

University of Bremen
Faculty 3 – Mathematics and Computer Science
Master Program of Digital Media

Volkswagen Group AppFactory

Master Thesis

Approach for the automated testing of design
requirements on different versions of mobile devices

Name: Nadezda Bogdanowa
Matriculation number: 2302623

1st Supervisor: Prof. Dr. Gabriel Zachmann
2nd Supervisor: Prof. Peter von Maydell
Mentors: Rainer Riekert

 Ingo Wolterstorff

Bremen, May 2014

Seite 2

Statutory Declaration

I declare that I have developed and written the enclosed Master Thesis completely
by myself, and have not used sources or means without declaration in the text. Any
thoughts from others or literal quotations are clearly marked. The Master Thesis
was not used in the same or in a similar version to achieve an academic grading or
is being published elsewhere.

 …………………………… …… ………………………………………
 date (signature)

Seite 3

Abbreviations and Acronyms

UI User Interface
GUI Graphical User Interface
CI Corporate Identity
CD Corporate Design
OS Operating System
API Application Programming Interface
IDE Integrated Development Environment
SDK Software Development Kit
XML Extensible Markup Language
XAML Extensible Application Markup Language
QML Qt Meta Language or Qt Modeling Language
XIB XML Interface Builder
MVC Model-View-Controller
ALM Application Lifecycle Management

Seite 4

Table of Contents

1. Motivation …………………………………………………………………………………………… 8

2. Related work ………….………………………………………………………………………………. 10

2.1. Mobile operating systems …………..…………………………………………………………… 10

2.2. Testing classification ……..………………………………………………………………… 12

2.3. State of the art ………………………………………………………………………………… 16

3. Background ………………….………………………………………………………………………. 23

3.1. Internal structure of Volkswagen Group AppFactory …………………………………………... 23

3.2. Corporate Identity and Corporate Design ……………………………………………………….. 24

4. Defining the design guidelines for mobile devices ………………………………………………….. 26

5. DesignTesting Framework: Approach for the automated design testing tool ……………………. 31

5.1. Scientific question …………………………………………………………………………………. 31

5.2. Different ideas ……………………………………………………………………………………… 31

5.2.1. Source code analysis of layout files ……………………………………………………. 31

5.2.2. Source code analysis of the application code ………………………………………… 33

5.2.3. Screenshot analysis through image recognition tools ……………………………….. 33

5.2.4. Screenshot analysis through image comparison …………………………………….. 34

5.2.5. Combination of various methods ………………………………………………………. 34

5.3. Approach for automated design testing tool ……………………………………………………. 35

5.3.1. General idea ……………………………………………………………………………… 35

5.3.2. Physical constraints ……………………………………………………………………… 35

5.3.3. Functional overview ……………………………………………………………………… 36

5.3.4. Architecture ……………………………………………………………………………….. 40

5.4. Examples …………………………………………………………………………………………… 50

5.4.1. iAgree ……………………………………………………………………………………… 50

5.4.2. Konzernkalender …………………………………………………………………………. 53

5.5. Limitations ………………………………………………………………………………………….. 56

6. User study of DesignTesting Framework ……………………………………………………………. 57

6.1. Analysis of target group …………………………………………………………………………... 57

6.2. Procedural method ………………………………………………………………………………... 57

6.3. Experiment design ………………………………………………………………………………… 58

6.4. Data representation ……………………………………………………………………………….. 61

6.5. Data analysis ………………………………………………………………………………………. 65

6.6. Summary of the results …………………………………………………………………………… 68

7. Conclusion ……………………………………………………………………………………………… 70

8. Future work …………………………………………………………………………………………….. 72

9. Acknowledgements …………………………………………………………………………………… 75

10. References …………………………………………………………………………………………….. 76

Seite 5

List of Figures

Figure 1 Model-View-Controller ………………………………………………………….….... 11

Figure 2 Comparison of architecture of Android and iOS operating systems ………….... 12

Figure 3 The flow of the testing process …………………………………………………….. 17

Figure 4 Volkswagen company and product logotypes ……………………………………. 25

Figure 5 Java implementation of the layout files source code analysis approach …….… 32

Figure 6 Structure of the automated design testing tool …………………………………... 36

Figure 7 Data flow of DesignTesting Framework …………………………………………... 37

Figure 8 Screenshot of user preferences settings ……………………………………….…. 38

Figure 9 Screenshot of storing data with iTunes function …………………………………. 38

Figure 10 Implementation of dumpSubviews function ………………………………………. 42

Figure 11 Implementation of check consistency function …………………………………… 43

Figure 12 Implementation of image comparison function ………………………………….. 46

Figure 13 Implementation of pixel by pixel comparison method …………………………… 46

Figure 14 Implementation of reading the design requirements function …………………... 48

Figure 15 System method architecture ……………………………………………………….. 49

Figure 16 Screenshot of iAgree main view with accept and decline options ……………... 51

Figure 17 Screenshot of iAgree view with opened vertical slider ………………………….. 51

Figure 18 Design requirements for iAgree presented in the Excel table ………………….. 52

Figure 19 Results of the design testing of iAgree …………………………………………… 52

Figure 20 Screenshot of Konzernkalender year view ………………………………………. 54

Figure 21 Screenshot of Konzernkalender month view …………………………………….. 54

Figure 22 Design requirements for iAgree represented in the Excel table ………………. 55

Figure 23 Results of the design testing of Konzernkalender ………………………………. 55

Figure 24 Results of the usability questionnaire …………………………………………….. 63

Seite 6

List of Tables

Table 1 General design requirements ……………………………………………………..... 27

Table 2 Volkswagen corporate design requirements ………………………………...…… 30

Table 3 Test cases for the research experiment ………………………………………...... 61

Table 4 Duration of every test case for both manual and automated design testing ….. 62

Table 5 Number of errors for every test case for both manual and automated

design testing ………………………………………………………………………... 62

Table 6 Usability questionnaire with average results ……………………………………... 64

Table 7 Experiment results of test person #1 ……………………………………………… 66

Table 8 Experiment results of test person #2 ……………………………………………… 67

Table 9 Experiment results of test person #3 …………………………………………….... 68

Seite 7

Summary

With the extensively increasing number of mobile applications on the market, an
automating and effective testing of applications has become a relevant research challenge.
Among different types of testing, the evaluation of the graphical user interface (GUI) is one
of the core issues. The testing of the GUI shows whether the UI elements are correctly
displayed on the screen and how well the user can interact with them. For the development
of applications for companies, not only the functionality and the response of the application
to the user’s actions is important, but also the compliance of corporate identity, general
design guidelines and customer needs concerning the visual appearance. Accordingly, the
verification of the visual representation of the GUI is an important part of the GUI testing.
However, it is difficult to identify the design requirements with a human eye as precisely as
the computer would do this. So in Volkswagen Group AppFactory the design testing is
either conducted by human testers, through manual verification of the required
components, or not conducted at all because of the lack of required technology. An
automation of the design testing process can improve the results and reduce effort, time
and the cost of the testing process. In recent years a number of diverse automated tools for
the GUI testing were presented. Nevertheless, the most currently existing techniques were
developed only for the testing of functionality, safety or usability of the application, not
taking into account the layout design. No automated tool for the verification of the design
requirements and corporate design of mobile applicationsis currently known.

This master thesis presents a prototype of the automated testing tool, called DesignTesting
Framework, for the evaluation of design requirements of iOS applications. My framework,
developed in Objective-C, can be linked within XCode project to every iOS application with
the available source code. While running the application on the mobile device, the
DesignTesting Framework can be activated through the shaking motion of the device. My
automated design testing tool goes recursively through the source code of the application,
finds all UI elements presented on the screen, and defines their attributes. After that, the
tool reads the customer and corporate design documents and compares the design
requirements with the values in the application. Finally, the tool represents the test results
in the structured PDF document. The DesignTesting Framework is able to verify the
general design guidelines, the corporate design, and the requirements of the customers
concerning the visual appearance of the application. I have created the list of design
requirements appropriate for the mobile applications, since most existing guidelines for the
development of the GUI cannot be applicable for handheld devices. These guidelines are
also presented in my master thesis.

The evaluation of my DesignTesting Framework in a user study shows that it can reduce
the time of the design testing process, especially using the tool for the large tests. The
most significant outcome of the evaluation demonstrates that the use of my automated tool
leads to more accurate and precise testing results, almost without errors, while the manual
design testing causes a large number of errors. However, some improvements can be
done in future work to raise the effectiveness of the DesignTesting Framework. The users
agree that the invention of my automated tool in the design testing process can reduce
production costs, increase productivity and will lead to the development of more qualitative
and visually appealing applications.

Seite 8

Approach for the automated testing of design
requirements on different versions of mobile devices

1. Motivation

Mobile applications have become very popular in the last few years and are in fast
development [37]. A mobile application is defined as a type of software application
considered to run on hand-held devices, such as smartphones or tablet computers. They
can be designed for the same tasks as those running on desktop computers, but due to
their small size and limited resources the mobile applications often focus on certain
isolated functions.

The growing number of mobile applications on the market has attracted an increase in
research interests in this field. According to the Portio Research, 1.2 billion people were
using mobile applications at the end of 2012 [25]. In 2013 almost 2 million mobile
applications were available for download at four leading app stores – Apple (900 000
apps), Android (800 000 apps), Blackberry (120 000 apps) and Windows (100 000
apps).More than 100 billion applications were downloaded by the end of 2013 - 48 billion
Apple applications, 50 billion Android applications and 3 billion Blackberry applications [24].

With the exponential increase in mobile application development, an effective testing of
them has become a relevant research challenge. However, the methods and guidelines
traditionally used in software testing may not be applicable for mobile applications because
of the differences and limitations of hand-held devices. The most significant differences of
mobile devices include mobile context, connectivity, small screen sizes, different display
resolutions, limited processing capability, and power and data entry methods [49]. While
iPhone and iPad have a small number of screen types, Android is running on a variety of
devices with different resolutions. Apart from this, various operating systems have
differences not only in the code architecture, but also in the visual appearance of native UI
elements. So every mobile device can react differently to the same code. All these
differences should be taken into account by designing the mobile application as well as by
testing it.

The effective testing of mobile applications is an “emerging research area that faces a
variety of challenges due to unique features of mobile devices” [49]. Currently there are
several studies and approaches regarding the testing of the functionality, security and
usability of mobile applications, but the field of GUI design testing has still not been widely
explored. This thesis concentrates on the design testing, which is the part of usability,
though it focuses not on how well the users can interact with the application, but rather on
the visual appearance of the GUI. The challenge for GUI testing is to verify whether native
applications are correctly displayed on different devices.

An automation of this testing can reduce time, effort, errors and the cost of the testing
process, and increase productivity. The automation of the software testing process has
numerous benefits, which are described by Melody Y. Ivory in “The State of the Art in
Automating Usability Evaluation of User Interfaces” [19]. The most important advantage is
that of cost-saving, due to the reduction in the testing time. Another positive point is the
prediction of the time and error expenses through the whole application. An additional

Seite 9

benefit is the expansion of the tested features. The use of automated tools makes it
possible to cover all possible test cases and user interactions, something that is not always
achievable with non-automatic testing. Apart from this, the special tools not only perform
automatically the test cases and simulate the user interaction with the system, but are also
able to expertly analyze the obtained results. Not all testers have enough competence in all
aspects of software evaluation. One more advantage is the possibility of the comparison
between optional designs. During the manual testing only one designed UI is evaluated.
Some automated tools make it possible to predict and simulate the alternative and
improved designs and to test them. Finally, the automated tests can also be performed
during the development phase, with the UI schemes, prototypes and guidelines predicting
the bugs before implementing them. The human testers as a rule test only the implemented
version of the UI.

Initially, most mobile applications were developed for entertainment purpose, but now
many industries have arranged application development for competitive benefit. In order to
support the image of the companies their applications should meet certain design
requirements and follow the corporate identity. The compliance of the corporate design is
very important for company identification, maintaining its image in the media and for the
consistent appearance of the application.

The current situation shows that there is a need of an automated testing tool that can
evaluate the visual design of the mobile application, according to the general design
guidelines and the requirements of customers and the company. Such an automated
design testing tool can improve and simplify the process of testing the user and corporate
design requirements.

The goal of this master thesis is to present an approach for the automated GUI testing of
the user and corporate design requirements. The result of this work is a prototype of the
automated design testing tool for iOS applications, developed for Volkswagen Group
AppFactory. The thesis includes an overview on existing systems and different methods of
mobile testing, a general idea of a unified design testing tool for different devices, a
presentation of the design testing approach on the example of iOS application, testing and
evaluation of this approach, as well as a discussion of the challenges and future research
questions in the field of automated design testing of mobile applications.

Seite 10

2. Related Work

2.1. Mobile operating systems

In order to test the application design on different devices, it is necessary to be aware of
the structure, source code and UI representation of different platforms. A paper, “Cross-
Platform Mobile Application Development: A Pattern-Based Approach” [1], describes how
most applications are build. Most of the mobile platforms use the Model-View-Controller
principle, which is demonstrated in figure 1. It consists of three parts, which are responsible
for the core logic (Model), visual representation (View) and the interaction with the user
(Controller). This principle allows one to separate functionality and layout design of the
application. So while testing the layout, it is possible to consider only the design of the
application, independent of the functionality behind it. However, sometimes the design is
described in the source code. In particular, the correlations between views and elements
cannot always be recognized in the layout files. The authors describe various patterns for
the individual screen representation and give a detailed overview on UI elements of
different platforms. Most core UI elements of various platforms are similar. By
understanding the common components and their differences, it is possible to develop an
approach for the design testing of applications.

The layout description results in the graphical GUI, which is the main object of this thesis. A
description of the GUI is given in [3]: “A GUI provides a hierarchical, graphical front-end to
the application. It is usually implemented as an event-based system that accepts as input
user-generated events and produces graphical output. Each GUI contains graphical
objects; each object has a fixed set of properties. At any time during the execution of the
GUI, these properties have discrete values, the set of which constitutes the state of the
GUI.”

With the large number of different mobile devices and operating systems, it is important to
consider the differences in their GUI elements and resolutions. The paper, “Orientation
Awareness in Declarative User Interface Languages for Mobile Devices: A Case Study and
Evaluation” [22], describes the differences in various screen resolutions, how the layout is
fitted onto them and how the UI elements are resized and redesigned according to the
mobile platform. Furthermore, the authors describe the declarative languages used in
different platforms for describing the layout information. Many of the platforms use XML
based languages (except for Qt Modeling Language QML), which define a hierarchical
structure of GUI elements and their attributes. Figure 2 shows the tree structure of the core
UI elements of Android and iOS applications.

A paper, “Evaluation of Descriptive User Interface Methodologies for Mobile Devices” [36],
also explores the most popular operating systems and their UI descriptions. The Android
operating system developed by Android Inc. and acquired by Google was released as a
smartphone platform in 2008. It is Linux-based and uses Java language for the
development. The UI description is defined using XML-based declarative language and has
a hierarchical structure. It consists of multiple views and elements, having the correlating
layout type. UI design can also be described programmatically using Java API. The
connection between different screens is defined in the source code and cannot be read
from the XML-file.

Seite 11

Figure 1: Model-View-Controller

iOS is the iPhone platform presented to the market in 2007. The native language for iOS
development is Objective-C. For the UI description, iPhone uses the Interface Builder
based on the WYSIWYG principle, but the output is stored in the XIB file, which is XML-
based and hierarchically organized. During building, the XIB files are compiled into NIB
files that cannot be edited by a hand. The connection between screens is similar to Android
architecture and is defined programmatically in the source code.

Windows Phone 7 OS is built on CE kernel and uses .NET languages (C# and VB .NET)
for the application development. It uses XML-based declarative language XAML for the UI
definition. Each interface element described by XAML is a .NET object. The relations
between screens are made in the source code with a target on the correlating XAML file.
This way the Windows UI creation is very similar to Android. Nevertheless, there is an
opportunity to create these connections inside the XAML file itself.

The BlackBerry OS provides two possibilities for the application development – with
BlackBerry web development using widgets, and with Java application development using
MIDP 2.0. For the creation of this, the UI BlackBerry offers a framework, Cascades, based
on Qt. It uses a specialized markup language QML, which is not XML-based. QML uses
JavaScript for creating the UI elements and connections between them, so it is possible to
develop the complete application using QML, though it is initially thought for the UI
definition.

Seite 12

Figure 2: Comparison of architecture of Android and iOS operating systems

2.2. Testing classification

The fast growth of the mobile application market requires specialized testing techniques,
because of the high defect density and the new kinds of bugs caused by the physical
limitations of mobile devices. There are many different types of automation tools, based on
the testing purpose, automation type, technique and the availability or unavailability of the
code.

Concerning the mobile application components that differ from the desktop software, and
the need to be tested, Henry Muccini et al. categorize in “Software Testing of Mobile
Applications: Challenges and Future Research Directions” [27] different types of automated
tests as following:

- Mobile connectivity testing

The network connection of mobile devices is one of the most critical and unstable
characteristics that can vary in different situations, and as a result affect the functionality of
the application. So the mobile application should be tested for reliability, performance and
functionality through different networks and in different connectivity conditions.

- Testing of limited resources

The distinctive characteristic of mobile devices is the limitation in their resources. Even the
most powerful devices cannot be compared with laptop and desktop computers. Therefore,
the resource usage of the application has to be tracked to find out whether it limits the
performance of the application and needs to be shortened.

Seite 13

- Autonomy testing

Another constraint of mobile devices is the high energy consumption, which is also different
for every device and in different usage scenarios. So the energy consumption of the
application can be tested through monitoring it while running the application on different
devices and in different situations.

- User interface testing

The screen of mobile devices has a smaller size and resolution in comparison to laptop
and desktop displays, so the design of the GUI needs to follow special guidelines.
Dependent on the various mobile devices, the GUI can react differently to the source code.
It is necessary to test how the UI components are displayed and how well the user can
interact with them.

- Context awareness testing

Many mobile applications use sensors or connectivity options for their functionality, such as
noise, light, motion and image sensors, as well as Bluetooth, GPS or Wi-Fi. This causes
the large flow of data that can vary in different environmental contexts. The testing of the
functionality in various environment situations, and in combination with different contextual
inputs, is the important aspect of the evaluation of the context-dependent applications.

- Adaptation testing

The mobile applications may sometimes need a runtime adaptation to some contextual
information. So testing the application on the adaptation correctness is an important
challenge.

- Testing of new programming languages

For implementing and designing applications, new programming languages and new
libraries optimized for mobile devices were invented. The usual byte code and structure
analysis techniques cannot always be applicable for new mobile languages and need to be
evaluated.

- Testing of new operation systems and diversity of devices

There are different operating systems available for mobile devices, and also new versions
of them regularly appear. Some functional bugs may be caused by OS problems. That’s
why mobile applications have to be tested on OS compatibility and diversity coverage.

- Input possibilities and touch screen testing

Unlike desktop computers with the mouse and keyboard as input modalities, most mobile
devices use touch screens as the main input possibility. The response time of the touch
screen depends on the device and on the current state. The reaction of the system to the
touch input needs to be tested on different devices and under different conditions, such as
resource usage, processor load and memory load.

Seite 14

The objective of this thesis is to develop an approach for the design evaluation, which is a
part of the GUI testing. It is one of the most important parts of the application’s evaluation,
since GUI is a core environment, which is used to the system’s interaction with the user.
GUI testing is a process to evaluate how the UI components are rendered to the screen and
how they react to the user’s input [5] [38]. GUI testing includes a wide range of tasks, for
example evaluating how the UI handles the touch events and input data, how it displays
different UI components, such as buttons, menu items, toolbars, text boxes, list controls,
images and others, and how it responses to the interaction with these components.
Commonly, users perform manually different actions with the application several times with
different data input and compare the result with the expected behavior. GUI testing can
prevent a large number of problems from small bugs to the total crash of the system. GUI
testing includes testing of functionality, that checks how the system responds to the user
actions, the usability, that checks not only if the application is functionally correct, but also if
it is easy to use, and the design testing, that checks the correct and attractive visual
representation of the UI components. Design testing includes the verification of whether the
GUI components were correctly rendered to the screen with the expected color, style, size
and position attributes.

In general, according to Balbo [6] [19], all evaluation methods of the listed components can
be divided into four groups concerning the automation type:

- Non-automatic or Manual

This method involves no level of automation and is entirely performed by the human
testers.

- Automatic Capture

The capture method collects and records various software data, such as keyboard and
mouse input, visual output, task completion time, errors, guidelines non-compliance and
other things for the future test regeneration or analysis.

- Automatic Analysis

The analysis method automatically interprets the usability output and determines the bugs
and potential problems, depending on the test results.

- Automatic Critic

The critic method not only finds the problems of the system, but also offers their possible
solutions in order to improve the application performance.

This thesis focuses on the automatic testing of the applications, especially on the automatic
analysis and the critic one. Automatic analysis of the GUI is the use of the special tool that
can automatically simulate the user interaction with different GUI components of the
application and analyze if the application responds in the way it is supposed to. Automated
GUI testing compares whether the outcome of the test corresponds to the expected results,
and finds out the problems in the GUI. It can replace the manual input, reduce the testing

Seite 15

time and input errors, and find the problems that sometimes cannot be identified manually.
The automated tools sometimes also display the expected results, showing what
components of the application must be changed.

In recent years a number of different automated tools for the evaluation of applications has
appeared. They can all be classified in some categories. According to the tester's
knowledge of the inner workings of the system under test, there is a separation between
white-box and black-box testing [14] [20] [40]. White-box testing is a technique of the
structural and logical analysis of the application source code, control flow and data flow. It
requires access to the application project or to the compiled code. Black-box testing does
not need to have access the source code. It analyses the functionality of the application
through interacting with it. The white-box technique is often referred to as structural testing
and black-box as functional testing. The combination of both techniques with the limited
knowledge of the internal workings of the system under test is defined as grey-box testing.
This thesis considers both the white-box and black-box testing possibilities, but the final
approach requires access to the application’s project and is based on the analysis of the
source code during its compilation. Therefore my approach uses the white-box technique.

Another possibility to classify the testing techniques, with reference to the state of the
system under test, is a separation between static and dynamic analyses [42]. Static
analysis tests the application in a non-runtime environment. Commonly, it examines the
source code of the system, but it can also be applicable for the black-box testing, e.g.
reviewing the visual representation of GUI without interacting with it. Dynamic analysis
examines the performance of the application while running. Typically, dynamic analysis is
used in black-box testing, but it can also be used while executing the source code. My
prototype uses the dynamic analysis, since it evaluates the GUI of the current application
view, so that every possible state of the application can be tested. It analyses the source
code at the runtime of the application in order to find the UI components that are currently
present on the screen.

In addition, Hughes Systique Corporation suggests in the paper “Test Automation Tools for
Mobile Applications: A brief survey” [14] another classification of the currently available
automation tools:

- Platform specific

There are tools provided by the operation systems and integrated in the SDK development
environment, for example Instrumentation and MonkeyRunner for Android or Instruments
for iOS. They can test the application during the development process within the IDE.

- Generic script based

Some tools such as Sikuli or Robotium can control the performance of applications using
scripts. The user needs to write the test description with the required script language and to
perform the test through executing this script.

Seite 16

- Random event generator

There are also tools that are able to send random events to the application to simulate the
user interaction and to repeat the same user actions multiple times. The examples of
random event generator tools are Monkey and iOS Automation.

These techniques show that the testing of mobile applications is a broad field covering a
diversity of methods. In my thesis I focus on the automatic analysis and critic of the GUI,
particularly on design testing. For this purpose, I will consider both white-box and black-box
possibilities, based on the code and layout analyses, and will expand my approach to
white-box dynamic testing.

2.3. State of the art

Currently, the usual process of application testing is based on the creation of scenarios and
test cases, and going through them manually [16]. Therefore, they are based on the
manual interaction between the tester and the system and on the visual analysis of the
obtained results. The tester records his observation about the behavior of the system under
test and marks the test as passed or failed. This process is shown in figure 3. Therefore
the main goal of test automation is to reduce the person’s interaction with the system to
save time in human resources.

An automation of testing can reduce effort, time and the cost of the testing process,
because more tests can be run in less time and human resources are free to perform other
manual tasks. In addition, it can improve testing efficiency because the human may not
always find all defects. The testing in same conditions is also important for the consistent
and repeatable testing process and clear and comparable test results [14].

Despite the novelty in the field of mobile development, the need for automation is evident.
Therefore many solutions in the UI analysis have been already presented in recent years.
This chapter presents several existing tools and approaches for the automated testing of
mobile applications. A number of different currently available automated tools is described
in “Test Automation Tools for Mobile Applications: A brief survey” [14]. Some of them
belong to the standard tools that are used as a basis for more complicated approaches.

For example, the Android Instrumentation is a framework provided by operating system
and integrated in the Android SDK. It is based on the JUnit framework and requires access
to the source code of the application. Instrumentation examines the GUI behavior produced
by user interactions and fired events.

Instrumentation is abstracted in Robotium, which enables the preparation of grey-box
automated test cases for applications. Robotium can be used both for applications with the
source code available and without code information. With a help of Robotium, it is possible
to write function, system and acceptance test cases, to find current activities and views and
to make decisions automatically.

Seite 17

Figure 3: The flow of the testing process

Another platform-specific system included in Android SDK is Monkey [7], including Monkey
tool and MonkeyRunner. Monkey tool is running directly on the mobile device and allows
the generation of random events, such as key presses or screen touches, in order to
discover the potential bugs by searching the known error patterns. MonkeyRunner is an
API build on Monkey tool that enables functional testing and requires writing Python scripts
to manage the testing process. It allows the sending of key events, taking screenshots of
GUI and programmatically controlling the testing process on multiple Android devices at
the same time. MonkeyRunner can compare screenshots with reference images to validate
the visual correctness of the GUI.

There is also a platform-specific automated analyzing tool for iOS applications called
Instruments. It includes an UI Automation template and UI Automation API for performing
different test cases on the device. Users can write custom Java scripts to simulate the user
interaction for a certain time period and record events, gestures, and data information. In
addition, UI Automation allows testers to investigate whether the mobile application is
performing according to the user’s expectations. The tool represents the hierarchy of UI
elements and their values, and analyzes the returned information. UI Automation can be
easily integrated with other templates of Instruments to test different aspects of the
application functionality.

Android apktool is a reverse engineering tool for Android applications that can reconstruct
the binary code and resources to nearly original form. Hierarchy Viewer for Android
applications can also deconstruct the GUI and represent its hierarchical layout structure in
a visual form. iOS Hierarchy Viewer provides the similar functionality for iOS applications. It
debugs the UI and displays the UIViews hierarchy and the property values.

Introspect is a library for iOS, supporting the debugging of the application’s layout [35]. It is
particularly beneficial for the dynamically created and changing UIs. It displays the

Seite 18

information about GUI elements, such as views location, size, actions and targets, and
enables the layout change during runtime. In addition, Introspect creates and outputs the
view hierarchy model.

GUITAR is a framework for Android, which enables the automated testing of applications
GUI. It includes platform-specific GUITAR Ripper and Replayer, and is based on reverse
engineering and model-based techniques. The testing process with GUITAR involves four
phases: ripping, which interacts with UI and represents the structure and relationships
between GUI components, model construction, which extracts the GUI model and
generates an event flow graph, test case generation for the automated testing process and
replaying, which analyses the test cases’ results.

The study of Robin Goldberg et al., presented in „Automatisierte, quantitative Analyse von
Android-Applikation-GUIs“ [11], evaluates the reverse engineering technique in the testing
of mobile applications. For this purpose, the authors implemented a testing tool
APKAnalyzer, which can read the resource folder of the application. This folder contains
the resource files required for the GUI, including images, animations, XML-files and
manifest file. Extracting these files, the tool then analyses the following information:
activities, uses-libraries, uses-permissions, uses-features, uses-sdk, hardware
acceleration, themes and UI options. For every found reference and activity, APKAnalyzer
searches for the correlating layout files through analyzing the manifest and SMALI files.
The layout files contain the information about GUI elements, though sometimes the layout
information can be described in the source code.

One of the possible solutions for automated testing is the reverse engineering technique.
“Reverse engineering is the process of analysing a subject system to create
representations of the system at a higher level of abstraction” [26]. This method, used for
desktop applications, is described by Ines Coimbra Morgado et al. in “Reverse Engineering
of Graphical User Interfaces” [26]. The authors implemented an automated model-based
testing tool called ReGUI. It is developed using the UI Automation framework, which
represents all opened applications in a tree structure. The aim of ReGUI is to reconstruct
the application structure while interacting with it, so it is based on the dynamic testing
approach. The tool goes through all menu options of the application under test, determines
which GUI elements are enabled and which are disabled, and interacts with all enabled
elements. After that, ReGUI closes all opened windows and repeats the process of
navigating through the menu again. During this procedure it determines whether any
element state has changed. As a final point, it creates an output representing the structure
and behavior of the GUI. It includes six files: ReGUI Tree, Window Graph, Navigation
Graph, Disabled Graph, Dependency Graph and Spec# file.

This technique can also be applied for mobile application testing. In the papers: “Using GUI
Ripping for Automated Testing of Android Applications” [2] and “A Toolset for GUI Testing
of Android Applications” [3], Domenico Amalfitano et al. presented a similar analyzing
approach but for the mobile platform Android. AndroidRipper is a dynamic model-based
automated tool for analyzing the GUI of the Android application, using the reverse
engineering technique. The purpose of the tool is ripping and reconstructing the GUI
structure and searching for failures through interacting with the application under test. This
ripping method is developed using Robotium Framework and Android Instrumentation
class. The tool includes nine modules - Scheduler, Robot, Abstractor, Extractor, Engine,

Seite 19

Strategy, Planner, Comparator and Persistence Manager. The whole process consists of
three steps: deploying, ripping and creating an analyzing report. AndroidRipper defines an
initial state, generates new events and iteratively executes the GUI structure. During the
ripping process, the tool finds the application’s initial state, the fired and fireable events and
state transitions, and creates a hierarchical state machine model of the GUI. Finally, it
analyses the model, observing the resulting GUI state changes, and determines the failure
of the application under test. The output of the system is a XML file with the GUI Tree and
a crash report file.

Another opportunity is presented in the paper: “Insights into Layout Patterns of Mobile User
Interfaces by an Automatic Analysis of Android Apps – Source code analysis” [33]. The
authors describe an automated analyzing approach for Android applications through
decoding and reconstructing the source code and resource folder. For this purpose, the
authors use apktool to find the layout files, images, string files and other resources. They
analyze the UI, considering the graphical objects, UI layout files (XMLs) and different
screen resolutions. In addition, it is possible to read the manifest file and to determine the
number of activities and XML files corresponding to each activity through finding the
necessary functions and a layout file ID. With the help of this method, the authors of the
paper have analyzed the user interface elements and design patterns of various
applications.

One more technique for automating testing of GUI of Android applications is described by
Cuixiong Hu et al., in “Automating GUI Testing for Android Applications” [13]. This white-
box approach detects the GUI bugs using random test case and event generation. It
determines all activities in the application, runs created test cases through the Dalvik
Virtual Machine to simulate the user interaction, feeds events to the application, finds out
the required information (GUI events, method calls, and exceptions), writes it in the system
log file and evaluates this file searching for the GUI failures. The tool identifies whether the
activity was created correctly, whether it executes according to the GUI specification, and
whether the application can properly enter and exit the state. For the test case generation,
the authors use the Activity Testing class in JUnit, and for the event generation they use
Monkey tool.

In contradiction to dynamic analyzing technique, static analysis examines only one state of
the application not interacting with it. The example of this method is described by Atanas
Rountev et al. in “Static Reference Analysis for GUI Objects in Android Software” [30].This
approach is based on defining the flow of node objects and their relation to activities. In
order to imitate the run-time performance of the application, the authors define the
hierarchical model of GUI objects and objects interactions with activities, listeners and
other views through the static analysis of object references. These interactions identify the
potential GUI events at each state of the application. In object-oriented Android
applications each event handler is related to a certain GUI object, provided with a unique
object id. Defining these connections, it is possible to recognize the flow of references,
controls and data. The procedure consists of three phases: creating the constraint graph of
GUI objects, analyzing all executable methods in the application, computing the object
relationships, and propagating views through the constraint graph, based on the
recognized relationships. The reference analysis is possible for object-oriented languages,
so it can be applicable not only for Android but also for Objective-C-based iOS
applications.

Seite 20

An approach for dynamic interaction with a GUI of iOS applications is presented in
“Challenges for Dynamic Analysis of iOS Application" [35]. Martin Szydlowski et al.
developed a prototype that interacts with the GUI and analyses its components. To execute
the system on the application they use a VNC server and a modified VNC client python-
vnc-viewwer4. The tool calls Objective-C methods at a runtime, defines their arguments
and creates the list with the information about detected methods. Finally, the tool sends the
received information in the form of the script file to the analysis report and examines the
methods functionality. Furthermore, in order to identify interactive UI components, the tool
uses image comparison between the application’s current state and the previous one. The
change in large numbers of pixels between two screens means that the interaction was
performed. To find the element being fired, the tool sends tap events to every location of
the previous screen and observes if it changes to the reference screen.

It is also possible to use the combination of static and dynamic analysis, which is described
by Cong Z et al. in the paper “SmartDroid: an Automatic System for Revealing UI-based
Trigger Conditions in Android Application” [50]. This method is used in a testing tool,
SmartDroid, and includes two phases. The first one is a static analysis, which finds the
potential activity switch paths from the Activity and Function Call Graphs, using a depth-
first searching algorithm. The second phase is the dynamic analysis, which is applied for
each found activity and navigates through all GUI elements and examines their
interactions. The dynamic analysis stage includes three components: UI Interaction
Simulator, Activity Restrictor and Runtime Execution Environment. SmartDroid is based on
apktool and uses the shell and Python scripts.

Another method for automated design verification of the system was invented by David
Todd Massey et al. [23]. Like the previous techniques, it also tests the design structure of
the system and the references between objects and not the visual representation. The
specialty of this tool is that it verifies the schematic design description created by the
design simulating programs and not the final GUI. It interprets the design description as a
state diagram and creates the objects and the relations between them. In this way, it
simulates the design of the system’s interface from it schematic representation. After that,
the tool displays the output data from the simulated structure and decides which elements
of it should be tested. A test generator sends events to the simulated design in order to
execute these elements and their connections. Then the tool reports the elements that
have not been tested yet and generates new events to exercise them. The output data of
the simulated design from the first execution is compared with the output data of the
references in the second execution. The tool associates the received results with the initial
objects to define if any of them were performing incorrectly. So the bugs in the design of
the system can be found already from its description before it will be implemented.

Most of presented methods use the similar technique of testing mobile applications through
creating the model with hierarchical structure and analyzing the flow of the potential GUI
elements, their references, and method calls. There is also a different method based on the
functional testing of GUI using screen capture and visual recognition in order to find a
certain pattern on the screen and interact with it.

An automated software testing system invented by John A. Gregory et al. [28] can be used
to automate the testing and to compare the design of different versions of the system.
During the execution of the system under test, the tool records all inputs, such as
keystrokes and mouse events, and saves them in the script. Furthermore, it captures the

Seite 21

screen images of the system. When the next version of the system under test is executed,
the tool plays the inputs recorded before to operate the system and captures the screen
images again. The screenshots of the first version of the system are compared to the
correlating screenshots of the second version called by the same inputs. The tool displays
the differences of the images and shows what components of the UI design have been
changed. This tool does not evaluate the final design of the system, but demonstrates the
visual differences between two versions of the same screen via image capturing. This
technique could be used to compare the real application screen with the UI image created
by the designer.

One of such screen capturing testing tools is Sikuli, developed by Tom Yeh, Tsung-Hsiang
Chang and Robert C. Miller [4] [14] [47] [48]. It is an image recognition tool to automate the
testing experience of the GUI, including a visual scripting API and an integrated
development environment for writing visual scripts. Sikuli is based on the finding of target
patterns on the screen and does not need access to the source code. Therefore it can be
used both for desktop and mobile applications. However, mobile applications can be tested
only on the desktop screen running in simulator or getting the application screen on the
desktop connecting the device via VNC server. The second option can be used for Android
applications without problems, but it requires the jailbreaking of the iOS device, since VNC
servers are not available for iPhone/iPad.

The tool provides two core functionalities – Sikuli Script and Sikuli Search. With Sikuli
Script it is possible to write visual scripts in Jython (combination of Java and Python) and to
refer to UI elements using the provided library of functions and action commands. It allows
the taking of a screenshot of the needed GUI component, adding it to the script and
defining the action that this element should perform. The tool searches for a given
component on the applications screen with a pattern matching technique, using open-
source computer vision library (OpenCV). It compares the target pattern to each region on
the screen of the same size, trying to find the most similar one, and is suitable for small
patterns, such as buttons or icons. Sikuli also has an algorithm to detect larger patterns,
like a window or dialog box using a combination of matching elements in the relation to the
target pattern. Applying grayscale or multiple scales to small elements, Sikuli is able to
identify color change and resized images to detect possible changes in screen resolution.
The system also provides the possibility to find text elements using optical character
recognition (OCR). Sikuli Search is a part of the system that enables the search of
information about the selected UI object in the online documentation. It contains three
components: a screenshot engine, a UI for querying the search engine and a UI for adding
screenshots.

A similar visual-based black-box-driven testing tool, called eggplant [8] [12] [39] was
developed by the company TestPlant. eggPlant can be used for the automation of GUI
testing of desktop and mobile applications, independent of the operating system. In
addition, the tool provides the image collection of the platform-based differences of GUI
elements, and so supports cross-platform testing. The core principle of eggPlant is the
comparing of UI image with an expected image to see to what extent they are similar. Like
Sikuli, it also uses pattern matching technology to find the target images, however it runs
on all platforms, including non-jailbroken iOS devices. eggPlant system consists of two
parts: controller machine and the system under test, which runs a VNC server. The
controller machine is used to write and execute the scripts, which can be written in the
intuitive test definition language SenceTalk. eggPlant uses the image recognition algorithm

Seite 22

to analyze the screen, to find the selected UI component and to perform the defined action
with it. The tool also supports the usage of OCR engine for text recognition and allows the
testing of millions of input combinations via data-driven testing. eggPlant can be integrated
in different popular test management software, such as Jenkins, IBM Rational Quality
Manager and HP Quality Centre.

The advantage of the screenshot capturing method is that it considers only a visual
representation of the application, and, as a result, can be used for all platforms. However,
the small elements with similar color patterns can sometimes cause the image mismatch.

The research overview shows that most currently existing techniques can be divided into
model-based approaches, which examine the structure of the application through finding all
interactive elements and their connections, and into image recognition approaches, which
capture the screen to find the required GUI components. The majority of presented tools
work with the generation of automated test cases to imitate the user interaction with the
application. However, these approaches for the evaluation of the GUI only analyze the
functionality or the usability of the interface, including how well the users can interact with
the application. None of them is taking into account the correct visual design and the
representation of certain UI components and their features. Furthermore, no tools for the
automated testing of the corporate design with any of these methods are known. The
quality applications require not only the correct functionality, but also they also need to be
visually appealing, and especially for brand applications they need to represent the
corporate identity of the company. The usability of the GUI also depends on such design
properties as appropriate colors, contrast and constant sizes and styles. That’s why the
development of the automated testing tool for the testing of the application design is of high
importance.

The presented techniques can be taken as a basis for the design testing tool through
automating the test experience and identifying all current elements, their attributes, such as
colors, sizes, spacing and styles, and analyzing them.

Seite 23

3. Background

3.1. Internal structure of Volkswagen Group AppFactory

Volkswagen AG is the biggest European automotive manufacturer, with a wide variety of
services. The Group Information Technology (IT) enables the security of production
processes and technology, and works with innovative solutions. The Group IT contains
many different departments. One of them is Group AppFactory, which is focused on mobile
solutions for Volkswagen AG. It develops mobile applications for Apple, Android,
BlackBerry and Windows for external but, especially, for internal customers. The products
vary from the digital product catalogue and car challenge games to event applications and
digital forms for employees. The goal of Group AppFactory is to optimize the existing or
upcoming business processes of the company through contemporary and cost-effective
deployment of mobile solutions [45]. In addition to the conception, design and development
of mobile applications for customer needs, AppFactory also offers expert opinions in
applications know-how and enables maintenance in permission processes, deployment
and support. For the security of internal data, special mechanisms are built into mobile
devices. To reduce costs, AppFactory uses standards, such as “Baukasten-System”. It
allows the use of modules and re-usable components for frequent required tasks, so that
they do not need to be developed again for each new application. It reduces the production
costs to 70 percent.

The production of one application usually takes four to eight weeks. It starts with finding the
idea, creating use cases and the ordering of the project. Next step is conception, with the
preparation of requirements, development of architecture and storyboard design. After that,
the realization of the application ensues. It includes the preparation of test cases and setup
of infrastructure. The last step in the application production is enterprising with the
application signing and deployment.

To realize this production process, AppFactory operates all tasks in different departments.
So, for example the conception phase is done in the customer management part of the
organization. Here the design of the application is prepared. After talking to customers, the
project managers create requirements and use scenarios, also concerning the visual
representation. Based on these requirements and on corporate design guidelines, the
designers create the layout of the application. The design can be represented with different
means. Commonly, these are images, which show every single view. The attributes of the
UI elements, such as typefaces, sizes, colors and spacing, can be noted directly on the
image. Sometimes the designers additionally create a list of all elements with their values
in the Excel table or in the PDF file. The designers also accomplish the assets of graphical
elements, such as icons and buttons, and write their names in the documents.

The developers get the design documents together with assets and implement the
application based on them. When the first version of the future application is ready, it goes
to the quality management department. Here the functionality, usability and design of
application have to be tested. In quality management of AppFactory, the tools, such as HP
QuickTest Professional and HP Application Lifecycle Management (ALM), are used for the
testing purpose. The usual testing process includes creating test cases, using the above-
mentioned software, running these test sets, and recording the results. Currently, the only
automated part of the testing process in AppFactory is the use of test tools for the easier
controlling of the process, and recording and analyzing the results. Proving the functionality

Seite 24

and design of the application is done by the testers manually. For the testing of design
requirements of the application, the testers have to prove manually all colors, sizes and
typefaces, which cannot always be defined correctly with the human eye. For that reason,
the testing of design requirements is underrepresented in AppFactory and will not be done
for all applications. That can lead to the case that not all wishes of customers are
represented correctly. Also, the corporate identity of the company can be damaged when
not all corporate design considerations are followed. Consequently, the use of an
automated tool is necessary for the testing of design requirements to follow the customer
and corporate considerations and to reduce the time of the testing process.

3.2. Corporate identity and corporate design

The applications developed for Volkswagen should follow the corporate design guidelines.
It has an important role in representing the corporate identity of the company.

Ind described the corporate identity as an image “'formed by an organization's history, its
beliefs and philosophy, the nature of its technology, its ownership, its people, the
personality of its leaders, its ethical and cultural values and its strategies” [15]. It is the
expression of the company’s personality, behavior and culture, which distinguishes it from
other organizations. Corporate design is a visual representation of corporate identity [34].
The detailed definition of corporate design is described in the paper: “Der Corporate-
Design-Prozess in der Beratung am Beispiel eines neuentwickelten Simulationstools” [32].
It is the homogeneous combination of the brand design, graphic design and architecture
design. It includes symbols and graphical elements, such as logo, colors, typography, and
forms to reproduce visually the image and the personality of the company in different
media. Corporate design contains rules, guidelines, design patterns, signs and symbols to
characterize the essence of the company. These guidelines are applied to all media types
to represent consistent style. Corporate design is the visual identity of the company.

A brand is the name, definition, symbol, the graphic design or the combination of these,
with the purpose of identifying its products and their distinction from those of its
competitors. It makes sense to differentiate between company brand and product brand.
Many companies have several product brands. For example, Volkswagen AG is a
company brand that includes different product or car brands, such as Volkswagen, Audi,
Skoda, Porsche etc. Company brand and the product brand have two different logotypes,
which are shown in the figure 4. The company and the product brands have different
meanings for different stakeholder groups. So the final user is more interested in the
product brand, while media, employees and shareholder are more involved in the company
brands. The product brand should make the product externally recognizable; the company
brand must appeal not only outside but also inside the company for all stakeholders. That’s
why the design and control of company brand is more complex.

The name, logo and design of the brand must be evident, promising and unique, and
should symbolize the corporate identity of the company. Discrepancies in the corporate
design can cause disbelief or even contempt among the public to the brand aspiration.
Therefore the corporate design plays an important role in the agreement between the
visual representation and the intended brand personality, and in demonstrating the current

Seite 25

Figure 4: Volkswagen company and product logotypes

results and upcoming goals [41]. It should support the company’s reputation, which is “a
perceptual representation of a company’s past actions and future prospects that describes
the firm’s overall appeal to all its key constituents when compared to other leading rivals”
[29].

That’s why the following of corporate design guidelines is so important in the designing of
mobile applications for Volkswagen AG. The corporate design of Volkswagen AG was
developed by the design agency MetaDesign. It started to cooperate with the automotive
manufacturer in 1997 with the designing of the logo, and has already realized 150 projects.
With a change in legal circumstances, MetaDesign developed a new corporate design for
the Volkswagen brand in 2008. The consistent and homogeneous image of both company
and product brands can be found in all areas of visual communication. MetaDesign tried,
through its corporate design, to reproduce the company’s strategy and to place the
innovation and simplicity of the brand in the foreground. So the new individual typefaces,
new colors, and the new structure of representation in the web were invented [9]. The
typefaces used for the company brand are Thesis and Cellini. For the digital media it is
recommended to use Verdana instead of Arial. The font family VW Headline is now used
for the Volkswagen product brand. Together with the logo and special developed design
guidelines they give the brand the worldwide homogeneous image. To support the consist
appearance of the products worldwide, MetaDesign has developed an online Volkswagen
Corporate Design Net. It includes the design guidelines in several languages, as well as
templates and examples.

Seite 26

4. Defining the Design Guidelines for Mobile Devices

Media design plays an essential role in the user decision on the product and in supporting
the brand’s potential. That’s why it is important that mobile applications have a suitable
representation that meets all user expectations. Much successful work has been done in
developing manuals for the interface design of different interactive systems. Despite that
fact, the design of mobile applications remains a relatively new and undocumented topic.
Some of the universal principles can be applied for the mobile devices as well, but there
are a lot of significant differences that need to be taken into account in designing the
interface of mobile applications. These include limitations in memory, battery life, small
screen sizes, ability to adapt to different sizes and orientations, security, network
bandwidth and different input options. These functionality constraints and possibilities
certainly have an influence on designing the user interface. Another important issue is the
difference in platforms, in options they provide, and in appearance of their standard UI
elements. For example, iOS design patterns define that tabbed navigation should be at the
bottom; while in Android devices it should be placed at the top of the screen. Different
operating systems have established their own guidelines – Mobile Human Interface
Guidelines (HIG) for iOS, Android User Interface Guidelines, User Experience Design
Guidelines for Windows Phone, UI Guidelines for BlackBerry Smartphones and PlayBook
and others. Currently, there is no universal document that describes design requirements
and considerations valid for all mobile devices and applications.

Moreover, most existing guidelines describe the usability and general design requirements,
such as structure of the application, grouping of elements, intuitive layout, giving feedback,
amount of shown information and usage of navigation controls and search functions, but
they do not explicitly describe the visual appearance, e.g. recommended colors and sizes
of the elements. These requirements can be effortlessly tested by an individual; however,
for the machine, it is challenging to decide if the interface is nice-looking when no concrete
values are given. There have already been some usability testing tools presented in the
recent years, but there is a lack in considerations concerning the actual visual
characteristics, making the application appealing and consistent, so that the user can
associate the graphical components with their functionality.

The consistence of the design is also important for the corporate identity in order to
represent the image and distinctiveness of the company. Corporate design contains the
rules, guidelines, and design patterns for the usage of typical signs and symbols in different
media types to create a homogeneous style and to reproduce the company identity. The
corporate design of Volkswagen AG includes the logotype, house fonts, house colors etc.

For the automated design-testing tool it is important to note that not every application has
the same requirements. The customers decide if the applications should follow the
corporate design or if they prefer their own one. Some of the general considerations can be
applicable for all applications. For example, buttons must be large enough for the user to
be able to tap them. Background and text must have contrasting colors to enable the user
to read the text without problems. In addition, the same elements must have the same
color, since the researches state that we often use color for grouping or connecting things
to each other. But other considerations depend on customer needs, as well as on the

Seite 27

operating system. That’s why a choice should be made between company, product or
custom requirements before starting the test. I have created a list of design requirements
that should be proved in the automated testing tool, based on the following sources:
“Designing the Use Interface: Strategies for Effective Human-Computer Interaction” by Ben
Shneiderman [31], “The Elements of User Interface Design” by Theo Mandel [21],
“Guidelines for Enterprise-Wide GUI Design” by Susan Weinschenk and Sarah C. Yeo [46],
iOS Human Interface Guidelines [17] (as I am concentrating on the iOS applications in my
work), VW Company Corporate Design Guideline [43], VW Product Corporate Design
Guideline [44], as well as an interview with the designers Martin Bonneberg and Jennifer
Jane Poerner. The general and corporate design requirements are presented in the tables
1 and 2. Concerning the customer design requirements, the Excel template was created for
entering the attributes. All custom attributes of given UI components in the table (font
family, font size, font color, background color, alignment, width, height, margins) must
correspond with the same attributes in the application.

General design requirements

1 Consistency must be followed throughout the whole application:
- All buttons must have the same height
- Buttons must have not more than 2 different widths
- If buttons or icons are placed in one line, they must have the same margin from each

otherand from the screen sides
- All icons must have the same size
- All labels of the same type (titles, subtitles, button text) must have the same font family,

font size and font color
- Font family must be consistent in the whole application, if necessary one alternative

font family can be used
2 Color contrast between background color and font color must be at least 50%, font color must

be darker than background color
3 Interactive elements (links) must have another color than non-interactive elements (normal text)
4 The number of different colors in the application must be from 4 to 7
5 Normal text must have regular or medium weight, not bold or light
6 Radio buttons can be used if the number of options is less than 6. Check buttons can be used if

the number of options is less than 10. If the number of options is 10 and more list boxes must
be used

7 All buttons, toolbar and navigation bar icons and other tappable controls must have the
minimum size of 44x44 px (iPad2 – 22x22 px)

8 Tab bar icon must have the minimum size of 50x50 px (iPad2 – 25x25 px)
9 Launch image must have the size of:

640x1136 px (iPhone5)
640x960p px (iPhone)
1536x2048 px (iPad and iPad mini)
768x1024 px (iPad2)

Table 1: General design requirements

Seite 28

Volkswagen corporate design requirements

 Company CD Product CD

Content

1 Font Family: Thesis TheSans, FF Cellini
or Verdana

Font Family: VW Headline OT, VW Utopia
or Arial

2 Title Font Family: VW Headline OT
3 Title Font Color: Black (0/0/0)
4 Font Color: VWAG Grey (76/83/86) Font Color: Pantone 432 (51/67/76)
5 Font Size: 15 px Font Size: 18px
6 Content Background Color: White

(255/255/255)
Content Background Color: White
(255/255/255)

Headline

7 Headline Font Color: VWAG Grey (76/83/86) Headline Font Color: Pantone 432 (51/67/76)
8 Headline Font Size: 32px Headline Font Size: 32px
9 Subheadline Font Size: 15px
10 Headline Background Color: White

(255/255/255)
Header Background Color: White
(255/255/255)

Buttons

11 Button Text Color: VWAG Grey (76/83/86),
Grey (79/84/89) or White (255/255/255)

Button Text Color: White (255/255/255) or
Dark Grey (17/17/17)

12 Button Text Font Size: 14px Button Text Font Size: 15 px

13 Button vertical Gradient:
FU1: 219/219/220, Pos.: 0 %, FU2:
241/241/242, Pos.: 50%, FU3: 255/255/255,
Pos.: 60%
Pushed: FU1: 159/163/169, Pos.: 0%, FU2:
173/178/184, Pos.: 50%, FU3: 187/192/199,
Pos.: 60%

Button Interactive Blue Gradient:
FU1: 34/116/172, Pos.: 50 %, FU2:
99/157/197, Pos.: 95%

Button Interactive Orange Gradient: FU1:
255/135/31, Pos.:50%, FU2: 255/184/121,
Pos.: 95%

14 Button Grey and Button Inactive Gradient:
FU1: 186/194/197, Pos.: 50%, FU2:
234/238/237, Pos.: 95%

15 Delete-Button Color:
FU1: 188/26/34, Pos.: 0%, FU2: 220/23/54,
Pos.: 50%, FU3: 234/0/45, Pos.: 60%, FU4:
236/0/46, Pos.: 100%
Pushed: FU1: 145/20/27, Pos.: 0%, FU2:
170/24/31, Pos.: 50%, FU3: 185/26/34, Pos.:
60%, FU4: 188/26/34, Pos.: 100%

16 Delete-Button Font Color: White
(255/255/255)

TableView / ListView

17 Table Background Color Left Column: VWAG
Petrol light 50% (231/243/243)

Table Background Color Left Column: Pantone
427 (234/238/237)

18 Table Left Column Width: 320 px
19 Table Left Column Cell Height: 44 px

Seite 29

20 Table Font Color: VWAG Grey (76/83/86) Table Font Color: Pantone 432 (51/67/76)
21 Table Font Size: 15px Table Font Size: 18px
22 Table Header Font Color:VWAG Petrol 60%

(103/135/157)
Table Header Font Color: Pantone 430
(137/148/160)

Borderline
23 Borderline Color: VWAG Silver 40%

(228/228/29)
Borderline Color: Pantone 427 (234/238/237)

Count Indicator

24 Count Indicator Color: VWAG Petrol 60%
(103/135/157)

Count Indicator Color: Pantone 430
(137/148/160)

25 Count Indicator Font Size: 15px Count Indicator Font Size: 18px
Main menu slider

26 Main menu Slider Height: 192 px (opened),
52 px (closed)

Main menu Slider Height: 192 px (opened), 52
px (closed)

27 Main menu Slider Background Color: VWAG
Petrol (0/70/102)

Main menu Slider Background Color: Pantone
432 (51/67/76)

28 Main menu Slider Label Color: VWAG Petrol
light (198/223/231)

Main menu Slider Label Color: Pantone 299
(0/177/235)

29 Main menu Slider Status Color: Red
(224/8/8) or Green (34/210/47)

Main menu Slider Status Color: Pantone 390
(185/201/0) or Pantone 186 (228/0/44)

30 Main menu Slider Header Font Size:18px Main menu Slider Header Font Size: 22 px
31 Main menu Slider Labels Font size:15px Main menu Slider Labels Font size: 18 px

Vertical slider
32 Vertical Slider Width: 320 px Vertical Slider Width: 320 px
33 Vertical Slider Cell Height: 44 px Vertical Slider Cell Height: 44 px
34 Vertical Slider Font Size: 11 px Vertical Slider Font Size: 11 px

Navigation bar

35 Navigation Bar height: 45 px
36 Navigation Bar Title Font Size: 18 px Navigation Bar Title Font Size: 22 px
37 Navigation Bar Search Font Size: 15 px Navigation Bar Search Font Size: 18 px
Icons
38 Icon Size: 48x48 px (main menu) and

28x28 px (submenu)
Icon Size: 48x48 px (main menu) and
28x28 px (submenu)

Logotype
39 Logotype Alignment: centered Logotype Alignment: right
40 Logotype Margin left/right: minimum half

ofthe Logotype Width
Logotype Margin right: 15 px (iPad and
iPhone3), 30 px (iPhone4)

41 Logotype Margin left: Logotype Width
42 Logotype Margin top: 7 px (iPad and iPhone3),

15 px (iPhone4)
43 Logotype Width: 180 px (Login-Screen) and

120 px (Content)
Logotype Size: 30x30 px (iPad and iPhone3),
60x60 px (iPhone4)

44 Logotype Background Color: White
(255/255/255)

Login-Screen
45 Login-Screen Background Color:

VWAG Silver 40% (228/228/29)

Seite 30

46 Login-Screen Header Color: VWAG Petrol
(0/70/102)

47 Login-Button Font Color: White
(255/255/255)

48 Login-Button Font Size: 14px
49 Login-Button Color: VWAG Silver

(168/173/179)or FU1: 148/153/158, Pos.:
0%,FU2: 167/172/178, Pos.: 50%,FU3:
179/185/191, Pos.: 60%,FU4: 190/195/202,
Pos.: 10 %
Pushed: VWAG Red (162/30/77) or FU1:
160/50/88, Pos.: 0%,FU2: 190/89/122, Pos.:
50%,FU3: 194/109/136, Pos.: 60%,FU4:
194/109/136, Pos.: 100%

Table 2: Volkswagen corporate design requirements

Seite 31

5. The DesignTesting Framework:
 Approach for the Automated Design Testing Tool

5.1. Scientific question

Current work done in the area of mobile application testing shows that there are still leaks
in effective automated testing of UI design, considering the visual representation of the GUI
elements. In particular, there are no tools existing on the market for examining the
company-specific requirements and corporate design of brand applications. The
development of such an automated tool could improve the effectiveness of the testing
process and save time and costs. The goal of this master thesis is to develop a prototype
for the automated testing of design guidelines, including the given color schemes, spacing,
sizes and corporate identity of the company, and to evaluate how this method influences
the testing experience. The scientific question of this master thesis is, therefore, the
following: With what method can the specified design requirements be automatically tested
with different versions of mobile applications?

The target group of this system is the quality management department of application
developing companies, in this case of Volkswagen Group AppFactory. This means that the
users of the automated design testing tool are people of working age, who have already
experience with mobile technology and with a testing process of mobile applications.

5.2. Different ideas

As the research overview has shown, there are two core possibilities for the solution of this
problem – a source code analysis of the applications structure and a screen capture
analysis. So I developed different ideas based on these techniques to review their
advantages and disadvantages.

5.2.1. Source code analysis of layout files

One possibility to test the design of the mobile application is the analysis of layout files, for
example XML files for Android, XIB files for iOS, and XAML files for Windows 7. The layout
files of most operating systems are XML-based and have similar tree structure containing
the hierarchy of UI elements, so it is possible to develop a similar approach for all
platforms. Nevertheless, it should be implemented differently for each type of layout file,
since they still have some differences.

The core idea is that the program reads the layout file, goes recursively through all parent
and child nodes, searches for required nodes with a certain type, and returns their
attributes, which are also implemented in the layout file. Finally, found UI elements can be
compared with the given design requirements. As an example of this approach, I have
implemented a java program that evaluates the XML files of Android applications (Figure
5).

Seite 32

Figure 5: Java implementation of the layout files source code analysis approach

The weakness of this method is that usually not all of the UI components and their features
are implemented in the responsible layout file. Especially in Android applications, there is a
separation between layout and the appearance of UI elements. Some of the layout

Seite 33

information can be set not only in the layout files of every view but also programmatically in
the whole source code. The appearance of UI elements is often specified in the theme files
and styles that are applicable for the whole application. The design of iOS applications is
often defined using an integrated Interface Builder. This can be done almost without the
use of code. After debugging, this layout information is saved in NIB files, which are the not
editable versions of XIB files.

In addition, some attributes can be dynamically changing during the runtime of the
application. Although all XML-based languages have the tree structure, the names of the
nodes are different. For example, the screen node in Android is called Activity, in iOS it is
UIViewController, and in Windows 7 applications it is PhoneApplicationPage. The list items
in Android and Windows 7 are presented in ListView and ListBox correspondingly, while in
iOS they are stored in UITableView. Moreover, the layout files do not have information
about the connection between different screens: these relations are described in the
source code. Consequently, to have full and correct knowledge about the UI elements it is
not enough to analyze only the layout files responsible for the each view, but it is also
important to take into account the whole source code.

5.2.2. Source code analysis of the application code

Another approach includes the reconstruction of the whole application and its resources. It
analyzes not only the layout files but also the whole source code through searching for the
relations between different views and UI elements. There are various tools and techniques
presented in the related work, both for Android and iOS, that are able to extract the called
functions and UI elements and represent them and their values in the hierarchical
structure.

While in Android applications most connections between the screens are described in the
manifest file, in iOS applications the relations are stored in different ViewContollers through
the whole application. So this technique must be implemented independently for each
operating system because of the significant differences in their architecture.

5.2.3. Screenshot analysis through image recognition tools

The existing screen capturing tools, such as Sikuli and eggplant, make it possible to
automate the process of design testing using custom scripts. These tools are able to define
the color, size, position of detected images, and even the font family of the text, using
OCR. But unlike the source code analysis, the image recognition tool cannot refer to
certain UI elements using their ids. That means that the tool should be able to identify UI
components according to their visual appearance, and all UI elements that need to be
tested, should be available as images. Then the tool can search these assets on the
screen and define the required attributes according to the type of the element. The
information about each component can be read from the design requirement file. The
advantage of this method is the platform independence; it can be used with any operating
system. Also, there is no problem with the relation of views and UI elements, because the
tool can find only those components which are located on the current screen. But the
weakness of this approach is that it considers the application screen only as an image and
cannot recognize the types of all UI elements (labels, buttons, icons etc.) and relate them

Seite 34

to the corresponding components from the design requirements document. In addition, the
search for the label element can be difficult because its text can be dynamically changed
due to the user input. Moreover, the image analysis algorithm is not as accurate as the
analyzing of source code information, especially by small elements mistakes can occur.

5.2.4. Screenshot analysis through image comparison

Design of the application includes not only the listing of all elements and their values but
also representing them at the image. So the designers commonly provide images of all
states of the application, which illustrate how the screens should look. A possible
opportunity of the design analysis is the total image comparison of the illustration created
by designer and the screen capture of the application view. Two images can be compared
using data comparison, pixel-to-pixel comparison, or feature-based comparison, searching
for the positions where two images are different. These differences can be highlighted
using the color difference technique. To define what UI elements are affected, it is essential
to use an additional technique, such as identifying the element by the means of image
recognition tool or through the source code analysis knowing the coordinates of the object.
In this case, it is not necessary to examine all components, but only those which differ.
However, this technique can evaluate only static UI elements, because every dynamical
change will be considered as a failure.

5.2.5. Combination of various methods

As can be seen, each design testing idea has its weaknesses. The source code analysis
can return more accurate results, but the elements described in the code can be rendered
differently on the screen. The image capture analysis allows the testing of only that
information which can be really seen in the application. So the combination of both source
code analysis and image recognition techniques can return better results.

The combined approach can use the image recognition to find all UI elements visible on
the screen at the current time and identify them by comparing with all available assets.
Another possibility to find all visible elements is to search for them in the source code, save
the images of every element and compare them with screen capture of the application.
Then different kinds of attributes can be defined using source code analysis or image
recognition tools. For example, the static information about colors and font families can be
easily extracted from the source code, while the dynamic spacing constraints between
certain elements can be better found with image recognition, so the source code does not
need to search for the closest components.

The limitation of this method is that not all assets of the UI components can be available
before testing, and some components defined in the source code cannot be correlated with
their visual representation on the screen, if they include the dynamically changing text
element. In addition, this technique is time-consuming. The cases when the GUI is
rendered differently as described in the code are not very common. That’s why the use of
only one technique will bring sufficient results.

I decided to implement an automated design-testing tool, based on the dynamic source
code analysis technique, since it can be executed faster and returns more accurate results.

Seite 35

It also allows one to easily identify and relate the UI elements defined in the design
requirements and in the application.

5.3. Approach for automated design testing tool

5.3.1. General idea

The DesignTesting Framework is an automated tool for the iOS applications that can read
the structure of the UI elements and define their attributes. It can be used within the XCode
project of a mobile application. My framework was implemented in Objective-C and can be
linked to the target of any iOS application with the available source code information. Since
the system is developed for the use in companies for testing their corporate design, the
source code information should be commonly available.

The DesignTesting Framework can be linked to any iOS application with the available
code. So it will automatically be debugged when running the application and can be
activated through the shaking movement of the device. When the user shakes the device
with the running application, the DesignTesting Framework is executed. It goes recursively
through the source code of the current view, reads the application structure and searches
for all present subview elements. It determines the id number (tag) and the type of every
subview visible on the screen (label, button, image, table etc.). Then the system reads the
excel documents in the comma separated CSV format with the customer and corporate
design requirements and compares this data with the attributes of the elements in the
application, according to their ids. An output of the testing is a PDF document containing
information about right and wrong attributes of all elements visible on the screen. The flow
of the testing process with my automated tool is demonstrated in the figure 6.

In order to use this framework in the testing phase, the design and implementation of the
application must follow some restrictions. The designers and programmers must provide
every UI component with the unique id number that must be the same in the design
documentation and in the source code. The designer must fill out the excel template with
the ids, element names and all needed attributes of the elements. This information will be
used for the testing of customer design requirements of the application. The testing of
general and corporate design requirements does not need to fill out the excel table every
time, because this information commonly does not change.

This method can create the list of all available UI components very quickly and determine
the precise values that are not able to be defined so accurately with the human eye or the
image recognition technique. It can correlate the UI elements to the corresponding assets
in the table without problems, using ids.

5.3.1. Physical constraints

The DesignTesting Framework was developed in Objective-C using XCode. For the testing
of iOS applications, it requires the computer with OSX operating system with installed
XCode and iTunes. Since the system is storing data in iTunes connected with the mobile
device, it cannot be used with the simulator. Therefore the tool also needs an iOS mobile
device (iPad or iPhone) to run an application on it.

Seite 36

Figure 6: Structure of the automated design testing tool

5.3.2. Functional overview

To offer the easy and effective design testing experience, my DesignTesting Framework
provides the following functional and non-functional specifications:

- Working with any iOS application with the available source code

The system source code is bundled in a framework, so it can be copied to the framework
library and linked in the target’s Link Binary with Libraries - Build Phases section of any
application within the XCode project. Once built, the application can activate the design
testing functionality at any time through the shaking gesture. If the design testing
functionality is not needed anymore, the framework can be removed from the XCode
project before releasing the application.

Seite 37

Figure 7: Data flow of DesignTesting Framework

- Orientation and resolution awareness

The mobile applications can be developed for only one or for both portrait and landscape
mode. If the application is using both orientations, the design must be adjusted for both of
them and described in two excel documents for portrait and landscape modes accordingly.
The framework defines the current orientation of the device and loads the corresponding
excel document. Many design requirements have two different sets of assets and attribute
values, dependent on whether the device has a low or high resolution. The excel table
contains the size and spacing information for both low and high-resolution devices. The
framework defines the resolution of the device under test and reads only those values from
the table that are associated with the low or high-resolution screens.

- Setting of user preferences

For the easier evaluation of the design testing results, the system provides the possibility to
set the user preferences in the device settings. Through the Settings.bundle included in the
DesignTesting Framework, it is possible to choose if the application under test is a
company or product application, if the tester wants to prove the customer or corporate
design requirements, and if the output document should contain only wrong, only right, or
all results. All these user preferences can be set in the settings section of the application
(Figure 8).

- Storing data with iTunes

The resources used for the testing are stored in iTunes, which automatically synchronizes
the using documents between computer with the XCode project and the application on the
mobile device. All documents required for the test (Excel files, assets) must be loaded in
the application section in iTunes while the device is connected to the computer. Even if the
device is not connected to the computer during testing, the framework is able to read the
resource files from iTunes. When the test is executed the results are saved in iTunes and
can be then copied to the computer for evaluation (Figure 9).

Seite 38

Figure 8: Screenshot of user preferences settings

Figure 9: Screenshot of storing data with iTunes function

Seite 39

- Finding all UI elements of the current view

In Objective-C, every UI component is represented as a subview. All subviews are the
nodes of the hierarchical tree structure, where the highest node is a screen view.
Objective-C provides a possibility to list the subviews currently visible on the screen. The
system goes recursively through the array of all subviews and their childs, searching for all
UI elements in the tree structure. All subviews belong to a certain type. The system checks
the type and considers only those element types that are essential for design testing, such
as labels (UILabel), buttons (UIButton), images (UIImageView) and tables (UITableView).

- Defining the certain attributes of required elements

For every UI element, the system determines the attribute values. Some values can be
established only for a certain type of the element. So the images do not have any font
information. For the labels it is necessary to know the font family, font size, font color and
alignment. For the buttons, in addition to the title font information, the system defines the
background color. The width, height and spacing from the sides can be defined for all
elements. All numbers are converted into decimal integer values and all colors are
converted in RGB values.

- Reading the design requirements from the excel document

In order to compare the design requirements with the application values, it is necessary to
load the data in an appropriate format. The customer design requirements should be filled
out in the Excel template. The document is then converted in a comma-separated CVS
format with the help of macro script. This format can be easily read and interpreted with the
Objective-C. The corporate design requirements are also stored in the CVS file, but since
theyare usually not changing, it is not necessary to fill out the values and convert the
document for every new application. The general requirements are described in the source
code, since they are the same for all applications.

- Comparing UI element attributes with the customer and corporate design

requirements

The attribute values found in the application source can be compared with the values
stored in the Excel table. All UI elements (at least those which are essential for the design
testing) in the table and in the application have their unique id number. The elements from
the application and from the design requirements table can be associated with each other
with the help of ids. The system compares the defined attributes and returns the output,
whether the values are right or wrong. If the table contains no values for a certain element,
it means that these values do not have any importance for the visual design and will be not
compared.

- Analyzing the general design requirements

The system also proves the general requirements of the application, such as consistent
font families, font sizes and button heights, number of colors and a contrast between button
background color and title color. It saves all fonts, sizes and colors that have been tested in
an array and examines at the end how many different font families, sizes and colors the
array contains. The color contrast is calculated through the difference between font
luminance and background luminance and should be at least 50 percent.

Seite 40

- Comparing the screenshots of the UI elements with the assets

The system takes an image capture of all UI elements that have been tested and saves
them in a folder. This way the UI elements can be compared with the assets defined in the
design requirements table. It is an important step, because some buttons and text
elements are represented as images, so that they do not have any font or background
color information. In this case, the system only compares whether they correspond to the
assets associated with them. For the images, it verifies if the correct asset was used for
them. The scaled UI elements are resized to the size of the original asset. For better
results, the image comparison uses two techniques. First, the images are compared using
data comparison. This technique is very fast and has an exact result, but it works only for
the images which are totally similar and have not been scaled. If the image is right, it does
not need any further comparison. If the image is not right it is analyzed again with the help
of pixel-by-pixel comparison. This method is slower but can calculate the difference
percentage of two images. If the difference is less than 10 percent, the images can be
regarded as similar. However, it depends on the total number of pixels. For large images
this difference can be bigger, and for the small icons the difference is smaller. Also, in the
case of very similar images (for example white background with two different black texts), it
can happen that the pixel-by-pixel comparison calculates a very small difference. So if the
difference percentage is more than 5 percent, it is recommended to perform an additional
comparison by someone else.

- Result output

All testing results, including general consideration, customer and corporate design
requirements, are rendered in a PDF file, which is saved in iTunes. Depending on the user
settings preferences, the output file contains wrong and/or right information about customer
and/or corporate design of all UI elements, and information about the general design of the
whole application screen. For better visualization, the right results are highlighted in green
and wrong results in red.

5.3.3. Architecture

The architecture of the DesignTesting Framework is presented in ULM diagram in
figure 15. The system consists of 2 classes – DesignTestingViewController and
VWCVSAttributes, and uses the classes PDFConverter and PDRRenderer, developed by
SorinNistor [37] for converting the PDF files to PNG images. DesignTestingViewController
is called when the application starts. It includes 3 core methods, which are essential for the
application functionality:

- motionEnded:(UIEventSubtype)motion withEvent:(UIEvent*)event

This method is continuously checking for the shaking gesture and calls the main method
when the shaking motion is ended.

Seite 41

- main

Main method is executed when the user shakes the device. It contains the information
about user settings, defines the resources directory, calls a DumpSubview method and
creates an output PDF file.

- dumpSubViewsWithAttributes:(VWGCVSAttributes *)cvsAttributes

DumpSubviews is the core functionality of the framework. It goes recursively through all
subviews of the current application screen and creates the list of all UI elements (Figure
10). For each type of found UI elements (currently for labels, images, buttons, tables and
table cells), it requests the information about the attributes of the elements.

VWCVSAttributes class contains all property variables and helping methods for reading the
Excel document, defining the attributes and comparing them with the design requirements.

- detectOrientation

This method detects the orientation of the application in order to load an appropriate design
requirement document. It is necessary to mention that it does not detect the device
orientation, because some applications were developed only for one mode.

- detectDeviceType

To be aware of screen proportions and other necessary settings, the system detects the
type of testing device (iPhone or iPad).

- detectScreenResolution

Also the screen resolution plays an important role for the testing of design requirements.
Typically, the proper assets and attributes are automatically loaded by the application. This
method detects the screen resolution of the testing device to load the correct design
requirements associated with them.

- checkUserSettings

The system provides the possibility to set the user preferences: if the framework should
test customer or corporate design and output right, false, or both results. This method
checks what preferences were set by the user.

- generalRequirements

This method contains a list of general requirements that always have to be tested,
independent of user settings. It includes consistency of the application, minimum button
height and number of different colors. It calls the following methods to check these
requirements.

Seite 42

Figure 10: Implementation of dumpSubviews function

- consistentFontFamily,
consistentButtonFont,
consistentButtonHeight

All font families, font sizes and button heights of the elements in the application must be
consistent. While going through all labels and buttons, these methods add their font
families, sizes and button heights in the arrays, and finally check whether all elements in
the array are the same. For this, they go through the arrays and compare the n and n+1
members of the array. If at least one member of the array is different, the application is not
consistent (Figure 11).

Seite 43

Figure 11: Implementation of check consistency function

- minimumButtonHeight

According to the design guidelines for mobile devices, the buttons should have the
minimum height of 44 px, so that the user can easily tap on them. This method adds all
button elements with the height less than 44 px in the array. If the length of this array is
more than zero, then at least one button has the height less than 44 px and the buttons
height is not correct.

- numberOfColors

The single view of the application should not contain too many different colors. Many
designers suggest that it should have no more than 7 colors. While going through all
elements, this method adds all colors in the array. This it checks if the color already exists
in the array and adds only new ones. If the length of the array is more than 7, the
application view contains more than 7 different colors.

- calculateColorDifference

The contrast between the button background and title should be sufficient to be able to
read the text. To calculate the color difference, it is necessary to calculate the luminance of
the background color and font color and to subtract them. The color luminance is
calculated using the formula:

Luminance=sqrt((0.2126*pow(red,2)+0.7152*pow(green,2)+0.0722* pow(blue,2)))*100;
Luminance=sqrt(0.2126*red2+0.7152*green2+0.0722* blue2)*100;

Seite 44

- corporateDesignBackgroundWithColor:(NSString *)colorStringbackground

This method detects and checks the background color of the main screen, which should be
white according to the corporate design requirements.

- corporateDesign

This method contains the list of requirements that must be tested. It reads the CSV file with
the corporate design requirements and calls the following methods to test the defined
requirements.

- compareCDHeadline,

compareCDLabelFontFamilyWithOutput:(NSMutableString *)output,
compareCDLabelFontColor,
compareCDLabelFontSize,
compareCDButtonFontFamily,
compareCDButtonFontColor,
compareCDButtonFontsize,
compareCDTableLeftColumnColor,
compareCDTableLeftColumnWidth,
compareCDTableFontColor,
compareCDTableFontSize,
compareCDLogotypeForSubview:(UIView *)subview,
compareLogotypeGroupMarginsForSubview:(UIView *)subview,
compareLogotypeGroupSize,
compareLogotypeGroupBackground,
compareLogotypeBrandMargins,
compareLogotypeBrandSize

All these methods get the required attributes of UI elements and compare them with the
values in the CSV file, according to the corporate design requirements. The connection
between application and CVS objects is dealt with through the objects ids.

- dumpLabelsForSubview:(UIView *)subview output:(NSMutableString *)output

name:(NSString *)csvName,
dumpImagesForSubview:(UIView *)subview tag:
(int)tagtagArray:(NSMutableArray *)tagArray,
dumpButtonsForSubview:(UIView *)subview tag:(int)tag
tagArray:(NSMutableArray *)tagArray,
dumpTableViewForSubview:(UIView *)subview tag:(int)tag
tagArray:(NSMutableArray *)tagArray,
dumpTableViewCellsForSubview:(UIView *)subview tag:(int)tag
tagArray:(NSMutableArray *) tagArray

The dumpForSubview methods go through all UI element of the defined type (labels,
images, buttons, tables and table cells) and define the required attributes for these specific
types. Then they call the custom requirements methods to check these attributes.

Seite 45

- compareImagesForSubview:(UIView *)subview tag:(int)tag tagArray:
(NSMutableArray *)tagArray

For every object from the CSV file with the available design asset, this method defines the
associated UI element from the application on order to save and compare these two
images. At first it compares the screenshot of the element and the asset using data
comparison, and if the images are not similar, it compares them again using pixel-by-pixel
comparison (Figure 12).

- savePNGForView:(UIView *)targetViewrect:(CGRect)rect

filename:(NSString *)filename

This method defines the coordinates of the current UI element and saves its screenshot for
the comparison. If the image is scaled and its size differs from the original asset size, this
method resizes it to the size of the asset.

- imageWithImage:(UIImage *)image scaledToSize:(CGSize)newSize

This is a helping method for saving the current image, which renders the image
representation with the declared width and height.

- getRGBA:(UIImage *)image ForX:(int)xx andY:(int)yy

To convert the color values to the readable and comparable RGB values, this method
defines the red, green, blue and alpha values of the color, and calculates the RGB value in
the appropriate format (for example 255/255/255, 63/78/83).

- convertPDFtoPNG

Some design assets are available only in the PDF format. This method converts the
required assets from the PDF to PNG format for easier comparison, using
PDFPageConverter and PDFPageRenderer classes.

- imageDataComparison

This method compares the images by comparing their byte information. This technique
only works for the exact similar images that have not been scaled.

- imagePixelByPixelComparison

If the data comparison fails, the images will be compared using pixel-by-pixel comparison
(Figure 13). To reduce time, it compares not every pixel but every 10th or 100th pixel,
dependent on the size of the image, which is still enough for the pixel-by-pixel comparison.
The algorithm calculates the number of all compared pixels with n = 1 for the small images
and n = 10 for the large images: (width * height) / (100 * n * n).

Seite 46

Figure 12: Implementation of image comparison function

Figure 13: Implementation of pixel by pixel comparison method

Seite 47

Then it detects the RGBA value for every 10*n pixel of both images, and saves it in the
integer array for every image. Finally, it subtracts the red, green and blue values of the
application image from the red, green and blue values of the asset. If the difference of at
least one value is more than 25 (10 percent from 256 colors), then two pixels are different.
For every false pixel, the number of differences is increased. When the relation of the
number of differences to the total number of compared pixels is more than 10 percent, the
images are not similar. So the method calculates the image difference with the error
acceptance of 10 percent. It is important for the scaled images that may not be exactly the
same, but still represent the same icon.

- customRequirements,

compareCustomFamily,
compareCustomFontSize,
compareCustoFontColor,
compareCustomBackgroundColor,
compareCustomWidth,
compareCustomHeight,
compareCustomMarginLeft,
compareCustomMarginRight,
compareCustomMarginTop,
compareCustomMarginBottom,
compareCustomAlignment

These methods compare the required attributes of the UI elements with the customer
design requirements from the CSV file.

- drawPageNbr:(int)pageNumber

The method calculates the page numbers of the resulted PDF document, in order to divide
and render the output text to the correct page.

- updatePDF:(int)pageNumbersetTextRange:(CFRange

*)pageRangesetFramesetter:(CTFramesetterRef *)framesetter

This method deals with the rendering of the output text to the PDF document with the
testing results, using the declared settings.

- readCSVcorporate,

readCSVWithParam:(int)tag

These two methods read the values of the corporate and customer design requirements
from the comma separated CSV files and correlate them with the associated attributes
(Figure 14).

Seite 48

Figure 14: Implementation of reading the design requirements function

Seite 49

Figure 15: System method architecture

Seite 50

5.4. Examples

5.4.1. iAgree

iAgree is a mobile application for iPad or iPhone that could be used instead of lot of papers
the employees has to work with every day (Figures 16 and 17). The application permits the
making of processes approval tasks in the train, airplane, or elsewhere without using paper
documents. It makes it possible to load the documents from the repository, read them on
the mobile device, and easily approve or decline them with a few clicks. If the device is in
an offline mode, the application saves all changes and loads them when it is online again.
iAgree does not replace the original workflow of the approval process but enables the
handling of approval tasks centrally. In addition to approval and decline processes, there is
an opportunity to choose a selection from more alternatives. The processes added to the
system can also be deleted from iAgree, for example when the user handled the tasks in
the original system and not in iAgree.

In order to test the design requirements of iAgree, the DesignTesting framework was linked
to the iAgreeMock target of the application project. The design of the application was
developed by Artlab Studios Berlin, and in addition to screenshots, the values were also
represented in the Excel table. So only few modifications of the design requirement
document were needed, including the adding of element ids. The Excel document with the
customer design requirements is shown in the figure 18.

iAgree belongs to Volkswagen Group applications, so for the testing of its corporate design
the user preferences must be set to company corporate design in the device settings
section. The CVS files of the design requirement documents and assets are loaded in
iTunes. When the user starts the application and shakes the device, the code is executed
and the result PDF document is created in iTunes. Executing of the code takes 12
seconds. Most of this time is spent on the image pixel-by-pixel comparison. The result
document (Figure 19) includes the information about VW logotype and about all
components of the main screen. When the user opens the vertical slider with settings and
shakes iPad again, the system creates a new PDF document with the information about
buttons and labels in the slider. So it is possible to test every view of the application.
According to the result of the test, the logotype of the application uses the right image, but
the width of the image is 121 pixels instead of 120 pixels. Also the width of the left column
is 319 pixels, instead of 320 pixels. According to the Design Testing Framework, the
corporate design of the application fails, but since all the values are represented in the
output document, the testers can decide manually whether the difference of 1 pixel is
essential for the corporate design. Concerning the typeface attributes, most text elements
in iAgree use Verdana font family and blue color (76/83/86), which are allowed for the
company corporate design, however some colors are different. Nevertheless, iAgree uses
different font sizes for various text elements. The explanation for this could be that different
types of labels (title, subtitle etc.) can have different attributes, so more differentiation of the
element types is needed in the design requirements and in the testing tool. All customer
requirements are defined and compared correctly.

Seite 51

Figure 16: Screenshot of iAgree main view with accept and decline options

Figure 17: Screenshot of iAgree view with opened vertical slider

Seite 52

Figure 18: Design requirements for iAgree presented in the Excel table

Figure 19: Results of the design testing of iAgree

Seite 53

5.4.2. Konzernkalender

Konzernkalender is the mobile solution for representing the most important events of the
year in a personal calendar. It also gives the opportunity to subscribe peripheral created
calendars with different types of events and represent them in your own calendar view. The
application allows the editing of the calendar through changing the color, marking and
hiding or displaying different calendars. The events can be shown in the year, quarter or
month view (Figures 20 and 21). The calendars can be controlled in a web-based editor
tool. Only authorized people can create and edit events in order not to overfill the calendar
with redundant information. The data is transferred through encrypted and safe
connections. The authorization is given via Volkswagen identification and by entering the
password. It was superficially considered that the interface of the Konzerkalender
application should be designed for ease of use and should not distract users from the
essential information.

All layout information of the Konzernkalender application is designed in the
main.storyboard file in Interface Builder, as well as in some XIB files, which can be also
seen and edited in the Interface Builder. All customer design requirements were also
entered in the Excel template (Figure 22).

The design testing of Konzernkalender was done in the same way through the linking of
DesignTesting Framework, loading resources in iTunes and building the KK_NOPKI target.
The user can choose one of the calendar views (year view, quarter view or month view)
and shake the device. The system creates an output document, with the information about
all elements represented in this particular view (Figure 23). Execution of the code takes 17
seconds. Konzernkalender also belongs to Volkswagen company applications. While most
customer requirements are followed in the application, the corporate design does not
correspond to the guidelines. Looking at the outputted result, it can be concluded that
almost all found elements and attributes were defined and compared correctly, but there
are some inaccuracies. The logotype has a width of 300 pixels, although its width is looking
like it required 120 pixels. It is because of this that the original image already contains the
white spacing from the sides. So the source code analyses can only define the size of an
image asset and not the size of the real image inside this asset. This can be better done
with the image recognition technique. In contradiction to iAgree, the UI elements presented
in pop-up windows, for example with the information about a certain event, do not appear
in the result PDF. So it is possible to make a conclusion that the way in which the
application is implemented has an influence on the testing result. It means that the design
testing tool must be aware of different application structures and different ways of
implementation.

Seite 54

Figure: 20: Screenshot of Konzernkalender year view

Figure 21: Screenshot of Konzernkalender month view

Seite 55

Figure 22: Design requirements for iAgree represented in the Excel table

Figure 23: Results of the design testing of Konzernkalender

Seite 56

5.5. Limitations

The results of the testing of two applications show that my DesignTesting Framework can
efficiently determine the visible UI elements and their attributes and can reduce the time
effort of the testing process. However, the developed prototype contains some limitations
that can be improved in the next version of the tool. Depending on how the application
under test is implemented, some UI elements visible on the current screen cannot be
recognized with the tool. On the other hand, the system sometimes finds components that
are implemented for this view, but not visible on the screen at the moment, because they
have to be activated. The possible solutions of this problem include the awareness of
different ways of implementation, setting the rules for the developers to realize the
applications in the same way, or combining the source code analysis method with the
image recognition technique.

In addition, some elements can be designed using different view types. For example, text
components can be made as labels, text views or even as images. The same method can
also be applied for buttons –they can have a background and a title, but can also be
designed as an image. To settle this issue, the tool already uses the image comparison of
the element and the asset, but in some cases the asset may not be available.

Another limitation is that DesignTesting Framework at the moment considers only some
types of the elements – labels, buttons, images and tables. It can distinguish between
different types of text components (normal text, title, text in a table cell) in the code and
through defining them in a special column of the design requirements table. But to achieve
more accurate testing results there is a need of more differentiation between variousUI
element types. The tool lacks the information about such UI components as tab bar,
navigation bar, sliders, radio buttons, footer and others.

The design-testing prototype is working dynamically and finds the current information about
the application at the running time. Nevertheless, there are can be some difficulties with the
dynamically changing elements, because they are statically described in the design
requirements document. Excel table is able to calculate the values in cells dependent on
other cells, for example the logotype spacing from left and right dependent on the width of
the logotype. But there are some variables that depend on the values not described in the
design requirements document, such as current screen resolution or scaling of the view.
Additionally, some constraints are described in the Interface Builder in relation to certain
objects. So the button can have minimal spacing of 20 pixels from the navigation bar, from
the header or from the closest button. Now the design-testing prototype can only define the
spacing from the window sides, and does not have an opportunity to describe and test the
considerations in relation to other components. The dynamic attributes and dependencies
on other elements can be solved through reorganizing the design requirements document,
adding more complex functionality to the source code, or through involving the image
recognition of the screen elements.

Seite 57

6. User study of DesignTesting Framework

6.1. Analysis of the target group

Before I could start to design the user study, I needed to know what kind of persons I want
to test. Since the design requirements tested in the experiment are developed in the
customer management department of Volkswagen Group AppFactory, and my Design-
Testing Framework should be used in the future in the quality management department,
the persons of the target group should have experience working with the potential
customers or testing the applications. I tried to find both female and male participants to
make the test more consistent. Furthermore, the test persons need to be familiar with using
computers and mobile devices, since they are used in the experiment.

The execution of the automated design testing tool always takes the same time and gets
the same results, so the number of participants is not so essential. More important is the
testing of different cases and different attributes to simulate as many possible scenarios of
use as possible. I chose for the experiment 3 participants, one male and two females
between the ages of 18-34 years. All of them work in Volkswagen Group AppFactory, one
in the customer management and two in the quality management departments. In addition,
all of them have had some experience with testing mobile applications and have already
worked before with HP ALM, a software used in my experiment.

Test person #1 is a female in the age range of 18-24 years, who graduated from high
school and is now studying media computer science. She is doing an internship in the
quality management department of Volkswagen Group AppFactory, and was engaged in
the last six months with testing tasks. Test person #2 is also a female in the age range of
25-34 years with a bachelor degree in computer science. She is working as a software
tester in the quality management department. Test person #3 is a male in the age range of
25-34 years old with a bachelor degree in information management. He is doing an
internship in the customer management department. He also has some experience with
software testing, but less than the other two participants.

6.2. Procedural method

The independent variables of the experiment were test environment, the applications and
the test cases. They have not changed during the whole test. The dependent variable was
the method of testing – manually and automated.

The quantitative data collected in the study were duration of each test case and the
number of wrong and correct answers. The time was measured with the help of a
stopwatch. The answers of the test persons were recorded in the ALM, and were then
manually compared with the real results in the application according to the table. The
qualitative data collected during the experiment was the satisfaction of the participants with
the tool. It was measured with a help of the usability questionnaire, comments of the test
persons, and observational notes.

Seite 58

6.3. Experiment design

The goal of the experiment was to prove how the use of DesignTesting framework affects
the productivity and duration of the test process. For this purpose, the test persons had to
test two applications both manually and with the help of the automated tool. The user study
includes four test cases – testing of two views of each of two applications. Each test case
consists of several steps. First, these test cases were done manually, and then the same
test cases were done automatically.

The experiment took place in the quality management laboratory of Volkswagen Group
AppFactory. A hardware used in the experiment included a Windows computer, with
installed HP ALM and all standard software, MacBook Pro, with installed XCode and
iTunes, and iPad 3 with a cable connected to MacBook. ALM is used for the easier creation
of test cases and recording the test results. Both application projects were located in
XCode and were prepared for the run. iTunes was used for loading the required resources
and saving the results. The test environment for all participants was the same. In the
experiment, two applications described before were used – iAgree and Konzernkalender.
The participants were tested after each other with the same conditions.

When the test subject and the use of DesignTesting Framework were explained to the test
persons, they were asked to complete four test cases described in the ALM. The test cases
with all steps and expected results are represented in the table 3. Each test case had to be
done both manually and with the use of the automated tool. For the manual testing, the
participants could use all possible methods. They had to define the attributes of the stated
elements as they would do in their usual work if they needed to test the design of an
application. They could use the screenshots of the application and different software, such
as Microsoft Word, Paint or Internet Explorer to define the font family, sizes or colors. Thus,
the participants were free as to how they determined the required attributes. All results
were marked in ALM. Then the test persons had to complete the same four test cases with
the use of my automated tool. First, they had to run the application with the linked Design-
Testing Framework on iPad, to shake the device and to wait till the code was executed.
Then they could open the generated PDF document, which was located in iTunes, and
read the results. According to these results, they could mark the described test cases as
right or failed. The whole experiment took approximately 60-70 minutes per person. During
the test, I took notes about my observations and the person’s comments.

At the end the participants were asked to fill out the online questionnaire. It was based on
the combination of questions from four questionnaires - Perceived Usefulness and Ease of
Use Questionnaire, Questionnaire for User Interface Satisfaction, Computer System
Usability Questionnaire and QUESI. The questionnaire consisted of 5 parts, including
demographical questions about the participants and their background, questions about
usefulness, ease of use, satisfaction and opened questions about negative and positive
features of the tool. To answer the questions in the usability and satisfaction parts, the test
persons had to choose a number on the likert scale from 1, which means “strongly
disagree”, to 5, which means “strongly agree”. The numbers they choose should match
their level of agreement with the statements about the tested tool.

Seite 59

Step Task Expected result Result according
the application

Test case 1: Test the main view of iAgree

Step 1 Check the logotype image Image is true True
Step 2 Check the width of the logotype image 120 px False
Step 3 Check the spacing of logotype image from

left and right
At least half of the
logotype width

True

Step 4 Check background color of the logotype
image

White (255/255/255) True

Step 5 Check search field image Image is right True
Step 6 Check the font family of the text “All

information presented in iAgree are
confidential”

Verdana True

Step 7 Check the font size of the text “All information
presented in iAgree are confidential”

17 pt True

Step 8 Check the font colors of the text “All
information presented in iAgree are
confidential”

Grey (166/166/166) True

Step 9 Check the font family of the text in the left
column

Verdana True

Step 10 Check the font size of the text in the left
column

17 pt True

Step 11 Check the font color of the text in the left
column

VWAG Grey (76/83/86) True

Step 12 Check the width of the left column 320 px False
Step 13 Check the background color of the left

column
VWAG Petrol light 50%
(231/243/243)

True

Step 14 Check the font family of the Outbox label Verdana True
Step 15 Check the font size of the Outbox label 14 pt True
Step 16 Check the font color of the Outbox label VWAG Grey (76/83/86) True
Step 17 Check the consistence of the main screen

view
Font family of all text
elements is the same

False

Step 18 Check the number of different colors in the
main screen view

Less than 7colors False

Step 19 Check the corporate design of the main
screen view

Font family: Thesis
TheSans, Verdana or
FF Cellini,
Font size: 15 pt,
Font color: VWAG Grey
(76/83/86)

False

Test Case 2: Test the vertical slider of iAgree

Step 1 Check the font family of the application name
label

Helvetica Neue True

Step 2 Check the font size of the application name
label

21 pt True

Step 3 Check the font color of the application name
label

Blue (6/72/102) False

Step 4 Check the font family of the application
version label

Helvetica Neue False

Seite 60

Step 5 Check the font size of the application version
label

9 pt True

Step 6 Check the font color of the application
version label

Blue (6/72/102) False

Step 7 Check the font family of the settings label Helvetica Neue True
Step 8 Check the font size of the settings label 17 pt True
Step 9 Check the font color of the settings label Blue (6/72/102) False
Step 10 Check the settings button image Image is right True
Step 11 Check the size of the settings button 44x44 px True
Step 12 Check the font family of the info label Helvetica Neue True
Step 13 Check the font size of the info label 17 pt True
Step 14 Check the font color of the info label Blue (6/72/102) False
Step 15 Check the info button image Image is right True
Step 16 Check the size of the info button 44x44 px True
Step 17 Check the font family of the logout label Helvetica Neue True
Step 18 Check the font size of the logout label 17 pt True
Step 19 Check the font color of the logout label Blue (6/72/102) False
Step 20 Check the logout button image Image is right True
Step 21 Check the size of the logout button 44x44 px True
Step 22 Check the font family of the user name label Helvetica Neue True
Step 23 Check the font size of the user name label 17 pt True
Step 24 Check the font color of the user name label Blue (6/72/102) False

Test case 3: Test the year view of Konzernkalender

Step 1 Check the logotype image Image is right True
Step 2 Check the width of the logotype image 120 px Unknown
Step 3 Check the spacing of the logotype image

from left and right
At least the half of the
logotype width

True

Step 4 Check the background color of the logotype White (255/255/255) True
Step 5 Check the font family of the calendar name Helvetica Neue Interface True
Step 6 Check the font size of the calendar name 24 pt False
Step 7 Check the font color of the calendar name Black (0/0/0) False
Step 8 Check the font family of the month name Helvetica Neue Interface True
Step 9 Check the font size of the month name 20 pt True
Step 10 Check the font color of the month name Black (0/0/0) True
Step 11 Check the consistency of the year view font family of all text

elements is the same,
 font family of all button
titles is the same,
font size of all button
titles is the same,
height of all buttons is
the same

False

Step 12 Check the background color of the year view White (255/255/255) True
Step 13 Check number of different colors in the year

view
Less than 7 colors True

Test case 4: Test the month view of Konzernkalender

Step 1 Check the font family of the week day label Helvetica Neue False
Step 2 Check the font size of the week day label 17 pt True

Seite 61

Step 3 Check the font color of the week day label Black (0/0/0) True
Step 4 Check the font family of the day label Helvetica Neue True
Step 5 Check the font size of the day label 14 pt True
Step 6 Check the font color of the day label Black (0/0/0) False
Step 7 Check the font family of the calendar week

label
Helvetica Neue False

Step 8 Check the font size of the calendar week
label

11 pt False

Step 9 Check the font color of the calendar week
label

Black (0/0/0) False

Step 10 Check the font family of the event name label Helvetica Neue False
Step 11 Check the font size of the event name label 18 pt False
Step 12 Check the font color of the event name label Black (0/0/0) False

Table 3: Test cases for the research experiment

6.4. Data representation

During this study, the quantitative (time, results of test cases, usability questionnaire) and
qualitative (opened questions, observational notes) types of data were collected.

The time taken for each experiment manually and with the use of the automated tool is
represented in the table 4. For the first two test cases (application iAgree), there is a
tendency that the automated testing took less time than the manual testing. The third and
fourth test cases (application Konzernkalender) had fewer steps and took in general less
time. In these test cases the manual testing took less time than with the use of Design-
Testing Framework, though the difference is very small. Test person #1 completed all
manual tests in 34 minutes and all automated tests in 30 minutes. Test person #2 spent in
total 33 minutes for the manual test and for the automated test only 25 minutes. Finally,
test person #3 finished the manual testing in 30 minutes and automated testing in 32
minutes. In total, the time used for all manual tests by all three participants was 97 minutes
and for all automated tests 87 minutes, which is 89.7 percent of the time spent for manual
testing. That means that the use of Design-Testing Framework can reduce the time of the
testing process to 10.3percent.

Another type of quantitative data collected during the experiment was the number of
correct and wrong answers. Every step of the test case could be either right or wrong,
dependent on whether the attribute value expected in the test correlated to the value in the
application. It is presented in the table 5. If the answer given by test person (passed or
failed) matched the answer declared in the table, it was seen as a correct answer; if it does
not match the answer given in the table, it was seen as an error. The table below presents
a number of errors for each test case. In manual testing, no cases were done without
errors. Half of test cases done with the use of the automated tool were done without
errors, the others had only a small number of errors. The total number of errors done
during the manual testing by all participants is 73, while the number of errors done during
the automated testing is only 12.

Seite 62

Test case Type of test Test person #1 Test person #2 Test person #3
Test case 1 Manually 13 minutes 13 minutes 13 minutes

Automated 9 minutes 9 minutes 14 minutes
Test case 2 Manually 12 minutes 13 minutes 9 minutes

Automated 8 minutes 6 minutes 7 minutes
Test case 3 Manually 5 minutes 4 minutes 5 minutes

Automated 6 minutes 5 minutes 4 minutes
Test case 4 Manually 4 minutes 3 minutes 3 minutes

Automated 7 minutes 5 minutes 7 minutes

Table 4: Duration of every test case for both manual and automated design testing

Test case Type of test Test person #1 Test person #2 Test person #3
Test case 1 Manually 7 errors 9 errors 4 errors

Automated 0 errors 1 error 0 errors
Test case 2 Manually 16 errors 9 errors 2 errors

Automated 0 errors 0 errors 2 errors
Test case 3 Manually 3 errors 2 errors 3 errors

Automated 1 error 2 errors 2 errors
Test case 4 Manually 6 errors 5 errors 7 errors

Automated 4 errors 0 errors 0 errors

Table 5: Number of errors for every test case for both manual and automated design testing

The usability questionnaire was used to measure the usability of the tool and the overall
satisfaction with the system. The questions of the questionnaire were combined in three
categories with similar characteristics to narrow the data – usefulness, ease of use and
satisfaction. The answers were given on a 5-point likert scale, where 1 corresponded to
“strongly disagree”, 2 to “disagree”, 3 to “neither agree nor disagree”, 4 to “agree” and 5 to
“strongly agree”. Although there were only three test persons, and this is not enough to
analyze results statistically, I describe the general results of the main points shortly to give
a first overview. The questionnaire with the average answers for all questions is presented
in table 6. The “usefulness” part of the questionnaire demonstrated how useful the
automated tool could be in increasing the productivity of the design testing process. The
participants stated that my DesignTesting Framework could be useful for the testing of
design requirements by an average value of 4.13, which is the highest ranking among
other categories. It means they agree that using the automated tool can improve the testing
of design requirements. The “ease of use” part showed how understandable, intuitive and
learnable the system was. The average value for this category is 3.95. The statement with
the highest average answer of 4.67 was “The system was easy for me to use”. The lowest
answer of 2.67 was given for the statement “I could use the system without any
instructions”. So it would not be automatically clear how to use the tool without
documentation, but since before the test the guidelines were given, it was easy enough to
understand how it works. The “satisfaction” part of the questionnaire demonstrated the
overall impression of the tool. The participants stated that they are satisfied with the system
by an average value of 3.84, which is slightly under the “agree” option in the ranking.

Seite 63

Figure 24: Results of the usability questionnaire

The distribution of the answers of each test person to the questionnaire is presented in the
diagram in figure 24.

These answers show the main tendency in the participant’s feelings about the system after
the test, but for more accurate results they should be combined with the qualitative data
from open questions and observational notes. Thus, none of the test persons has
mentioned any negative aspects about the system. One of the test persons wrote in the
“positive aspects” section that the tool was “easy to use and easy to understand”. The
participants were also asked to list additional functionalities they would expect from the
system. Two of them answered that “PDF outcome of the system could be more sorted, for
example in a table view” and that the system could use “more obvious keywords in the
PDF document”. So both improvement proposals deal with the representation of the test
results in the PDF document.

The observational notes taken during the experiment demonstrate what means the
participants used to find out the attributes of the UI elements. Test person #1 used mainly
Microsoft Word to define the typefaces, Paint to define the sizes and spacing and Internet
Explorer to define the colors of the elements. Test person #2 used Internet Explorer to
define all types of attributes, and sometimes Microsoft Word to find out the typefaces. Test
person #3 checked almost all attributes in Paint: he drew the declared elements with the
expected attributes over the screenshot of the application. In the manual testing, the
participants often had difficulties with defining the attributes, so the values of the attributes
were often guessed. They gave comments like “I can imagine that it is true, but I cannot be
totally sure”.

5

4,57 4,5

3,8 3,86
3,633,6

3,43 3,38

1

1,5

2

2,5

3

3,5

4

4,5

5

Usefulness Ease of use Satisfaction

test person #1

test person #2

test person #3

Seite 64

Usability Questionnaire

Question
number

Statement Test
person #1

Test
person #2

Test
person #3

Average
result

Usefulness
1 Using the system for testing tasks

would enable me to finish my job
more quickly

5 4 4 4,33

2 Using the system would improve my
job performance

5 4 4 4,33

3 Using the system would increase my
productivity

5 3 3 3,67

4 Using the system would make it
easier to get done the tasks I want to
accomplish

5 4 3 4,0

5 I would find the system useful for the
testing tasks

5 4 4 4,33

Ease of use
6 The system was easy for me to use 5 5 4 4,67
7 Learning to operate the system would

be easy for me
5 4 4 4,33

8 I would find it easy to get the system
to do what I want to do

3 4 3 3,33

9 I could use the system without
instructions

4 2 2 2,67

10 The system requires fewest steps
possible to accomplish the tasks I
want to do with it

5 4 4 4,33

11 I didn’t notice any inconsistencies
using the system

5 4 4 4,33

12 I automatically did the right steps to
achieve my goals

5 4 3 4,0

Satisfaction

13 Overall, I am satisfied with how I
could use the system

5 4 4 4,33

14 I could effectively complete my tasks
using this system

5 4 3 4,0

15 No problems occurred when I used
the system

5 4 4 4,33

16 I feel comfortable using this system 4 4 4 4,0
17 I would recommend to use this

system for testing tasks
4 4 4 4,0

18 The system is pleasant to use 4 4 3 3,67
19 The system meets my needs 4 3 2 3,0
20 The system has all functions and

capabilities I expect it to have
5 2 3 3,33

Table 6: Usability questionnaire with average results

In addition, the observation and participant’s comments demonstrate what difficulties they
had testing the design requirements with the automated tool. Test person #1 had problems
at least in finding results in the PDF document, for test person #3 it was most difficult. All
three participants used a search function to find the elements in the PDF document: in
most cases they could find them very quickly, but sometimes the names of the elements
were not obvious enough and they were not sure what element was meant. Also the
difference between customer and corporate design requirements was not always clear and
they did not know from which section they should take the result. Test person #2 said that

Seite 65

the results in the PDF document should be more visual. They could be represented in the
table like the design requirements itself, but in the cell, according to the certain element,
and attribute should be written whether it true or false. The output could also have images
and the order of the elements could be more logical. All three test persons tested the
second applications more quickly and not so accurately. In general, they could easily use
the automated tool, with the instructions given before, and evaluate the results, except
there were some difficulties with the naming of the elements and representation of the
results.

6.5. Data analysis

The evaluation is based on the data of 3 participants. The number is surely too small to
make a meaningful quantitative analysis: that’s why it makes sense to take into account the
answers of every participant for the qualitative analysis. All three participants use
computers and mobile devices every day and have already had experience with the testing
of applications; however, only two of them are engaged with the application testing in their
usual work.

Test results of test person #1 are shown in table 7. Test person #1 is a student, currently
working on the testing of mobile applications in the quality management department of
AppFactory. She looked very competent with the testing process and could complete all
steps without help. In the manual testing of design requirements she had some difficulties
with defining the attributes of the elements. It took a long time to compare the colors, sizes
and typefaces on iPad with those found in Internet or in Word. She often said that she
could imagine that it was true, but could not define the value exactly. As a result, she
sometimes just assumed that the attributes were right or not. For testing the second
application, test person #1 needed much less time. Sometimes she did not compare the
attributes with the values found with different helping means and checked them directly as
passed or failed. The reason for this could be that she was already familiar with how the
repeating attributes look like and did not need to compare them again. Another reason
could be that she was tired after the testing of the first application and wanted to finish the
test fast. Both cases can lead to the inattentive testing of every single element, so that
small distinctions in the values can be overlooked and errors may occur. During the testing
of the applications test person #1 made 23 errors in 43 tasks in iAgree and 9 errors in 25
tasks in Konzerkalender, while checking them manually. The amount of errors in the first
application is thereby more than 50 percent. Using the DesignTesting Framework she
made no errors in iAgree and 5 errors in Konzernkalender. So testing the applications
manually caused many more errors than using the automated tool. Test person #1 spent 8
minutes more for testing the first application manually than with the use of tool. For the
second application she needed 4 minutes less for the manual testing. In general, it was
much easier to find out the results of the test doing it with the help of the automated tool.
The only problem was the representation of results in the PDF document. The names of
some elements were not self-descriptive enough, but these names come from the Excel
table created by designers. So the rules for better naming of objects in the design
requirements and in the application’s code should be created in the future. In addition, the
difference between customer and corporate design requirements was not clear, and
different values in both categories for the same element were irritating. This is because in
practice customer requirements do not always correlate with corporate design

Seite 66

Test
person

Introduction
questions

Time Number or
errors

Observation,
comments

Usability
questions

#1 Female, 18-24
years old,
student in
media
computer
science,
internship in
quality
management,
uses computer
and mobile
devices every
day, has
experience in
testing

Manual
testing:
iAgree: 25 min
KK: 9 min

Automated
testing:
iAgree: 17 min
KK: 13 min

Manual testing:
iAgree: 23
errors
KK: 9 errors

Automated
testing:
iAgree: 0 errors
KK: 5 errors

Manual testing: Used
Word, Paint and Internet
to define attributes,
“I can imagine that it is
true, but it is difficult to
define the value
precisely enough”.

Automated testing:
Difference between
customer and corporate
design is not clear, had
no problems with finding
out the attributes, but
some problems with
finding elements in PDF
output, “more obvious
keywords in the PDF
document”

Usefulness:
5.0

Ease of use:
4.57

Satisfaction:
4.5

Table 7: Experiment results of test person #1

guidelines, and the tester should decide before the test which requirements are more
important for this case. In general, test person #1 gave the highest rating to the questions
in the usability questionnaire and found the system useful (5.0) and easy to use (5.0).

Test results of test person #2 are represented in table 8. Test person #2 works in the
quality management department with software testing and has much experience with the
testing of mobile applications. Nevertheless, she is engaged with functionality and usability
testing and not with design testing. Like test person #1, she had difficulties with defining the
attributes of the elements in the manual testing. It was especially hard for her to define the
sizes of the elements. Test person #2 made 18 errors in iAgree and 7 errors in
Konzernkalender while doing the manual testing of applications. Using Design-Testing
Framework she made only 1 error in iAgree and 2 errors in Konzernkalender. So, here too,
it is evident that automated testing has caused many fewer errors. In the case of the
duration of the test process with regard to test person #1, the same tendency can be seen.
The testing of the first application manually took 11 minutes more than doing it
automatically, while the testing of the second application was done 3 minutes slower using
the tool. Test person #2 had the same problems while working with the output document. It
was difficult to find some elements, and she had to scroll the document a lot. The
difference between customer and corporate requirements was clear only after explaining it.
Test person #2 suggested representing the results in another way. The elements could be
sorted by the name or the type of the object. To enable the better overview of all elements,
they could be presented in the table like the values in the design requirements document.
The names of the elements could be located on the left and the attributes on the top. In the
intersecting cell, it could be written whether this attribute of this element is correct or not.
Also the images of the elements could be shown in order to find them faster. Independent

Seite 67

Test
person

Introduction
questions

Time Number or
errors

Observation,
comments

Usability
questions

#2 Female, 25-34
years old,
working in
software
testing, uses
computer and
mobile devices
every day, has
experience in
testing

Manual
testing:
iAgree: 26 min
KK: 7 min

Automated
testing:
iAgree: 15 min
KK: 10 min

Manual testing:
iAgree: 18
errors
KK: 7 errors

Automated
testing:
iAgree: 1 error
KK: 2 errors

Manual testing: Used
Word and Internet to
define attributes, had
difficulties with defining
the attributes

Automated testing:
problems with finding
elements in PDF output,
“Easy to use and easy to
understand”, “The PDF
outcome of the system
could be more sorted,
e.g. in a table view”, “This
system can shorten work
processes”

Usefulness:
3.8

Ease of use:
3.86

Satisfaction:
3.63

Table 8: Experiment results of test person #2

of the difficulties with the use of the PDF document, test person #2 could complete all steps
in the automated testing relatively quickly and with only few errors. She stated that Design-
Testing Framework does not meet her needs at the moment because the design testing is
not common in AppFactory now, but it could be very helpful in the future. The automation
of the design testing process could lead to more frequent and consistent design tests in the
quality management department.

Test results of test person #3 are represented in table 9. Test person #3 had the least
experience with software testing. He studies information management and is currently
working in the customer management department of AppFactory. Initially, he had some
problems using ALM and DesignTesting Framework but could understand both tools after a
short time. Like the other two participants he made more errors testing the applications
manually. Thus, he made 6 errors in Agree and 10 errors in Konzernkalender in the manual
testing and respectively 2 errors using the tool. At the beginning he said that it is not
possible at all to define the concrete values of the elements, but then he tried to do it using
Paint and Internet. For the test of the first application with both methods he needed almost
the same time – 22 minutes for manual testing and 21 minutes with DesignTesting
Framework. The reason for this is that he searched for the results in the output document
for a very long time. The testing of the second application took 3 minutes more with the use
of the automated tool. Test person #3 had the lowest rating in the questionnaire about the
usefulness of the system, probably because he is not familiar with software testing and
does not need such a design testing tool in his work. But he can imagine that this tool could
be very useful.

Seite 68

Test
person

Introduction
questions

Time Number or
errors

Observation,
comments

Usability
questions

#3 Male, 25-34
years old,
Bachelor in
information
management,
internship in
customer
management,
uses computer
and mobile
devices every
day, has
experience in
testing

Manual
testing:
iAgree: 22 min
KK: 8 min

Automated
testing:
iAgree: 21 min
KK: 11 min

Manual testing:
iAgree: 6 errors
KK: 10 errors

Automated
testing:
iAgree: 2 errors
KK: 2 errors

Manual testing: Used
Paint to define
attributes, had
difficulties with defining
the attributes, “It is not
possible to define the
values manually”

Automated testing:
Problems with finding
elements in PDF output,
the system can improve
the effectiveness and
reduce the time

Usefulness:
3.6

Ease of use:
3.43

Satisfaction:
3.38

Table 9: Experiment results of test person #3

6.6. Summary of the results

Analyzing the results of all three participants, it is obvious that all of them made more
errors testing the design manually. It is not possible to find out the exact values with a
human eye, so even using different helping methods they could not define the attributes
precisely. It is particularly hard to define the sizes of the elements and font sizes, since
they could look different because of the scalability of the screen. Also the colors can be
perceived differently depending on the background color. The same color on the light
background looks darker then on the dark background. Most of the few errors made during
the automated testing were made because of the inattentiveness of the participants,
because the results in the PDF document were right. The only deficiency in the system was
in defining the width of the logotype. In Konzernkalender, the logotype had visually the
same size as iAgree, but the tool got the width of 300 pixels compared with 121 pixels.
That it because the original asset was differently cropped and the logotype image in
Konzernkalender had white spacing on the sides, which is not visible on the application’s
screen. This task was marked as failed by all three participants because it was not possible
to define the real size of the image with the tool. So the deficiency in the Design-testing
Framework is that in some single cases the real values of the elements do not correspond
to attributes seen on the screen.

It can be seen that the manual testing of iAgree always took more time than the automated
testing of this application. Nevertheless, the design testing of Konzernkalender took more
time with the use of the automated tool; however, this difference is small. The second
application has fewer steps, so I can assume that the use of Design-Testing Framework
can take the same or more time for completing the small tasks. The execution of the code
and saving the result document at the beginning always takes some time, but evaluating
the results after that can be done faster. That’s why it is more efficient to use Design-
Testing Framework for completing the long test cases at once. In general, all three

Seite 69

participants together spent 97 minutes for the manual testing, whereas using the
automated tool they needed 10 minutes less. Assuming they test the design of mobile
applications the whole working day of 8 hours, they would save 50 minutes per day.

According to the results of the questionnaire, all three test persons agreed that
DesignTesting Framework is easy to use (4.67), can be useful in the testing tasks (4.33),
can improve productivity (4.33) and can enable one to finish the job more quickly (4.33).
The tool does not meet the needs of all test persons, since test person #3 does not work
with software testing at all, and test person #2 does not perform design testing, but they all
believe that DesignTesting Framework can improve job performance and would
recommend it to others for design testing tasks (4.0). All answers given in the
questionnaire got 3 points on the likert scale (neither agree nor disagree) or more (agree or
strongly agree). That means that the system produced no negative impressions and all
participants could imagine using it in testing work. The only question that got less than 3
points on the scale was: “I could use the system without instructions” (2.67). The
participants said they would not know that they need to shake the device and where and
how the result will be saved, but they could understand how to use the tool with the
instructions very well. It is important to mention that test persons #1 and #2, who have
more experience with the testing of applications, also had the higher rating in the
questionnaire. Test person#3, with the least experience, gave the questions about the
usefulness, ease of use and satisfaction a slightly lower rating. The DesignTesting
Framework has documentation available and the experienced users can operate the
system immediately after reading the instructions. Inexperienced users need some time to
learn the tool, after which they can also use it very well. Overall the participants were
satisfied with the design-testing tool (4.33); however, they would expect more additional
functionality from the system (3.33).

The main problem mentioned by the participants was the representation of the results in
the output document. All three test persons had difficulties in finding some elements in the
PDF document because the keywords were not clear enough and the order of the
elements was free. In addition, they felt irritated about different values of customer and
corporate design requirements and did not know which value was asked. So better naming
of the elements in the design process of the interface and greater differentiation between
customer and corporate design requirements is needed. Solving this problem could avoid
errors resulting from inattentiveness, reduce the time of the test, and as a result increase
the effectiveness of the tool even more.

The analysis of the results of this research makes it possible to confirm that the target
group of the experiment – people working with software testing or with the creation of
customer requirements can easily use Design-Testing Framework for the design testing
tasks, and find it very useful and efficient. The automated tool can reduce the time of the
testing process and increase the accuracy of the results, although some improvements in
the visual representation of the outcome are required.

Seite 70

7. Conclusion

Because of the rapid increase in the usage of mobile applications and establishing them in
all areas, from entertainment to business, the topic of quality management and the testing
of handheld applications has become a relevant research field. In order to reduce the
testing time and to increase productivity of the application’s production, the automation of
the testing process is needed. The automatic capture, analysis and critique of mobile
applications can simulate all possible user actions and repeat them multiple times,
something which will help to save time and to cover the wide range of test cases. It is able
not only to find automatically the problems and bugs of the system, but can analyze them
and suggest possible solutions.

Since the need for automated testing tools is evident, a lot of different techniques for
testing mobile applications have been presented in recent years. This thesis has given an
overview on the state of the art in the development of automated GUI testing tools. Most of
the presented techniques, such as Android Instrumentation, Robotium, MonkeyRunner,
apktool, iOS Instruments, Hierarchy Viewer, and others, are based on the creation of a
hierarchical structure of the GUI and analyzing the UI elements and their connections.
Another part of the existing automated testing tools, such as Sikuli and eggPlant, are
based on the image recognition technique through the capture of the application’s screen.
However, all presented tools evaluate the functionality and usability of the application,
including how the system responds to user interaction with the UI elements. No tools for
the testing of the visual appearance and corporate design of the mobile application have
been found. Since testing of design guidelines and corporate identity is also an important
issue, especially in the business context, the main objective of this thesis was to introduce
the automated testing tool for the evaluation of customer and corporate design
requirements within a company environment.

In this thesis I have proposed different ideas for the automated design testing tool, based
on existing techniques: source code analysis of the layout files, source code analysis of the
application code, screenshot analysis through the image recognition tools, screenshot
analysis through image comparison, and combination of various methods. Finally, I have
implemented the prototype for the dynamic source code analysis of the application code,
since this technique can be executed faster and can define the attributes of the UI
elements more precisely. Furthermore, I have developed the design guidelines for mobile
devices, conforming to their features and limitations, based on the physical constraints of
handheld devices. These guidelines can be used for the automated, as well as for the
manual testing, of the application design.

The outcome of this work is DesignTesting Framework for testing the design requirements
of iOS applications, according to the developed guidelines, the corporate design of the
brand and the special needs of the customer. It is implemented in Objective-C and can be
linked directly to the Xcode project of the required application. The Design-Testing
Framework can be activated with the shaking movement during the runtime of the
application. A tool reads the design requirement documents, searches for all UI elements
of the current screen and proves their attributes, such typefaces, colors, sizes and spacing,
according to the values in the documents. The results of the test are saved in the
structured PDF document as the text output. The DesignTesting Framework provides the
following functionality: working with any iOS application with the available source code,
orientation and resolution awareness, setting of user preferences, storing data with iTunes,

Seite 71

finding all UI elements of the current view, defining the certain attributes of required
elements, reading the design requirements from the excel document, comparing the UI
element attributes with the customer and corporate design requirements, analyzing the
general design requirements, comparing the screenshots of the UI elements with the
assets and result output. These functions are implemented in two classes –
DesignTestingViewController class, which contains the core methods for the execution of
the framework, finding the UI elements and rendering the output document, and
VWCVSAttributes class, which defines the attributes, reads the excel requirement
documents and compares the attributes. My automated design-testing tool gives the
opportunity to verify the attributes of the UI components, which cannot be recognized by
the human.

The prototype was tested with two iOS applications – iAgree and Konzernkalender, and
returned correct results for both of them. My automated tool was evaluated in the research
experiment, where 3 users tested the design of two applications, both manually and with
the use of DesignTesting Framework. They had to complete four test cases with numerous
steps, record the results in ALM and fill out the usability questionnaire. During the user
study, qualitative and quantitative data were collected, including time, number of errors and
satisfaction with the tool. The results from the study show that the tool was understandable,
easy to use, and that the testers found it useful. They think it can reduce the time and
increase the effectiveness of the design testing process. The tasks performed with the
automated tool were done faster and almost without errors, while manual testing resulted in
plenty of incorrect answers.

The evaluation of results suggests some improvements that can be done in a future work,
including the recognition of additional tested components, the awareness of different ways
of the application’s implementation, identifying dynamic requirements, inventing the rules
for designers and developers for the naming and description of the UI elements, possible
combination of source code analysis with image recognition, and better visual
representation of the test results. The improvement of these points in the future work will
surely make the system more efficient, consume less time and effort, and bring more
accurate results. The invention of the automated testing tool such as DesignTesting
Framework in the design testing process will lead to the development of more qualitative
and visually appealing applications and to a reduction in production costs.

Seite 72

8. Future Work

The analysis of the experiment results shows that the use of the automated testing tool had
a successful outcome and can improve the productivity of the testing process. In addition, it
meets the need of quality management, because no equivalent tool is currently known, and
the design of the application is tested either manually or not tested at all. However, there
are some problems and limitations that have not been implemented yet. Also the results of
the research experiment showed that some issues could be still improved in future work.

The current version of the prototype tests the incomplete number of the core design
requirements, such as typefaces, sizes, colors, alignments and spacing of the labels,
images, buttons and table elements. The next version of the system should include the
recognition of additional UI types to enable the evaluation of all possible elements, for
example tab bars, navigation bars, headers, footers, borderlines, count indicators, sliders
and switches. It should also differentiate between different types of sliders (vertical slider,
horizontal slider or menu slider), images (icons or large pictures), text elements (title,
subtitle, headline, normal text, text in the table cell, title of the table or links)and other
components. On the one hand, the implementation of the system should include functions
for identifying these UI elements and, on the other the Excel template should provide the
option to choose different types of these elements, so that they can be correlated to the
elements in the source code. In addition, further attributes can be proved by the system for
more detailed results, for example the typeface weight of the labels (regular, italic or bold).

Since all applications are implemented in different ways, some standardization is needed.
One possibility would be to distinguish in the source code of the tool between all potential
manners of implementation and to offer the solutions for all of them. However, it is not
always feasible to provide all possible ways and can make the code unnecessarily
complex. Another possibility is to invent the rules in the storyboard for the developers,
which defines how the GUI components must be described during the implementation.
Additionally, the storyboard for designers, as well as for the developers, should include the
rules for the designation of the elements in order to provide them with unique and self-
descriptive names. According to the method of description of UI elements, the system must
provide the functionality to identify only those elements that are currently visible on the
screen. If the tool recognizes all elements that are implemented for this view, but not
shown on the screen at the moment, it must define which of them are activated and which
are hidden. It also should be able to recognize the objects in the pop-up window opened at
the time of the testing. It can be done either through adding required functionality to the
source code or through recognizing the visible elements via screen capture.

Furthermore, the dynamic requirements can be better controlled in the future version. A
tool should enable operation with proportional values and the identifying of attributes
dependent on other variables, such as screen resolution or scalability factor. It also must
give the opportunity to work with constraints and to calculate the minimum or maximum
sizes and spacing of the elements, dependent on their location to other components. For
this, the system can use the detailed description of all dynamic directives in the
requirement document and search for the required or closest elements, taking into account
the coordinates of the objects. The use of image recognition can also help in this case,
through finding the objects on the screen capture.

Seite 73

The combination of the source code analysis with the image recognition is in general a
good approach for future work. It can bring different benefits. In some cases it may be not
possible to find the closest element in order to calculate the spacing to it, because GUI of
most applications consist of large number of subviews stacked into each other. Some
subviews can function as containers to group the other elements inside of them, and are
not visible on the screen. However, it is required to evaluate only visible objects. With
source code analysis, it is difficult to define how certain elements are rendered on the
screen. The image recognition of the screen capture considers the real representation of
the elements that are actually visible in the current view. So the image recognition
technique can be used to find all UI components on the screen and to define the closest
elements in relation to the tested object. After that, the tool can search these objects in the
source code through defining the coordinates on the screen or through comparing the
screenshots of every element and to perform all needed operations with them
programmatically. This technique can bring more accurate results, especially for the
dynamic elements.

As the outcome of the research experiment showed, the main problem for users was the
output representation of the testing results. The improved version of DesignTesting
Framework should use more evident keywords in the resulting PDF document. These
keywords come either from the source code of application or from the design requirements
documents, and therefore are given by the designers or the developers. So the solution of
this problem is defining the rules for the designation of the UI elements, something that has
already been mentioned before. In addition, the results should be represented more clearly
to enable the easier searching for the required elements. The output of the components
can be sorted by their names, ids or types, and can illustrate each component with a
screenshot image. In addition, the elements can be represented in a table that shows the
names of the elements and their attributes. The results of the test would be saved in a
corresponding table cell with a word “right” or “false”, so that the tester can promptly see
the bugs in the application. The information about these attributes and their values can be
written small below the result. Such tabular representation of the test outcome can give
better overview of all UI elements and the results, and can reduce the time and effort in
searching for the needed elements.

Another problem detected in the research experiment was the imprecise differentiation
between customer and corporate design requirements. The tool provides the possibility to
select in the user preferences settings whether the customer or the corporate design
should be tested. After executing the code, it shows in the output document only the results
of the selected option. In the case of the tester wanting to test both requirements, the tool
outputs all results for each element. The customer and corporate design results may have
different values, as the requirements not always correspond to each other. It can be
irritating when the analyzing the test results. One solution would be to output the results in
two different documents, so that the tester can read first the results that he personally finds
more important. Another option is to define which corporate design requirements are more
important and should cover the customer requirements. So, for example, the logotype must
always have the same size and must be located in the same place. The spacing between
the buttons and the height of the elements of the same type must always be the same.
Some other attributes, such as colors and typefaces, can differ if the customer has special
wishes. So the future version of the automated tool should decide for itself which results
are more important for the design evaluation, and display only these.

Seite 74

All these improvements will help make the DesignTesting Framework more easy to
operate, make it faster, reduce the time and effort of the testing process, lead to more
accurate and correct testing results, and consequently establish automated design testing
in quality management and produce better designed mobile applications.

Seite 75

9. Acknowledgments

I would like to thank my supervisor, Prof. Dr. Gabriel Zachmann, for continuous support
during my work on the master thesis and giving me helpful advices, and Prof. Peter von
Maydell, for the help in design questions. I also would like to thank my supervisors at
Volkswagen Group AppFactory: Rainer Riekert, who introduced me to Objective-C and
helped in practical arrangements, and Ingo Wolterstorff for the help in testing questions
and giving me useful feedback. In addition, thanks go to my collegues – Jan Söhlke, who
helped me with the technical questions, and information about design requirements and
used applications –Martin Bonneberg and Jennifer Jane Poerner, who provided me with
useful information about Volkswagen corporate design; Michel Malkowsky, Rouven
Hernier, Tim Weschpatat and Sebastian Kruschwitz, who gave me the access to the
applications used for the testing and helped with practical information about them. Special
thanks go to the testers, who participated in my research study.

Seite 76

10. References

1. Acord, C. G. and Murphy, C. C.: Cross-Platform Mobile Application Development: A
Pattern-Based Approach. Thesis, Montrey, California, March 2012

2. Amalfitano D., Fasolino A. R., Tramontana, P, De Carmine, S., Memon A. F.: Using
GUI Ripping for Automated Testing of Android Applications. ASE’12, Essen,
Germany, September 2012

3. Amalfitano, D., Fasolino, A. R., Tramontana, P., De Carmine, S., Imparato, G.: A
Toolset for GUI Testing of Android Applications. 28th IEEE International Conference
on Software Maintenance (ICSM), 2012

4. Andriychenko, V. and Lin Y.: Automatic Functionality and Stability Testing Through
GUI of Handheld Devices. National Chiao Tung University, November, 2011

5. AppPerfect: GUI Testing.
URL: http://www.appperfect.com/products/application-testing/app-test-gui-
testing.html

6. Balbo, S.: Automatic Evaluation of User Interface Usability: Dream or Reality.
Proceedings of QCHI 95, 1995

7. Developer Android: MonkeyRunner.
URL: http://developer.android.com/tools/help/monkeyrunner_concepts.html

8. eggPlant. URL: http://www.testplant.com/eggplant/
9. Fontblog: Die visuelle Führung der Marke Volkswagen. December 2007

URL: http://www.fontblog.de/die-visuelle-fuehrung-der-marke-volkswagen
10. GitHub: DCIntrospect.

URL: https://github.com/domesticcatsoftware/DCIntrospect
11. Goldberg, R., Schmauder, H., Schmidt, B.: Automatisierte, quantitative Analyse von

Android-Applikation-GUIs. Institut für Visualisierung und Interaktive Systeme,
Universität Stuttgart, Februar 2013

12. Graham, D., Fewster, M.: Experiences of Test Automation: Case Studies of
Software Test Automation. Pearson Education, Inc., January 2012

13. Hu, C., Neamtiu, I.: Automating GUI Testing for Android Applications. AST ’11,
Waikiki, Honolulu, HI, USA , May 2011

14. Hughes Systique Corporation: Test Automation Tools for Mobile Applications: A
brief survey. 2013

15. Ind, N.: The Corporate Image: Strategies for Effective Identity Programmes. Kogan
Page, GB, 1990

16. Infoq: Functional GUI Testing Automation Patterns. August 2013
URL: http://www.infoq.com/articles/gui-automation-patterns

17. iOS Human Interface Guidelines. Apple Inc., October 2013
18. iPDFDev, URL: http://ipdfdev.com/about-me/
19. Ivory, M. Y., Hearst, M. A.: The State of the Art in Automating Usability Evaluation of

User Interfaces. ACM Computing Surveys (CSUR), Vol. 33 Issue 4, New York,
USA, December 2001

20. Jovanović, I.: Software Testing Methods and Techniques. Belgrade, May 2008
21. Mandel, T.: The Elements of User Interface Design. WILEY, 1997
22. Martelin, T.: Orientation Awareness in Declarative User Interface Languages for

Mobile Devices: A Case Study and Evaluation. Master’s Thesis, Espoo, June 1,
2010

http://www.appperfect.com/products/application-testing/app-test-gui-testing.html
http://www.appperfect.com/products/application-testing/app-test-gui-testing.html
http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://www.testplant.com/eggplant/
http://www.fontblog.de/die-visuelle-fuehrung-der-marke-volkswagen
https://github.com/domesticcatsoftware/DCIntrospect
http://www.infoq.com/articles/gui-automation-patterns
http://ipdfdev.com/about-me/

Seite 77

23. McNamara, M. T. Y., Guan Tan, C., Massey, D. T.: System and Method for
Automated Design Verification. October 2000

24. Mobile statistics,
URL: http://www.mobilestatistics.com/mobile-statistics/

25. Mobilethinking,
URL: http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats/e#appusers

26. Morgado, I.C., Paiva , A. C. R., Faria, J. P.: Reverse Engineering of Graphical User
Interfaces. The Sixth International Conference on Software Engineering Advances
(ICSEA), 2011

27. Muccini, H., Di Francesco, A,. Esposito, P.: Software Testing of Mobile Applications:
Challenges and Future Research Direction. Automation of Software Test (AST), 7th
International Workshop on, 2012

28. Pope, G. M., Stone, J.F., Gregory, J. A.: Automated Software Testing System.
August 1994

29. Roberts, P.W., Dowling, G.R.: Corporate reputation and sustained superior financial
performance. Strategic Management Journal, Vol. 23 No. 12, 2002

30. Rountev, A., Yan, D.: Static Reference Analysis for GUI Objects in Android
Software. CGO ’14, Orlando, FL, USA , February 2014

31. Schneiderman, B., Plaisant: Designing the User Interface: Strategies for Effective
Human-Computer Interaction (5th Edition). Addison Wesley Pub Co Inc., February
2009

32. Schubiger, P.: Der Corporate-Design-Prozess in der Beratung am Beispiel eines
neuentwickelten Simulationstools. HWZ Hochschule für Wirtschaft Zürich, Mai 2012

33. Shirazi, A. S., Henze, N., Schmidt, A., Goldberg, R., Schmidt, B. and Schmauder,
H.: Insights into Layout Patterns of Mobile User Interfaces by an Automatic Analysis
of Android Apps. EICS’13, London, United Kingdom, June 24–27, 2013

34. Stuart, H.: Exploring the corporate identity/corporate image interface: An empirical
study of accountancy firms. Journal of Communication Management, Vol. 2 No. 4,
Stewart Publications, 1998

35. Szydlowski, M., Egele, M., Kruegel, C., Vigna, G.: Challenges for Dynamic Analysis
of iOS Applications. iNetSec'11 Proceedings of the 2011 IFIP WG 11.4 international
conference on Open Problems in Network Security, Springer-Verlag Berlin,
Heidelberg, 2012

36. Tschernuth, M., Lettner, M., Mayrhofer, R.: Evaluation of Descriptive User Interface
Methodologies for Mobile Devices. Computer Aided Systems Theory – EUROCAST
2011, Springer-Verlag Berlin, Heidelberg, 2012

37. Technopedia,
URL: http://www.techopedia.com/definition/2953/mobile-application-mobile-app

38. Technopedia: Graphical User Interface Testing.
URL: http://www.techopedia.com/definition/29846/graphical-user-interface-testing-
gui-testing

39. Testwarriors: Comparison Report: Sikuli Vs Eggplant.
URL: http://testwarriors.blogspot.de/2012/04/comparison-report-sikuli-vs-
eggplant.html

40. Tutorialspoint: Software Testing Methods.
URL: http://www.tutorialspoint.com/software_testing/testing_methods.htm

41. Van den Bosch, A. L. M., de Jong , M. D. T., Elving, W. J. L.: How corporate visual
identity supports reputation. Corporate Communications: An International Journal
Vol. 10 No. 2, 2005

http://www.mobilestatistics.com/mobile-statistics/
http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats/e#appusers
http://www.techopedia.com/definition/2953/mobile-application-mobile-app
http://www.techopedia.com/definition/29846/graphical-user-interface-testing-gui-testing
http://www.techopedia.com/definition/29846/graphical-user-interface-testing-gui-testing
http://testwarriors.blogspot.de/2012/04/comparison-report-sikuli-vs-eggplant.html
http://testwarriors.blogspot.de/2012/04/comparison-report-sikuli-vs-eggplant.html
http://www.tutorialspoint.com/software_testing/testing_methods.htm

Seite 78

42. Veracode: Static Testing vs. Dymamic Testing.
URL: http://blog.veracode.com/2013/12/static-testing-vs-dynamic-testing/

43. Volkswagen AG Corporate Design Styleguide. Volkswagen Aktiengesellschaft, 2013
44. Volkswagen Corporate Design. Volkswagen, 2012
45. Volkswagens AppFactory: Die Produktion für Smartphone und Tablet brummt.

September 2012, URL: http://www.it-region38.de/-/volkswagens-appfactory-die-
produktion-fur-smartphone-und-tablet-brummt

46. Weinschenk, S., Yeo, S.C.: Guidelines for Enterprise-Wide GUI Design. 1995
47. Yeh, T., Chang, T. and Miller, R. C.:Sikuli: Using GUI screenshots for search and

automation. UIST’09, Victoria, British Columbia, Canada, October, 2009
48. Yeh, T., Chang, T.-H., Miller, R. C.: Sikuli GUI Testing Using Computer Vision. CHI

2010, Atlanta, Georgia, USA , April 2010
49. Zhang, D., Adipat, B.: Challenges, Methodologies, and Issues in the Usability

Testing of Mobile Applications. International Journal of Human-Computer
Interaction, 18:3, 293-308, November 2009

50. Zheng, C., Zhu, S. Dai, D., Gu, G., Gong, X., Han, X. Zou, W.: SmartDroid: an
Automatic System for Revealing UI-based Trigger Conditions in Android
Applications. SPSM’12, Raleigh, North Carolina, USA , October 2012

http://blog.veracode.com/2013/12/static-testing-vs-dynamic-testing/
http://www.it-region38.de/-/volkswagens-appfactory-die-produktion-fur-smartphone-und-tablet-brummt
http://www.it-region38.de/-/volkswagens-appfactory-die-produktion-fur-smartphone-und-tablet-brummt

	- All buttons must have the same height
	- Buttons must have not more than 2 different widths
	- If buttons or icons are placed in one line, they must have the same margin from each otherand from the screen sides
	- All icons must have the same size
	- All labels of the same type (titles, subtitles, button text) must have the same font family, font size and font color
	- Font family must be consistent in the whole application, if necessary one alternative font family can be used
	Color contrast between background color and font color must be at least 50%, font color must be darker than background color
	Interactive elements (links) must have another color than non-interactive elements (normal text)
	The number of different colors in the application must be from 4 to 7
	Radio buttons can be used if the number of options is less than 6. Check buttons can be used if the number of options is less than 10. If the number of options is 10 and more list boxes must be used
	Launch image must have the size of:
	640x1136 px (iPhone5)
	640x960p px (iPhone)
	1536x2048 px (iPad and iPad mini)
	768x1024 px (iPad2)
	Automated testing: Problems with finding elements in PDF output, the system can improve the effectiveness and reduce the time

