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1
I N T R O D U C T I O N

In the recent decades, there have been multiple space missions with
the goal to visit and gather data about small-bodies in our solar sys-
tem. These include the NEAR mission to the asteroid 433 Eros [18],
Hayabusa to the asteroid Itokawa [7], the Dawn mission to the proto-
planets Vesta and Ceres [12] and most recently the OSIRIS-REx mission
to the asteroid Bennu. Some of these missions were able to get close
enough to the body to measure detailed gravitational potentials. The
gravitational potential outside of a body is produced by its internal
mass distribution, which is why it can be used to reconstruct the inter-
nal mass distribution of a body. This process is called gravity inversion
[1]. Studying the internal structure of a small-body can give insight
into its history and how it has changed over time. Knowledge about
the internal structure also helps to build more accurate models of
small bodies [31]. Information about the internal mass distribution of
a body can also be obtained through other methods than analyzing the
gravitational field, for example through radar measurements or analy-
sis of collected dust particles [27]. Recently, a gravity inversion method
based on Neural Networks has been developed, which requires fewer
assumptions about the internal mass distribution and shape of a body,
and can yield more accurate results in some situations, compared to
classical inversion methods [11]. There also have been recent works
that employ Machine Learning based approaches to perform gravity
inversion on earth [34] [15] [5]. My goal in this thesis it to incorporate
available information about the mass distribution of a small-body into
the gravity inversion process of the Machine Learning based method
most suited to this task, and thus obtain a mass distribution that is
consistent with this information.

In chapter 2 I will give an introduction into the theoretical back-
ground of forward modeling of gravitational fields. I will also present
classical methods of gravity inversion and introduce machine learning
based gravity inversion methods, on which later parts of this thesis
will be based on. In chapter 3 I will describe how I built a dataset to
be used as training data for a machine learning based inverse gravity
modeling approach. I will describe the modifications I made to one
of the machine learning based methods to incorporate additional in-
formation into the gravity inversion process in chapter 4. Chapter 5 is
about the results I obtained with these modifications. In chapter 6 I
will motivate possible future work and I will conclude in chapter 7.
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2
T H E O R E T I C A L B A C K G R O U N D A N D R E L AT E D
W O R K

2.1 forward modeling of gravitational fields

In order to do inverse gravity modeling, gravitational data which
the chosen inverse gravity modeling method should try to match as
closely as possible, is needed. In the case of a space mission like NEAR
visiting the asteroid Eros [30] or more recently OSIRIS-REx visiting
the asteroid Bennu [14], this data might come from a spacecraft taking
measurements around the body of interest. The other option is to use
data generated through forward modeling, where the gravitational
field around a body is calculated from the shape of the body as well as
an assumption about the distribution of mass inside the body. For the
development of inverse gravity modeling methods this approach is
suited well, because it allows the easy generation of multiple variants
of mass distributions and their corresponding gravitational fields to
test with. Data generated by this method is also much more easily
accessible as gravitational data measured by spacecraft. There are mul-
tiple methods to do forward modeling of gravitational data, the most
common of which will be presented and discussed in the following.

2.1.1 Spherical Harmonics

The classical method of calculating the gravitational field of a body
is using spherical harmonics. This method exploits the fact that the
gravitational potential is a harmonic function outside the attracting
mass. This means that the gravitational potential can “be expanded
into a series of spherical harmonics” [10, p. 57]. The coefficients of
this series can then be computed to obtain a representation of the
gravitational potential [32]. A drawback of the spherical harmonics
method is that the expansion of the gravitational potential into spheri-
cal harmonics is only guaranteed to converge towards the gravitational
potential outside of the smallest sphere that encloses the body com-
pletely. Inside of this sphere the series usually diverges [10, p. 60]. This
issue is less pronounced for bodies which are closer to a sphere in
shape, like the earth. For the bodies studied in this thesis, which often
have a shape that differs strongly from a sphere, using the spherical
harmonics method would leave a lot of space around the body, where
the series of spherical harmonics does not converge. It is still possible
to calculate the gravitational field in this case, but results may be less
accurate [25]. Methods to calculate spherical harmonics for arbitrarily

2



2.1 forward modeling of gravitational fields 3

shaped bodies do exist, but are hard to apply in practice [32]. Due to
these issues with the spherical harmonics method, I decided against
using it in this thesis.

2.1.2 Polyhedral Method

When using the polyhedral method to calculate the gravitational
field around a body, the body is represented as a polyhedron. The
polyhedral method provides an exact solution for the gravity field
corresponding to this polyhedron and its accuracy is only limited
by the level of discretization of the polyhedron. The exactness of the
solution also does not depend on the position in relation to the body, it
is as exact close to the surface as it is farther away [32]. In the form of
the polyhedral method initially discussed in [32], the assumption that
the studied body has constant density is made. This makes the method
unsuitable in this form, as the main goal of this thesis is to study and
model bodies with heterogeneous density distributions. The authors
propose to model density variations inside a body “by adding and
subtracting small polyhedra internal to an overall polyhedral model”
[32]. The gravity field for these added shapes can then be calculated
and added to the gravitational field for the rest of the body. A more
complete adaptation to the polyhedra method for heterogeneous den-
sity distributions is presented in [28]. The authors subdivide the body
into tetrahedra formed by connecting the corners of the triangles of
the surface mesh to the center of the body. These tetrahedra are subdi-
vided into regions, and the polyhedral gravitational field is calculated
for each region. The results for each region are summed to attain
the complete gravitational field for the whole body. This leads to a
representation of the gravitation with the benefits discussed above,
the authors note though that this method is computationally intensive
and recommend other methods if fast computation times are needed.

2.1.3 Mass Concentration Method

When calculating the gravitational field of a body using the mass
concentration method, the body is approximated as a set of point
masses. The gravitational acceleration or potential at a given point p
is then derived by summing up the contributions of every point mass.

a = −G ∑
i

ρiVi

r3
i

ri (2.1)

Equation 2.1 shows the formula for the gravitational acceleration,
with G denoting the gravitational constant, ρi and Vi the density
and volume of the mass concentration point or mascon i and with ri
denoting the distance between the mascon xi and the sample point p
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[21]. The vector ri runs from the sample point p to the mascon xi and
can be calculated as shown in equation 2.2 [22].

ri = xi − p (2.2)

The gravitational potential at a sample point p is analogously calcu-
lated by

U = G ∑
i

mi

ri
, (2.3)

with mi representing the mass of mascon i [4].

Implementations of the mascon method differ in how the body of
interest is subdivided into smaller sections and how these sections
are placed throughout the body. Commonly used methods include
filling the body with elements such as spheres or cubes. In case of
[20], these elements are distributed uniformly throughout the body
and the results compared to the polyhedral method. The authors
find that the mascon approach is able to approximate the polyhedral
gravitational field closely, with noticeable differences only close to the
bodies surface.

The authors of [16] propose a method to improve upon the greater
errors of mascon models when evaluating points close to the surface a
body. They use a sphere packing algorithm to fill the body with non-
uniformly sized spheres while focusing on placing a greater amount
of smaller spheres close to the surface of the body. This allows for a
greater accuracy close to the surface. With this approach, they are able
to reduce the error by almost 30% in comparison to a similar method.

In [2], the authors take a different approach to determining the posi-
tions of the mascons. They start out with a polyhedral shape model of
the body. Each triangular face of the polyhedral shape “is connected
to the centre of the asteroid to form a tetrahedron” [2]. The point
mass is then set to be proportional to the volume of the tetrahedron
and placed at its centroid. The authors propose a second method as
well, where they further divide each of the tetrahedra into three parts
and place the point masses at the centroid of each part. This divides
the body into three layers and results in an increased resolution of
the mascon model. With these methods, the authors achieve similar
results to the polyhedral method close to the surface of the body, with
reduced computation time in comparison to the polyhedral method.
Differences in the gravitational potential between the mascon models
and the polyhedral model occur mainly “in the interior of the body
and at the edges, where the distance with the body’s centre of mass is
greater” [2].
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To sum up, the mass concentration method provides similar accu-
racy of the calculated gravitational field as the polyhedral method
while being able to model heterogeneous mass distributions. It also
provides faster computation times as the polyhedral method. Addi-
tionally, it does not suffer from inaccuracies of the gravitational field
close to the surface of the body to the same degree as the spherical
harmonics method. Though it is not completely immune to this like
the polyhedral method, there are ways to mitigate these inaccuracies.
The mascon method is thus well suited to model the gravitational
fields of small bodies like asteroids, which often have shapes that
differ strongly from a sphere and might have heterogeneous mass
distributions.

2.2 classical methods for inverse gravity modeling

Inverse gravity modeling, meaning the derivation of the mass or den-
sity of a body from its gravitational field, is an ill-posed problem. The
main reason for this is that a solution for inverse gravity modeling is
non-unique. To solve this issue, a condition needs to be imposed on
the searched for density [17]. This can be done by introducing a-priori
knowledge about the studied body. In case of the earth, this knowledge
is available through measurements of seismic or magnetic properties,
which are used to constrain the solution for the density. For small
bodies such as asteroids, such information about the internal struc-
ture of the body might not be available [1]. Methods to address these
problems for small bodies like asteroids are presented in the following.

In [24], the authors assume measured spherical harmonic coefficients
and a polyhedral model of the asteroid shape are given. The shape
is comprised of tetrahedra which fill the volume of the asteroid and
are grouped into polyhedra either to fill the volume uniformly or
according to some physical reasoning about the internal structure of
the asteroid. The authors explore a uniform distribution of tetrahedra,
with 507 being assigned the same density and one density outlier. They
also test a grouping into eight larger quadrants with different densities,
and a core-mantle discrimination, with a lower density mantle and
a higher density core. To determine the densities of these formed
polyhedra, the authors use a least-squares formulation to minimize
the difference between the given spherical harmonic gravity field and
the gravity field created by the choosen polyhedral grouping. They
then use singular-value decomposition to solve the resulting equation.

In the uniform distribution of 508 tetrahedra with one outlier, the
problem is under-determined, meaning that the resolution of the mea-
sured gravitational field is not high enough to find an exact solution
for the amount of densities, that need to be determined. The method
is still able to distinguish the one outlier density from the others,
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although no precise density values can be determined. The one outlier
also only affects the determined densities around it and does not
distort the found densities in the rest of the asteroid, meaning the
model is able to detect “local distortions in the density distribution”
[24]. In the over-determined case, where only eight densities need to
be determined, one for each quadrant, the model was able to deter-
mine the densities with a very small error. While testing the same
eight quadrant model with a lower resolution gravitational field to
make the problem under-determined, the authors found that the error
increases drastically in this case. The model was also able to find a
good solution for the core-mantle distribution, given a gravitational
field with sufficient resolution.

The authors of [1] divide the studied body into a surface layer with
constant density, and an interior layer discretized into a generic mesh.
The elements forming the interior layer are then “grouped to form
density anomalies” [1], which are regions of uniform density. This
grouping reduces the numbers of parameters that need to be estimated.
The authors estimate the initial shape of the density anomalies by
using the level-set method adapted from [8]. The final shapes of
the anomalies and their densities are then obtained by applying an
iterative least-squares optimization.

The authors note that due to the non-unique nature of the gravi-
tational inversion problem, the single solution provided by the least-
squares optimization is not sufficient because of the other possible
solutions that would fit the data equally well. To tackle this, the
authors apply their inversion algorithm multiple times, to generate
multiple possible solutions and cluster these solutions into similar
families. They propose that this leads to “information on the uncertain-
ties associated with a single family of solutions ... [and provides] an
exploration of the range of possible interior distributions” [1]. While
exploring this approach the authors find that they only detect “less
than 3 significantly different families of interior, although generally
the true solution was included in one of those” [1]. The conclude that
additional work is needed to remove biases from the method.

The authors find that their method is able to approximate the true
density reasonably well in most of their tested cases. Their method
generally performed better on more irregularly shaped models than
on more spherical bodies. Due to the initial assumption in the method,
that the body is composed of distinct regions of density, the method is
well suited for bodies which are composed of distinct anomalies. The
method is still able to find solutions for bodies with smooth density
distributions, but other methods are better suited for cases such as
this, as well as when a more complete view of possible solutions to
the gravity inversion problem is needed.
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In [20] the authors discretize the studied body into finite elements,
either cubes or spheres, beginning with 211 elements. They start out
with an initial estimate for the densities of these elements and use a
batch least-squares covariance analysis to optimize the densities to
best fit the measurement gravity data. The gravity data to which the
estimates are compared is modeled in the shape of trajectories around
the body, like a spacecraft taking measurements would produce them.
The authors find that they only get significant improvements on their
initial density estimate for elements which are positioned near the
surface of the body, where the points the gravity field is measured at
are close to the elements. They also find that when they increase the
number of elements to 3292, their method is unable to meaningfully
improve upon the initial density estimate. They conclude that the
points where the gravity is measured at are too far away to derive a
good estimate for each element at this resolution. They propose to
start the estimation with fewer elements and increase their number, as
measurements from closer trajectories become available in practice.

The author of [29] conceptualizes gravity modeling in terms of
matrices, resulting in a matrix which transforms a density vector into
the corresponding gravitational potential. The inverse of this matrix
would solve the inverse gravity modeling problem. The kind of matrix
inversion problem studied in the paper is underconstrained, which
leads to infinite solutions for the density distribution, which all exactly
match the input gravitational field. To generate these solutions, the
author obtains a reference solution using the pseudo-inverse matrix.
This inversion is performed using QR decomposition and also yields
kernel basis vectors of the matrix. Other solutions to the inversion are
now described by equation 2.4, with ciϱ jϱkϱ

representing the density
solution, [ciϱ jϱkϱ

]
re f .

the reference solution and [uq] being the kernel
basis vectors, with sq representing arbitrary factors.

[ciϱ jϱkϱ
] = [ciϱ jϱkϱ

]
re f .

+ ∑
q

sq[uq] (2.4)

With the help of this equation the space of exact solutions to the
inversion problem can be explored, for example using Monte Carlo
techniques. To test the method, the author applies it to a sample body
assuming a uniform mass distribution, one composed of three layers
and the layered model again with added noise. Due to the fact that
there are infinitely many solutions to the inversion problem, assump-
tions about the solution can be introduced to make exploring the
solutions space easier. These assumptions are used in the Monte Carlo
search to find solutions that match them well. The author gives exam-
ples of these assumption which include assuming a certain density
range, looking for the solutions which have a minimal or a maximal
range of densities and looking for solutions without local minima
inside of the body. Several of these target functions can be combined
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Figure 2.1: Body modeled with blocks according to [28].

and balanced by weights. In the tests, the solutions generally converge
on the underlying ground truth density distribution while increasing
the resolution of the input gravitational field, if the assumptions con-
straining the search for solutions are correct. This is true for both the
uniform and the layered mass distribution. Solutions are also found in
the test case with added noise, but the noise can limit the maximum
input resolution of the gravitational field, where a solution can still be
found.

In [28], the authors utilize so called density maps, which “refer[s]
to the distribution of different density regions within the body, and
the density value is the value of density associated with each density
region” [28]. Given this density map and a gravitational field, they
determine the density value for each of the density regions using
least-squares estimation. If the number of density regions is kept low
enough in comparison to the gravitational fields resolution, the least-
squares estimation yields a unique solution. The density regions are
created by covering the body with equally sized blocks, as shown
in figure 2.1. To calculate the gravitational field from the estimated
density distribution, the authors use their adaptation of the polyhedral
method for heterogeneous bodies as described in section 2.1.2. Each
of the described sections gets its density for the calculation from the
block from the block model, which overlaps with its center.

The authors evaluate their method on the asteroid Castalia. They
start out with two blocks or density regions, then increase to 10 and 90
blocks. They find that their method works well, with a percentage error
between the estimated and true densities lower than 10% in most parts
of the asteroid. The error between the gravitational field calculated
from the estimated density distribution and the input gravitational
field “decrease[s] by about an order of magnitude each time the num-
ber of blocks is increased” [28]. When they evaluate the gravitational
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field inside of smallest possible sphere encompassing the body as well
as on its surface, they find errors under 10% and under 5% respectively.

In general the classical approaches to inverse gravity modeling
presented here involve imposing constraints on the solution for the
density distribution to deal with the non-uniqueness of the inversion
problem and make finding a unique solution possible. In case of [29] a
general solution space is derived first, after which different constraints
can be employed to explore this solution space. The solution for the
inversion is usually found using optimization methods.

2.3 inverse gravity modeling with machine learning

There are generally two kinds of approaches used to do inverse gravity
modeling with machine learning. The first approach usually involves a
kind of convolutional neural network being trained to do the inversion,
which is then able to generalize to unseen data. This approach will be
presented first. The second approach takes inspiration from so called
Neural Radiance Fields or NeRFs.

2.3.1 Inverse Gravity Modeling with Convolutional Networks

Approaches which employ convolutional networks to do inverse grav-
ity modeling usually apply their method to gravitational measure-
ments on the surface of the earth, to predict the density in the earths
crust underneath. An example for this is [34], where the authors train
a U-Net and apply it to gravity data from East Antarctica. The U-Net
is a fully convolutional network, which was developed by [23] with the
aim to provide good performance with very few training samples, in
contrast to previous deep convolutional networks. In the initial work,
it was used for an image segmentation task. To adapt the U-Net for
gravity inversion, the authors of [34] use a 32x32 image with one chan-
nel as an input, each pixel representing a gravitational measurement.
The output of the model is a 32x32 image with 16 channels, with the
channels being used to represent the third dimension of the output,
which is the depth in this case. The so called Dice function is used as
a loss function that measures the agreement between the predicted
density distribution and the ground truth distribution. The authors
add an additional constraint term, which consists of the sum of the
weighted squared L2-Norm between the predicted and ground-truth
density distributions and the predicted and ground-truth gravity data
respectively. A synthetic dataset is used to train the model, which is
generated using a random walk approach. The authors subdivide their
research area into 32x32x16 cubes with one kilometer side length each,
matching the output dimensions of their U-Net. They then start from
an initial 2x2x2 cube starting point in this grid and move a number
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Figure 2.2: Test case of the U-Net based inversion method with two shapes
above one another. Figure from [34].

of steps ranging between 60 and 80 in random directions. Each step
is two kilometers long. The visited cubes become part of a higher
density area with a density of 1g/cm3, with rest of the cubes being
set to 0g/cm3. The authors generate a dataset of 20000 density models
using this method. The corresponding gravitational fields are calcu-
lated using a method specific to calculating the gravity of a point on a
surface, with mass distributed in prisms underneath.

To test the accuracy of their method, the authors construct different
test density models, calculate the gravitional field and apply their
inversion. The model is able to reconstruct the general shape of the
high densities regions well, although the density values are not exact,
especially when more complex shapes are tested. The model is more
exact in regions closer to the surface, with higher divergences in
the deeper sections. It is able to distinguish two shapes above one
another, with space in between, as can be seen in figure 2.2, but
the authors note that accuracy needs to be improved in this case.
They also evaluate the difference between their method with the
additional constraint term described above and without. They find
that the constraint term reduces the error between actual and predicted
density distribution slightly, and noticably reduces the error between
actual and predicted gravitational field. In addition to the synthetic
tests, the authors also apply their model to real measurements of
gravitational data gathered in East Antarctica. They find that their
model yields a density distribution which is consistent with previous
studies.
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The authors of [15] use a similar method, the main difference being
the addition of residual connections to a U-Net based approach. They
attain slightly better results in comparison to a U-Net based approach.
Another similar approach is presented in [5], where the authors use a
similiar data creation method, but use a 3D-Unet instead of the two
dimensional version. Results are difficult to compare with the other
presented works, as F1-Scores are given instead of attained errors.

The models developed in the presented works work well on the
applications on earth for which they were designed. In the context
of this thesis however, they would have to be adapted to work on
small-bodies in space. The main difference between these applications
is the kind of gravitational data available. Where in the case of earth
the data is usually measured or generated in a two dimensional plane
with the mass distributed underneath, measurements in space are
usually taken by space probes in orbit around a body of interest,
see for example [14]. This leads to measurements in the shape of
spherical trajectories around the body, and this spatial information
should be utilized when adapting approaches based on convolutional
networks. If input data for a network to predict a small-bodies density
distribution were limited to a two dimensional plane on one side
of the body, the model would probably yield less accurate results
in the parts farthest away from the gravitational measurements, as
could be seen in [34]. The inclusion of data closer to the densities in
question might improve the results. There have been approaches to
adapt the U-Net to work on spherical data, for example in [35], where
the authors adapt the convolution operation to spherical surfaces
and build a Spherical U-Net with it. The concept of the 3D U-Net as
proposed in [3] and adapted to gravitational inversion in [5] is also
interesting in the context of this thesis, as the output of the inversion is
a density distribution in three dimensional space. The inversion might
thus benefit from the additional 3D processing capabilities the 3D
U-Net provides. Ideally, a U-Net based network for gravity inversion
on small-bodies would process the spherical gravitional data of the
input with spherical convolutions in the encoder part of the network,
similar to [35]. In the decoder 3D operations similar to the ones in
[3] would be used to arrive at the three dimensional output of the
density distribution. The problem with this approach is the fact that
the architecture of the U-Net is symmetrical and this results in the
shape of the inputs and outputs being usually similar. For example, the
Spherical U-Net takes a spherical surface as an input and also yields
a spherical surface as an output [35]. Similarly the 3D U-Net gets
three dimensional input data and outputs three dimensional data. The
authors of [34] are able to generate three dimensional output from two
dimensional input by encoding the third dimension in the channels of
their output image, but the data flowing through the U-Net is still two-
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dimensional. This is important because one of the features of the U-Net
is the concatenation of features from the encoding part with features
from the decoding path. This would be difficult to accomplish with
two representations in the encoder and decoder part of the network
that are as different as the spherical representation of the Spherical
U-Net and the three dimensional representation of the 3D U-Net. Due
to these challenges I chose to focus on the NeRF inspired approaches
instead, which will be presented in the following.

2.3.2 Inverse Gravity Modeling with a NeRF inspired approach

The authors of [11] propose a solution to the inverse gravity modeling
problem, where they train a neural network to represent a mapping
from Cartesian coordinates to the body density. The training procedure
of the so called GeodesyNets can be seen in figure 2.3. The input in the
form of Cartesian coordinates is fed into the network, flowing through
a number of fully connected layers and the output of the network
being the predicted density at the input point An arbitrary number
of points and their corresponding densities can be sampled from
the network like this. The gravitational field corresponding to these
densities can then be calculated and compared to either a gravitational
field obtained through forward modeling or actual measurements of a
gravitational field. The error between the predicted and ground-truth
gravitational field is calculated and used in backpropagation to update
the neural networks parameters, to minimize the error. This makes
the gravitational field the predicted density produces more closely
resemble the ground-truth gravitational field step by step. Notably,
the GeodesyNet does not require a shape model to be given and can
learn the shape of the body from the gravitational data. This stands in
contrast to the classical inverse gravity modeling methods discussed
in section 2.2, which need a shape model. However, GeodesyNets can
incorporate a shape model for improved results.

The authors generate the ground-truth gravitational data using the
mascon method (see section 2.1.3). The masses are distributed by
subdividing the volume of the body into tetrahedra and placing the
masses at their centroids. They create models for “the asteroids 433
Eros, 25,143 Itokawa, and 10,1955 Bennu and the comet 67P Churyu-
mov–Gerasimenko, as well as a fictitious Planetesimal and a toroidal-
shaped body” [11]. These models are created assuming homogeneous
mass distributions, however for Bennu, Itokawa and Planetesimal
the authors create additional models with heterogeneous mass dis-
tributions. To standardize the approach across the different bodies,
non-dimensional units for this ground-truth data are introduced. The
body is set into the hypercube with dimensions [−1, 1]3 and scaled
so that “so that the maximum absolute value of its coordinates is
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Figure 2.3: Training procedure of a GeodesyNet. Figure from [11].
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δmax = 0.8” [11, Supplementary Method 4]. The unit of mass is set to
the body mass and the gravitational constant to one.

The authors train a GeodesyNet for each of the bodies and evaluate
the error with respect to the ground-truth gravitational field at three
different altitudes: 0.05, 0.1 and 0.25 units of length. They find an
error between 0.11% and 0.28% for all cases. The authors compare
their method to [33], where a hybrid mascon and spherical harmonics
method is used. In this work, the parameters of the model are de-
termined using least-squares estimation. Notably, this does not lead
to a direct representation of the density distribution of a body, but
the model allows for arbitrary calculations of gravitational fields. The
authors note that the relation of the model parameters to a density
distribution still needs to be determined. The GeodesyNet is found
to reach comparable accuracies to some of those presented in [33],
even though no shape model is used. The authors of [11] note that
the usage of a shape model with the GeodesyNet “would ... result
in orders of magnitude smaller errors”[11, Supplementary Method
5]. They point out that it is generally difficult to compare results of
gravity modeling across the literature, as a common validation practice
does not exist. To allow for better quantitative comparison, the authors
implement their own mascon approach, which does not require shape
information. This approach uses a uniform grid of masses inside the
hypercube with dimensions [−1, 1]3, which was also used to create
the ground-truth data for the GeodesyNet. These masses are then opti-
mized to fit the ground-truth gravitational data using gradient descent.
The number of mascons is set to equal the number of parameters in
the largest GeodesyNet used. Both models are trained on the homo-
geneous ground-truth data and evaluated close to the surface of the
body and farther away, about 0.15 length units and between about 0.15
and 0.3 length units respectively. When looking at the performance
farther away, both models perform well, with the better performing
method depending on the studied body. Closer to the surface, the
GeodesyNet performs consistently better than the mascon method,
confirming this case as a slight weakness of the mascon method, as
discussed in section 2.1.3. The authors also test the performance of
the GeodesyNet when utilizing a shape model on the heterogeneous
ground-truth data. They find that this improves the error in compari-
son to not utilizing a shape model, especially at low altitudes above
the bodies surface. Utilizing the shape model also results in a density
distribution that is closer to the ground-truth density distribution.

Summing up, the GeodesyNet provides several advantages over
classical method for gravity inversion. Firstly, it does not require a
shape model, but can utilize one to improve the results. It also does
not need any assumptions to be made about the internal density
distribution and yields a continuous density distribution, in contrast
to a mascon based method. The gravitational field corresponding to
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the GeodesyNet yields better results closer to the surface of the body
as well, when compared to a pure mascon based approach.



3
B U I L D I N G T H E D ATA S E T

3.1 obtaining and cleaning up the data

In anticipation of utilizing an approach based on a convolutional neu-
ral networks to do inverse gravity modeling as described in section
2.3.1, I created a training dataset for such an approach. The dataset
consists of a number of asteroid density distributions and their cor-
responding gravitational fields. It is based on the shape models and
additional information about small-bodies provided on the 3D As-
teroid Catalogue website [6]. The shape models and information on
this website were gathered from many different sources, for more
details refer to the sources provided on the pages for the different
small bodies.

Since there is no easy way on the website to download all the shape
models at once, together with the information about the corresponding
bodies, I started out by downloading the websites sources to my
computer, together with the shape models. I then wrote a python
script to process the information from all the individual html files
into one csv file, to allow for easier processing. While looking over
the data, I noticed that only 26 out of the 1635 asteroids came with
information about their mass, although 1563 came with a diameter.
Since the total mass of a body is needed to calculate a gravitational
field that is scaled correctly, I decided to reconstruct the masses of
the bodies by using the diameter. I assumed that the volume and
total mass of a body would be roughly correlated. Since the volume
and radius of a sphere are in a cubical relation I figured trying to fit
a polynomial of degree three to the available data would be worth
investigating. To make sure that the resulting function would yield
a mass of zero for a mean diameter of zero, I disabled the fitting of
the intercept. I also forced the regression to have positive coefficients
to make sure positive diameters would always yield positive masses.
The result of this experiment is shown in the upper part of figure 3.1.
The learned function fits the data well and seems to represent the
relation between mean diameter and body mass meaningfully. I also
tested other regression methods like the Random Forest, the results of
which can be seen in the bottom part of figure 3.1. I was able to get a
better score with the Random Forest in comparison to the Polynomial
Regression when I split the available data with mass into a train and
test set, but I think in a case with so little training data the Random
Forest is prone to overfit. It looks like this happened when looking
at the plot of the Random Forest in figure 3.1. To avoid overfitting, I

16
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Figure 3.1: Predicted body mass with Polynomial Regression and Random
Forest using the mean diameter.

think in this case the simpler model which can be more easily derived
from the real physical relationship of these two properties is the better
choice.

3.2 modeling and calculating the gravitational field

With the masses for most of the asteroids restored, I started working
on the mascon method to calculate the asteroids gravitational fields.
After loading an asteroids mesh, I scale the maximum extent of the
asteroid to be its diameter, since the real extents in x, y and z direction
are again only available for a limited number of asteroids. This is only
an approximation of the actual size of the asteroid, but the size is
in the correct order of magnitude. The next step is the subdivision
of the asteroid into multiple mascons. As I was building the dataset



3.2 modeling and calculating the gravitational field 18

in anticipation of training a model like the ones presented in section
2.3.1, my aim was to create mascon models with the same dimensions
for all asteroids. These methods require all of their inputs to have the
same dimensions. Mascon models usually produce different numbers
and volumes of mascons, depending on the shape of the modeled
body. All the methods presented in section 2.1.3 share this property.
My initial solution to this problem was to fill the bounding box of the
asteroid with mascons shaped like cuboids. The length of each cuboid
in each dimension is the length of the bounding box in this dimension
divided by the desired number of subdivisions per dimension. This
leads to the volume of the bounding box being completely covered
by mascons. Figure 3.2 shows this method with ten subdivisions
leading to 1000 mascons. The advantage of this method is the relatively
small number of mascons which do not overlap with the asteroid
while always providing the same dimensions no matter the shape of
the asteroid. A potential issue is the fact that information about the
position and proportions of the mascons gets lost when the mascons
masses are the only input to a machine learning model. This leads to
the property that an asteroid can be scaled in different dimensions
and will still yield the same mascon representation from the view
of a machine learning model, as long as the volume of the mascons
stays the same. For example, an asteroid with a bounding box of
dimensions (10, 1, 1) will yield the same representation as the same
asteroid rescaled to a bounding box of (1, 10, 1). To address this issue, I
implemented a different subdivision method, which is similar in layout
to the mascon based approach in [11], which the authors compare
the GeodesyNet to. With this approach, I place the asteroid into a
cube, which is then subdivided into a grid of cubes. Figure 3.3 shows
the result of this for ten subdivisions in each dimension and the
side length of the cube set to the maximum extent of the asteroid.
This method leads to the same number of mascons for all asteroids
as well, but the mascons are all cubes and therefore have the same
relative dimensions across asteroids. This method also does not have
the scaling invariance problem discussed before. A potential drawback
of this method might be the greater number of mascons that do not
overlap with the asteroid. This leads to a lower resolution of mascons
covering the asteroid compared to subdividing the bounding box with
the same total number of mascons. Both of these methods need to be
compared in practice, but subdividing the cube has fewer theoretical
issues.

After subdividing, densities can be assigned to all of the mascons.
I implemented both a uniform distribution of density, as well as a
random one. For the uniform distribution, the total mass is divided
equally between the mascons whose centerpoints lie inside of the
asteroid. I then calculate the density by dividing this mass by the vol-
ume of each mascon. For the random distribution I sample a random
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Figure 3.2: Filling the bounding box with mascons. Here ten subdivisions
were used, leading to 1000 mascons.

Figure 3.3: Subdividing a cube with the asteroid placed inside. Here the
cubes sides have the length of the asteroids maximum extent.
Each dimension has ten subdivisions leading to 1000 mascons.
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Figure 3.4: The sampled points creating a sampling sphere around the aster-
oid.

value from the continuous uniform distribution in the interval [0, 1)
for every mascon whose centerpoint lies within the asteroid. I then
scale these values so their sum equals the total mass of the asteroid.
The densities are then calculated again by dividing the masses by the
mascons volume.

To be able to calculate the gravitational field corresponding to
the density distributions, I create a sphere of points at which the
gravitational acceleration or potential can be calculated. To describe
the points on the sphere I use spherical coordinates similar to the ones
introduced in [10, p. 18]. A point P on the sphere is described by its
radius r from the center of the sphere, as well as the angles λ and θ.
The angle λ describes the angle between P and the x-axis in the x-y
plane and the angle θ is the angle between the line connecting the
center of the sphere and the point P and the z-axis. By subsampling
the angles λ and θ I create evenly spaced rings of points around the
z-axis, which are themselves evenly spaced in the range of θ. Figure
3.4 shows the resulting sampling sphere.
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With the mascons and the sampling points determined, I calcu-
late the gravitational accelerations or potentials with equation 2.1 or
equation 2.3 respectively.

3.2.1 Utilized Libraries

I used vedo for the handling and some operations on 3D objects and
meshes [19]. Numpy is used heavily for data handling and its functions
[9]. I used numba to JIT compile some of the most computationally
intensive functions to improve speed [13]. To parallelize the code and
work on multiple asteroids at once I used the multiprocessing package
from Pythons standard library.

3.2.2 Usage

After creating the dataset I decided to implement the incorporation
of additional information into the inversion process, based on the
method described in [11]. Since this method does not need the amount
of data in this dataset to be trained, I was unfortunately unable to use
this dataset in this thesis. It can still serve as a basis for future work,
for example to train gravity inversion models like the ones described
in section 2.3.1.



4
M O D I F I C AT I O N S T O G E O D E S Y N E T

The aim of this thesis is to achieve an inverse gravity modeling method
whose performance is comparable to other inversion methods and
which is able to incorporate additional expert information into the
inversion process, in the form of regions inside of the asteroid with
predefined density. I have presented and compared different machine
learning based methods for inverse gravity modeling in section 2.3
and decided to use the most promising for asteroids, which are the
GeodesyNets introduced by [11]. I also chose this approach because
it seemed the most straightforward to implement the introduction
of additional information into the inversion process for. In this chap-
ter, I will describe the modifications I made to the GeodesyNet, so
that it can incorporate these regions of predefined density into its
training process. I will refer to methods which incorporate regions
of predefined density as guided inverse gravity modeling from hereon.

4.1 the loss function

In the unmodified form implemented by [11], a training iteration of
the GeodesyNet starts with sampling its output on a grid inside the
hypercube with dimensions [−1, 1]. The gravitational acceleration or
potential is then calculated at a number of target points outside of
the asteroid using the densities sampled from the GeodesyNet. This
gravitational field represented by the GeodesyNet is used to calculate
the loss of the neural network together with the gravitational field
calculated from the mascon ground-truth. After comparing a number
of different loss functions, the authors of [11] settle on a modified ver-
sion of the Mean Absolute Error. They introduce a mass normalization
factor κ which is multiplied with the networks predictions to scale
them. This allows the network to focus on learning the difference to a
homogeneously filled volume and not on finding the correct absolute
mass of the body as well. The value of κ is calculated analytically in
each training iteration of the network and the authors find the optimal
value for it to be

κ =
∑n

i=1 ŷiyi

∑n
i=1 y2

i
(4.1)

with yi, i = 1..n being the ground-truth accelerations or potentials
from the mascon model and ŷi, i = 1..n the predicted accelerations
or potentials of the network [11, Supplementary Method 1]. When
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incorporated into the Mean Absolute Error, the resulting loss function
is

LκMAE =
1
n

n

∑
i=1

|yi − κŷi| (4.2)

To implement the guided inverse gravity modeling for the GeodesyNets,
I took inspiration from an optional part of the training implemented
by the authors of [11] called Vision Loss. The Vision Loss is an addi-
tional term that is added to the loss calculated on the gravitational
field. It is calculated by sampling a number of points outside of the
body, for which a shape model is needed. The expectation is for these
points to have a mass of zero, as they are outside of the body. Deriving
the Vision Loss now involves calculating the Mean Absolute Error
between the sampled points and zero. The result is added to the loss
calculated on the gravtiational field to form the total loss. This urges
the densities at the points to be zero.

To implement guided inverse gravity modeling, I added a similiar
term to the loss based on the gravitational field, which I call the
guidance loss. The predefined regions of density can be given by the
user either in the form of spheres or a plane that splits the asteroid
into two halves. The spheres are characterized by their centerpoints
and radii, as well as densities which define the desired densities in the
volumes covered by the spheres. The plane is defined by a point in the
plane and the planes normal vector. The density corresponding to the
plane describes the desired density on the positive side of the plane.
I calculate the guidance loss by first sampling a number of points
inside of the spheres or inside the asteroid on the positive side of the
plane. The output of the GeodesyNet is sampled at these points and
the guidance loss calculated using

LκG =
1
n

n

∑
i=1

|yδG − κŷi| (4.3)

with yδG representing the predefined guidance density and ŷi, i =
1..n the predicted densities at a number of points inside of the pre-
defined regions or region. The mass normalization factor κ is also
used to scale the networks predictions, so that the densities ŷi are
correct. Incorporating the guidance loss into the total loss leads to the
following equation for the total loss:

L = LκMAE + LκG (4.4)

Initial testing with this approach revealed that it performed worse
when compared to the ground-truth based on the mascon model than
the unmodified GeodesyNet, which does not incorporate additional
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density information. I looked at how the two components of the loss,
gravitation based and guidance density based, developed over the
duration of a training run. Figure 4.1 shows both loss components
as well as the loss of an unmodified GeodesyNet for the last 2000
iterations of the run. It looked to me like the network was optimizing
the guidance loss at the detriment of the gravitational field based loss,
which would explain the increased error with regard to the ground-
truth data. To test this hypothesis and correct this potential issue, I
introduced a factor g, 0 ≤ g ≤ 1 to be able to scale both losses. This
results in the modified equation

L = (1 − g) · LκMAE + g · LκG (4.5)

to calculate the total loss. Introducing the factor and finding a suit-
able value for it through empirical means lead to the new losses
depicted in figure 4.2. The loss based on the gravitational field is now
an order of magnitude smaller and is close to the loss of the unmodi-
fied GeodesyNet. The guidance loss nearly doubles after introducing
the scaling factor when comparing the iterations with the smallest
overall loss across both runs. This is a worthwhile trade-off for the
improvement in the gravitational field based loss.

With the addition of scaling the losses the guidance loss works well
and achieves the goal of being able to incorporate expert information
and previous knowledge about the density in certain regions into the
inversion process of the GeodesyNet.

The optimal scaling factor varies between different bodies and
guidance regions. Since it is impractical to do an empirical study
for every new body and guidance region to find the optimal scaling
factor, I introduced a method to scale the guidance loss automatically.
Introducing a good scaling factor found through empirical means
leads to the gravitational field based loss and the guidance loss ending
in the same order of magnitude at the end of a training run, as seen
in figure 4.2. To force this throughout the whole training run, I scale
the guidance loss to always be the same absolute number as the
gravitational field based loss:

LSG = (
LκMAE

LκG
) · LκG (4.6)

The resulting automatically scaled guidance loss LSG is then just
added to the gravitational field based loss to form the total loss.

L = LκMAE + LSG (4.7)
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Figure 4.1: Comparing the last iterations of a training run with the initial
implementation. The separated components of the loss are shown,
one based on the ground-truth gravitational field and the other
on the given guidance density for one guidance volume, with the
loss of an unmodified GeodesyNet depicted for comparison.

4.2 heterogeneous ground truth data

To accurately reflect the use-case that a scientist with expert knowledge
might use the guidance density to specify areas that in fact match the
actual density of an asteroid, I created versions of the ground-truth
data that reflect the predefined guidance densities. The authors of [11]
provide mascon models with homogeneous mass distributions for “the
asteroids 433 Eros, 25,143 Itokawa, and 10,1955 Bennu and the comet
67P Churyumov–Gerasimenko, as well as a fictitious Planetesimal and
a toroidal-shaped body (...) [they] call Torus” [11]. For Bennu, Itokawa
and Planetesimal the authors provide models with heterogeneous
mass distributions as well. For this thesis, I chose to work on the
model for the comet 67P Churyumov-Gerasimenko, as well as the
asteroid Bennu. Churyumov-Gerasimenko has a density of about 1.7,
Bennu of 0.7, in the unmodified version. My first heterogeneity is
a small sphere in the middle of Churyumov-Gerasimenko, with a



4.2 heterogeneous ground truth data 26

Figure 4.2: Comparing the last iterations of a training run after introducing
a scaling factor to weight the two loss terms. The loss of an
unmodified GeodesyNet is shown for comparison.

density of 1, for Bennu a placed a small sphere of density 1.2 close to
the surface. The second type of heterogeneity was created by placing
three spheres of different sizes inside of the asteroid. For Churyumov-
Gerasimenko I generated two versions of this, one with densities 1,
0.5 and 2.5 for the spheres, the other with density 0 for all spheres,
to simulate cavities inside the body. For Bennu I choose densities of
1, 0.5 and 1.5. To test specifying the guidance density by a plane and
evaluate a heterogeneity much bigger proportionally to the rest of the
asteroid, I introduced a heterogeneity for the head of the comet similar
to the way the authors of [11] did for the asteroid Itokawa. The result
can be seen in figure 4.3. I generated a similar version for Bennu, with
the guidance density being specified for about a third of the asteroid.

The ground-truth is generated by subdividing the interior volume of
the surface mesh of a given small body into tetrahedra, using TetGen
[26]. A mascon is placed at the center of each tetrahedron and a mass
proportional to the tetrahedrons volume is assigned to it, with all
masses totalling the bodies mass, in case of a homogeneous mass
distribution. In the version used by the authors of [11], this method
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Figure 4.3: 67P Churyumov-Gerasimenko with a density heterogeneity intro-
duced for its head.

results in a mascon model with about 57000 mascons for the comet
67P Churyumov-Gerasimenko, and about 38000 for Bennu. To create
the heterogeneous versions of the bodies, I first selected all tetrahedra
whose centers overlapped with any of the guidance spheres or are
on the positive side of the plane defining the guidance area. I then
assigned a mass to each mascon, so that the density calculated with
respect to the tetrahedrons volume matched the guidance density. This
process results in either a loss or a gain of total mass of the body, as
mass is removed or added to the mascons in question. To bring the
total bodies mass back to its state before the modifications, I removed
or added a proportionally equal amount of mass to each mascon that
was not affected by the modifications. While modifying the generation
of the mascon model to create the heterogeneity of the small sphere in
the middle of the body for Churyumov-Gerasimenko, I noticed that the
volume of the tetrahedra whose centerpoints overlap with the sphere is
about double the volume of the sphere, leading to a mass heterogeneity
about double the size it should be. The reason for this is the relatively
coarse resolution of tetrahedra on the inside of the body compared to
the spheres size, leading to only two tetrahedra overlapping with the
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sphere which are unable to accurately approximate the sphere. To solve
this problem I increased the number of tetrahedra used to subdivide
the body, leading to a model with about one million mascons for
Churyumov-Gerasimenko and about 175000 for Bennu. The higher
resolution leads to more tetrahedra centerpoints overlapping with the
sphere which results in a better approximation and a volume of the
tetrahedra that is much closer to the volume of the sphere.

4.3 guidance point samplers

To be able to calculate the guidance loss, the density needs to be
evaluated inside of the guidance regions. I was able to utilize the
spherical sampler provided by the authors to do this for the spherical
guidance regions, and chose to sample 1000 points for every sphere
every 10 training iterations. For the guidance region defined through
a plane, I implemented my own plane guidance sampler. I start by
creating random coordinates in the region covered by the bodies extent.
I then calculate the distances of all the points to the guidance plane,
defined by a point in the plane and its normal vector. For all points
where the distance to the plane is negative, meaning they are on the
wrong side of the plane, I mirror them across the plane to the other
side. I then check if all of the points are inside of the asteroid and
discard those that are not. This is repeated until the desired number
of points is found. For the plane guidance sampling I chose to sample
100000 points every 10 training iterations to adequately cover the
guidance region, as I expect the plane guidance regions to be much
larger than the spherical guidance regions.

4.4 performance considerations

The results in this thesis where mostly generated with 10000 iterations
of training with a batch size of 1000 points (samples of the gravitational
field around the asteroid) and 300000 integration points sampling the
density inside the unit cube, to allow for comparisons with the results
of [11]. Testing these parameters with the unmodified code provided
by the authors of [11], a full training run took eight to nine hours.
The machine I was testing with was equipped with a Nvidia RTX
2080 Super, an AMD Ryzen 3900X and 32GB of RAM. In one of the
notebooks from the code accompanying [11] the authors write that
a full training should take roughly one hour on a Nvida RTX 2080ti.
When I contacted the author of [11], Dario Izzo, he told me that a
training run for the results of the paper took about two hours.

While investigating the codebase for bottlenecks, I found that the
most computationally intensive part of a training iteration by far is
the calculation of the gravitational field at the target points around
the asteroid based on the densities sampled in the unit cube. In the
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original code by the authors of [11] this is implemented as a loop
over the target points. I rewrote this code so that the gravitational
accelerations are calculated in batches, allowing for multiple target
points to be processed at the same time on the GPU. With enough
GPU memory to process all target points in one batch, this leads
to a speedup greater than 2x, reducing the time for a full training
run down to between three and a half and four hours, tested on a
Nvidia V100 GPU with 32GB of GPU memory. On GPUs with less
memory like the 8GB of the RTX 2080 super, the batch size needs
to be carefully selected, so that the data fits into the GPUs memory,
while still allowing the maximum number of points to be processed
at the same time. I have found processing the points in 25 batches,
leading to a batch size of 40 points to work well on the RTX 2080 super.
Interestingly, processing the points in batches also leads to a speedup
on GPUs where the full data would fit into the memory at the same
time. Using a batch size of 40 points leads to a final training time of
between two and three and a half hours, depending on the guidance
regions used.

The ray-triangle intersection algorithm that is used by the authors of
[11] to determine if points are inside or outside a body is implemented
as a loop over the points for which to check as well. When the guidance
region is specified through a plane this algorithm is used heavily,
leading to a slowdown in the training. To fix this problem, I rewrote
the implementation to make use of batch processing as well.

4.5 post training

The training time of a GeodesyNet of three and a half to four hours
makes it difficult for a user to test different guidance regions quickly
and see which one fits the given gravtiational field best. To address
this issue I split the training of the GeodesyNet into two steps. First
an unmodified GeodesyNet gets trained for 10000 iterations to fit the
given gravitational field, without specifying any guidance regions. The
resulting model serves as the base for the next step, where the training
is continued with the addition of guidance regions. To evaluate the
performance I compare the training in two steps to a training run that
is trained with the guidance loss from the start, for 10000 iterations.

4.6 Mascon based comparative method

The authors of [11] use a mascon based approach they call mascon-
CUBE, to evaluate the performance of the GeodesyNet in comparison
to, as discussed in section 2.3.2. I adapted this approach to be a suitable
comparative method for the GeodesyNet with guidance, by imple-
menting guidance for this approach as well. My initial approach was
to except the mascons lying inside the volume covered by the guidance
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spheres or the guidance plane from being optimized with regard to
the gravitational field during the gradient descent. Instead, I set their
masses to correspond to the predefined densities in every iteration of
the optimization. During the training the total mass of all mascons
in the masconCUBE constantly fluctuates. The guidance density ρG
is defined with regard to the ground truth, where all mascon masses
sum up to one. This problem occurs as well when comparing the
gravitational accelerations obtained through a GeodesyNet or mas-
conCUBE to the ones calculated on the ground-truth. The authors of
[11] solved this by introducing the scaling factor κ, which I described
in section 4.1. To make sure that the guidance density is correct with
regard to the fluctuating total mass, I used this factor as well. Since
the factor κ is calculated using the predictions of the masconCUBE on
the gravitational field, and the guidance masses are in turn needed
to calculate the predictions of the masconCUBE, I can only ever use
the scaling factor from the last training iteration to scale the guidance
masses. This might lead to slightly distorted guidance masses, harm-
ing the results. The parameters of the masconCUBE are squared to
form the mascon masses to ensure they are positive [11]. Taking this
into account, I take the square root of my defined guidance masses, so
that they are correct in the squared form. Together with the scaling
factor, I set the guidance masses mG in every iteration to

mG =

r
ρG · Vmascon

κ
(4.8)

with ρG denoting the guidance density and Vmascon denoting the
volume of a mascon.

As an alternative approach I implemented a guidance loss similar
to the one for the GeodesyNet, described in section 4.1. To calculate
the loss I first select all points of the masconCUBE which lie inside the
guidance regions. I then calculate the corresponding densities for the
mascon masses at these points by dividing by the volume of a mascon
Vmascon. With the densities, I can calculate the guidance loss using the
Mean Absolute Error:

LκG =
1
n

n

∑
i=1

|κ · m2
i

Vmascon
− ρG| (4.9)

The mascon masses are represented by mi, i = 1..n, and the guidance
density by ρG. The scaling factor κ is used again to scale the squared
masses correctly in relation to the guidance density. The guidance
losses for all guidance regions are added up and then added to the
gravitational field based loss, using a guidance factor determined from
the results of 5.2.

Testing both approaches and comparing the results to the ground-
truth revealed that the second approach achieves better results with
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regard to the gravitational field, which is why I chose to use it as a
comparative method for the GeodesyNet. Training a masconCUBE for
10000 iterations takes about an hour on a Nvidia V100 GPU. The results
of the comparison of both guidance approaches for the masconCUBE
will be presented and discussed in section 5.3.

4.7 validation procedure

To assess the performance of the GeodesyNet and the masconCUBE
and to compare the results, I use the validation procedure used by
the authors of [11]. It consists of two different approaches to selecting
the validation points at which a model is compared to the ground-
truth. The first approach was introduced by the authors to enable a
comparison to [33]. The validation points are sampled randomly at
a low altitude between the surface and about 0.15 length units above
the surface, as well as at a higher altitude between about 0.15 and
about 0.3 length units above the surface. While testing this method on
the comet 67P Churyumov–Gerasimenko, I noticed that some of the
validation points ended up inside of the body, which was distorting
the results. I modified the method to discard those points to remedy
this problem. The other method involves sampling validation points at
three different altitudes, for which I chose to use the standard values
in the code provided by the authors of [11]. This results in 10000
points being sampled at 0.05, 0.1 and 0.25 length units above the body
respectively.

I used the same number of integration points sampled in the unit
cube for the forward modeling as in the training of the GeodesyNet,
because the authors state in one of the provided notebooks that using
a different number leads to worse results.

The authors use the Normalized L1 Loss, as well as the Normalized
Relative Component Loss in [11] to compare their results, which
can be seen in one of the provided notebooks as well. I used the
Normalized Relative Component Loss as my performance metric to
compare validation results.
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R E S U LT S A N D D I S C U S S I O N

In this chapter I will present how well the GeodesyNet and the com-
parable masconCUBE perform while learning a density and mass
distribution for different kinds of heterogeneities, both with and with-
out guidance. The approaches will be studied on the comet 67-P
Churyumov-Gerasimenko and the asteroid Bennu. These results will
be presented in section 5.1. In section 5.2, I will present and discuss
the results of the empirical study I did to find and evaluate good
guidance factors. In section 5.3 I will compare the two different guid-
ance approaches for the masconCUBE. In section 5.4 I will evaluate
how well the post training described in section 4.5 works. All of the
results where generated while training for 10000 iterations for both
the GeodesyNet and the masconCUBE, unless otherwise specified. For
the GeodesyNet I used 300000 sampling points inside the unit cube
for the forward modeling, and the gravitational field was evaluated at
1000 target points in every training iteration.

5.1 geodesynet vs . masconcube

In this section I will evaluate how well the GeodesyNet with guid-
ance performs, both compared to a GeodesyNet without guidance
and the masconCUBE method, with and without guidance. Firstly I
will discuss how well the methods are able to fit the ground-truth
gravitational field. After that I will compare the methods on how close
they are able to get to the given guidance density in the guidance
region, and thus the ground-truth in that region. For the GeodesyNets
with guidance, I chose the guidance factor which produced the best
performance regarding the gravitational field from 5.2. I chose the
same guidance factor for the corresponding masconCUBE model with
guidance, as I expect the tradeoff between gravitational field loss and
guidance loss to be similar in the masconCUBE. For the version of
Churyumov-Gerasimenko with three spheres of different densities, I
did not perform a full guidance factor study. Here, I used the same
guidance factor that performed the best in the same three sphere ver-
sion, but with the densities set to zero. In the figures, the GeodesyNets
are labeled “GN” and the masconCUBEs “mC”.

5.1.1 Results on the gravitational field

Starting with results on Churyumov-Gerasimenko with a single sphere
in the middle, the errors are similar for all methods, when looking
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at the low altitude interval on the left side in figure 5.1. At higher
altitudes the difference between the GeodesyNets and the mascon-
CUBEs widens, with the GeodesyNet exhibiting a two to three times
greater error in comparison to the masconCUBE, depending on the
altitude. While the difference between the masconCUBEs with and
without guidance is small, the masconCUBE without guidance per-
forms slightly better. For the GeodesyNets the errors are similar for
the low altitude interval, whereas the GeodesyNet with guidance
performs noticably better at all other altitudes. To compare the results
to [11], I ran the same validation procedure on a trained model for
Churyumov-Gerasimenko provided by the authors. The version of
Churyumov-Gerasimenko I created with the sphere in the middle
differs the least from the version with a homogeneous density distri-
bution the model by authors is trained on, and is therefore the most
useful version to compare to. At the low altitude interval, the error of
the unmodified GeodesyNet is close to my versions of the GeodesyNet.
At the high altitude interval and altitude 0.05 the error increases about
30 to 40 percent compared to the unguided GeodesyNet. At the al-
titudes 0.1 and 0.25 the error of the unmodified GeodesyNet keeps
increasing, to about three and six times the error of the unguided
GeodesyNet respectively.

Figure 5.1: Excerpt from the results on Churyumov-Gerasimenko with a
heterogeneity of one sphere in the middle of the body, with
radius 0.05 and density 1. A guidance factor of 0.05 was used for
the guidance models.
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For Bennu with a single sphere close to the surface, the errors are
similar again for the low altitude interval, depicted in figure 5.2. For
all other altitudes, the masconCUBEs produce a much smaller error,
with the unguided GeodesyNets error being between five to ten times
greater, depending on the altitude. The error of the GeodesyNet with
guidance is about double the error of the unguided GeodesyNet for
all altitudes except the low altitude interval. For the masconCUBE, the
version with guidance also produces higher errors, ranging between
30 and 130 percent depending on the altitude, with the exception
of the low altitude interval as well. When comparing the unguided
GeodesyNet to the model trained by the authors of [11], the results are
similar at all altitudes, with my version of the GeodesyNet producing
slightly smaller errors.

Figure 5.2: Excerpt from the results on Bennu with a heterogeneity of one
sphere close to the surface of the body, with radius 0.05 and
density 1.2. A guidance factor of 0.05 was used for the guidance
models.

Comparing the results obtained for Bennu with the results for
Churyumov-Gerasimenko, the errors are higher by about a factor of
two for Churyumov-Gerasimenko when looking at the low altitude in-
terval, and by an order of magnitude when looking at the high altitude
interval, even more for the masconCUBE. At altitudes 0.05 and 0.1
the errors are more comparable, although they are still much smaller
for Bennu. This might be explained by the fact that the underlying
target point sampler for the intervals reproduces the shape of the body
more closely than the one for the fixed altitudes. The more complex
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shape of Churyumov-Gerasimenko might make these cases more diffi-
cult than the relatively round shape of Bennu. For the GeodesyNets,
using guidance leads to a lower loss for Churyumov-Gerasimenko,
while leading to a higher loss for Bennu. For the masconCUBE using
guidance leads to higher errors for both bodies, although this effect
is much more pronounced for Bennu. Comparing my results to the
GeodesyNet by the authors of [11], they are close for Bennu, while
the error is overall much higher for the unmodified GeodesyNet on
Churyumov-Gerasimenko. I would have expected the results to be
closely comparable, since my modification to the ground-truth is small
in this case. The bigger difference might be that my ground-truth for
Churyumov-Gerasimenko has a much higher resolution of about one
million mascon points compared to the homogeneous version with
57000 points, whereas Bennu has about 175000 mascon points com-
pared to about 37000 for the homogeneous version.

The results for Churyumov-Gerasimenko with three spherical het-
erogeneities with densities of zero, and the version with three spherical
heterogeneities at the same positions with densities of 1, 0.5 and 2.5
are very similar. The difference in error between the GeodesyNets and
the masconCUBEs are less pronounced than in the version with one
sphere, with the error only slightly higher at the low altitude interval,
and between two and 3.5 times higher at the high altitude interval
and at the fixed altitude 0.1. The largest differences can be found at
the altitudes 0.1 and 0.25, which are depicted in figure 5.3 for the
version with the densities set to zero and figure 5.4 for the version
with varying densities. At altitude 0.1 the errors for the GeodesyNets
are very similar, while the errors for the masconCUBEs are almost
twice as high for the version with the densities set to zero. At altitude
0.25 the GeodesyNets have a 20 to 30 percent higher error compared
to the masconCUBEs, while they have a two to three times higher
error in the version with varying densities. The overall magnitude of
errors is similar to the one displayed for the version with one sphere.
For both versions with three spherical heterogeneities errors between
the model with and without guidance are similiar.

For the version of Bennu with three spherical heterogeneities with
densities of 1, 0.5 and 1.5, the masconCUBE produces an order of
magnitude smaller errors at all altitudes, with the exception of the
low altitude interval, shown on the left side in figure 5.5. Here the
results are much closer, the GeodesyNets produce errors that are about
20 percent higher than the masconCUBEs. For the GeodesyNets, the
version with guidance produces slightly smaller errors at all altitudes
than the version without. The opposite is true for the masconCUBE,
here the version with guidance produces 20 to 30 percent higher errors
than the version without at all altitudes, with the exception of the low
altitude interval.
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Figure 5.3: Excerpt from the results for Churyumov-Gerasimenko with
three spherical heterogeneities distributed through the body. The
spheres have radii of 0.05, 0.035 and 0.05 and densities of zero. A
guidance factor of 0.0125 was used for the guidance models.

When comparing the results of the three sphere heterogeneity ver-
sion of Bennu with the ones of Churyumov-Gerasimenko, the errors
are again higher by a factor of two for Churyumov-Gerasimenko at
the low altitude interval and by more than an order of magnitude for
the high altitude interval. Similarly to the version with one sphere,
the errors get more comparable for the other altitudes as well. For
Churyumov-Gerasimenko the difference in errors between the mas-
conCUBEs and the GeodesyNets, while still being big, is much less
pronounced than in Bennus case.

The GeodesyNet without guidance produces a loss about twice as
high as the one for masconCUBE without guidance, for Churyumov-
Gerasimenko with the heterogeneity defined through a plane, at the
low altitude interval, depicted on the left in figure 5.6. The difference
keeps increasing at the higher altitudes, with the error about an order
of magnitude higher for the altitudes 0.1 and 0.25. The loss for the
version of the GeodesyNet with guidance is about a third higher than
for the unguided GeodesyNet, with the exception of altitude 0.25,
where it is slightly lower. The guided version of the masconCUBE has
an error about four times the error of the unguided version for the low
altitude interval, making its error also about double the error of the
guided GeodesyNet. For the other altitudes, the error of the guided
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Figure 5.4: Excerpt from the results for Churyumov-Gerasimenko with
three spherical heterogeneities distributed through the body. The
spheres have radii of 0.05, 0.035 and 0.05 and densities of 1, 0.5
and 2.5. A guidance factor of 0.0125 was used for the guidance
models.

version is between two and nine times the error of the unguided
version. Compared to the other versions of Churyumov-Gerasimenko,
the errors are in the same order of magnitude, althoug the errors for
the versions with guidance are comparatively higher.

The results for Bennu with the heterogeneity defined through a
plane are similar for the high altitude interval and the fixed altitudes,
and generally match the graph on the right side of figure 5.7. The
unguided masconCUBE exhibits the smallest error, with the mascon-
CUBE with guidance having about four to five times greater errors.
The unguided GeodesyNet has an about two to three times greater
error again, with the guided versions errors being about 20 to 30
percent higher than the unguided versions. The exception to this is
the altitude 0.25, where the error for the guided version is slightly
lower than for the unguided version. For the low altitude interval, the
masconCUBE with guidance exhibits by far the largest error, similarly
to the plane version of Churyumov-Gerasimenko, although the effect
is far more pronounced here. The error of the unguided version of the
masconCUBE is close to the GeodesyNet, with the error of the guided
GeodesyNet being about fifty percent higher.

Comparing the results for the plane versions of Churyumov-Gerasimenko
and Bennu, the errors are again much smaller for Bennu the altitude
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Figure 5.5: Excerpt from the results for Bennu with three spherical hetero-
geneities distributed through the body. The spheres have radii of
0.05, 0.035 and 0.05 and densities of 1, 0.5 and 1.5. A guidance
factor of 0.05 was used for the guidance models.

intervals and more comparable at the fixed intervals. The most striking
difference between the results of the two bodies is the error of the
guided masconCUBE, which is lower then the GeodesyNets for all
altitudes except the low altitude interval for Bennu. This is not the
case for Churyumov-Gerasimenko, where the guided masconCUBE
is close to the unguided GeodesyNet at altitude 0.1 and higher the
altitude 0.05 and the high altitude interval.

When looking at these results, it becomes clear that the mascon-
CUBE is able to match the ground-truth gravitational field far better
than the GeodesyNet for the heterogeneities defined through single
and multiple spheres, on both Churyumov-Gerasimenko and Bennu.
This is true for both the guided and unguided version. On the versions
of the bodies with the heterogeneities defined through a plane, the
unguided masconCUBE is still the best method by far, but the errors of
the masconCUBE with guidance are closer to the GeodesyNets. Here,
the GeodesyNets with guidance outperform the guided masconCUBE
at the low altitude intervals for both bodies.

Comparing my versions to the model trained by the authors of [11]
revealed similar results for Bennu. For Churyumov-Gerasimenko the
results where comparable for the interval altitudes and altitude 0.05,
but the unmodified GeodesyNet exhibited a much greater error for
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Figure 5.6: Excerpt from the results for Churyumov-Gerasimenko with the
heterogeneity defined through a plane. The density is set to 1.83
on the positive side of the plane. A guidance factor of 0.0125 was
used for the guidance models.

the altitudes 0.1 and 0.25. I was not able to replicate the finding of
the authors that the GeodesyNet and masconCUBE reach comparable
errors, in my results the unguided masconCUBE outperformed the
unguided GeodesyNet in every case.

5.1.2 Comparing the guidance losses

In this section I will be evaluating how well both the guided mascon-
CUBE and the guided GeodesyNet are able to match a given guidance
density. For the GeodesyNets, I calculated the guidance loss in the
guidance regions for the best model of a given training run, for the
models discussed in section 5.1.1. I did the same for the masconCUBEs.
For the models with multiple guidance regions, I calculated the mean
of the guidance losses. Table 5.1 shows the results. For the single sphere
and the multiple sphere versions of Churyumov-Gerasimenko, as well
as the for the multiple sphere version of Bennu the masconCUBE has
the smaller loss by a margin. Note that for the result of the mascon-
CUBE for the multiple sphere version of Churyumov-Gerasimenko
with the densities set zero, the masconCUBE sets the corresponding
masses in the guidance regions to zero, leading to a density of zero,
which makes the guidance loss also zero, which is the desired result.
For the version of Bennu with one sphere, both methods perform



5.1 geodesynet vs . masconcube 40

Figure 5.7: Excerpt from the results for Bennu with the heterogeneity defined
through a plane. The density is set to 0.99 on the positive side of
the plane. A guidance factor of 0.0125 was used for the guidance
models.

similarly well. The GeodesyNet produces the smaller guidance loss
for the plane versions of both bodies by a margin. Summing up, both
methods are able to get close to the specified guidance density. In
light of the results, a masconCUBE seems to be the better choice
with regard to the guidance loss when small guidance regions are
needed, while the GeodesyNet performs better on larger guidance
regions. The unguided versions of both methods produce guidance
losses between 0.16 and 2.84, meaning they do not fit the ground
truth well in the guidance regions. This means guidance is needed
if a given model is meant to match a certain density in a certain region.

5.1.3 Conclusion

In conclusion, the results in this section have shown that the mascon-
CUBE is the better choice of model, if no guidance is needed, as it
performs better than the unguided GeodesyNet in all studied con-
figurations, relative to the ground-truth gravitational field. Another
benefit of the masconCUBE is the faster training time. When guidance
is needed, the masconCUBE is still the better choice in most situations,
unless a situation requires the specific strengths of the GeodesyNet. It
performs comparatively well on target points very close to the bodies
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Ground-truth name GeodesyNet masconCUBE

CG sphere 4.448e-04 4.341e-05

CG multi-zero 2.320e-05 0.000e+00

CG multi 1.751e-04 7.840e-05

CG plane 7.732e-03 1.203e-02

Bennu sphere 1.251e-04 1.146e-04

Bennu multi 1.229e-04 2.864e-05

Bennu plane 7.470e-03 2.490e-02

Table 5.1: Final guidance losses for the studied ground-truths, for
GeodesyNets and masconCUBEs.

surface and beat the masconCUBE at the low interval altitude, when
the guidance region was specified through a plane. This is also the
situation in which the GeodesyNet outperforms the masconCUBE
with regard to the guidance density. It should also be noted that the
GeodesyNet provides a continuous function of the density inside the
body. This means that if a highly detailed interior model of a body is
needed and the resolution of the studied masconCUBE is not sufficient,
the GeodesyNet should be chosen for the task.

5.2 finding a good guidance factor

I did an empirical study to find out which guidance factor works best,
and if it differs from body to body and between different kinds of
guidance regions. I also wanted to evaluate how well the automatic
scaling of the guidance factor works in comparison to a guidance
factor found through empirical means. I studied different guidance
values and heterogeneities defined through one and multiple spheres,
as well as through a plane for both Churyumov-Gerasimenko and
Bennu. I will be displaying excerpts from the results in this section.
Figure 5.8 shows that the validation error massively increases above a
guidance factor of 0.1. Because of this I limited my search to factors
between zero and 0.1.

Comparing the results of the automatic guidance loss scaling with
the results of the defined guidance factors, the error is much higher
for the automatic scaling in almost every case. Examples for this can
be seen in figures 5.9 and 5.11. In these instances the error for the
automatic scaling is still in the same order of magnitude as the one
for the guidance factors. This is not the case for most of the other
cases I studied, where it is much higher. For this reason, I left the
automatic scaling out of the remaining figures, as it would distort the
other results to much.
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When looking at the results for Churyumov-Gerasimenko with the
heterogeneity defined through a sphere, there is no one guidance
factor, that performs best across all altitudes. A factor of 0.05 works
best in most of the cases, but not all, like on the left side in figure 5.9.
The differences between the different factors are not very pronounced
across all altitudes, especially between the overall two best factors,
which are 0.05 and 0.0125. The results for Churyumov-Gerasimenko
with three spherical heterogeneities do not differ strongly as well.
The exception is the result for the low altitude interval, where the
factors 0.075, 0.05 and 0.0125 perform noticably better, as pictured
on the left side in figure 5.10. For Bennu with three spherical hetero-
geneities, a factor of 0.05 performs better than the others on for all
altitudes, with the exception the altitude 0.25, where a factor of 0.025
performs equally well. An excerpt from these results is depicted in
figure 5.11. For Bennu with a heterogeneity defined through a sphere
close to the surface, all guidance factors produce similar errors for
the altitude 0.05, 0.1 and 0.25, with the factor 0.05 performing slightly
better than the others, depicted in figure 5.12. For the low and high
altitude intervals, a guidance factor of 0.025 performs better than the
others by a margin. For the heterogeneity defined through a plane
on Churyumov-Gerasimenko, the smallest guidance factors 0.025 and
0.0125 perform best across all altitudes, both leading to similar error
figures, illustrated in figure 5.13. The same is true for Bennu with the
heterogeneity defined through a plane, depicted in figure 5.14.

To summarize, there is no guidance factor that performs best across
all studied bodies and altitudes. The guidance factors 0.05 and 0.025
are generally amongst the best performers in most situations, which is
why they should be used in a new situation. The automatic guidance
loss scaling is not competitive in performance, and should not be used
over the defined guidance factors.

5.3 comparing guidance approaches for the masconcube

The validation results depicted in figure 5.15 show that the loss based
version of implementing guidance for the masconCUBE works much
better than setting the masses in question to the desired mass directly.
Especially for the result close to the surface in the interval (0, 0.156),
setting the masses directly produces unusable results. At the other
altitudes the guidance loss based version is between one and two
orders of magnitude better. Because of this, I chose the loss based
version as a comparative method for this thesis.

5.4 post training

In this section I will discuss how well the post training method de-
scribed in 4.5 works. I tested this method on Churyumov-Gerasimenko
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with a heterogeneity of one sphere and on Bennu, with the heterogene-
ity defined through a plane. Figure 5.16 shows the results for Bennu,
with each model depicted with the number of iterations it was trained
for, and the normally trained guidance model on the same ground-
truth on the right. The results show that for the fixed altitudes, as well
as for the high altitude interval, the post training model reaches the
loss of the normally trained GeodesyNet and improves from thereon.
For the low altitude interval, the post training has lower loss after the
first 1000 iterations.

For Churyumov-Gerasimenko the loss of the post-trained models
gradually declines towards the loss of the normally trained guidance
model, but never reaches it, for the interval altitudes and altitude 0.05.
For altitude 0.1 the loss of the normally trained model gets reached
after 10000 iterations of post-training, and for the altitude 0.25 this is
the case after 7000 iterations.

These results suggest that this method of post-training is a worth-
while avenue for further research, to be able to get good results with
guided GeodesyNets after fewer iterations of training, especially for
larger guidance regions. It might be worthwhile to explore loss weight-
ing that is specifically designed for this kind of post-training, to be
able to preserve the optimization to the given gravitational field from
the pre-trained model, while optimizing the guidance loss quickly.
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Figure 5.8: Full guidance factor study on Churyumov-Gerasimenko with a
heterogeneity of one sphere.
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Figure 5.9: Excerpt from the guidance factor study on Churyumov-
Gerasimenko with a heterogeneity of one sphere in the middle of
the asteroid with radius 0.05 and density 1.

Figure 5.10: Excerpt from the guidance factor study on Churyumov-
Gerasimenko with three spherical heterogeneities with radii
0.05, 0.035 and 0.05 and densities of zero.
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Figure 5.11: Excerpt from the guidance factor study on Bennu with three
spherical heterogeneities with radii 0.05, 0.035 and 0.05 and
densities of 1, 0.5 and 1.5.

Figure 5.12: Excerpt from the guidance factor study on Bennu with a hetero-
geneity of one sphere close to the surface of the asteroid with
radius 0.05 and density 1.2.
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Figure 5.13: Excerpt from the guidance factor study on Churyumov-
Gerasimenko with the heterogeneity defined through a plane.
The density is set to 1.83 on the positive side of the plane.

Figure 5.14: Excerpt from the guidance factor study on Bennu with the het-
erogeneity defined through a plane. The density is set to 0.99 on
the positive side of the plane.
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Figure 5.15: Excerpt from the validation results on Bennu for the mascon-
CUBE model, with the heterogeneity defined through a plane,
with the density set to 0.99 on the positive side of the plane. The
figure shows both versions of guidance I implemented, with the
masses defined in every iteration on the left and the guidance
loss based version on the right.
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Figure 5.16: Results of the post training method on Bennu with the hetero-
geneity defined through a plane. A guidance loss of 0.0125 was
used.
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Figure 5.17: Results of the post training method on Churyumov-Gerasimenko
with the heterogeneity defined through a sphere in the middle
of the body. A guidance loss of 0.05 was used.
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F U T U R E W O R K

In this chapter I will present ideas for possible future research, based
on the results of this thesis.

Firstly, a possible avenue for future research would be to utilize
the dataset I built in chapter 3 to train a machine learning model
similar to the ones I presented in section 2.3.1. It would be interesting
to see how such a model would compare performancewise to the
GeodesyNets presented here, and if it would be able to generalize
to unseen small bodies. If it could, this would improve upon the
long training times for the GeodesyNet and masconCUBE. As an
addition to this, implementing guidance for this kind of model would
be interesting as well.

Building on the results of my work on the GeodesyNets, a next step
would be to utilize more sophisticated techniques from multi-task
learning to weight the guidance loss and the gravitational field based
loss. These might be able to incorporate the guidance loss into the
training, while preserving the gravitational field based loss better
than the guidance factors in this thesis. They could also remove the
necessity to chose a good guidance factor. Exploring the approach
from section 4.5 further would also be worthwhile, and it might benefit
from the utilization of techniques from multi-task learning as well.
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7
C O N C L U S I O N

In conclusion, I built a dataset in the process of this thesis, which can
be used to experiment with and train future machine learning models
for inverse gravity modeling. In order to incorporate additional infor-
mation into the gravity inversion process, I modified the GeodesyNets
introduced in [11], and implemented a guidance loss, so that they are
able to optimize for a specific density in a specified region inside of the
body, in addition to the given gravitational field. I implemented the
same loss for a more classical mascon based method and compared
the results. I found that the mascon based method performed better
than the GeodesyNet in most of the cases I studied, both regarding the
gravitational field and how close the methods were able to get to the
specified guidance density. Additionally, I identified some scenarios in
which the GeodesyNet would be the better choice. To determine good
guidance factors to scale the guidance loss for the different ground-
truths, I performed an empirical search, and also experimented with
automatically scaling the guidance loss. To mitigate the long training
times of the GeodesyNet I tested post-training on an already trained
model without guidance, which showed promising results in some
situations.
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