most engineering-grade
applications where perfect precision is not mandatory.

High-Precision Domains demanding strict geometric correctness—e.g., safety-critical systems or precision manufac-
turing pipelines—can use TetrahedronPairNet as a high-speed screening stage. Final verification via exact geometric
algorithms ensures deterministic guarantees.

Deployment Architecture Considerations
Preprocessing Pipeline Integrity is vital. The model’s accuracy depends on strict consistency with training-time
preprocessing, including normalization, coordinate transformations, and feature extraction. Deviations can severely
degrade prediction quality. Deployment must therefore incorporate rigorous pipeline validation, unit tests, and
preprocessing version control.

Robust Error Handling elevates TetrahedronPairNet from a fast approximation tool to a trustworthy subsystem.
Recommended strategies include:

• Confidence scoring: Quantify uncertainty and gate downstream decisions.

• Ensemble techniques: Improve prediction stability by averaging multiple model outputs.

• Fallback systems: Dynamically switch to exact methods in ambiguous or high-risk regions.

• Real-time monitoring: Detect distribution shifts and performance drift during operation.

Validation Requirements are essential due to the synthetic nature of the training data. Comprehensive testing on
target domain meshes—across different scales, topologies, and geometric pathologies—is mandatory. Downstream
systems must be architected to handle the model’s probabilistic nature and to trigger alerts or fallbacks upon
confidence loss or distribution mismatch.

86

6.5. Deployment Scenarios

In summary, TetrahedronPairNet offers a compelling blend of speed, efficiency, and versatility for geometric processing
pipelines. When paired with rigorous safeguards, hybrid validation schemes, and architectural discipline, it becomes
a practical tool for accelerating real-world computational geometry.

87

Chapter 7

Conclusion

This thesis presents a data-driven framework that redefines how geometric simulations are approached—replacing
symbolic computation with learned inference to achieve high-speed, approximate solutions within practical error
bounds. This shift challenges conventional priorities in computational geometry, particularly in contexts where
exactitude is either unnecessary or computationally restrictive.

At the core of this contribution is the TetrahedronPairDatasetV1, a purpose-built dataset comprising one million
labeled tetrahedron pairs designed to fuel research in volumetric intersection learning. Building on this foundation,
we introduce TetrahedronPairNet, the first neural architecture capable of concurrently predicting binary intersec-
tion and estimating intersection volume for tetrahedra at scale. In its raw form—with minimal preprocessing—the
model processes over 100,000 samples per second at batch size 2048, achieving 85% classification accuracy. After
transformation and tuning, it reaches 30,000 samples per second with 98% classification accuracy and strong regres-
sion performance (R2 = 0.68, MAE ≈ 0.00119). These results demonstrate a compelling alternative to traditional
algorithmic pipelines, emphasizing scalability, robustness, and real-time capability.

7.1 Impact
TetrahedronPairNet achieves real-time, large-scale narrow-phase intersection testing, long considered infeasible.
Traditional methods (subsection 3.1.3) depend on symbolic formulations that suffer from: poor scalability due to
sequential, low-level operations, limited parallelism on modern hardware, instability near degenerate configurations
(e.g., coplanar faces or tiny volumes).

7.1.1 Why This Was Previously Infeasible
Two primary limitations hindered progress:

• Lack of data: No large-scale, labeled datasets of tetrahedral interactions were available; generating reliable
volume ground truth is computationally expensive.

• Architectural mismatch: Traditional deep learning models (e.g., CNNs) are unsuitable for unordered, irregular
geometric inputs. Only recent architectures like PointNet, DeepSets, and attention-based networks enable
permutation-invariant learning over 3D structures.

TetrahedronPairNet builds on these advances, using shared vertex encoders, hierarchical pooling, and joint classification-
regression objectives to bypass symbolic logic entirely. Its homogeneous, data-parallel design supports massive-scale
inference without manual geometry code or predicates.

7.2 Architectural Contributions
Each component serves a specific purpose in enabling accurate, fast, and generalizable inference across a wide variety
of tetrahedral intersection scenarios:

• Permutation-Invariance: Vertex encoders operate on unordered sets, removing the need for sorting or canon-
icalization.

• Hierarchical Design: Tetrahedron-level encoders capture shape; pairwise fusion layers reason jointly about
interactions.

• Dual-Task Output: A shared latent space supports simultaneous classification and regression.
• Batch Scalability: The architecture is GPU-friendly, processing tens of thousands of examples per frame.
• Learned Reasoning: The network infers geometric interactions implicitly, robust even near degenerate cases.

89

Chapter 7. Conclusion

7.3 Application Potential
TetrahedronPairNet enables a broad class of real-time applications:

• Interactive Physics Simulations: Cloth simulations can now process fiber-level interactions during manipu-
lation, with collision detection running at frame rates that support responsive user interaction. Deformable
bodies respond to touch with millions of collision checks per frame, turning smartphones into physics labora-
tories and enabling surgical training simulators that feel genuinely real.

• Live CAD/CAM Systems: Engineers can validate part geometry and manufacturing constraints while sketch-
ing, with interference detection and clearance analysis running continuously. Complex assemblies show inter-
ference and clearances in real-time, transforming design from iterative guesswork into fluid creative expression.
Digital twins mirror physical manufacturing processes with zero computational delay.

• Immersive AR/VR: Virtual objects maintain consistent physical properties through haptic feedback systems.
Architectural walkthroughs provide tactile surface information where you feel every surface, medical training
where virtual organs respond exactly like real tissue, and gaming worlds that react to your every movement
with physical authenticity.

• Scientific Computing: Simulations that previously required distributed computing resources can run on indi-
vidual workstations. Climate models update in real-time as you adjust parameters, protein folding simulations
respond instantly to molecular tweaks, and engineering stress analyses guide design decisions as fast as you
can think.

• Autonomous Systems: Spatial reasoning for navigation happens at the speeds required for real-time decision
making. Self-driving cars understand 3D space as intuitively as humans, robots navigate crowded environments
with fluid grace, and drones dance between obstacles at high speed—all powered by geometric reasoning that
happens faster than human perception.

The model’s joint output enables hybrid systems combining binary decisions with spatial metrics. All operations are
batched and differentiable—opening the door to end-to-end geometric learning pipelines.

7.4 Future Work
While the core architecture demonstrates strong performance across classification and regression tasks, several
directions remain open to enhance its effectiveness and extend its scope:

• Improving Regression Performance: Classification reaches near-perfect accuracy, but volume regression
remains less precise, especially near ambiguous or degenerate configurations. Future efforts could explore
quantile regression, uncertainty-aware loss functions, or hybrid models that combine symbolic priors with
learned components.

• Predicting Intersection Geometry: Reducing the intersection to a scalar volume discards rich spatial in-
formation. An exciting extension would involve predicting the actual shape of the intersecting region—via
voxel grids, meshes, or implicit functions—enabling applications in simulation, reconstruction, and physical
reasoning.

• Inverse Problems: A natural next challenge is to reverse the setup: given a target intersection volume or
shape, infer plausible tetrahedron pairs that could have generated it. This inverse formulation is harder but
deeply related, with potential applications in generative modeling and geometric synthesis.

• Architectural Enhancements: The current architecture is performant but can be extended. Integrating
transformation-equivariant modules, attention-based reasoning, or learned canonicalization strategies (e.g.,
T-Net, GAM) could further improve generalization across more diverse spatial configurations.

7.5 Concluding Remarks
TetrahedronPairNet represents a fundamental shift from procedural geometry to learned inference. The convergence
of neural architectures, scalable data generation, and efficient batching unlocks real-time geometric reasoning at
scale.

This work offers more than a performance boost, it reframes how we pose and solve geometric problems. Learned
models, once peripheral to core simulation and CAD workflows, are now capable of replacing brittle, hand-crafted
algorithms with robust, flexible alternatives. Where precision once demanded symbolic rigor, we now harness pattern
recognition. Where geometry was once coded, it can now be learned.

90

7.5. Concluding Remarks

In doing so, this thesis lays the foundation for a new era in computational geometry, one where inference replaces
logic, data replaces rules, and interactive geometric intelligence becomes a practical reality.

This is not just a model. It is a declaration: that geometry can learn, that interaction can be immediate, and that
intelligence can be built not from logic alone, but from data, scale, and abstraction.

As the boundaries between algorithm and inference dissolve, we begin to glimpse the future of simulation, not as a
sequence of deterministic steps, but as a fluid, responsive system grounded in learned geometric intuition. The tools
are ready. The ideas are here. What happens next is limited only by how far we dare to push the frontier.

91

Bibliography

[1] P Tiwari and A Shinde. “History and applications of Geometry in real life”. In: JBNB 12
(2022), pp. 57–67. issn: 2454-2776.

[2] Punam K. Saha, Robin Strand, and Gunilla Borgefors. “Digital Topology and Geometry
in Medical Imaging: A Survey”. In: IEEE Transactions on Medical Imaging 34.9 (2015),
pp. 1940–1964. doi: 10.1109/TMI.2015.2417112.

[3] Vitor J. Katz. A History of Mathematics. 3rd ed. Pearson Education, Inc, 2009.
[4] Mark De Berg et al. Computational Geometry. Algorithms and Applications. Springer Science

& Business Media, Apr. 2008.
[5] Özer Çelik. “A Research on Machine Learning Methods and Its Applications”. In: Journal of

Educational Technology and Online Learning (Sept. 2018). doi: 10.31681/jetol.457046.
[6] Khadija El Bouchefry and Rafael S. de Souza. “Chapter 12 - Learning in Big Data: Introduc-

tion to Machine Learning”. In: Knowledge Discovery in Big Data from Astronomy and Earth
Observation. Ed. by Petr Škoda and Fathalrahman Adam. Elsevier, 2020, pp. 225–249. isbn:
978-0-12-819154-5. doi: https://doi.org/10.1016/B978-0-12-819154-5.00023-0.
url: https://www.sciencedirect.com/science/article/pii/B9780128191545000230.

[7] Weinan E Weinan E. “Machine Learning and Computational Mathematics”. In: Communi-
cations in Computational Physics 28.5 (Jan. 2020), pp. 1639–1670. issn: 1815-2406. doi:
10.4208/cicp.oa-2020-0185. url: http://dx.doi.org/10.4208/cicp.OA-2020-0185.

[8] Umutcan Önal and Zafeirakis Zafeirakopoulos. “A Machine Learning Framework for Volume
Prediction”. In: Analysis of Experimental Algorithms. Ed. by Ilias Kotsireas et al. Cham:
Springer International Publishing, 2019, pp. 408–423.

[9] Harilaos Psaraftis, Min Wen, and Christos Kontovas. “Dynamic Vehicle Routing Problems:
Three Decades and Counting”. In: Networks 67 (Aug. 2015), pp. 3–31. doi: 10.1002/net.
21628.

[10] W. J. B. van Eeghen, O. W. van Gaans, and M. van der Schans. “Analysis of Near-Optimal
Portfolio Regions and Polytope Theory”. Master’s Thesis. Leiden University, 2018.

[11] José Salgado-Rojas et al. “A mixed integer programming approach for multi-action planning
for threat management”. In: Ecological modelling 418 (2020), p. 108901.

[12] Lucas Pahl. “Polytope-form games and index/degree theories for extensive-form games”. In:
Games and Economic Behavior 141 (2023), pp. 444–471. issn: 0899-8256. doi: https:
//doi.org/10.1016/j.geb.2023.07.001. url: https://www.sciencedirect.com/
science/article/pii/S0899825623000945.

[13] Ambarish Kulkarni et al. “Virtual prototyping used as validation tool in automotive design”.
In: Built Environ. (Jan. 2011).

[14] Navid Mirzayousef Jadid. “Tetrahedral Kdet: Linear Time Collision Detection for Tetrahedral
Meshes”. Master’s thesis. University of Bremen, 2023.

[15] Huang Zhang et al. “Deep learning-based 3D point cloud classification: A systematic survey
and outlook”. In: Displays 79 (2023), p. 102456. issn: 0141-9382. doi: https://doi.org/
10.1016/j.displa.2023.102456. url: https://www.sciencedirect.com/science/
article/pii/S0141938223000896.

[16] Hang Si and Ideen Sadrehaghighi. Tetgen -A Delaunay-Based Quality Tetrahedral Mesh
Generator. July 2022. doi: 10.13140/RG.2.2.13915.85284/2.

93

https://doi.org/10.1109/TMI.2015.2417112
https://doi.org/10.31681/jetol.457046
https://doi.org/https://doi.org/10.1016/B978-0-12-819154-5.00023-0
https://www.sciencedirect.com/science/article/pii/B9780128191545000230
https://doi.org/10.4208/cicp.oa-2020-0185
http://dx.doi.org/10.4208/cicp.OA-2020-0185
https://doi.org/10.1002/net.21628
https://doi.org/10.1002/net.21628
https://doi.org/https://doi.org/10.1016/j.geb.2023.07.001
https://doi.org/https://doi.org/10.1016/j.geb.2023.07.001
https://www.sciencedirect.com/science/article/pii/S0899825623000945
https://www.sciencedirect.com/science/article/pii/S0899825623000945
https://doi.org/https://doi.org/10.1016/j.displa.2023.102456
https://doi.org/https://doi.org/10.1016/j.displa.2023.102456
https://www.sciencedirect.com/science/article/pii/S0141938223000896
https://www.sciencedirect.com/science/article/pii/S0141938223000896
https://doi.org/10.13140/RG.2.2.13915.85284/2

Bibliography

[17] René Weller, Nicole Debowski, and Gabriel Zachmann. “kDet: Parallel Constant Time Colli-
sion Detection for Polygonal Objects”. In: Computer Graphics Forum 36.2 (2017), pp. 131–
141. doi: https://doi.org/10.1111/cgf.13113. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1111/cgf.13113. url: https://onlinelibrary.wiley.com/
doi/abs/10.1111/cgf.13113.

[18] Newcastle University. Physics - Collision Detection. Newcastle University. url: https://
research.ncl.ac.uk/game/mastersdegree/gametechnologies/physicstutorials/
4collisiondetection/Physics%20-%20Collision%20Detection.pdf (visited on 11/30/2024).

[19] Yang-Hui He, Elli Heyes, and Edward Hirst. Machine Learning in Physics and Geometry.
2023. arXiv: 2303.12626 [hep-th].

[20] Vera Viana. Tetrahedra inside the cube. Accessed on 16/12/2023. 2020. url: https://
veraviana.net/enclosing/inside-the-cube/.

[21] Paul Ernest. “Mathematics, ethics and purism: an application of MacIntyre’s virtue theory”.
In: Synthese 199.2 (2021), pp. 3137–3167. doi: 10.1007/s11229-020-02928-1.

[22] H. J. M. Bos and H. Mehrtens. “The interactions of mathematics and society in history: Some
exploratory remarks”. In: Historia Mathematica 4.1 (1977), pp. 7–30. doi: 10.1016/0315-
0860(77)90025-7.

[23] R. Jayanthi. “Mathematics in Society Development - A Study”. In: IRE Journals 3.3 (2019),
pp. 59–64. issn: 2456-8880.

[24] Sarah Giest and Annemarie Samuels. “’For good measure’: data gaps in a big data world”.
In: Policy Sciences 53 (2020), pp. 559–569. doi: 10.1007/s11077-020-09384-1.

[25] Yasemin J. Erden. “IDENTITY AND BIAS IN PHILOSOPHY: WHAT PHILOSOPHERS
CAN LEARN FROM STEM SUBJECTS”. In: Think 20.59 (2021), pp. 117–131. doi: 10.
1017/S1477175621000245.

[26] Melissa Heikkilä. “AI: Decoded: Spain’s flawed domestic abuse algorithm — Ban debate heats
up — Holding the police accountable”. In: POLITICO (2023). AI: Decoded newsletter. url:
https://www.politico.eu/newsletter/ai-decoded/spains-flawed-domestic-
abuse-algorithm-ban-debate-heats-up-holding-the-police-accountable-2/.

[27] Anders Nordgren. “Artificial intelligence and climate change: ethical issues”. In: Journal of
Information, Communication and Ethics in Society 21.1 (2023), pp. 1–15. doi: 10.1108/
JICES-11-2021-0106.

[28] S. Kockara et al. “Collision detection: A survey”. In: 2007 IEEE International Conference on
Systems, Man and Cybernetics. 2007, pp. 4046–4051. doi: 10.1109/ICSMC.2007.4414258.

[29] John Burkardt. Computational Geometry Lab: TETRAHEDRONS. http://people.sc.
fsu.edu/~jburkardt/presentations/cg_lab_tetrahedrons.pdf. Accessed: December
2, 2024. Aug. 2018.

[30] Online Etymology Dictionary. Tetrahedron - Etymology, Origin & Meaning. Accessed June
18, 2025. 2025. url: https://www.etymonline.com/word/tetrahedron.

[31] Wikipedia contributors. Simplex. Accessed June 18, 2025. 2025. url: https://en.wikipedia.
org/wiki/Simplex.

[32] Wei Li and Cindy X. Chen. “Efficient data modeling and querying system for multi-dimensional
spatial data”. In: Proceedings of the 16th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems. GIS ’08. Irvine, California: Association for
Computing Machinery, 2008. isbn: 9781605583235. doi: 10.1145/1463434.1463503. url:
https://doi.org/10.1145/1463434.1463503.

[33] Conor McCoid and Martin J. Gander. “Intersection of Tetrahedra”. Unpublished manuscript.
2020. url: https://www.unige.ch/~mccoid/ongoing/mccoid2020tetrahedra.pdf.

[34] Csaba D. Toth. “Geometric Intersection”. In: Handbook of Discrete and Computational
Geometry. Ed. by Jacob E. Goodman and Joseph O’Rourke. Chapman and Hall/CRC, 2004.
Chap. 42. url: https://www.csun.edu/~ctoth/Handbook/chap42.pdf.

94

https://doi.org/https://doi.org/10.1111/cgf.13113
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13113
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13113
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13113
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13113
https://research.ncl.ac.uk/game/mastersdegree/gametechnologies/physicstutorials/4collisiondetection/Physics%20-%20Collision%20Detection.pdf
https://research.ncl.ac.uk/game/mastersdegree/gametechnologies/physicstutorials/4collisiondetection/Physics%20-%20Collision%20Detection.pdf
https://research.ncl.ac.uk/game/mastersdegree/gametechnologies/physicstutorials/4collisiondetection/Physics%20-%20Collision%20Detection.pdf
https://arxiv.org/abs/2303.12626
https://veraviana.net/enclosing/inside-the-cube/
https://veraviana.net/enclosing/inside-the-cube/
https://doi.org/10.1007/s11229-020-02928-1
https://doi.org/10.1016/0315-0860(77)90025-7
https://doi.org/10.1016/0315-0860(77)90025-7
https://doi.org/10.1007/s11077-020-09384-1
https://doi.org/10.1017/S1477175621000245
https://doi.org/10.1017/S1477175621000245
https://www.politico.eu/newsletter/ai-decoded/spains-flawed-domestic-abuse-algorithm-ban-debate-heats-up-holding-the-police-accountable-2/
https://www.politico.eu/newsletter/ai-decoded/spains-flawed-domestic-abuse-algorithm-ban-debate-heats-up-holding-the-police-accountable-2/
https://doi.org/10.1108/JICES-11-2021-0106
https://doi.org/10.1108/JICES-11-2021-0106
https://doi.org/10.1109/ICSMC.2007.4414258
http://people.sc.fsu.edu/~jburkardt/presentations/cg_lab_tetrahedrons.pdf
http://people.sc.fsu.edu/~jburkardt/presentations/cg_lab_tetrahedrons.pdf
https://www.etymonline.com/word/tetrahedron
https://en.wikipedia.org/wiki/Simplex
https://en.wikipedia.org/wiki/Simplex
https://doi.org/10.1145/1463434.1463503
https://doi.org/10.1145/1463434.1463503
https://www.unige.ch/~mccoid/ongoing/mccoid2020tetrahedra.pdf
https://www.csun.edu/~ctoth/Handbook/chap42.pdf

Bibliography

[35] Gino van den Bergen. “A Fast and Robust GJK Implementation for Collision Detection
of Convex Objects”. In: Journal of Graphics Tools 4.2 (1999), pp. 7–25. doi: 10.1080/
10867651.1999.10487502.

[36] Fabio Ganovelli, Federico Ponchio, and Claudio Rocchini. “Fast Tetrahedron-Tetrahedron
Overlap Algorithm”. In: Journal of Graphics Tools 7.2 (2002), pp. 17–25. doi: 10.1080/
10867651.2002.10487557.

[37] Philip Schneider and David H. Eberly. Geometric Tools for Computer Graphics. San Fran-
cisco: Morgan Kaufmann, 2002. isbn: 1558605940.

[38] Nicolai Baldin. “Estimating the volume of a convex body”. In: Snapshots of modern mathe-
matics from Oberwolfach 15 (2018).

[39] Peter Hachenberger and Lutz Kettner. 3D Boolean Operations on Nef Polyhedra. 5.6. CGAL
User and Reference Manual. CGAL Editorial Board. 2023. url: https://doc.cgal.org/5.
6/Manual/packages.html#PkgNef3.

[40] Dirk P. Kroese and Reuven Y. Rubinstein. “Monte Carlo methods”. In: Wiley Interdisciplinary
Reviews: Computational Statistics 4.1 (2012), pp. 48–58. doi: 10.1002/wics.194.

[41] Michael M. Bronstein et al. “Geometric Deep Learning: Grids, Groups, Graphs, Geodesics,
and Gauges”. In: CoRR abs/2104.13478 (2021). arXiv: 2104.13478. url: https://arxiv.
org/abs/2104.13478.

[42] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory
to Algorithms. Cambridge, UK: Cambridge University Press, 2014. url: https://www.cs.
huji.ac.il/~shais/UnderstandingMachineLearning/.

[43] Simon J.D. Prince. Understanding Deep Learning. The MIT Press, 2023. url: http://
udlbook.com.

[44] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.deeplearningbook.
org. MIT Press, 2016.

[45] R. Magdalena-Benedicto, S. Pérez-Díaz, and A. Costa-Roig. “Challenges and Opportunities
in Machine Learning for Geometry”. In: Mathematics 11.11 (2023), p. 2576. doi: 10.3390/
math11112576. url: https://doi.org/10.3390/math11112576.

[46] Vladimir Vapnik and Rauf Izmailov. “Rethinking statistical learning theory: learning using sta-
tistical invariants”. In: Machine Learning 108 (2019), pp. 381–423. doi: 10.1007/s10994-
018-5742-0.

[47] Geordie Williamson. “Is deep learning a useful tool for the pure mathematician?” In: arXiv
preprint arXiv:2304.12602 (2023).

[48] Saifullahi Aminu Bello et al. “Review: Deep Learning on 3D Point Clouds”. In: Remote
Sensing 12.11 (2020). issn: 2072-4292. doi: 10.3390/rs12111729. url: https://www.
mdpi.com/2072-4292/12/11/1729.

[49] Marvin Minsky and Seymour Papert. Perceptrons: An Introduction to Computational Ge-
ometry. Expanded Edition, Reissue with new foreword by Léon Bottou. Originally published
1969; expanded edition 1988; reissued 2017 with new foreword. Cambridge, MA: MIT Press,
2017. isbn: 978-0-262-53477-2. url: https://leon.bottou.org/publications/pdf/
perceptrons-2017.pdf.

[50] Aaron Zweig. “Symmetric Functions and Neural Networks”. A dissertation submitted in par-
tial fulfillment of the requirements for the degree of Doctor of Philosophy. PhD thesis.
Department of Computer Science, New York University, Jan. 2024. url: https://cs.nyu.
edu/media/publications/Aaron_Zweig_Thesis.pdf.

[51] Yang Liu, Ernest Fokoue, and Daniel Krutz. Towards Predicate-powered Learning. 2024. url:
https://openreview.net/forum?id=V2LpzVNtCT.

[52] Charles Ruizhongtai Qi et al. “PointNet++: Deep Hierarchical Feature Learning on Point
Sets in a Metric Space”. In: CoRR abs/1706.02413 (2017). arXiv: 1706.02413. url: http:
//arxiv.org/abs/1706.02413.

95

https://doi.org/10.1080/10867651.1999.10487502
https://doi.org/10.1080/10867651.1999.10487502
https://doi.org/10.1080/10867651.2002.10487557
https://doi.org/10.1080/10867651.2002.10487557
https://doc.cgal.org/5.6/Manual/packages.html#PkgNef3
https://doc.cgal.org/5.6/Manual/packages.html#PkgNef3
https://doi.org/10.1002/wics.194
https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/2104.13478
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/
http://udlbook.com
http://udlbook.com
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.3390/math11112576
https://doi.org/10.3390/math11112576
https://doi.org/10.3390/math11112576
https://doi.org/10.1007/s10994-018-5742-0
https://doi.org/10.1007/s10994-018-5742-0
https://doi.org/10.3390/rs12111729
https://www.mdpi.com/2072-4292/12/11/1729
https://www.mdpi.com/2072-4292/12/11/1729
https://leon.bottou.org/publications/pdf/perceptrons-2017.pdf
https://leon.bottou.org/publications/pdf/perceptrons-2017.pdf
https://cs.nyu.edu/media/publications/Aaron_Zweig_Thesis.pdf
https://cs.nyu.edu/media/publications/Aaron_Zweig_Thesis.pdf
https://openreview.net/forum?id=V2LpzVNtCT
https://arxiv.org/abs/1706.02413
http://arxiv.org/abs/1706.02413
http://arxiv.org/abs/1706.02413

Bibliography

[53] Manzil Zaheer et al. Deep Sets. 2018. arXiv: 1703.06114 [cs.LG]. url: https://arxiv.
org/abs/1703.06114.

[54] A. Zinani. “The Expected Volume of a Tetrahedron whose Vertices are Chosen at Random
in the Interior of a Cube”. In: Monatshefte für Mathematik 139.4 (Aug. 2003), pp. 341–348.
doi: 10.1007/s00605-002-0531-y.

[55] Charles R. Qi et al. PointNet: Deep Learning on Point Sets for 3D Classification and Seg-
mentation. 2017. arXiv: 1612.00593 [cs.CV]. url: https://arxiv.org/abs/1612.00593.

[56] Xu Ma et al. Rethinking Network Design and Local Geometry in Point Cloud: A Simple
Residual MLP Framework. 2022. arXiv: 2202.07123 [cs.CV]. url: https://arxiv.org/
abs/2202.07123.

[57] Guocheng Qian et al. PointNeXt: Revisiting PointNet++ with Improved Training and Scaling
Strategies. 2022. arXiv: 2206.04670 [cs.CV]. url: https://arxiv.org/abs/2206.04670.

[58] Jiakang Bao et al. “Polytopes and machine learning”. In: arXiv preprint arXiv:2109.09602
(2021).

[59] Richard Sutton. The Bitter Lesson. Accessed: 2024-12-04. 2019. url: http://www.incompleteideas.
net/IncIdeas/BitterLesson.html.

96

https://arxiv.org/abs/1703.06114
https://arxiv.org/abs/1703.06114
https://arxiv.org/abs/1703.06114
https://doi.org/10.1007/s00605-002-0531-y
https://arxiv.org/abs/1612.00593
https://arxiv.org/abs/1612.00593
https://arxiv.org/abs/2202.07123
https://arxiv.org/abs/2202.07123
https://arxiv.org/abs/2202.07123
https://arxiv.org/abs/2206.04670
https://arxiv.org/abs/2206.04670
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html

Appendix A

Model Capacity Full Experiments

97

Appendix A. Model Capacity Full Experiments

Parameters # Hidden Layers Heuristic # Hidden Units AUC
417 1 none [16] 0.86
833 1 none [32] 0.87

1665 1 none [64] 0.89
3329 1 none [128] 0.89
6657 1 none [256] 0.90

13313 1 none [512] 0.91
26625 1 none [1024] 0.92
53249 1 none [2048] 0.92

689 2 constant [16, 16] 0.87
1889 2 constant [32, 32] 0.91
5825 2 constant [64, 64] 0.94

19841 2 constant [128, 128] 0.96
72449 2 constant [256, 256] 0.97

275969 2 constant [512, 512] 0.97
961 3 constant [16, 16, 16] 0.88

2945 3 constant [32, 32, 32] 0.92
9985 3 constant [64, 64, 64] 0.95

36353 3 constant [128, 128, 128] 0.97
361 2 prog. doubling [8, 16] 0.85
977 2 prog. doubling [16, 32] 0.87

2977 2 prog. doubling [32, 64] 0.91
10049 2 prog. doubling [64, 128] 0.94
36481 2 prog. doubling [128, 256] 0.96

138497 2 prog. doubling [256, 512] 0.97
921 3 prog. doubling [8, 16, 32] 0.86

3121 3 prog. doubling [16, 32, 64] 0.89
11361 3 prog. doubling [32, 64, 128] 0.95
43201 3 prog. doubling [64, 128, 256] 0.96

545 2 prog. halving [16, 8] 0.87
1345 2 prog. halving [32, 16] 0.90
3713 2 prog. halving [64, 32] 0.94

11521 2 prog. halving [128, 64] 0.96
39425 2 prog. halving [256, 128] 0.96

144385 2 prog. halving [512, 256] 0.97
1473 3 prog. halving [32, 16, 8] 0.90
4225 3 prog. halving [64, 32, 16] 0.94

13569 3 prog. halving [128, 64, 32] 0.96
47617 3 prog. halving [256, 128, 64] 0.97

697 3 mirror CE [16, 8, 16] 0.87
1905 3 mirror CE [32, 16, 32] 0.91
5857 3 mirror CE [64, 32, 64] 0.94

19905 3 mirror CE [128, 64, 128] 0.96
72577 3 mirror CE [256, 128, 256] 0.97

Table A.1: Comparison of model configurations with corresponding AUC scores

98

99

Appendix A. Dataset Generator System

Appendix A

Dataset Generator System

Figure A.1: Full architectural diagram of the dataset generator system. Each module
is functionally isolated and interacts through explicit data interfaces.

100

	List of Algorithms
	Introduction
	Context and Motivation
	Problem statement
	Research Questions and Objectives
	Scientific Contributions
	Document Structure

	Ethical Considerations and Personal Motivations
	Personal Motivation and Research Context
	Potential Use Case: Collision Detection
	Transparency
	Ethical Assessment

	Research
	Premier
	What is a Tetrahedron?
	Why Care About Tetrahedrons?
	Why Tetrahedron–Tetrahedron Intersection Status?
	Why Compute the Volume of Intersection?
	The Problem

	Data
	Representation
	Diversity
	Augmentation
	Transformations

	Neural Networks for 3D Point Clouds
	Overview
	DeepSets (2017)
	PointNet (2017)
	Pointwise MLP Methods
	PointNet++, 2017 pointnetpp
	PointMLP, 2022 pointmlp
	PointNeXt, 2022 pointnext

	Publicly Available Point Cloud Datasets
	Evaluation Metrics
	Classification Metrics
	Regression Metrics
	Absolute Error Metrics
	Distributional Correctness
	Categorical Agreement

	Efficiency Metrics

	Comparative Analysis
	Related Work
	A Machine Learning Framework for Volume Prediction (2019)
	Polytopes and Machine Learning (2021)

	Complementary Work: Tetrahedral kDet, Linear Time Collision Detection for Tetrahedral Meshes
	Algorithm Overview
	Potential Integration with Machine Learning

	Conclusions, Research Gaps, and Challenges
	Overview
	Addressing Research Questions

	Development
	Data Generator
	Dataset Structure
	Quality
	Coordinate Precision
	Tetrahedron Construction
	Labels Generation
	Validation and Inspection

	Diversity and Generation Algorithms
	No Intersection
	Point Contact
	Segment Intersection
	Polygon Intersection
	Polyhedron Intersection

	Efficiency
	System Architecture

	ML Pipeline
	Pipeline Architecture
	Core Design Principles

	Experiments and Estimations
	Capacity
	Results

	Data Types Distributions
	Results

	Volume Sampling Strategy
	Algorithmic Implementation
	Results

	Volume Scaling Factor
	Results

	Combined MLP
	Results

	Model Scaling
	Results

	Data Scaling
	Results

	Inference Speed
	Raw MLP Overview
	Predicate Powered Learning
	Transformations
	TetrahedronPairNet
	Augmentations
	Sorting
	Permutations

	Hyperparameter Tuning
	Final Optimization Pass

	TetrahedraPairDatasetV1
	Design Philosophy and Configuration
	Core Dataset Properties
	Data Structure and Representation

	Spatial Distribution and Geometric Foundations
	Coordinate Space Design
	Volume Distribution Strategy

	Intersection Analysis and Label Distribution
	Intersection Volume Characteristics
	Volume Scale Analysis

	Geometric Symmetry and Balance
	Volume Relationship Analysis
	Size Relationship Categories

	Evaluation and Results Discussion
	Error Analysis
	Classification Performance
	Regression Performance
	Consistency

	Simulation Proxy Evaluation
	Setup
	Results

	Comparison with Traditional Methods
	Limitations
	Deployment Scenarios

	Conclusion
	Impact
	Why This Was Previously Infeasible

	Architectural Contributions
	Application Potential
	Future Work
	Concluding Remarks

	Bibliography
	Model Capacity Full Experiments
	Dataset Generator System

