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Abstract

The goal of this thesis is to enhance the Apollonian 3-d sphere packing algo-

rithm which is implemented in ProtoSphere.

3-d sphere packing is a technique to fill many 3-d spheres into an object, to

cover as much volume as possible without any sphere overlapping with an-

other sphere or the bounds of the object. Furthermore, several sphere packing

analysis metrics are introduced. The metrics cover aspects like the distribu-

tion of the spheres and covered volume differences over the entire area, filling

curves and the distribution of the spheres depending on its size to classify

models.

To optimize the packing quality, some adjustments were made to enhance the

covered volume. In addition the adjustments, several packing configurations

are tested which target aspects like computation time, most total covered

volume, target number of spheres or any trade-off to compute the most op-

timal packing depending on the application.

Another feature which is introduced is a classification of objects with similar

characteristics by applying similarity calculations on the final packing.
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Chapter 1

Introduction

1.1 Motivation

A 3-d sphere packing of an object is a set of non-overlapping spheres which

are all inside of the object and do not intersect with the surface. Sphere

packings have several applications like 3-d printing or collision detection in

simulations. The collision detection in particular has practical applications,

since haptic feedback can be generated for remote operations like surgeries

or maintenance on objects, which are hard to reach like satellites in space.

The better the haptic feedback, the more natural the workflow feels, which

improves the performance. In addition to the remote surgery, other medical

applications like laser therapies also benefit from good sphere packings.

To laser a tumor, a laser spreads inside of the tumor in a spherical shape

to destroy any sick cells. Obviously a better sphere packing enhances the

success of any of those applications. The motivation for this thesis is to

optimize the covered volume of sphere packings which are produced by

ProtoSphere as much as possible for several applications. ProtoSphere covers

on average about 85% of the entire volume. This thesis will start with a

hypothesis to examine whether after a certain percentage of covered volume

is exceeded. The sphere sizes converge to an equal size, which would make

any more packing trivial. This hypothesis is covered in the later stages.
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1.2 Goal

The major goal for this thesis is to enhance the performance of ProtoSphere

for arbitrary models which a condition, which is that all parts are water-

tight. Models which meet the condition perform best with the ProtoSphere

algorithms but the average covered volume for those models is about 85%

while the upper bound for the covered volume depending on the model is

somewhere in the range of 93% to 95%, 2.2.4. Therefore, the goal is to cover

more than 92% of the volume on average. Once the major issues for those

models are solved with stable packing, the solutions can be adapted to other

kind of models, which do not meet all the conditions.

Aside from the covered volume, another goal of this thesis is to analyze sphere

packing in several aspects. The only measured criteria for the non-parallelized

state of ProtoSphere was the covered volume percentage regardless of the dis-

tribution of the volume over the model. There are several other factors aside

from a total covered volume percentage, like distribution of spheres, volume

coverage and densities in the different areas of the object. Aside from other

visual representations, there are also metrics like the packing speed, distri-

bution of sphere sizes or the entropy which can be used to measure sphere

packings for several aspects. Furthermore, the observed metrics are providing

data which can be used to classify objects if the results are similar.

Ultimately this thesis aims to easily verify that future adjustment produces

a valid sphere packing.

1.3 Structure

This thesis is structured into four parts: Previous work 2 and architecture

2.11.1, measuring sphere packings 3, improving the packing algorithm 4, in-

terpretation of the results 5 6. The first part is about related work and tech-
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niques which were used to achieve the goals. In the next part, several mea-

surement and comparison techniques which can be applied on the packing

are introduced. For the third part, observed issues are listed and if possible

solved. Enhancements or mitigations are suggested for any part for which

other data structures could solve possible issues. Finally the results are pre-

sented and discussed.

1.4 Initial Hypothesis

In the PhD thesis [Wel12], assumptions were formulated, which are inves-

tigated in this thesis. He wrote: ’An other open problem is the analysis of

the voids between the spheres. If it is possible to estimate the voids a priori,

we could derive error bounds for our collision detection algorithm.’ Based

on this statement, two hypothesis are derived. A third hypothesis is set as

general goal.

Hypothesis 1 : The more spheres become inserted, the remaining voids be-

come smaller, more similar in shape and size, therefore new spheres add no

more information.

Hypothesis 2 : With more spheres the upper bound for the volume approx-

imates 100%.

Hypothesis 3 : A dynamic break criteria to stop the packing when the

spheres become too small exists.

In this thesis, all hypothesis are analyzed after several measurement criteria

are implemented and applied to the sphere packing.
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Chapter 2

Previous Work

There are some publications which focus on several aspects of sphere pack-

ing. Some publications try to predict the most covered volume for several

dimensions 2.2.4, others describe heuristics for sphere packings with a small

number of spheres 2.2.1. As a starting point for my research papers which

focus on a meaningful visualization of complex 3-d structures were evaluated

as inspiration 2.3 2.4. Additionally, basic mathematical algorithms 2.5 2.6

and the limits of datatypes 2.2.5 which handle uncertainty were considered

to handle edge cases. Of course the pioneering work of my predecessors

which implemented the initial states of the ProtoSphere framework 2.11 are

summarized over the relevant parts of this thesis.

2.1 Models

Any physical object of the real world can be converted into a 3-d model in a

mathematical representation. Aside from the polygons several other formats

exist which have, depending on the application, some advantages or disad-

vantages. For this thesis a polygon and Apollonian sphere packing represen-

tation are used. The polygon representation is usually called mesh. Meshes
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are mostly generated using triangular polygons. Since the number of poly-

gons is limited by memory, most models are optically similar but not exactly

the same [PAS99]. Depending on the resolution, sharp edges like in Fig: 2.1

appear since meshes do not scale well.

Figure 2.1: Polygon structure of a mesh. [PAS99]

To target that issue, surface meshes exist as alternative representation, since

meshes target the volume and surface meshes the optical representation

[BHS08]. Since volume meshes constitute the focus of this thesis those are

used and for sake of simplicity referred to meshes. Regardless of natural ob-

jects, mathematical objects like cubes or pyramids with no curved surface

are 100% identical to the real world, given the objects in the real world are

considered as perfect mathematical objects.

2.2 3-d sphere packing

Any 3-d sphere packing is a set of spheres, to meet three conditions. All

spheres must not overlap with any polygon of the model, all spheres are

inside of the model and all spheres are non-overlapping.

5



Figure 2.2: 3-d Sphere packing of a dragon. [Wel12]

In Fig: 2.2 a 3-d sphere packing for a Chinese dragon is shown.

There is no lower bound for the minimum distance between spheres, therefore

any distance d with |r1| + |r2| ≤ |d| where r1 and r2 describes the radii of

two adjacent spheres.

2.2.1 Heuristic sphere packing

In the publication A Look-Forward Heuristic for Packing Spheres

into a Three-Dimensional Bin [Ake14], Hakim Akeb describes a method

to optimize sphere packing with a heuristic instead of a greedy method. The

algorithm works for a maximum of about 100 spheres, but needs about one

hour to fill a model with these spheres to cover about 55 % of the total vol-

ume. Since computation time is also an important factor, and ProtoSphere

covers much more volume in a shorter time, a heuristic approach is good

for a low number of spheres. For ProtoSphere, any algorithm which has a

bigger computation time than one minute for more than 100 spheres is not

acceptable.

6



2.2.2 Kepler’s conjecture

In the publication Circle Packing, Sphere Packing, and Kepler’s

Conjecture [Mis16], Roshni Mistry compares several arrangements of

spheres of equal size and confirms Kepler’s conjecture for the maximum

density packing to be 74.048%. But since ProtoSphere is applied on arbitrary

models with Apollonian packing, Kepler’s conjecture does not fit for this

thesis. Still, the lower bound of 70.048% gives an indicator for a lower bound

which an Apollonian sphere packing should exceed.

2.2.3 Fractal dimension

In the publication The Fractal Dimension of the Apollonian sphere

packing [MB95], multiple authors analyzed the fractal dimension of sphere

packing, which has the value of about 2.474 for the third dimension the

upper bound would be 3. The fractal dimension describes the complexity of

shapes in any dimension. As example, the coastline of Great Britain which

has a fractal dimension of 1.25, while the mandelbrot set has a fractal dimen-

sion of 2, so the fractal dimension increases with the complexity of the shape.

2.2.4 Maximum density

In the publication How dense can one pack spheres of arbitrary size

distribution? [SDSRH12], multiple authors describe a method to estimate

the upper bounds for the maximum density that can be covered by an

Apollonian 2-d or 3-d sphere packing. The results depend on the fractal

dimension of the object. Therefore the results of [MB95] can be used to

predict the upper bound of the covered volume for 3-d sphere packings,

which is suggested to be in the range of about 93% to 95% depending on

the shape of the object. If the shape of the object is elliptical on which a

single sphere could cover more than 95% of the volume, the upper bound

7



is exceeded. The range of 93% to 95% holds for arbitrary objects, which

require a decent amount of spheres, to get close to 90% volume coverage.

2.2.5 Limits of floating point

In the paper What Every Computer Scientist Should Know About

Floating-Point Arithmetic [Gol91], David Goldberg investigates inter-

esting facts about floats. Floats are precise for the first seven digits after the

decimal digit. If arithmetic operations are performed on floats, like addition,

subtraction, multiplication or division, the result will contain minor errors.

This implies that for a sphere with the volume formula V =
4 · π · r3

3
with V = 0.0000001, the minimal radius for acceptable results would be

r = 0.00287941. For operations with floats which are close to 0.0000001 the

results are more likely to have errors. Therefore, any operation on small

numbers is avoided if possible. The alternative datatype to replace floats

would be doubles, which have a higher precision which would mitigate a

majority of the issues. However double precision calculations are available

for graphics processing units (GPU) which cost 2,000 e and more (Jan-

uary 19), therefore any GPU calculation is performed with floating precision.

2.2.6 Densest local packing

In the paper Densest local packing [HS11], Adam B. Hopkins and

Frank H. Stillinger introduce an algorithm to calculate and compare sphere

packings for several dimensions. However to apply the similarity formula on

two different packings, both packings require the same number of spheres

and the same sphere sizes.

S = 1−
∑

i |ni − nref
i |

2(N − 1)
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2.3 Image Segmentation

In the journal A Comparison of X-Ray Image Segmentation Tech-

niques [SCS13], multiple authors describe how to filter x-ray images for

image segmentation with thresholding by the x-ray intensity. This technique

is useful to visualize 3-d objects as 2-d representation, Fig: 2.3. In addition

to that, the silhouette of objects is clearly visible, which is an important

aspect to analyze sphere packings too.

Figure 2.3: a) X-Ray image of a hand b) Segmented image [SCS13]

2.4 Voxel Segmentation

In the paper A voxel-based technique to estimate the volume of

trees from terrestrial laser scanner data, [BHMv14] multiple authors

describe a technique to visualize 3-d volume as 3-d voxel representation Fig:

2.4. Voxel representations are useful to see the thickness of certain parts

of a model, which can be applied on any packing to distinguish different areas.

9



Figure 2.4: Identification of the occluded voxels: a) Scanning in Y-direction;

b) Scanning in X-direction; c) Checking of the candidates; d) Occluded voxels.

[BHMv14]

2.5 Entropy

In the paper A Mathematical Theory of Communication [Sha48],

by C. E. Shannon, a formula to calculate the amount of independent

information known as the Shannon entropy is introduced.

E =
∑n

i pi · log pi.

The entropy indicates how much independent information a data set contains.

The bigger the entropy, the more independent information is contained. Ap-

plied to a sphere packing, each sphere contains independent information,

which scales with the size of the sphere.

Worth mentioning is that each single sphere contributes to the entropy and

two different sphere packings with the same amount of covered volume might

still differ on the entropy. Given two sets of spheres which cover the same

10



volume, with the first set containing big and small spheres while the sec-

ond set contains equal-sized spheres, the second set would have a higher

entropy value since each single sphere contributes more volume as do indi-

vidual spheres on average. Therefore, models with low entropy values depend

on a few big spheres to cover the majority of the volume, while models with

high entropy values depend on more similar-sized spheres.

An example for the entropy is the Huffman encoding, with the base of 2

the formula predicts the average number of bits which is required to encode

a message. For sphere packings, the information is the volume each sphere

covers.

2.6 Linear Regression

In this thesis, linear regression is used several times, when no common func-

tion was found which fit the data set. The linear regression is calculated by

using the method of least squares to calculate the formula y = m · x + b for

two data sets to find a possible correlation and regression line [IM]. A linear

regression is useful if some processes are almost linear but no other regression

fits.

2.7 Voronoi Points

Voronoi points are points in structures in any dimension which have max-

imum distance to any nearby point. For the first dimension on a line, a

Voronoi point would simply be in the middle of the line. A Voronoi point

in the second dimension on e.g. a triangle would be the middle of the inner

circle of the triangle which touches any line of the triangle. The inner circle

covers the most volume of any possible circle, since it has the biggest radius.

Therefore, Voronoi points are always the point inside a polygon on which the

most area is covered. This characteristic does not change for any dimension,

so Voronoi points are a feasible approach for sphere packing.
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Figure 2.5: Voronoi points of a bunny. Each touching blue line is a Voronoi

point with the maximum distance to the outer shell. [Wel12]

In Fig: 2.5 a Voronoi graph is shown, each point in which blue lines intersect

is a Voronoi point with the maximum distance to the outer lines.

2.8 Cosine Similarity

In the paper Plagiarism Detection Between Theory And Practical

Calculations by Intisar H. Albakush [Alb17], several possibilities to detect

similarities are discussed. The cosine similarity is mentioned as the best

technique to detect similarities of two sets, there also are the Euclidean

similarity distance and Jaccard similarity distance. All techniques measure

the similarity as percentages: 0% is no similarity at all while 100% means

the data sets are identical. Calculating the similarity of two 3-d sphere

packings depending on the sphere size distribution can be used to classify

objects with similar shapes. The similarity is calculated by the formula:

cosα =
d1 · d2

|di| · |d2|

The result of cosα multiplied by 100 indicates the similarity as a percentage.

12



2.9 Kullback-Leibler Divergence

In the paper Distributions of the Kullback-Leibler divergence with

applications by Belov, Dmitry and D Armstrong, Ronald [BDA11], several

possibilities to detect similarities are discussed. Since the similarity implies

low difference, the Kullback-Leibler divergence can be used to confirm the

similarity. The results are always positive starting with 0 for no divergence

and increases depending on the difference between both data sets. The

formula to calculate the difference is:

D(g||B) =
∫
|g(x) log

g(x)

b(x)
|

The result is a number which depends on the base of the logarithm while

bigger numbers mean a bigger difference. Since there is no meaningful base,

the base e is used. The formula is slightly modified by converting all results

to the absolute values, to prevent the case that positive and negative results

balance each other which could lead to no divergence.

2.10 Packing Density and Covered Volume

It is important to note, that in this thesis, the packing density and covered

volume refers to similar characteristics but are not the same thing. The cov-

ered volume is the volume of all spheres inside the model which does not

necessarily need to be distributed evenly. If some areas of the models are

packed with spheres and other areas are not packed with spheres at all, the

density is different for the empty and filled areas, while it is still possible

to calculate the covered volume. In the case of the Kepler packing, the den-

sity is evenly distributed over the entire area, therefore the covered volume

percentage and density are the same. Therefore, in most parts of this thesis,

the term covered volume is used, except for the parts where the density is

explicitly required.
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2.11 ProtoSphere

The initial algorithm for ProtoSphere was introduced by Dr. René Weller

[Wel12]. As a basic idea the, greedy algorithm inserts a random point inside

of the model. Those points are pushed towards the closest current Voronoi

point until it stops converging. Once the approximation is close enough, the

currently approximated Voronoi point is inserted as the sphere with the

maximum non-overlapping radius. By doing this, the volume of the model is

covered by a 3-d sphere packing with a growing density per each new sphere.

The initial algorithm for ProtoSphere was enhanced by Jörn Teuber [Teu13].

In that thesis, parallelization on the GPU was applied to the algorithm

to test three different approaches: an explicit grid, an implicit grid and a

hybrid grid to reduce the computation time by culling different areas.

The first approach uses a grid which is called an Explicit Grid [Teu13], this

grid splits the model into several parts to reduce the number of checked

polygons for each area. This split especially performs well on models with a

high polygon count. The second approach is a grid which is called an Implicit

Grid [Teu13]; the purpose of that grid is to use as many cores on modern

GPUs as possible. To achieve that, the implicit grid should be as fine as

possible, which usually means, until the memory runs out. Implicit grid cells

are also marked as inside or outside, which makes it easy to determine if a

prototype is inside ore outside of the model to discard outside prototypes at

early stages.

To optimize the advantages of the explicit and implicit grid approaches, a

third approach was evaluated too. This approach is called a Hybrid Grid

[Teu13]. In this thesis, only the hybrid grid is used, since that type performs

best. The state after the adjustments is referred to in this thesis as a

parallelized state..

There are several other projects implemented by Gabriel Zachmann, Rene

Weller and Jörn Teuber which use ProtoSphere. Since ProtoSphere was
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used on those publications but no adjustments were made, these are not

mentioned in particular [WZ10a] [RWT13] [WZ10b].

2.11.1 Architecture

The algorithm of ProtoSphere consists of several steps. For the architecture

the hybrid packing procedure is considered, since the entire architecture and

any setup would not provide any meaningful information for this thesis. The

splitting step, which is done during the filling process, will also be skipped,

since that step depends on efficient memory management. With more time,

GPUs will receive more memory, therefore those issues will be either solved

or reduced with newer graphic card generations. On the other hand, major

issues in the algorithm to pack the model with 3-d spheres, adjustments will

enhance the performance of ProtoSphere for any future GPU as well. For

the remaining chapter, the hybrid setup with a split grid, which contains all

information to pack the prototypes, is assumed.

2.11.2 Initialization

On initialization ProtoSphere requires a model, which is converted into a

more useful data structure. Once the model is converted, the GridManager is

the class to control all procedures of the algorithm. There are several routines,

to pack the model with spheres. The sphere packing itself is performed in

three major steps, which loops until a break criteria is hit. The three steps are:

initialization for the packing, looping over prototype optimization processes

and exiting packing and converting valid prototypes to packed spheres.

2.11.3 Inserting prototypes

In the first step Fig: 2.6, the major goal is to distribute initial prototype

starting positions inside the model on a random position in each cell.
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Figure 2.6: The procedure to spawn the prototypes at a random non-

intersecting position. The horizontal boxes contain the class names which

calls the methods on the vertical lines. The vertical boxes show when a

method starts and responds.

If the prototype is outside of the model, it is discarded; to check that the

initial position of the prototype is validated against each polygon for that

certain cell, outside prototypes are discarded. For every prototype which is

still valid, each is validated against each intersecting sphere and each sphere

which is inside of the grid. Prototypes which are placed inside of a sphere

are pushed outside in the direction opposite to the center of the sphere. All

prototypes which are still inside their initial cells will be considered for the

optimization step.

2.11.4 Optimizing prototype positions

After prototypes are distributed over the grid, the position is optimized to

cover as much volume as possible.
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Figure 2.7: The procedure to approximate the Voronoi points for each proto-

type. The horizontal boxes contain the class names which calls the methods

on the vertical lines. The vertical boxes show when a method starts and

responds.

During the second step in Fig: 2.7, the position of the prototype is optimized

to cover as much volume as possible. To achieve that, the closest point to

the prototypes is calculated. The closest point is either on a polygon or on a

sphere. Once the closest point for each prototype is calculated, it is pushed

away from that point. This process continues for a configured amount of

iterations, each push for each iterations covers slightly less distance with a

cooling function [Wel12]. By doing this, the Voronoi points which are covering

the most volume for that current step in the current area are approximated.

2.11.5 Convert prototypes to spheres

For the last step Fig: 2.8 several criteria are checked before they are converted

to actual spheres.
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Figure 2.8: The procedure to insert the biggest prototypes as spheres for

the packing. The horizontal boxes contain the class names which call the

methods on the vertical lines. The vertical boxes show when a method starts

and responds.

At first, each prototype is checked if the difference between two neighbor

cells is close to 0; in this case it is discarded. The remaining prototypes

are now sorted by their radii. Each prototype which is still valid is checked

against all other prototypes and if two prototypes intersect, the smaller one
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is discarded. At this point all remaining prototypes could be inserted, but

since the second step also produces small prototypes for several reasons,

which are covered in 4.2.4, there is an additional condition. The volume of

each prototype is compared against the biggest prototype for the current

iteration. All prototypes which are too small are discarded, the biggest one

is guaranteed to become inserted. Too small is defined as a volume threshold

compared to the biggest prototype. The remaining prototypes are inserted,

also all grid cells are updated, which intersect with the new spheres. If

this is the case, it is added to the intersection sphere list for future iterations.

2.11.6 Loop

The initialization 2.11.3, optimization 2.11.4 and conversions steps of the

prototypes 2.11.5 are looping in the GridManager class until the amount

of added spheres exceeds the configured amount. For previous theses, the

amount of spheres usually was set to 200,000.
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Chapter 3

Measuring Packing Quality

In this chapter, several visualizations and metrics are introduced to mea-

sure the quality of the sphere packing because any improvement needs a

measurement to be confirmed. First, 3-d rendered sphere packings will be

discussed in 3.1. Additionally, 2-d representations for various aspects are

presented: sphere concentration 3.4.1, voxel coverage 3.4.2 and density of the

covered volume 3.4.3. Aside from the 2-d representations, multiple graphs

are applied to the packing: filling curve 3.4.4, amount of theoretical required

spheres 3.4.6, distribution of the sphere sizes 3.4.7 and entropy 3.4.5. The

results of the distribution of the sphere sizes can also be used to classify

the models by using the Kullback-Leibler divergence and cosine similarity,

3.4.8. The results of the measurements are used to improve ProtoSphere in 4.

3.1 3-d Rendering of Sphere Packings

Any 3-d sphere packing can be rendered as a 3-d visualization, but since there

is no way for a human to estimate and sum up the volume of thousands of

spheres, this representation contains no information of the covered volume.

Additionally, any representation is displayed on a 2-d screen which uses a
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perspective viewport to simulate 3-d effects; even in Virtual Reality, only the

front side is visible and therefore leads to the same issues.

Figure 3.1: A 3-d perspective of a cube with the majority of the volume cov-

ered with a 3-d sphere packing which was created with ProtoSphere. [WZ10b]

Aside from the simulated 3-d effects for a cube with a length of 1, the smallest

spheres of a 200,000 packing have a radius of 0,0008 which would require a

resolution of at least 1250x1250 pixel for the smallest spheres to cover at least

a pixel. In addition, visible spheres block the view of non-visible spheres and

even if the spheres were slightly transparent, multiple layers of pixel sized

spheres would produce visual disturbances. Therefore, assuming the outer

layer of the object is packed and blocks the view of all inside spheres there is

no way to tell if the inside is packed at all. Furthermore there is also almost no

visual difference between 80% and 90% volume coverage. This gets even more

difficult for the difference of 90% to 91%. A 3-d visualization of the sphere

packing just shows a visualization of visible data, while 2-d representations

can extract one aspect like sphere concentration or the thickness while all

other aspects are ignored.

3.2 Quality criteria

To rate the packing quality, criteria must be set. For general physical applica-

tions, common criteria are computation time and precision. Sphere packings
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as well have several meaningful criteria which depend on the application, like

the covered volume. For this thesis, the goal is to enable the ProtoSphere con-

figuration to target the following criteria: 1) cover the most volume with as

few spheres as possible 2) cover as much volume as possible in a short time

3) reduce the computation time as much as possible even if less volume is

covered 4) cover as much volume as possible regardless of the number of

spheres.

Since optimization requires more computation time than greedy approaches,

there is no configuration which targets high volume coverage and a fast pack-

ing. Therefore, reasonable configurations are considered, which are discussed

in 6.1.

3.3 Used Models

For this thesis, nine different 3-d models are used: Ateneam Fig: 3.9,

Armadillo Fig: 3.6, Bunny Fig: 3.5, Cow Fig: 3.7, Cube Fig: 3.8, Cylinder

Fig: 3.3, Dog Fig: 3.2, Dragon Fig: 3.4, Pig Fig: 3.10.

The Armadillo, Cow, Dog and Pig were chosen as humanoid models with

a torso, 4 to 5 limbs and a head. Regular models like the Cube and the

Cylinder were chosen as geometrical primitive models, which have regular

shapes. The Ateneam, Bunny and chinese Dragon were chosen as irregular

models. Each model has different characteristics which have different effects

on the sphere packing. The major characteristics are:

Majority torso: Ateneam, Bunny, Cow, Pig

Majority limbs: Armadillo, Dragon, Dog

Big limbs: Armadillo, Pig, (Dragon)

No small connections: Ateneam, Bunny, Cube, Cylinder
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Figure 3.2: Dog Figure 3.3: Cylinder Figure 3.4: Dragon

Figure 3.5: Bunny Figure 3.6: Armadillo Figure 3.7: Cow

Figure 3.8: Cube Figure 3.9: Ateneam Figure 3.10: Pig
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3.4 2-d Representations

3-d representations have several issues for quality analysis 3.1. Therefore,

other representations are required which target the issues and visualize

information in a format which is more human readable. To achieve that, 3-d

representations are simplified to 2-d representations by calculating first the

3-d result and then summing up all layers of one axis to a single layer which

is shown. Additionally, there are also possibilities to quantify the packed

spheres by filling curves, histograms and simple numbers.

To visualize the 3-d sphere packing, three aspects are covered in this thesis:

sphere concentration 3.4.1, voxel coverage 3.4.2 and density by combinding

the results of the sphere concentration and the voxel coverage 3.4.3.

For the sphere concentration visualization, the idea of thresholding was

used [SCS13] in which the background is separated from the x-ray image by

applying thresholds to the sphere center matrix.

To calculate the voxel coverage, the basic idea of the algorithm of [BHMv14]

was applied to the packing. The algorithm was applied to point clouds

which marks cells. Since ProtoSphere does not work with point clouds, some

adjustments were necessary to calculate a voxel map for the packing.

As a final step a density map is created by combining the sphere concen-

tration and voxel map. The voxel map is divided for each entry by the

concentration map to calculate a density map.

In this chapter there is one diagram per aspect which shows the XY view.

3.4.1 Sphere concentration

The map shown in Fig: 3.11 represents the distribution of sphere center

concentration. To calculate this map, a matrix with a cubic size is computed.

Each cell is filled with the number of centers inside but ignores the radius.

The basic idea for this representation resembles the threshold algorithm in

[SCS13].
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Figure 3.11: Shown is the distribution of the sphere centers over the area of

the Bunny model Fig: 3.5. Areas without spheres centers are printed black,

red areas contain the most sphere centers, blue areas contain relative small

amounts of sphere centers compared to the red areas.

The map is generated by generating a 3-dimensional matrix, which counts

the number of sphere centers for each cell. For the visualization all layers

are summed up in a 2-d matrix which is used to generate the Fig: 3.11. The

regular rectangular patterns are covered in 4.2.2.

3.4.2 Voxel coverage

In Fig: 3.12 the voxel coverage for the packing is shown. To calculate this

map, a matrix with a cubic size is computed again. The basic idea is to

create an a adjusted version by generating voxel coverage of a point cloud

[BHMv14]. Each cell is treated as a voxel and checked for a random position

to be inside of a sphere; in case of yes, the cell is marked as a covered

voxel, otherwise its marked as not covered at all. That method has a mi-

nor error but on average this error is compensated by the law of big numbers.
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Figure 3.12: Shown is the distribution of the covered voxels of the Bunny

model Fig: 3.5. Areas without any voxels are printed black, red areas contain

multiple layers of covered voxels, green areas contain few layers of covered

voxels compared to the red areas.

This representation can be validated against the silhouette of the model if

there is any area covered outside of the silhouette, obviously invalid spheres

were inserted. On the other hand, there also is a visual check if thick areas

appear red, compared to thin areas in green. For the Bunny the expecta-

tions hold, the thick torso appears red, while the slightly thinner upper body

appears in light red and thin ears appear green.

3.4.3 Density

The Fig: 3.13 shows the density differences over the area which should not be

confused with the global packing density 2.10. To calculate the density the

results of the sphere concentration and voxel coverage are combined by the

division of the voxel coverage map by the sphere concentration map for each

cell. For the case that the concentration map does not cover an area which is

covered by voxels, that area in the concentration map is interpreted as low
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concentration, instead of no concentration, for a meaningful representation

of the density map. This effect usually occurs near to the center of the

biggest spheres of the entire packing. For a good packing, this coloration of

the model is colored similarly over the entire area.

Figure 3.13: Shown is the distribution of the density which is calculated by

dividing the voxel coverage and sphere concentration of the Bunny model

Fig: 3.5. Areas without any density are printed black, green areas indicate

a large number of spheres centers compared to the covered voxels, red areas

indicate a high voxel coverage compared the the number of sphere centers.

The regular patterns which already appeared in the sphere concentration

map 3.4.1 are visible again. This issue is covered in 4.2.2.

3.4.4 Filling curve

In Fig: 3.14, the covered volume with a growing of number spheres is shown.

The major purpose of that curve is to get an idea of how much volume is

covered with a growing number of spheres.
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Figure 3.14: Shown is the filling curve of the covered volume in % for an

increasing number of spheres. On the x-axis the number of spheres, on the

y-axis the percentage of covered volume a) Curve over the first 500 spheres

b) Curve over all spheres

Since the majority of the volume is covered with the first 100 to 500 spheres,

the curves are distributed in a) the first 500 spheres of the packing and b) the

entire packing. Interestingly in a) the curve jumps; that effect occurs because

depending on the spawn position of the prototype, some empty areas are

missed and covered in later stages when the prototype spawned on a better

position 4.2.4.

3.4.5 Entropy

The entropy indicates how much independent information a set of data con-

tains [Sha48]. To calculate the entropy the formula E =
∑N

i pi · log pi is

applied on any pi with
∑
pi = 1. The interpretation of the entropy is how
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fast the volume of a model is covered with spheres; a low entropy value in-

dicates the spheres contain on average very little information, a big entropy

value indicates on average more information2.5. As example: the Cube re-

quires a small amount of big spheres to cover more than 80% of the volume,

with the first sphere covering already more than 50% of the volume, while an

humanoid object like the Pig requires more spheres to cover the same amount

of volume, therefore the entropy of the Cube is lower than the entropy of the

Pig since the Pig needs more spheres to cover the same percentage of volume.

To apply the entropy on a packing, the packing is split into 100 parts, while

the first part is the first sphere, which should be the biggest sphere. On the

other 99 parts all other spheres are distributed evenly. To calculate the p,

the volume of every part is divided by the total covered volume 3.1.

Armdl. Atnm. Bunny Cow Cube Cyl. Drgn. Pig Dog ē

entropy 0.226 0.187 0.216 0.173 0.208 0.154 0.207 0.162 0.214 0.194

Table 3.1: Entropy of the packing for the parallized state. The bigger the

entropy, the less volume is covered by early spheres while late spheres cover

more volume.

3.4.6 Theoretical number of required spheres

With the curve shown in Fig: 3.15, the theoretical number of required

spheres is shown. To calculate those values, the linear regression y = m ·x+b

is computed for every 500 spheres. Therefore, the linear regression aligns

every step more to the almost linear curve for later stages of b) in Fig : 3.14.

To calculate the theoretical amount of required spheres, the slope is assumed

constant and the number of spheres which are required to cover 100% of the

volume is computed by x =
100− b
m

. The result x gives a prediction of how

many sphere would be required to cover 100% of the volume.

29



0 50000 100000 150000 200000
Current number of Spheres

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

Th
eo

re
tic

al
 re

qu
ire

d 
am

ou
nt

Figure 3.15: Shown is the theoretical number of required spheres. On the x-

axis the current number of spheres is shown. The Y-axis shows the theoretical

number of spheres with the assumption that the slope does not decrease

anymore.

However, since the slope in the curve 3.15 decreases over time, any regres-

sion is an optimistic assumption which never holds. This becomes obvious

by inspecting some values. For 29,000 spheres about 60,000 spheres would

be required with the current volume growth slope, for 60,000 actual spheres

about 140,000 spheres would be required, for 140,000 spheres 310,000 spheres

would be required and so on.

The factor of current spheres and theoretically required spheres increases,

this effect is verified by computing n =
y

x
with bigger x-values, the n value

increases slightly in the range of 2.0 ≤ n ≤ 2.4 for the observed data. There-

fore, this evaluation gives the idea that the packing most likely will never hit

100% which is also supported in [SDSRH12]. Depending on the model, the

slope has different values; still, the slope decreases almost to m = 0 with a
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growing number of inserted spheres.

3.4.7 Radii of the spheres

In Fig: 3.16 a distribution for the radii of the spheres is shown. To calculate

the histogram, a exponential function with the formula f(r) = a ∗ e−k∗r is

calculated to fit for the biggest to smallest sphere. The function is split into

50 parts, on which the spheres are distributed depending on the size.
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Figure 3.16: In this histogram, a distribution of the sphere radii is shown.

The histogram is ordered from left to right by the descending radius of the

spheres. The distribution has an early peak because of the great tolerance of

the inserted spheres for each step 4.2.1.

The distribution in Fig: 3.16 is verified by investigation, sphere radii between

two steps (sphere 193824 to sphere 193827, radii: 0.000666606; 0.000665818;

0.00927337; 0.00832588). There is a major difference between the radii of

those spheres, even if the slope of the filling curve is close to 0. Fig: 3.15
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3.4.8 Similarity

The distribution of the histogram 3.16 for the sphere radii can also be used

for other applications like cosine similarity.

cosα =
d1 · d2

|di| · |d2|

The results can be used to compare the sphere packings of different models.

The cosine similarity is a simple method to compare two sets with each other

by calculating the resulting vector for each set and comparing the angles. In

contrast two equal sets produce parallel vectors, which have an angle of 0◦

between each other, which both are identical. Two sets which have no values

in common produce orthogonal vectors with a angle of 90◦ which leads to no

similarity. Applied on the initial state on ProtoSphere, the similarity is the

following.

Ateneam Armadillo Dog Cow Cylinder Cube Dragon Bunny Pig

Ateneam 1.000 0.998 0.968 0.952 0.996 0.994 0.931 0.976 0.930

Armadillo 0.998 1.000 0.976 0.961 0.999 0.988 0.940 0.964 0.940

Dog 0.968 0.976 1.000 0.997 0.978 0.949 0.989 0.900 0.990

Cow 0.952 0.961 0.997 1.000 0.964 0.933 0.997 0.877 0.997

Cylinder 0.996 0.999 0.978 0.964 1.000 0.984 0.943 0.957 0.943

Cube 0.994 0.988 0.949 0.933 0.984 1.000 0.910 0.991 0.911

Dragon 0.931 0.940 0.989 0.997 0.943 0.910 1.000 0.850 0.999

Bunny 0.976 0.964 0.900 0.877 0.957 0.991 0.850 1.000 0.850

Pig 0.930 0.940 0.990 0.997 0.943 0.911 0.999 0.850 1.000

Table 3.2: Shown is the similarity of the initial sphere packing. Each model

is compared to other model, 1.0 for an almost equal sphere distribution,

decreasing with less equal distributions to 0.0 for no similarity at all.

All similarities of 3.2 must be multiplied by 100 to get the percentage

similarity, each model has as expected a 100% similarity to itself. The

lowest similarity is about 85% and the Cube and Cylinder have a 99%

packing similarity and more to some models, which have no similarity to
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mathematical shapes like an Armadillo. For the initial state, the comparing

of the packing models does not give reliable results, which correlate to the

classification of the characteristics in 3.3. A Pig has 99.9% similarity with a

chinese Dragon while a Cow and an Armadillo have about 96.1% similarity.

On average most packings are over 90% similar, while correlations between

shapes are hard to find or do not make any sense. Therefore the sphere

packings which are generated by the parallelized state of ProtoSphere can

not be used to classify models. Another technique also exists to compare

sphere packings [Alb17].

S = 1−
∑

i |ni − nref
i |

2(N − 1)

This formula has several issues which makes it hard to apply to a packing

of an arbitrary model. First, both packings must contain exactly the same

amount of spheres. Second, if two models are scaled differently, this formula

would spot a difference even if both packings are equal except for the scaling.

Therefore this formula will not be used, since even if the same model is used,

no reliable results are produced.

On the other hand, the difference between the packings can be calculated

with the Kullback-Leibler divergence [BDA11].

D(g||B) =
∫
|g(x) log

g(x)

b(x)
|

Compared to the similarity, the divergence indicates which models do not

have similar characteristics. Therefore, small values indicate that models

have a similar packing, while similar bigger values cannot be used to indicate

a similarity, since there is no way to determine if the divergence was caused

by the same values.
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Ateneam Armadillo Cylinder Cow Cube Dragon Bunny Dog Pig

Ateneam 0 0.26 0.32 0.52 0.34 0.56 0.26 0.09 0.37

Armadillo 0.21 0 0.52 0.24 0.50 0.26 0.44 0.14 0.13

Cylinder 0.38 0.74 0 1.05 0.14 1.15 0.08 0.50 0.83

Cow 0.40 0.22 0.70 0 0.67 0.05 0.60 0.35 0.10

Cube 0.50 0.90 0.17 1.20 0 1.33 0.16 0.63 0.94

Dragon 0.41 0.23 0.71 0.05 0.68 0 0.61 0.36 0.11

Bunny 0.32 0.66 0.09 0.95 0.14 1.05 0 0.43 0.74

Dog 0.09 0.16 0.40 0.42 0.40 0.45 0.33 0 0.28

Pig 0.32 0.13 0.62 0.11 0.59 0.13 0.53 0.26 0

Table 3.3: Shown is the divergence of the initial sphere packing. Each model

is compared to any other model, 0.0 for an almost equal sphere distribution,

increasing with less equal distributions.

In 3.3 the divergence is shown. Again each model has no divergence to itself.

The difference of the models ranged from 0.05 ≤ D ≤ 1.33 with a Cow

and Dragon having the least divergence while the cube and dragon have the

biggest divergence. Compared to the cosine similarity, the Kullback-Leibler

divergence indicates that reliable results might exist.

3.5 Hypothesis

Since the visualizations give the idea that the packing algorithm does not

work properly, a further investigation for the hypotheses makes no sense at

this stage. Once the cause for the regular patterns is found, the hypotheses

are challenged again in 5.5.

3.6 Summary

In this chapter several human readable aspects to measure sphere packing

have been introduced, while the disadvantages of a 3-d visualization were

discussed. The different aspects are: sphere concentration, voxel coverage,

density, filling curve, entropy, the theoretical amount of required spheres and
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the distribution of the radii. In addition the cosine similarity on the distribu-

tion map was computed to measure the similarity of different sphere packing.
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Chapter 4

Improving ProtoSphere

After defining metrics to measure the current quality of the 3-d sphere pack-

ings, in this chapter all issues, fixes, mitigations and possible enhancements

are investigated. Any issue which was found either on decisions for the im-

plementation of ProtoSphere or general issues which leads to lower packing

quality is investigated for the cause and effect. If possible, a fix or mitigation

for the issue was implemented. In this case, other data structures are neces-

sary and possible enhancements are described. Additionally all configurations

to adjust and improve the packing for several aspects are explained.

4.1 Initital State

Since the initial version developed in [Wel12], there were adjustments made

resulting in a loss of about 10% of the volume coverage. One important

adjustment was the parallelization of the algorithm [Teu13].

In the Figures 3.11 and 3.13 regular patterns are visible which may indicate

the reason for the loss of the covered volume. Additionally the difference

of the volume coverage for the models has a range of about 12% as shown

in 4.1, while no volume coverage has a value close to 95.01% 2.2.4. Except

for the covered volume, computation time and 3-d representation, no metric
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was measured.

Armdl. Atnm. Bunny Cow Cube Cyl. Drgn. Pig Dog v̄

volume 83.14 84.73 85.45 83.28 89.47 91.18 80.94 84.03 79.23 84.60

Table 4.1: The table shows a comparison of the covered volume for the sphere

packings generated by the initial state of ProtoSphere.

4.2 Issues

4.2.1 Radii of inserted spheres

The first issue was an assumption on the inserted prototypes. The non-

parallelized implementation just inserted a single sphere for each step. When

the algorithm was parallelized, a huge amount of potential prototypes were

generated for each cell. To reduce the amount of small prototypes, an addi-

tional condition to be met by each prototype was set. To filter the prototypes,

every prototype is compared to the biggest prototype which is inserted with-

out fail each time. For all other prototypes, two conditions must be met. The

first condition is that the prototype must have a bigger radius than the lowest

configured radius. The second condition is to have at least 1
10

of the radius

of the biggest prototype, this condition was set during the implementation

in [Teu13]. Any prototype which meets both conditions is inserted if it is not

overlapping with another prototype. The tolerance led to the big distribution

depicted in Fig: 3.16

The factor of a tenth for the radius was chosen randomly and leads to a factor

of 1000 for the volume difference of the biggest and smallest sphere for each

step. Especially during early iterations, on which lots of spheres optimize

their position inside the grid cells which have no intersecting sphere yet, lots

of non-Voronoi points are found. By inserting the non-Voronoi prototypes

as actual spheres, the empty area requires more spheres to cover the same

amount as the Voronoi prototype would have covered as a single sphere.
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4.2.2 Coverage over certain cells

As already mentioned in 3.4.1 and 3.4.3, some cells are overfilled, while some

are ignored. This issue causes an uneven distribution of volume coverage,

which leads to areas with high coverage and areas with low coverage. For

applications like remote operations, this could be fatal since the surgeon

cannot rely on the haptic feedback.

The cause for this problem is a wrong assumption on the decision-making

algorithm for the selected implicit cell. Cells can have four different states:

Empty, Inside, Border, Outside. Inside cells are completely inside a single

sphere, border cells, are either partly covered by spheres or hit the surface.

Outside spheres have no intersection with the surface. The initial algorithm

always chooses the first border cell.

After some iterations, eventually almost every cell inside of the models is

marked as a border cell, which leads to the pattern. The decision making

always has a set of cells which is chosen for the current iteration. The

cell-picking process follows the following line of priority: first empty cells

over border cells, in case any cell is marked as a border cell, the first border

cell is picked. After at most eight steps, any cell was chosen as empty cell

and is marked as border cell, therefore after at most eight steps just one

cell was chosen for the packing all the time. The surrounding cells are

covered slightly by a sphere which intersects, but eventually all positions

of intersecting spheres are used and finally no more volume can be covered

inside of the cells which can not be chosen anymore.

4.2.3 Prototype-polygon intersection

Prototypes are spawned in the implicit cells before those are checked to have

an intersection with other polygons or spheres. There are several possibilities

for the spawning position: inside of the model without any intersection, out-

side of the model, inside of a sphere or direct in a polygon. For the last case,

floating point precision can produce the wrong direction if the prototype is
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interpreted from the outside.

Another effect occurs if a prototype spawns in the middle of either two poly-

gons or spheres whose normals almost point in the opposite direction as in

Fig: 4.1. The prototype has a limited amount of steps and cannot leave the

current position. Therefore, the prototype will not come close to its Voronoi

point. In this case, computation time is consumed for bad results.

Figure 4.1: A prototype (red star) inside a sphere (blue circle), which can-

not converge towards a Voronoi point (purple stars), because the converging

vectors point in opposite directions (green arrows.)

4.2.4 Non-Voronoi prototypes

In each iteration valid prototypes are computed over the entire grid. The

prototypes are randomly distributed over the implicit grid and optimize the

positions over a limited number of steps. During each step the distance the

prototype can travel is reduced to approximate the Voronoi point. For proto-

types which converge to the Voronoi points, the volume covered is optimal.

During each step, some prototypes are spawned on positions for which the

number of steps and the cooling function is too low to come close to the

Voronoi points and stop midway; the effect is similar to the prototypes which

cannot leave its area 4.2.3.
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However, prototypes which are not converged to Voronoi points are still in-

serted if the volume is not too low compared to the biggest sphere for the

current step. Since Voronoi points always cover the most volume, any inserted

prototype which is not close to the Voronoi point decreases the volume be-

cause more spheres are required to cover the same volume.

4.2.5 Low coverage at surface

In Fig: 3.13 a density map is shown, which has a low volume coverage at the

surface. This distribution causes an uneven volume coverage for the inner

parts and the outer parts, which leads to a lower precision.

There are several causes for this effect. Depending on the shape of the model,

this effect is worse or almost does not matter. For the shape of the model,

three different cases are investigated.

4.2.5.1 Convex models

For convex shapes like Fig: 4.2 ProtoSphere has the best performance, the

spheres align to the surface and cover a lot volume with a few spheres.

Figure 4.2: A sphere inside a convex model, which covers the majority of the

inside volume. Inside the red box a shape which has a recursive pattern is

highlighted.
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4.2.5.2 Concave models

For concave shapes like Fig: 4.3 ProtoSphere produces recursive patterns

during the packing process. Inserted spheres leave a lot of uncovered volume;

new spheres reduce that uncovered volume, however spheres cannot align to

the surface if there some uncovered space is left. This effect is also the long-

term effect when a huge amount of spheres are inserted, and might occur

recursively. The remaining void is concave for new prototypes.

Figure 4.3: Multiple sphere inside a concave model, which cover about half

of the volume. Inside the red area a recursive pattern appeared.

4.2.5.3 Flat surfaces

Flat surfaces like in Fig: 4.4 behave similarly to concave models. Inserted

spheres leave uncovered volume and cannot align to the surface.

Figure 4.4: A sphere inside a model with a flat surface.
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4.2.6 Big gridcells and tiny parts

Grid cells perform well on any model, but there are some cases when the

layout of the cell leads to minor issues. If the cells are completely inside of

the model, it performs well. However, for partly covered cells the algorithm

has a minor issue, a chance to spawn an inside prototype is the same as the

amount of covered volume of the implicit cell. In case of an edge which can

also be covered by spheres, that spawned in other cells, the effect is small.

In the case of a small part, like an antenna or finger, the covered volume is

decreased, if e.g. 7% of the cell is covered by the thin part, on average every

fourteen steps a valid prototype is spawned, while the prototype is discarded

otherwise.

4.2.7 Different diameter

The tolerance factor mentioned in 4.2.1 defines the lower bound over the

entire model. If the model has parts with different diameters, like humanoid

objects, this factor will discard any sphere in the limbs, unless the prototype

in the torso are similar in size to the diameter of the limbs, like in Fig: 4.5.

Except for the connection areas, no prototype on each area can intersect

with each other, accordingly the global tolerance factor increases the overall

computation time since good prototypes are discarded until they are inside

the tolerance bounds.
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Figure 4.5: A dog, on which the paws, the head and torso can be packed

independently.

4.2.7.1 Outside spheres

If parameters eig and sg are configured with the default values, all packings

are valid. Adjusting these configuration enhances the packing speed. However

for some configurations, invalid sphere packings are generated which contain

outside spheres, like in Fig: 4.6 in which a sphere on the front legs appeared

outside of the model, the same effect occurs on the tail. The configuration

was added in prior versions and should always be used with caution.
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Figure 4.6: A pig packed with spheres, on which several outside spheres ap-

peared because of a bad configuration.

4.3 Mitigations

In this section the mitigations which were found for discovered issues in 4.1

are introduced. The mitigations either reduce the amount of trivial operations

or enable ProtoSphere to enhance the distribution of the prototypes to cover

more volume. If the issue is caused by a configuration which leads to a trade-

off, for example precision and computation time, additional configurations

are added to target either aspect.

4.3.1 Mitigation: radii of inserted spheres

In the parallized version, a tolerance factor of 10 for the biggest and smallest

radius during each step was implemented. This tolerance factor was required

as simple heuristic to not insert any sphere. However this factor of 10 for the

radius lead to a volume tolerance of 1000, since sphere volume is computed

with r3. To mitigate that issue, the tolerance factor of 10 was replaced by
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two new parameters minsd and maxsd, which configure the minimal and

maximal tolerance for the volume of the prototypes.

4.3.2 Mitigation: coverage over certain cells

To prevent ProtoSphere from generating uneven distributions depending on

the cell state, the algorithm which always chose the first border cell was

adjusted by choosing randomly between the implicit cells. This leads to the

following graphs.

Figure 4.7: Shown is the enhancement on the static starting cell for pro-

totypes. a) Before adjustment one of eight cells (3-d 2x2x2) was selected to

insert prototypes every time b) After adjustment, every cell is selected evenly

distributed for prototype insertion

In 4.7 the parallized version and the adjusted version are compared a) the

parallelized version distribution is shown, for b) the distribution after the

mitigation by picking random cells.

The distribution now is more even. There are also recursive patterns for each

side, which is expected since the distribution should be almost equal. The

covered volume for all models is also increased by mitigating the volume
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tolerance factor for inserted sphere from 1000 to a configurable value, which

is explained in 4.5.2. In general, the covered volume is raised from an average

of 82-87% to 89-94%. The results will be discussed in 6.

4.3.3 Mitigation: prototype-polygon intersection

Prototypes which come too close to the surface are discarded for the run.

The threshold is below a distance of 10−7, which is the maximum precision

for floats. In comparison, if a prototype has a lower radius than 0.0287941 it

again leads to floating point errors since the volume of a sphere with a radius

of r ≤ 0.0287941, is less than the floating point precision. So any prototype

which is discarded could not provide any relevant volume.

4.4 Possible Enhancements

In this section possible enhancements for issues which were not fixed or mit-

igated are explained.

4.4.1 Mitigation: Big gridcells and tiny parts

To solve that issue, the bounding box for the currently relevant cell was com-

puted. But since every cell has information about relevant polygons for that

area and even may contain multiple elements like multiple parallel fingers,

some negative effects on calculated bounding boxes can occur. In the best

case, the bounding box is valid, but there are also cases where the bounding

boxes covered empty space between two polygons which led to an even worse

performance since instead of a chance of 7%, all prototypes are invalid initial-

ization points. There was no significant difference for valid boxes, for invalid

boxes the coverage became worse. Therefore, this change was discarded.
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4.4.2 Mitigation: Different diameter

The effect which was explained in 4.2.7 can be mitigated. A cluster algorithm

which separates parts of the models which cannot have intersecting could

determine which reference prototype in the cluster is used. By clustering the

clusters are filled independently, and less suiting prototypes are discarded.

The clusters can also be used to calculate finer grids for thin areas, and

less trivial checks like intersection tests of prototypes of two non-intersecting

clusters.

4.5 Improvements

In this section general improvements are introduced. The improvements en-

able ProtoSphere to adjust the packing depending on the application. There-

fore, any introduced parameter is dynamic. The effect of the different config-

uration possibilities is discussed in 6.1.

4.5.1 Volume difference per step

The effect explained in 4.2.1 happens because the initial tolerance for inserted

spheres during each step is too big. For mitigation a dynamic tolerance factor

was implemented. To adjust the tolerance factor a lower and upper bound for

the packed volume percentage for each step can be configured. If the covered

volume for the current step is bigger than the upper bound, the tolerance

factor is reduced, while it is increased if the covered volume is lower than the

lower bound. The tolerance factor for inserted prototypes is initialized with

the lower bound, explained in 4.5.2.

4.5.2 Volume tolerance of prototypes

As explained in 4.2.1, the tolerance factor of the volume of inserted spheres

during each step is 1000. This factor was replaced by a lower and upper
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bound for the tolerance factor which is set by the packing configuration.

Since the criteria, like computation time or covered volume, depends on these

values, there is no optimal value to set. In general, a low tolerance leads

to a slow packing with bigger spheres, while a high tolerance leads to fast

packings with smaller spheres. The covered volume for the same amount

of spheres is always higher for the slow configuration. Therefore, the lower

bound of the configuration sets the initial tolerance when ProtoSphere starts,

the implementation of 4.5.1 adjusts the dynamic tolerance depending on

the current packing speed. To prevent the effect of 4.2.1, the upper bound

clamps the dynamic factor. As a nice side effect, the upper bound also enables

ProtoSphere just to consider the biggest sphere for the packing, which is the

slowest configuration but produces the most covered volume per sphere.

4.5.3 Additional break criteria

ProtoSphere only allows a configuration to set the number of spheres, which

must be packed until it stops. This feature is required, since there must be

at least one criteria to stop the filling, but there are several other options to

stop filling the model with more spheres.

4.5.3.1 Break on percentage covered

An easy criteria to implement is a configuration for the desired amount of

covered volume percentage. The advantage for this criteria is that the covered

volume is the same and does not depend on the model like the initial version

4.1, all models have a different number of spheres. A disadvantage of the

approach is when the configured volume is higher than the maximal volume

percentage which can be covered, the packing will never stop. To mitigate

that case, the specified amount of spheres still stops the loop.
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4.5.4 Break on a dynamic criteria

In addition to the static break criteria, a dynamic break criteria was imple-

mented to stop the packing when the slope stops growing.
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Figure 4.8: Shown is the filling curve of a sphere packing with a low slope at

the end.

To achieve that, the first approach was to find a function which predicts

the filling curve like in Fig: 4.8 for several models. This approach was not

successful since no such function was found.

4.5.4.1 Approximation of the slope function

The final result references to characteristic all filling curves share; after

about 100,000 spheres are inserted, all graphs have a low positive slightly

decreasing slope. This characteristic is used to calculate a linear function
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with the method of least squares y = m · x + b which aligns to the curve

after 100,000 spheres. To calculate this function, the packing is split into

segments of 500 spheres. On the data set a linear regression is calculated

[IM]. The calculation is repeated every 500 spheres, each iteration aligns

better to the long-running function and therefore gives more reliable results.

4.5.4.2 Calculating a dynamic break point
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Figure 4.9: Shown is the filling curve of a sphere packing with multiple linear

regression lines. Red: regression over first 4,000 spheres, Green: regression

over first 80,000 spheres, Magenta: regression over first 150,0000 spheres,

Orange: regression over first 180,0000 spheres with X-markers at the b offset

values.

In the example 4.9 four regressions are calculated for 4,000 spheres; 80,000

spheres; 150,000 spheres and 180,000 spheres.
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With y = m · x+ b calculated for every 500 spheres which are inserted, there

are two values, which can be used to find the best point to stop packing

the model. The slope m is close to the limit of floating point precision,

therefore the usage of this value is done with caution [Gol91]. Each function

has different m and b values, which can be compared to its previous value

to find a good criteria to stop the packing.

First m as the approximation of the slope for later stages of the curve. To

find a good value to stop the packing, the first approach was the difference

of two following m values. All values are positive since the slope decreases

monotone. For the following comparison the floating point precision is

ignored. The major problem of the difference is the difference between

the slopes for each model. However models with a low entropy, on which

the volume is covered fast with very few spheres, have significant lower

slope values than models with a high entropy 3.1. In additionn the slope is

also close to the limits of floating point precision [Gol91]. Therefore, this

approach is dropped.

The next approach is to calculate the quotient for relative results. That

approach produced unreliable results because of the floating point precision

[Gol91], therefore no further investigation on this approach was done.

Since m cannot be used to calculate reliable results b is investigated which

is, after around 3,000 spheres, almost always in the range of 0.5 ≤ b ≤ 1.0

so floating operation can be performed with a reasonable precision.

First the difference is calculated again. This approach leads to similar

problems like the difference with m, the difference produces no stable

results. Since the models have a different upper bound for the covered

volume, like the Cylinder which has a total volume coverage with more

than 95% compared to the Dog which hardly covers more than 90% of

the volume. However, the covered volume differs by about 5% relative and

absolute, this approach requires data which is accessible after the packing is

done. Therefore, the difference of b can not be applied for a dynamic break

criteria.

The last remaining approach is the division of b. By calculating the quotient,
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which has no issues with the floating point precision and also provides stable

result, after about 7,000 spheres are inserted with values in the range of of

0.95 ≤ b ≤ 1.0. Over time, the b values grow to 0.999; 0.9999 similarity of

two following b values until the precision of the float is at its limit and the

value is rounded to 1[Gol91]. However, this effect occurs when more than

one million inserted spheres are exceeded and the result of the quotient

increased slowly to 0.9999999 before it is rounded, therefore that issue is

ignored. Any value beyond 0.999 can be used to stop the packing as dynamic

break criteria to produce stable results. For the nine models which were

used for this thesis the value 0.99995 turned out to be a good which is

investigated in detail in 6.1. Therefore the quotient of b is used to configure

the dynamic break criteria.

4.6 Classification

The initial state provides no sphere packing which could be used to calculate

the similarity between two packings, since almost all packings are distributed

similar to 3.4.8. To classify models depending on their shape, sphere packings

must depend on the characteristics of the shape of the model. However, a

tolerance factor of 10 for inserted spheres 4.2.1 leads to lots of spheres which

produce a dominating noise. To apply a classification method on the packing,

the noise must either be removed or comparable.

4.7 Summary

In this chapter, all issues which were found during the thesis are documented.

If possible the issues are mitigated or possible enhancements are suggested.

Additional general improvements which enable ProtoSphere to adjust the

packing to several use-cases are documented.
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Chapter 5

Results

ProtoSphere received several adjustments on the packing procedure and op-

tions for the packing configuration. In this chapter several results for the

adjustments are shown. Additionally the effects for the major configurations

are covered. Every packing was computed with a NVIDIA GeForce GTX 1070

Graphic Card and an Intel Core i7-6700K CPU and 16 GB RAM. For com-

parison a computation with the configuration target 200,000 spheres, volume

per step: 0.02 ≤ V ≤ 0.25, volume tolerance per sphere: 999 ≤ T ≤ 1000 was

used, since that configuration has the most similarities with the parallelized

state.

5.1 Volume Covered

In this section the differences for the covered volume are shown. At first the

parallelized state is compared to the most comparable configuration for the

adjusted state, which is a tolerance for the sphere radius per step of 10, while

each cell is used for the entire sphere packing, while the initial version just

used 1 of 8 cells after 9 steps 4.2.2.
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Figure 5.1: Comparison of filling curve before and after the adjustments.

Blue: initial state, Red: with adjustments.

The Fig: 5.1 a represents the packing progress for the initial state which

converges at about 85.45%. For the adjusted packing, the curve b converges

at about 90.35% as it has a slightly bigger slope. This enhancement reduces

the error from 14.55% to 9.64% which is about 34% less missed volume than

the initial state of ProtoSphere.

The initial version of ProtoSphere, which did not use grids, uses an optimized

packing on which does not use a tolerance for the inserted spheres per step.

And there exists no absolute value as reference except for Fig: 5.2.
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Figure 5.2: Covered volume for the version implemented in [Wel12]

No model covers for 100,000 spheres more than 92% of the volume, which

is used as reference for comparison. To have a similar configuration, the

adjusted version uses a maximum tolerance of 20% volume difference which

is a radius tolerance of about 1.063 with a break criteria at either 100,000

spheres or 92% covered volume. The results are following: Ateneam: 90.80%,

Cow 92% with less than 100,000 spheres, Pig 91.35% and Dragon 91.82%.

Since the range of the radii is the same, the adjusted version is comparable

to the non-parallelized version again.

5.2 Packing Quality

In the initial state, ProtoSphere distributed prototypes over the same cells

and ignored a majority. From the distributed valid prototypes, almost all

were inserted since the tolerance from the biggest to the smallest accepted a

volume difference factor of 1,000. The following graphics compare the initial

packing procedure to the adjusted procedure which distributes the prototypes
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over all cells and accepts a maximum volume tolerance factor of 4 which is

adjusted depending on the covered volume per step.

The major purpose of these representation is to verify if the packing is correct

and to identify areas for which the covered volume could still be enhanced.

5.2.1 Sphere concentration

In this section the differences of the distribution of the sphere centers after

the mitigation 4.2.2 is covered.

Figure 5.3: Comparison of the sphere concentration for 200,000 spheres before

and after the adjustments. a) initial state b) with adjustments

In Fig: 5.3 for a) the parallized state is shown, for b) the adjusted state. The

regular patterns which were caused by using the same cells over and over

again disappeared. The silhouette of the model also became slightly bigger

on the right side, since cells on the surface which were ignored could not be

covered with spheres at all.

For the adjustments some new noticeable red areas appeared, red areas indi-

cate flat surfaces. Since the model of the Bunny has flat areas on the bottom
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and the top of the head, spheres from the XYZ map aligns in the Z direction.

Big spheres also have surfaces with low bend factors which lead to similar

effects. Depending on the size of the sphere, the surface is more or less visible

in the concentration map. The enhancements are easily visible on any model.

5.2.2 Voxel covered

In this section the covered voxel map of the parallelized state and the adjusted

state are compared.
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Figure 5.4: Comparison of the voxel coverage for 200,000 spheres before and

after the adjustments. a) initial state b) with adjustments c) more than 6%

difference between a and b is marked red.

The representation Fig: 5.4 does not differ much, since it mostly depends
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on big spheres. Still there are some improvements visible like less noise on

the surface and inside of the ears. On the adjusted version the chest, throat

and head appear slightly more red, since the covered volume increased. To

compare both maps a difference of 6% was computed. If the same difference

is applied on the 200kF and critL which are explained in 6.1, which show the

difference between a fast and optimized packing, less differences are visible

Fig: 5.5.

Figure 5.5: Difference between a non-optimized fast packing and a more op-

timized packing. Red pixels have more than 6% difference.

5.2.3 Density

In this section the density map of the parallelized state and the adjusted

state are compared.
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Figure 5.6: Comparison of the density for 200,000 spheres before and after

the adjustments. a) initial state b) with adjustments

In Fig: 5.6 from the left side to the right side the regular patterns of the

initial state disappeared, which results from the enhancements on the sphere

concentration. For the right side the optimal result would be an image which

would have even colors for major areas. Green areas indicate a low density,

which is in general the surface of any model.

5.3 Distribution of radii

In this section the distribution of the radii of the spheres are compared, first

the results for the parallelized state compared to the adjusted state. For a

better comparison, the adjusted state is distributed for the same scaling as

the parallelized state to visualize an actual comparison.
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Figure 5.7: Comparing the distribution of the sphere radii for 200,000 spheres

of the parallelized version and the adjusted version.

In Fig: 5.7 the distribution of the sphere radii for the parallized and adjusted

version are compared. The distribution for the adjusted version is shifted

slightly to the left while the amount of bigger spheres also increased from

about 19,000 to 21,000, which means that more bigger spheres are inserted.

For the biggest version, the adjusted version approximated a bigger Voronoi

point than the parallelized version, while the smallest sphere is pretty much

equal in size. Since the sphere sizes are bigger on average, the volume in-

creased from 85.46% to 90.35% for the same amount of spheres.
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5.4 Enhanced performance

To measure the enhanced performance, the most comparable way is to use

200,000 spheres as break criteria for both packing. Additionally, the new

configuration for the adjusted packing was: 1 ≤ spherSizeTolerance ≤ 8 ;

0.02 ≤ tolerancePerStep ≤ 0.25. The results are shown in 5.1.

Armdl. Atnm. Bunny Cow Cube Cyl. Drgn. Pig Dog x̄

i vol 83.14 84.73 85.45 83.28 89.47 91.18 80.94 84.03 79.23 84.61

a vol 88.22 90.36 89.33 90.11 91.07 93.43 83.31 89.39 86.065 89.36

%missing

Volume

Reduced

30.13 28.03 26.67 40.85 15.19 25.51 12.43 33.56 32.91 32.68

i etr 0.226 0.187 0.216 0.173 0.208 0.154 0.207 0.162 0.214 0.194

a etr 0.28 0.26 0.27 0.25 0.23 0.19 0.3 0.25 0.3 0.26

%Entropy

Increased
25.83 40.11 22.69 45.09 11.06 22.73 45.41 52.47 38.79 33.90

Table 5.1: Comparison of the initial state and adjusted state. Prefix: i for

initial state, a for adjusted state

With the adjustments and the fastest packing configuration, the density

increased by more than 4% in total, which decreased the missing covered vol-

ume by more than 30%. By reducing the error the results also became more

stable, for the initial state the standard deviation for the covered volume is

4.92% which was reduced to 3.95%, which means that the 95% confidence

interval was reduced from 75.61 ≤ x ≤ 94.89 to 80.52 ≤ x ≤ 96.01, so the

adjusted version produces more stable values for the covered volume.

In 5.3 the distribution of the spheres sizes shows, that the adjusted version

still can cover more volume since it is still possible to insert smaller spheres

which can still cover volume. In the filling curve the slope for the progress

of the packing also indicates that more volume can be packed by spheres.

This also goes for the initial state, but since that version cannot cover the

volume over all grid cells, it obviously has a lower upper bound.

In the 2-d representations the coverage obviously became better since

all cells are used for the volume coverage and as a result the patterns

disappeared.
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Finally the distribution graph shows that the adjustment to drop small

spheres, which cover less than a fourth of the volume than the biggest

sphere for the current iteration, leads to more big spheres which cover more

volume.

5.5 Analyzing the Hypothesis

In this section the hypothesis 1.4 is analyzed. A common method to prove

hypothesis by finding falsifiable criteria and applying those to the results.

5.5.1 Falsifiable criteria

For the following graphs the bunny was used. The adjusted version is tested,

since the parallelized version generates packings with an uneven coverage.

5.5.2 Upper bound

To test if the upper bound for the covered volume comes close to 100%, the

filling curve 5.8 is computed for the adjusted version.
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Figure 5.8: Filling curve of the bunny for the adjusted version.

In the curve 5.8 the covered volume slope is close to 0, which indicates that

a huge amount of spheres is required to cover any more volume. For the

first 60,000 spheres, the covered volume increases to about 90%, however

the covered volume increases for the next 300,000 spheres by just about 3%

with a decreasing slope. Therefore, the assumption is that either a ridiculous

amount of spheres is needed to cover almost 99.9 percent of the volume, or

there might be an upper bound at about 95 percent, which is suggested in

[SDSRH12].

5.5.3 Disproval of the hypotheses

In this section both hypotheses 1 and 2 are challenged and proven to

be wrong. As evidence the measurements are performed on the adjusted

version.

Hypothesis 1 : The more spheres become inserted, the remaining voids
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become smaller, more similar in shape and size, therefore new spheres add

no more information.

Hypothesis 2 : With more spheres the upper bound for the volume

approximates 100%.
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Figure 5.9: Amount of theoretical spheres required for a certain amount of

spheres, with the assumption that the slope does not decrease anymore.

For these hypotheses 3.4.7 and Fig: 5.9 are used to prove that both are

wrong. It is shown in 3.4.7 that the radii of spheres does not converge,

during later stages the number if jumping in some ranges which cannot

converge at all. Fig: 5.9 shows, that the number of theoretical required

spheres increases at a faster rate than the actual covered volume. Because

of that, the filling rate cannot reach 100% for the observed space. This is

confirmed by the curve 5.8, which converges at about 90.4%. Therefore, the

hypothesis 1 and 2 are discarded.
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5.5.4 Confirmation of the hypothesis

In this section, hypothesis 3 is proven right.

Hypothesis 3 : A dynamic break criteria to stop the packing when the

spheres become too small exists.

Two criteria where investigated in 4.5.3, first a break criteria when the per-

centage volume coverage exceeded a certain value, 4.5.3.1. This criteria has

an issue, since the percentage volume coverage depends on the model and is

in the percentage range of usually 89 ≤ p ≤ 94, if the value 94% is config-

ured, but the volume cannot exceed 93% the packing process never ends. In

4.5.4.2, a criteria which depends on the slope of the function was introduced.

This criteria produces stable results, which covers a decent amount of the vol-

ume, depending on the configuration. Since all values are normalized by the

quotient, the packing always stops when the configuration was meaningful.

Therefore, the hypothesis 3 is confirmed.

5.6 Summary

In this chapter, all major results of the enhancements were covered. The

patterns of the initial state disappeared, which led to a significant reduction

for the remaining non-covered volume. Additionally the initial hypotheses

were rejected. The hypotheses were an assumption that in later stages of the

packing all sphere radii are the same and over time 100% of the volume is

approximated.
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Chapter 6

Discussion

In this chapter, all adjustments are compared to each other to investigate

the effect on the packing quality 6.1 to rank any configuration for several

criteria 6.3. Furthermore, the default values for a configuration which satisfies

a compromise on any conflicting packing criteria are discussed and tested

6.2. Aside from the packing quality, the similarity of the models for different

packing strategies is investigated 6.4.

6.1 Packing Configuration

All adjustments have several advantages and disadvantages. Depending of

the goal, different configurations help to receive the optimal packing. Differ-

ent adjustments are compared in this chapter. Unmentioned configurations

are set to unreachable values.

The splitting configuration is static for every packing with n = 2, s = 6,

m3 = 3, eig = 2, sq = 1, i = 30.

For the packing the setups are the following:

critH quotient for b: 0.99995, volume per step: 0.02 ≤ V ≤ 0.25, volume

tolerance per sphere: 1 ≤ T ≤ 8

critL quotient for b: 0.9995, volume per step: 0.02 ≤ V ≤ 0.25, volume
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tolerance per sphere: 1 ≤ T ≤ 8

200kS target 200,000 spheres, volume per step: 0.02 ≤ V ≤ 0.25, volume

tolerance per sphere: 1 ≤ T ≤ 8

200kF target 200,000 spheres, volume per step: 0.02 ≤ V ≤ 0.25, volume

tolerance per sphere: 999 ≤ T ≤ 1000

tlrzL quotient for b: 0.99995, volume per step: 0.01 ≤ V ≤ 0.2, volume

tolerance per sphere: 1 ≤ T ≤ 8

tlrzH quotient for b: 0.99995, volume per step: 0.5 ≤ V ≤ 1.0, volume

tolerance per sphere: 1 ≤ T ≤ 8

tlrzS quotient for b: 0.99995, volume per step: 0.01 ≤ V ≤ 0.25, volume

tolerance per sphere: 2 ≤ T ≤ 8

tVol target vol about 1% more than the critH results, volume per step:

0.02 ≤ V ≤ 0.25, volume tolerance per sphere: 1 ≤ T ≤ 8

dflt target vol 92.5%: 0.02 ≤ V ≤ 0.25,quotient for b: 0.99995, target

200,000 spheres, volume per step: 0.2 ≤ V ≤ 0.5, volume tolerance per

sphere: 1.26 ≤ T ≤ 8

opt target vol 92.5%: 0.02 ≤ V ≤ 0.25, target 200,000 spheres, volume

tolerance per sphere: 1 ≤ T ≤ 1.05

200kS stands for 200,000 slow packing and 200kF for 200,000 fast packing.

These packings compare the computation time for the minsd and maxsd

adjustments. critL and critH stands for the dynamic break criteria which

stops the packing when the slope has almost no more slope, the effect of

the difference of 0.9995 and 0.99995 is compared. tVol stands for target

volume, the upper bounds depend on the critH results with a slightly

increased volume for every model. Opt stands for optimal packing, where

a minimal amount of spheres are inserted to generate a packing where any

sphere is as close as possible to its Voronoi point. tlrzL stands for low

tolerance, this packing forces the covered volume per step into a certain

amount by adjusting the sphere tolerance. tlrzH stands for high tolerance,

which adjusts the sphere tolerance if exceptionally, low or high values are

exceeded. Finally, tlrzS is used to compare the results for a minimum

volume tolerance per step of 2.
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Figure 6.1: Result: Comparison of the covered volume for all configurations,

the higher the better.

Figure 6.2: Result: Comparison of the required spheres for all configurations
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Figure 6.3: Result: Comparison of the entropy for all configurations, the

higher the better.

Figure 6.4: Result: Comparison calculation time for all configurations, the

lower the better.
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6.2 Default Packing Configuration

To find a good default configuration, all major configuration possibilities are

compared to each other in Fig: 6.1, Fig: 6.2, Fig: 6.3 and Fig: 6.4 . For an

easy comparison, the default results are already shown.

All configurations produced different results, so obviously the configuration

has a huge effect on the result. First cH and cL compare the break crite-

ria thresholds. A lower threshold packs the models way faster with a lower

amount spheres but misses about 4% volume; since the packing is still quite

good, the entropy for the cL configuration is better because the spheres on

average cover more volume, therefore the cH configuration performs better.

Next there are the 2S and 2F configurations, which compares a low tolerance

to a big tolerance. Again the less strict configuration is faster but misses some

volume for the same amount of spheres. Since the less tolerant setup misses

some volume, the entropy for the packing is slightly lower; depending on the

goal, both configurations are valid which would set a good amount of spheres

to 200,000. The next three setups compare different tolerance settings for

the covered volume per step. Interestingly the final packing has a difference

of less than 0.5% for the final packing, with similar amounts of spheres and

computation time. Since th performs worse for either the covered volume or

the computation time, a mix of the tL and tS configuration might appear as

a good solution to benefit from the advantages of both setups. Finally, the

volume covered configuration is investigated, which produces the best results

regarding the covered volume, but the worst in terms of time and average

amount of spheres required to hit that volume. Still, this result shows that

objects which are densely packed with a low number of spheres could also

need this break criteria.

As a result, the final configuration should have an upper bound of 200,000

spheres, 93.5% covered volume and regression quotient of 0.9999. If either is

hit the packing is stopped. During run time the adaptive filling should cover

about 0.2% to 0.5% of the remaining volume, while starting at 1.26 (cube

root of 2) initial tolerance which scales up to 8 (power 3 of 2). This leads to

the configuration
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df target vol: 93.5%, quotient for b: 0.9999, target 200,000 spheres, volume

per step: 0.2 ≤ V ≤ 0.5, volume tolerance per sphere: 1.26 ≤ T ≤ 8

By comparing all results, following tabular 6.1 shows the results.

6.3 Ranking Packing Configuration

aspect 1 2 3 4 5 6 7 8 9 10

volume critH 200kS tlrzL tlrzH tlrzS dflt 200kF critL init (tVol)

entropy critL dflt 200kS tlrzS 200kF critH tlrzL tlrzH tVol init

spheres critL dflt tlrzL critH tlrzS tlrzH tVol (200kS) (200kF) (init)

time 200kF init dflt critL tlrzS tlrzH tlrzL critH 200kS tVol

Table 6.1: Ranking all configurations. Rank 1 is the best and 10 the worst.

Break criteria rankings are added as last entries and are not considered for

the final rank.

By ignoring the setups which hit its break criteria, the configurations are

ranked in the following order.

dflt critL 200kF 200kS tlrzS critH tlrzL tlrzH init tVol

x̄ 3.25 3.5 4.33 4.66 4.75 4.75 6 6 7 8.66

Table 6.2: Final Ranking, average placement of the packing configuration for

volume, entropy, number of spheres, calculation time.

By comparing the ranks in 6.2 without weighting, the default configuration

produces on average the best results. The only aspect on which the default

configurations seem to perform badly, is the final packing density. By

inspecting this rank in detail there is a range for the final packing from

85.868 ≤ D ≤ 91.464, the default configuration still has a density of 89.97%

which is about 1.5% less than the best configuration. Compared to the

other fast packing configurations init with 85.87 cL with 87.14% and 2F

with 88.89% which have also no big outlier, the default setting covers more

than 1% volume for good computation times. Considering that, the default

configurations performs well on any aspect.
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Comparing again the initial state to the default and best volume configura-

tions this leads to the following tabular 6.3.

Armdl. Atnm. Bunny Cow Cube Cyl. Drgn. Pig Dog x̄

i vol 83.14 84.73 85.45 83.28 89.47 91.18 80.94 84.03 79.23 84.606

i etr 0.226 0.187 0.216 0.173 0.208 0.154 0.207 0.162 0.214 0.194

d volume 89.02 89.70 89.92 90.43 93.50 93.24 87.82 89.92 86.20 89.972

d entropy 0.304 0.28 0.289 0.274 0.232 0.209 0.311 0.268 0.313 0.276

%missing

Volume

Reduced

34.88 32.55 30.72 42.76 38.27 23.36 36.1 36.88 33.56 34.34

%Entropy

Increased
34.69 49.73 33.8 58.38 11.54 35.71 50.24 65.43 46.26 42.866

c volume 90.8 91.45 91.74 91.97 93.46 94.55 89.87 91.65 87.69 91.46

c entropyc 0.281 0.258 0.266 0.256 0.241 0.201 0.286 0.247 0.288 0.258

%missing

Volume

Reduced

45.43 44.01 43.23 51.97 37.89 38.21 46.85 47.71 40.73 44.01

%Entropy

Increased
24.5 37.97 23.15 47.98 15.87 30.52 38.16 52.47 34.58 33.910

Table 6.3: Packing comparison major configurations, Prefix i : initial con-

figuration, d : default configuration, c : criteria low quotient divergence

The standard deviation for the default configuration is 2.32 which leads to

a 95% confidence interval of 85.43 ≤ x ≤ 94.52, the standard deviation for

the criteria configuration is 1.97 which leads to a 95% confidence interval

of 87.60 ≤ x ≤ 95.33. Overall the missing volume was reduced by more

than 33% for the default setup and almost 45% for the highest packing

density setup which has a reasonable amount of spheres and computation

time. Considering the results that the upper bound for the packing density

is at about 95.01% [SDSRH12], the best packing configuration reduced the

possible remaining error by more than 50%. The overall distribution of

the volume coverage for the major configuration is shown in the following

tabular 6.4.
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std dev x̄ 95% lb 95% ub

initial 3.77 84.60 77.22 91.99

fast 200 k 2.39 88.89 84.20 93.57

default 2.32 89.97 85.43 94.52

highest density 1.97 91.46 87.60 95.33

Table 6.4: Comparing standard deviation, average covered volume and 95%

confidence interval for the major configurations

Every new packing, regardless of how simple the configuration is, provides

better and more stable results. The default configuration is the best tradeoff

for all aspects and performs slightly worse than the highest density config-

uration, which lowest bound on the 95% confidence interval even surpasses

the initial setup, ProtoSphere performs way better.

6.4 Packing Similarity and Classification

As mentioned in 3.4.8, sphere packing can potentially be used to classify

models. Initially the packing had no similarity 3.2 which could be used to

classify models. In the following, the similarity of the models will be applied

on three major setups: 200k fast packing, highest density criteria packing,

default packing.

Ateneam Armadillo Dog Cow Cylinder Cube Dragon Bunny Pig

Ateneam 1.00 0.97 1.00 1.00 0.95 0.90 1.00 0.95 1.00

Armadillo 0.97 1.00 0.98 0.97 1.00 0.98 0.97 1.00 0.99

Dog 1.00 0.98 1.00 1.00 0.97 0.93 1.00 0.97 1.00

Cow 1.00 0.97 1.00 1.00 0.95 0.90 1.00 0.95 0.99

Cylinder 0.95 1.00 0.97 0.95 1.00 0.99 0.95 1.00 0.97

Cube 0.90 0.98 0.93 0.90 0.99 1.00 0.90 0.99 0.94

Dragon 1.00 0.97 1.00 1.00 0.95 0.90 1.00 0.95 0.99

Bunny 0.95 1.00 0.97 0.95 1.00 0.99 0.95 1.00 0.97

Pig 1.00 0.99 1.00 0.99 0.97 0.94 0.99 0.97 1.00

Table 6.5: Similarity for the default configuration dflt. 1.00 indicates a 100%

equality which decreases with less similar packings.

For the default packing 6.5, the issues from the initial packing became even
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worse. The lowest similarity increased to 90% from 85%, which makes clas-

sifications even more impossible. On the other hand, this result can also be

interpreted as a verification that the default configuration works equally at

least for the models which were used for this thesis.

Ateneam Armadillo Dog Cow Cylinder Cube Dragon Bunny Pig

Ateneam 1.00 1.00 0.99 0.98 0.97 0.95 0.97 1.00 0.99

Armadillo 1.00 1.00 0.99 0.98 0.98 0.95 0.97 1.00 0.99

Dog 0.99 0.99 1.00 1.00 0.95 0.91 0.99 0.98 1.00

Cow 0.98 0.98 1.00 1.00 0.92 0.87 1.00 0.97 1.00

Cylinder 0.97 0.98 0.95 0.92 1.00 0.99 0.90 0.99 0.94

Cube 0.95 0.95 0.91 0.87 0.99 1.00 0.85 0.97 0.90

Dragon 0.97 0.97 0.99 1.00 0.90 0.85 1.00 0.95 0.99

Bunny 1.00 1.00 0.98 0.97 0.99 0.97 0.95 1.00 0.98

Pig 0.99 0.99 1.00 1.00 0.94 0.90 0.99 0.98 1.00

Table 6.6: Similarity for the fastest packing configuration 200kF . 1.00 indi-

cates a 100% equality which decreases with less similar packings.

Like the initial state packing and the default packing, this result 6.6 has at

worst a 85% similarity which shouldn’t be used to classify models.

Ateneam Armadillo Dog Cow Cylinder Cube Dragon Bunny Pig

Ateneam 1.00 0.97 0.89 0.99 0.86 0.80 0.86 0.98 0.95

Armadillo 0.97 1.00 0.97 0.99 0.76 0.70 0.95 0.91 1.00

Dog 0.89 0.97 1.00 0.94 0.62 0.58 1.00 0.80 0.98

Cow 0.99 0.99 0.94 1.00 0.79 0.73 0.91 0.94 0.99

Cylinder 0.86 0.76 0.62 0.79 1.00 0.98 0.59 0.93 0.71

Cube 0.80 0.70 0.58 0.73 0.98 1.00 0.55 0.87 0.65

Dragon 0.86 0.95 1.00 0.91 0.59 0.55 1.00 0.76 0.96

Bunny 0.98 0.91 0.80 0.94 0.93 0.87 0.76 1.00 0.88

Pig 0.95 1.00 0.98 0.99 0.71 0.65 0.96 0.88 1.00

Table 6.7: Similarity of the more sensitive criteria packing critH. 1.00 indi-

cates a 100% equality which decreases with less similar packings.

Finally, the highest density packing which was computed with the more sen-

sitive dynamic break criteria provides promising results 6.7. The similarity

ranges from 55% to 100%. In 3.3 the models were classified as:

Majority torso: Ateneam, Bunny, Cow, Pig

Majority limbs: Armadillo, Dragon, Dog
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Big limbs: Armadillo, Pig, (Dragon)

No small connections: Ateneam, Bunny, Cube, Cylinder

For majority torso, the classification would fit for all object, which were

chosen for this aspect, the Armadillo with a similarity of more than 95%.

The same goes for the majority limbs and small limbs classification, however

more models would fit for those aspects too. Additionally the no small

connections classification holds again if the low similarity of the Cube and

Cylinder for all other models is considered.

On the other hand, if objects with no similar common classifications are

compared like the Bunny and Dragon, the similarity drops to less than 80%.

The Cube and Cylinder have the worst results for similarity, both models

are pretty similar to each other. For other objects the similarity rises, e.g.

the Cube and Ateneam which consists of a cube like object and a head and

the Cube and Bunny. The sample size is small and a bigger sample size

would be too much to cover for this thesis. Still, these results show that

further investigations might show that the cosine similarity can be used as

classification criteria.

However, these results indicate, that a classification needs a small or

similar noise of small spheres to produce reliable results. The definition

for noise in this case are small spheres which dominate in numbers while

contributing almost no covered volume.

6.5 Packing Divergence

In 3.4.8 the Kullback–Leibler divergence had some promising results since the

divergence had a big range from 0.05 ≤ D ≤ 1.33. However, the divergence

was computed on a configuration which ignored the majority of cells. Since

the new packing considers all cells which cover more volume, the results are

evaluated again.
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Ateneam Armadillo Cylinder Cow Cube Dragon Bunny Dog Pig

Ateneam 0.00 0.08 0.19 0.06 0.12 0.45 0.30 0.08 0.10

Armadillo 0.09 0.00 0.14 0.10 0.22 0.54 0.25 0.14 0.14

Cylinder 0.20 0.14 0.00 0.24 0.34 0.71 0.15 0.27 0.28

Cow 0.06 0.09 0.23 0.00 0.13 0.40 0.34 0.05 0.05

Cube 0.10 0.17 0.27 0.11 0.00 0.31 0.38 0.09 0.13

Dragon 0.36 0.39 0.54 0.31 0.29 0.00 0.60 0.29 0.27

Bunny 0.37 0.28 0.16 0.40 0.54 0.91 0.00 0.44 0.42

Dog 0.08 0.12 0.25 0.05 0.10 0.36 0.37 0.00 0.06

Pig 0.10 0.13 0.28 0.05 0.14 0.36 0.37 0.06 0.00

Table 6.8: Divergence of the more sensitive criteria packing critH. 0.0 indicate

no divergence, bigger values indicate bigger divergences

In6.8 the range decreased from 0.05 ≤ D ≤ 1.33 to 0.05 ≤ D ≤ 0.91 similar

objects like the Dog, Cow Armadillo and Pig again have low divergence

values. However the Ateneam and Cube have divergences in the same range,

while models like the Bunny and Dragon which are unique in their shapes,

have big divergence results to almost any model. Therefore, like the packing

similarity 6.4 further investigations might show that the divergence can be

used as a classification criteria.

6.6 Summary

In this chapter, all configurations were compared to each other. By compar-

ing all configurations, a default configuration which is a good tradeoff for

all major aspects for sphere packing was found. If the cosine similarity or

Kullback–Leibler divergence are applied to the packing, the sensitive break

criteria provides results which could actually be used to classify objects by

its packing.
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Chapter 7

Conclusion

The missing packed volume with ProtoSphere was reduced by more than 50%

if the upper bound 95.01% is considered as the maximum packing density.

This enhancement was achieved by adjusting the prototype distribution al-

gorithm to consider any cell and adjusting the sphere size tolerance per step

by a configurable limit.

There are also new options to configure ProtoSphere to either pack models

with a small amount of very good spheres, which is slow or pack a model

quickly with any sphere which is inside the tolerance bounds. In addition

to the packing configuration, there are new possibilities to stop the packing

algorithm of ProtoSphere for either a certain amount of covered volume or a

slope on the filling curve which is close to 0.

Two new tools were implemented for the analyses, which either analyze a

sphere packing or compare sphere packings. The analysis tool, which is called

PackingAnalyzer, generates several human readable 2-d graphics to verify if

the packing is still valid for aspects like sphere concentration, voxel coverage

or the density of the covered volume. Aside from the 2-d graphics, several

graphs were added, which visualize the packing process with an increasing

number of spheres and the theoretical amount of required spheres. Finally

histogram visualizes the sphere size distribution. The distribution is also used

to compute the entropy of the packing or the similarity between two pack-
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ings which can be calculated by the second tool, the PackingComparer. For

comparable results, the amount of small spheres which contribute almost no

volume should be as minimal as possible or be comparable.

The tools were used to compare the different packing settings to each other,

which target different aspects like a short computation time, the most cov-

ered volume or just insert the biggest spheres. Since each aspect is in conflict

with each other, there is no optimal packing configuration, but depending on

the results a default packing configuration was derived which performs well

on average.

The hypothesis 1 and 2 were discarded, since the results show that the

upper bound for the covered volume is close to 95.01% than to 100%, addi-

tionally the tolerance factor for the inserted prototypes prevents the proto-

types converging to the same radii for later stages of the filling process. In

contrast to hypothesis 1 and 2 the hypothesis 3 was confirmed, since at

least one stable dynamic break criteria exists.
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Chapter 8

Future Work

ProtoSphere was improved on several aspects and performs better in any

setup than the parallelized version. However, several issues were discovered

during the thesis which still can be mitigated and enhance the performance

of ProtoSphere even more.

One big improvement would be to cluster parts of the models where spheres

have no chance to intersect and apply the inserting tolerance to each cluster

instead of any inserted sphere for the single steps. This would fill any in-

dependent part of the mesh in parallel and increase the packing speed by a

considerable amount while each part on the mesh is packed evenly. By doing

this, there would also be a chance to create packing for deformable mod-

els, if clusters are defined between joints. Another enhancement is smarter

bounding boxes for insertion; prototypes are dropped all the time if its cell is

covered by a small part of the model, with smart bounding boxes this wasted

effort would be reduced. This enhancement might also solve the problem for

invalid spheres which are inserted between small parts of the model like fin-

gers which are inside a single box.

There are also some minor issues during the packing process like prototypes

which cannot converge towards Voronoi points. If those prototypes can be

detected during computation time, they could either be dropped or other

adjustments could be made which prevent ProtoSphere from inserting non-

80



Voronoi prototypes. By doing this, less spheres are required since potentially

good spheres are not by bad prototypes anymore.

Aside from the packing, several aspects like the entropy, similarity or diver-

gence were investigated, which might qualify to classify models depending

on their characteristics. During this thesis only nine models were used as

reference, which is a small sample size. The metrics can either be verified,

discarded or enhanced if those are applied on a larger sample size. Another

interesting observation is that if the entropy and covered volume percentage

are multiplied, the result decreases over time until it converges, which might

indicate another possible break criteria.

ProtoSphere was not enhanced for models which are not watertight. Addi-

tionally, thin areas or parts of the model which cover just a small part of

grid cells are hardly covered since just prototypes which spawn inside of the

model are considered for the optimization process. There are several possible

solutions which can mitigate these issues and would enable ProtoSphere to

pack even more models efficiently.
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Glossary

cfg. mdl. armd atnm bny Cow Cube cyl drgn Pig smrf x̄

cH vol 90.8 91.45 91.74 91.97 93.46 94.55 89.87 91.65 84.05 91.06

cH ent 0.281 0.258 0.266 0.256 0.241 0.201 0.286 0.247 0.307 0.260

cH s(k) 219 202 198 187 160 123 256 197 274 202

cH time 156 105 131 131 383 168 128 135 363 189

cL vol 86.70 87.63 88.06 88.16 90.28 89.65 84.89 87.72 79.25 86.92

cL ent 0.361 0.343 0.354 0.330 0.298 0.237 0.289 0.329 0.410 0.328

cL s(k) 32 30 29 27 23 17 39 29 42 30

cL time 57 32 45 27 109 24 47 24 108 53

2S vol 90.65 91.43 91.75 92.07 93.73 95.02 89.35 91.68 83.42 91.01

2S ent 0.285 0.258 0.265 0.255 0.235 0.293 0.289 0.246 0.324 0.272

2S s(k) 200 200 200 200 200 200 200 200 200 -/-

2S time 149 102 113 127 430 225 113 104 440 200

2F vol 88.22 89.01 89.33 90.11 91.07 93.43 83.31 89.39 80.53 88.26

2F ent 0.284 0.262 0.265 0.251 0.231 0.189 0.301 0.247 0.324 0.262

2F s(k) 200 200 200 200 200 200 200 200 200 -/-

2F time 25 8 8 14 5 6 18 11 46 16

tL vol 90.38 91.00 91.43 91.52 93.32 94.21 89.38 91.63 83.57 90.71

tL ent 0.281 0.257 0.261 0.256 0.234 0.197 0.285 0.246 0.309 0.258

tL s(k) 198 187 201 171 178 120 237 197 248 193

tL time 105 60 71 60 71 43 94 57 252 90

tH vol 90.24 90.85 91.41 91.41 93.42 93.89 89.79 91.13 83.47 90.62

tH ent 0.280 0.256 0.264 0.256 0.223 0.200 0.285 0.246 0.308 0.258

tH s(k) 225 291 196 196 268 120 275 180 296 227

tH time 67 29 40 40 32 12 66 91 177 62

tS vol 90.08 90.69 91.00 91.22 92.88 94.08 88.02 90.76 83.28 90.22

tS ent 0.289 0.265 0.271 0.264 0.243 0.200 0.299 0.255 0.319 0.267

tS s(k) 213 199 210 175 173 146 243 189 277 203

tS time 74 36 35 39 36 23 71 38 180 59

vl vol 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 83.50 -/-

vl ent 0.252 0.225 0.233 0.231 0.250 0.226 0.260 0.213 0.322 0.246

vl s(k) 688 616 506 402 113 32 735 501 208 422

vl time 450 196 206 200 330 87 557 196 337 284

df vol 89.02 89.70 89.92 90.43 93.50 93.24 87.82 89.92 82.05 89.51

df ent 0.304 0.280 0.289 0.274 0.232 0.209 0.311 0.268 0.337 0.278

df s(k) 122 117 104 108 200 67 150 113 262 138

df time 43 19 17 22 24 10 42 19 98 33

Table 8.1: Comparison all configurations
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