Physically Based Modeling

Course Organizer

Andrew Witkin
Pixar Animation Studios

Physically based modeling has become an important new approach to computer animation
and computer graphics modeling. Although physically based modeling is inherently a
mathematical subject, the math involved needn’t be any more difficult nor esoteric than the
math that underlies many other areas of computer graphics, such as ray tracing or surface
modeling. Many papers on the subject have presupposed a specialized mathematical back-
ground that many members of the computer graphics community lack. Consequently, many
capable computer graphics practitioners, despite their interest in the subject, have simply
been put off by the density of the math.

This course addresses the need to make the principles and methods of physically based
modeling accessible to a broader computer graphics audience —those who are familiar with
mainstream computer graphics and have the usual basic computer graphics math, such as
vector/matrix manipulations, but whose first year calculus course may be only dimly re-
mem-bered.

Course topics include modeling the dynamics of particle systems and rigid bodies, basic
numerical methods for differential equations, simulation of deformable surfaces, collision
detection, modeling energy functions and hard constraints, and the dynamics of collision and
contact.

Additional material/updates can be found at:

http://www.pixar.com/aboutpixar/research/pbm2001

SIGGRAPH 2001 COURSE NOTES Al PHYSICALLY BASED MODELING

Course Schedule

8:30 am Introduction

8:45 am Differential Equation Basics Witkin
Vector fields and integral curves; initial value problems; basic numerical
methods; modular implementation of differential equation solvers.

9:30 am Particle Dynamics Witkin
F=ma; phase space; basic forces: gravity, drag, springs, etc. Simple par-
ticle collisions; structured implementation of interactive mass-and-spring
systems.

10:00 am Break
10:15 am Particle Dynamics (Cont’d) Witkin

10:30 am Implicit Methods Baraff
Penalty methods and the problem of stiffness: visualizing the problem; how
to avoid it; what to do if you can’t; Simulating large systems.

11:15 am Cloth and Fur Energy Functions Kass
Point-volume comparisons, convex and nonconvex polyhedra, coherence
based methods, curved surfaces.

12:00 pm Lunch

1:30 pm Rigid Body Dynamics Baraff
Center of mass and inertia tensor; orientation and angular velocity; force,
torque, and Newton’s laws; rigid body equations of motion: how to simu-
late rigid bodies.

2:15 pm Constrained Dynamics Witkin
“Tinkertoy” systems: rigid rods instead of springs. Using constraint
forces to avoid stiffness. Lagrange multipliers: solving for constraint
forces. basics of collision and contact.

3:00 pm Break

3:15 pm Collision and Contact Baraff
Impulses; one-sided constraints; multiple constraint; discontinuities.

4:00 pm Dynamics in Monsters, Inc. Witkin/Baraff/Kass

SIGGRAPH 2001 COURSE NOTES A2 PHYSICALLY BASED MODELING

SIGGRAPH 2001 COURSE NOTES A3 PHYSICALLY BASED MODELING

Course Speakers

Andrew Witkin joined Pixar Animation Studios in 1998 as a Senior Animation Scientist.
He was previously on the faculty of Carnegie Mellon University, from 1988 through 1998.
Prior to joining the faculty at Carnegie Mellon, Andrew Witkin was director of the Percep-
tion and Graphics groups at Schlumberger’s Palo Alto Research Lab. He received a BA in
Psychology from Columbia College in 1975 and a PhD in Psychology from MIT in 1980.
Dr. Witkin has published extensively in the areas of Computer Vision and Computer
Graphics. He serves as an associate editor for ACM Transactions on Graphics, has served
on numerous conference program committees, and is a fellow of the American Association
for Artifical Intellgience. His awards include Best Paper prizes at the National Conference
on Artifical Intellegence and the International Joint conference on Artifical Intellgence, the
Grand Prix for Animation at the 1987 Parigraph competition in Paris, France, and the
Grand Prix for Computer Graphics, Prix Ars Electronica 1992, Linz, Austria. He is the re-
cipient of this year’s ACM SIGGRAPH Computer Graphics Achievement Award.

David Baraff joined Pixar Animation Studios in 1998 as a Senior Animation Scientist.
Prior to his arrival at Pixar, he was an Associate Professor of Robotics, and Computer Sci-
ence at Carnegie Mellon University. David Baraff received his Ph.D. from Cornell Univer-
sity in 1992, where he was a graduate student in Cornell's Department of Computer Sci-
ence, and Program of Computer Graphics. Before and during his graduate studies, he also
worked at Bell Laboratories' Computer Technology Research Laboratory doing computer
graphics research, including real-time 3D interactive animation and games. After receiving
his Ph.D., he joined the faculty of Carnegie Mellon University. In 1995, he was named an
ONR Young Investigator. His research interests include physical simulation and modeling
for computer graphics, robotics, and animation.

Michael Kass is a Senior Scientist at Pixar Animation Studios where he developed the
tools for physically-based clothing animation that were used on Pixar's Academy Award
winning short film "Geri's game." He received his B.A. from Princeton in 1982, his M..S.
from M.I.T in 1984, and his Ph. D. from Stanford in 1988. Dr. Kass has received numer-
ous awards for his research on physically-based methods in computer graphics and com-
puter vision including several conference best paper awards, the Prix Ars Electronica for
the image "Reaction Diffusion Texture Buttons" and the Imagina Grand Prix for the ani-
mation "Splash Dance." Before joining Pixar in 1995, Dr. Kass held research positions at
Schlumberger Palo Alto Research, Apple Computer, and was Director of Technology at
Live Picture Inc.

SIGGRAPH 2001 COURSE NOTES A4 PHYSICALLY BASED MODELING

SIGGRAPH 2001 COURSE NOTES AS PHYSICALLY BASED MODELING

Contents

I — Course Notes

w

o O

e

IT — Slides

SB.

SC.

SD.

SE.

SF.

SG.

SH.

Preliminaries

Differential Equation Basics
Particle System Dynamics
Implicit Methods
Constrained Dynamics

Rigid Body Dynamics

Differential Equation Basics
Particle System Dynamics
Implicit Methods

Cloth and Fur Energy Functions
Rigid Body Dynamics
Constrained Dynamics

Collision and Contact

SIGGRAPH 2001 COURSE NOTES A6

Witkin/Baraff

Witkin

Baraff

Witkin

Baraff

Witkin

Witkin

Baraff

Kass

Baraff

Witkin

Baraff

PHYSICALLY BASED MODELING

Physically Based Modeling
Differential Equation Basics

Andrew Witkin and David Baraff
Pixar Animation Studios

Please note: This document is ©2001 by Andrew Witkin and David Baraff. This
chapter may be freely duplicated and distributed so long as no consideration is
received in return, and this copyright notice remains intact.

Differential Equation Basics

Andrew Witkin and David Baraff
Pixar Animation Studios

1 Initial Value Problems

Differential equations describe the relation between an unknown function and its derivatives. To
solve a differential equation is to find a function that satisfies the relation, typically while satisfying
some additional conditions as well. In this course we will be concerned primarily with a particular
class of problems, called initial value problems. In a canonical initial value problem, the behavior
of the system is described by an ordinary differential equation (ODE) of the form

x=f(x1),

where f is a known function (i.e. something we can evaluate given x and ¢,) X is the state of the
system, and x is X’s time derivative. Typically, x and x are vectors. As the name suggests, in an
initial value problem we are given x(#y)) = Xo at some starting time fy, and wish to follow x over
time thereafter.

The generic initial value problem is easy to visualize. In 2D, x(¢) sweeps out a curve that
describes the motion of a point p in the plane. At any point x the function f can be evaluated to
provide a 2-vector, so f defines a vector field on the plane (see figure 1.) The vector at x is the
velocity that the moving point p must have if it ever moves through x (which it may or may not.)
Think of f as driving p from point to point, like an ocean current. Wherever we initially deposit p,
the “current” at that point will seize it. Where p is carried depends on where we initially drop it, but
once dropped, all future motion is determined by f. The trajectory swept out by p through f forms
an integral curve of the vector field. See figure 2.

We wrote f as a function of both x and ¢, but the derivative function may or may not depend
directly on time. If it does, then not only the point p but the the vector field itself moves, so that p’s
velocity depends not only on where it is, but on when it arrives there. In that case, the derivative x
depends on time in two ways: first, the derivative vectors themselves wiggle, and second, the point
p, because it moves on a trajectory x(¢), sees different derivative vectors at different times. This
dual time dependence shouldn’t lead to confusion if you maintain the picture of a particle floating
through an undulating vector field.

2 Numerical Solutions

Standard introductory differential equation courses focus on symbolic solutions, in which the func-
tional form for the unknown function is to be guessed. For example, the differential equation
X = —kx, where x denotes the time derivative of x, is satisfied by x = ekt

In contrast, we will be concerned exclusively with numerical solutions, in which we take dis-
crete time steps starting with the initial value x(#p). To take a step, we use the derivative function

Bl

The derivative
function

x =f(x,t)

forms a vector
field.

Vector Field

Figure 1: The derivative function f(x, t). defines a vector field.

Start Here

Follow the vectors...

Initial Value Problem

Figure 2: An initial value problem. Starting from a point Xo, move with the velocity specified by
the vector field.

SIGGRAPH 2001 COURSE NOTES B2 PHYSICALLY BASED MODELING

e Simplest numerical
solution method

* Discrete time steps

* Bigger steps, bigger
errors.

X(t+ At) = x(t) + At f(x,t)

Euler's Method

Figure 3: Euler’s method: instead of the true integral curve, the approximate solution follows a
polygonal path, obtained by evaluating the derivative at the beginning of each leg. Here we show
how the accuracy of the solution degrades as the size of the time step increases.

f to calculate an approximate change in x, Ax, over a time interval Az, then increment x by AXx to
obtain the new value. In calculating a numerical solution, the derivative function f is regarded as
a black box: we provide numerical values for x and ¢, receiving in return a numerical value for x.
Numerical methods operate by performing one or more of these derivative evaluations at each time
step.

2.1 Euler’s Method

The simplest numerical method is called Euler’s method. Let our initial value for x be denoted by
Xo = X(fy) and our estimate of x at a later time #y + & by X(ty + &), where h is a stepsize parameter.
Euler’s method simply computes X(#) + /) by taking a step in the derivative direction,

x(ty + h) = xo + hx(tp).

You can use the mental picture of a 2D vector field to visualize Euler’s method. Instead of the
real integral curve, p follows a polygonal path, each leg of which is determined by evaluating the
vector f at the beginning, and scaling by %. See figure 3.

Though simple, Euler’s method is not accurate. Consider the case of a 2D function f whose
integral curves are concentric circles. A point p governed by f is supposed to orbit forever on
whichever circle it started on. Instead, with each Euler step, p will move on a straight line to a circle
of larger radius, so that its path will follow an outward spiral. Shrinking the stepsize will slow the
rate of this outward drift, but never eliminate it.

Moreover, Euler’s method can be unstable. Consider a 1D function f = —kx, which should
make the point p decay exponentially to zero. For sufficiently small step sizes we get reasonable

SIGGRAPH 2001 COURSE NOTES B3 PHYSICALLY BASED MODELING

N P Inaccuracy:
RN Error turns x(t) from a
/////Z%§§\\ \ circle intp the spiral of
\\ \\ \gy/ / / / your choice.
NS
4

\ f Instability: off to
/ Neptune!

P
P

/]
(o

/4

/|

K]
A

Two Problems

—

|

Figure 4: Above: the real integral curves form concentric circles, but Euler’s method always spirals
outward, because each step on the current circle’s tangent leads to a circle of larger radius. Shrinking
the stepsize doesn’t cure the problem, but only reduces the rate at which the error accumulates.
Below: too large a stepsize can make Euler’s method diverge.

behavior, but when & > 1/k, we have |Ax| > |x|, so the solution oscillates about zero. Beyond
h = 2/k, the oscillation diverges, and the system blows up. See figure 4.

Finally, Euler’s method isn’t even efficient. Most numerical solution methods spend nearly all
their time performing derivative evaluations, so the computational cost per step is determined by
the number of evaluations per step. Though Euler’s method only requires one evaluation per step,
the real efficiency of a method depends on the size of the steps it lets you take—while preserving
accuracy and stability—as well as on the cost per step. More sophisticated methods, even some re-
quiring as many as four or five evaluations per step, can greatly outperform Euler’s method because
their higher cost per step is more than offset by the larger stepsizes they allow.

To understand how we go about improving on Euler’s method, we need to look more closely at
the error that the method produces. The key to understanding what’s going on is the Taylor series:
Assuming x(#) is smooth, we can express its value at the end of the step as an infinite sum involving
the the value and derivatives at the beginning:

h? R h" 9"x

X(to + h) = x(t0) + hx(to) + 2—!i(’0) + §X(IO) et o

As you can see, we get the Euler update formula by truncating the series, discarding all but the
first two terms on the right hand side. This means that Euler’s method would be correct only if
all derivatives beyond the first were zero, i.e. if x(¢) were linear. The error term, the difference
between the Euler step and the full, untruncated Taylor series, is dominated by the leading term,
(h? /2)X(t). Consequently, we can describe the error as O (h?) (read “Order h squared”.) Suppose

SIGGRAPH 2001 COURSE NOTES B4 PHYSICALLY BASED MODELING

that we chop our stepsize in half; that is, we take steps of size % Although this produces only about
one fourth the error we got with a stepsize of /, we have to take twice as many steps over any given
interval. That means that the error we accumulate over an interval fy to #; depends linearly upon /.
Theoretically, using Euler’s method we can numerically compute x over an interval ¢y to #; with as
little error as we want, by choosing a suitably small /. In practice, a great many timesteps might be
required, depending on the error and the function f.

2.2 The Midpoint Method

If we were able to evaluate X as well as X, we could acheive O (h) accuracy instead of O (h?) simply
by retaining one additional term in the truncated Taylor series:

2
X(to + h) = X(to) + hk(io) + %i(lo) L o). (1)

Recall that the time derivative X is given by a function f(x(¢), t). For simplicity in what follows,
we will assume that the derivative function f does depends on time only indirectly through x, so
that x = f(x(¢)). The chain rule then gives

.. : /
X = Pt ff
To avoid having to evaluate f’,which would often be complicated and expensive, we can approx-
imate the second-order term just in terms of f, and substitute the approximation into equation 1,
leaving us with O (h?) error. To do this, we perform another Taylor expansion, this time of the
function of f,
[X0+ AX) = f(x0) + Axf'(X0) + O(AXY). 2

We first introduce X into this expression by choosing

h
Ax = Ef(Xo)

so that
h h / 2 h 2
S (Xo + Ef(Xo)) = f(Xo0) + Ef(Xo)f (x0) + O(h") = f(x0) + EX(to) + O(h"),

where xg = X(fy). We can now multiply both sides by 4 (turning the O (h?) term into O (%)) and

rearrange, yielding
I’l2 h
TR+ O(h*) = h(f(xo + 5 (%)) = f (x0).

Substituting the right hand side into equation 1 gives the update formula

h
x(to + h) = x(t0) + h(f o + 7.f (x0)).

This formula first evaluates an Euler step, then performs a second derivative evaluation at the mid-
point of the step, using the midpoint evaluation to update x. Hence the name midpoint method. The
midpoint method is correct to within O (h?), but requires two evaluations of f. See figure 5 for a
pictorial view of the method.

SIGGRAPH 2001 COURSE NOTES BS PHYSICALLY BASED MODELING

a.Compute an Euler step
Ax = At f(xt)

b.Evaluate f at the midpoint

£ . =f X+Ax,t+At
mid 2 2

c. Take a step using the
midpoint value

x(t+ At) = x(t) + At fq

The Midpoint Method

Figure 5: The midpoint method is a 2nd-order solution method. a) an euler step is computed, b) the
derivative is evaluated again at the step’s midpoint, and the second evaluation is used to calculate
the step. The integral curve —the actual solution—is shown as c.

We don’t have to stop with an error of O(h%). By evaluating f a few more times, we can
eliminate higher and higher orders of derivatives. The most popular procedure for doing this is a
method called Runge-Kutta of order 4 and has an error per step of O (h>). (The Midpoint method
could be called Runge-Kutta of order 2.) We won’t derive the fourth order Runge-Kutta method,
but the formula for computing x(#y + £) is listed below:

ki = hf(xo, %)

kq h
kh = h —, 1 —
2 f(X0+2 o+2)

ks = hf(+k2t+h)
= X+ — —
3 0t 5+ 3

ki = hf(Xo+ks, to+h)
1

1 1 1
k —k —k —ky.
61+32+33+ 4

X(t0+h) = Xg+ 6

3 Adaptive Stepsizes

Whatever the underlying method, a major problem lies in determing a good stepsize. Ideally, we
want to choose & as large as possible—but not so large as to give us an unreasonable amount of
error, or worse still, to induce instability. If we choose a fixed stepsize, we can only proceed as
fast as the “worst” sections of x(¢) will allow. What we would like to do is to vary & as we march
forward in time. Whenever we can make & large without incurring too much error, we should do
so. When % has to be reduced to avoid excessive error, we want to do that also. This is the idea of

SIGGRAPH 2001 COURSE NOTES B6 PHYSICALLY BASED MODELING

adaptive stepsizing: varying /i over the course of solving the ODE.

Here we’ll be present adaptive stepsizing for Euler’s method. The basic idea is as follows. Lets
assume we have a given stepsize /, and we want to know how much we can consider changing it.

Suppose we compute two estimates for x(fp + #). We compute an estimate X,, by taking an
Euler step of size & from #; to o + h. We also compute an estimate x; by taking two Euler steps of
size h/2, from ¢y to tp + h. Both x, and x,, differ from the true value of x(#p + &) by O (h?). That
means that x,, and x;, differ from each other by O (h?). As a result, we can write that a measure of
the current error e is

e = [Xq — Xp|

This gives us a convenient estimate to the error in taking an Euler step of size /.
Suppose that we are willing to have an error of as much as 10~ per step, and that the current
error is only 1078, Since the error goes up as 4%, we can increase the stepsize to

10—4 %
—— | h =100hA.
108

Conversely, if we currently had an error of 1073, and could only tolerate an error of 10~#, we would
have to decrease the stepsize to
1
10—4 2
<) h ~ .316h.

103

Adaptive stepsizing is a highly recommended technique.

4 Implementation

The ODEs we will want to solve may represent many things—for instance, a collection of masses
and springs, some rigid bodies, or a deformable object. We want to implement ODE solvers and the
models on which they operate in a way that isolates each from the internal details of the other. This
will make it possible to change solvers easily, and also make the solver code reusable. Fortunately,
this kind of modularity is not difficult to acheive, since all solvers can be expressed in terms of
a small, stereotyped set of operations. Presumably, the system of ODE-governed objects will be
embodied in a structure of some kind. The approach is to write type-specific code that operates on
this structure to perform the standard operations, then to implement solvers in terms of these generic
operations.

From the solver’s viewpoint, the system on which it operates is a black-box function f(x,?).
The solver needs to be able to evaluate f, as required, at any values of x and ¢, and then to install
the updated x and ¢ when a time step is taken. To support these operations, the object that represents
the ODE being solved must be able to handle these requests from the solver:

e Return dim (x). Since x and X may be vectors, the solver must know their length, to allocate
storage, perform vector arithmetic ops, etc.

e Get/set x and ¢. The solver must be able to install new values at the end of a step. In addition,
a multi-step method must set x and ¢ to intermediate values in the course of performing
derivative evaulations.

e Evaluate f at the current x and 7.

SIGGRAPH 2001 COURSE NOTES B7 PHYSICALLY BASED MODELING

In an object-oriented language, these operations would naturally be implemented as generic
functions that are handled in a type-specific way. In a non-object-oriented language generic func-
tions would be faked by installing pointers to type-specific functions in structure slots, or simply by
passing the function pointers as arguments to the solver. Later on we will consider in detail how
these operations are to be implemented for specific models such as particle-and-spring systems.

References

[1] W.H. Press, B.P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes in C.
Cambridge University Press, Cambridge, England, 1988.

SIGGRAPH 2001 COURSE NOTES BS PHYSICALLY BASED MODELING

Physically Based Modeling
Particle System Dynamics

Andrew Witkin
Pixar Animation Studios

Please note: This document is ©2001 by Andrew Witkin. This chapter may be
freely duplicated and distributed so long as no consideration is received in return,
and this copyright notice remains intact.

Particle System Dynamics

Andrew Witkin
Pixar Animation Studios

1 Introduction

Particles are objects that have mass, position, and velocity, and respond to forces, but that have no
spatial extent. Because they are simple, particles are by far the easiest objects to simulate. Despite
their simplicity, particles can be made to exhibit a wide range of interesting behavior. For example, a
wide variety of nonrigid structures can be built by connecting particles with simple damped springs.
In this portion of the course we cover the basics of particle dynamics, with an emphasis on the
requirements of interactive simulation.

2 Phase Space

The motion of a Newtonian particle is governed by the familiar f = ma, or, as we will write it here,
X = f/m. This equation differs from the canonical ODE developed in the last chapter because it
involves a second time derivative, making it a second order equation. To handle a second order
ODE, we convert it to a first-order one by introducing extra variables. Here we create a variable v
to represent velocity, giving us a pair of coupled first-order ODE’s v = f/m, x = v. The position
and velocity x and v can be concatenated to form a 6-vector. This position/velocity product space is
called phase space. In components, the phase space equation of motion is [x], X2, X3, U1, U2, U3] =
[vi, v2, v3, fi/m, fo/m, f3/m], which, assuming force is a function of x and ¢, matches our canon-
ical form x = f(x, #). A system of n particles is described by n copies of the equation, concatenated
to form a 6n-long vector. Conceptually, the whole system may be regarded as a point moving
through 6n-space.

We can still visualize the phase-space ODE in terms of a planar vector field, though only for a
1D particle, by letting one axis represent the particle’s position and the other, its velocity. If each
point in the phase plane represents a pair [x, v], then the derivative vector is [v, f/m]. All the ideas
of integral curves, polygonal approximations, and so forth, carry over intact to phase space. Only
the interpretation of the trajectory is changed.

3 Basic Particle Systems

In implementing particle systems, we want to maintain two views of our model: from “outside,’
especially from the point of view of the ODE solver, the model should look like a monolith—a
point in a high-dimensional space, whose time derivative may be evaluated at will. From within,
the model should be a structured—a collection of distinct interacting objects. This duality will be
recurring theme in the course.

C1

A particle simulation involves two main parts—the particles themselves, and the entities that
apply forces to particles. In this section we consider just the former, deferring until the next section
the specifics of force calculation. Our goal here is to describe structures that could represent a
particle and a system of particles, and to show in a concrete way how to implement the generic
operations required by ODE solvers.

Particles have mass, position, and velocity, and are subjected to forces, leading to an obvious
structure definition, which in C might look like:

typedef struct{

float m; /* mass */

float *x; /* position vector */
float *v; /* velocity vector */
float *f; /* force accumulator */

} *Particle;

In practice, there would probably be extra slots describing appearance and other properties. A
system of particles could be represented in an equally obvious way, as

typedef struct{

Particle *p; /* array of pointers to particles */
int n; /* number of particles */
float t; /* simulation clock */

} *ParticleSystem;

Assume that we have a function CalculateForces () that, called on a particle system, adds
the appropriate forces into each particle’s £ slot. Don’t worry for know about what that function
actually does. Then the operations that comprise the ODE solver interface could be written as
follows:

/* length of state derivative, and force vectors */
int ParticleDims(ParticleSystem p){
return(6 * p->n);

}i

/* gather state from the particles into dst */
int ParticleGetState(ParticleSystem p, float *dst){
int i;
for(i=0; i < p->n; i++){
*(dst++) = p->p[i]->x[0];
*(dst++) = p->p[i]->%x[1];
*(dst++) = p->p[i]->x[2];
*(dst++) = p->p[i]->V[0];
*(dst++) = p->p[i]->V[1];
*(dst++) = p->p[i]->V[2];

SIGGRAPH 2001 COURSE NOTES C2 PHYSICALLY BASED MODELING

/* scatter state from src into the particles */
int ParticleSetState(ParticleSystem p, float *src){
int i;
for(i=0; i < p->n; i++){
p->p[i]->x[0] *(sre+t);
p—>p[i]->x[1] = *(src++);
pP->p[i]->xX[2] = *(srct++);
p->p[i]->Vv[0] = *(src++);

p->p[i]->V[1l] = *(src++);
p->p[i]->V[2] = *(src++);
}

/* calculate derivative, place in dst */
int ParticleDerivative(ParticleSystem p, float *dst){
int i;
Clear Forces(p); /* zero the force accumulators */
Compute Forces(p); /* magic force function */
for(i=0; i < p->n; i++){
(dst++) = p->p[i]->V[0]; / xdot = v */
*(dst++) = p->p[i]->V[1l];
*(dst++) = p->p[i]->V[2];
(dst++) = p->p[i]->f[0]/m; / vdot = f£/m */
*(dst++) = p->p[i]->f[1]/m;
*(dst++) = p->p[i]->f[2]/m;

Having defined these operations, and assuming some utility routines and temporary vectors, an
Euler solver be written as

void EulerStep(ParticleSystem p, float DeltaT){

ParticleDeriv(p, templ); /* get deriv */
ScaleVector(templ,DeltaT) /* scale it */
ParticleGetState(p,temp2); /* get state */
AddVectors (templ,temp2,temp2); /* add -> temp2 */
ParticleSetState(p,temp2); /* update state */
p->t += DeltaT; /* update time */

The structures representing a particle and a particle system are shown visually in figures 1 and
2. The interface between a particle system and a differential equation solver is illustrated in figure

4 Forces

All particles are essentially alike. In contrast, the objects that give rise to forces are heterogeneous.
As a matter of implementation, we would like to make it easy to extend the set of force-producing

SIGGRAPH 2001 COURSE NOTES C3 PHYSICALLY BASED MODELING

Position

Velocity

Position in
Phase Space

S . | K

Force Accumulator

mass

Particle Structure

Figure 1: A particle may be represented by a structure containing its position, velocity, force, and
mass. The six-vector formed by concatenating the position and velocity comprises the point’s posi-

tion in phase space.

particles

time

- < A

Particle Systems

Figure 2: A bare particle system is essentially just a list of particles.

SIGGRAPH 2001 COURSE NOTES

C4 PHYSICALLY BASED MODELING

Solver Interface
Particle System

|particles| [time | I

im(State)

Diffeq Solver
6n
Deriv Eval X1 Vi X Vo -+ Xj Vy
crivEva v f_lv f_2 v f,
1 ml 2 m2 n mn

Figure 3: The relation between a particle system and a differential equation solver.

objects without modifying the basic particle system model. We accomplish this by having the
particle system maintain a list of force objects, each of which has access to any or all particles,
and each of which “knows” how to apply its own forces. The Calculateforces function, used
above, simply traverses the list of force structures, calling each of their ApplyForce functions,
with the particle system itself as sole argument. This leaves the real work of force calculation to the
individual objects. See figures 4 and 5

Forces can be grouped into three broad categories:

e Unary forces, such as gravity and drag, that act independently on each particle, either exerting
a constant force, or one that depends on one or more of particle position, particle velocity, and
time.

e n-ary forces, such as springs, that apply forces to a fixed set of particles.

e Forces of spatial interaction, such as attraction and repulsion, that may act on any or all pairs
of particles, depending on their positions.

Each of these raises somewhat different implementation issues. We will now consider each in
turn.

4.1 Unary forces

Gravity. Global earth gravity (as opposed to particle-particle attraction) is trivial to implement.
The gravitational force on each particle is f = mg, where g is a constant vector (presumably pointing
down) whose magnitude is the gravitational constant. If all particles are to feel the same gravity,
which they need not in a simulation, then gravitational force is applied simply by traversing the

SIGGRAPH 2001 COURSE NOTES C5 PHYSICALLY BASED MODELING

particles forces | pforces

T] -— A
R A list of force
il B o objects to invoke

Particle Systems, with forces

Figure 4: A particle system augmented to contain a list of force objects. Each force object points at
the particles that it influences, and contains a function that knows how to compute the force on each

affected particle.

X
\%
| f
~ \ . . E
Clear Force EII
Accumulators nvoke apply force
functions
XX X
V V e o o V E
flf f | Return [v,f/m,...]
m |m mfll to solver.

Deriv Eval Loop

Figure 5: The derivative evaluation loop for a particle system with force objects.

SIGGRAPH 2001 COURSE NOTES Cé6 PHYSICALLY BASED MODELING

Force Law: Particle system

Y F
5Y'S El

fdrag = 'kdragv

X e apply_fun

¥ p]

f

L |p—>f -= F->k * p—>VI
A Force Object: Viscous Drag

Figure 6: Schematic view of a force object implementing viscous drag. The object points at the
particle to which drag is being applied, and also points to a function that implements the force law
for drag.

system’s particle list, and adding the appropriate force into each particles force accumulator. Gravity
is basic enough that it could reasonably be wired it into the particle system, rather than maintaining
a distinct “gravity object.”

Viscous Drag. Ideal viscous drag has the form f = —k, v, where the constant k; is called the
coefficient of drag. The effect of drag is to resist motion, making a particle gradually come to rest
in the absence of other influences. It is highly reccommended that at least a small amount of drag
be applied to each particle, if only to enhance numerical stability. Excessive drag, however, makes
it appear that the particles are floating in molasses. Like gravity, drag can be implemented as a
wired-in special case. A force object implementing viscous drag is shown in figure 6.

4.2 n-ary forces

Our canonical example of a binary force is a Hook’s law spring. In a basic mass-and-spring simula-
tion, the springs are the structural elements that hold everything together. The spring forces between
a pair of particles at positions a and b are

I-171
fa=—[ks(|l|—r)+kd|l—|]m, f, = —f,,)]

where f, and f}, are the forces on a and b, respectively, | = a — b, r is the rest length, k; is a spring
constant, and k; is a damping constant. i, the time derivative of 1, is just v, — v;, the difference
between the two particles’ velocities.

In equation 1, the spring force magnitude is proportional to the difference between the actual
length and the rest length, while the damping force magnitude is proportional to a and b’s speed of

SIGGRAPH 2001 COURSE NOTES C7 PHYSICALLY BASED MODELING

Av-Ax
£ =-|k(Ax]-1) + kd \}AX
1 (Ax]-r) 4 Ax|) []Ax| Particle system

f2 = _fl i

1 kd BY'S F

o IR S

X
; p2 ks [ppply_fun

3

Damped Spring

Figure 7: A schematic view of a force object implementing a damped spring that attaches particles
pi1and p.

approach. Equal and opposite forces act on each particle, along the line that joins them. The spring
damping differs from global drag in that it acts symmetrically on the two particles, having no effect
on the motion of their common center of mass. Later, we will learn a general procedure for deriving
this kind of force expression.

A damped spring can be implemented straightforwardly as a structure that points to the pair of
particles it connects. The code that applies the forces according to equation 1 fetches the positions
and velocities from the two particle structures, performs its calculations, and sums the results into
the particles’ force accumulators. In an object-oriented environment, this operation would be im-
plemented as a generic function. In bare C, the force object would contain a pointer to an ordinary
C function. A force object for a damped spring is shown in figure 7

4.3 Spatial Interaction Forces

A spring applies forces to a fixed pair of particles. In contrast, spatial interaction forces may act
on any pair (or n-tuple) of particles. For local interaction forces, particles begin to interact when
they come close, and stop when they move apart. Spatially interacting particles have been used
as approximate models for fluid behavior, and large-scale particle simulations are widely used in
physics [1]. A complication in large-scale spatial interaction simulations is that the force calculation
is O(n?) in the number of particles. If the interactions are local, efficiency may be improved through
the use of spatial buckets.

SIGGRAPH 2001 COURSE NOTES C8 PHYSICALLY BASED MODELING

5 User Interaction

An interactive mass-and-spring simulation is an ideal first implementation project in physically
based modeling, because such simulations are relatively easy to implement, and because interactive
performance can be acheived even on low-end computers. The main ingredients of a basic mass-
and-spring simulation are model construction and model manipulation. Model construction can be
a simple matter of mouse-clicking to create particles and connect them with springs. Interactive ma-
nipulation requires no more than the ability to grab and drag mass points. Although there is barely
any difference mathematically between 2D and 3D simulations, supporting 3D user interaction is
more challenging.

Most of the implementation issues are standard, and will not be dealt with here. However, we
give a few useful tips:
Controlled particles. Particles whose motion is not governed by forces provide a number of
interesting possibilities. Fixed particles serve as anchors and pivots. Particles whose motion is
procedurally controlled (e.g. moving on a circle) can provide dynamic elements such as motors. All
that need be done to implement controlled particles is to prevent the ODE solver from updating their
positions. One subtle point, though, is that the velocities as well as positions of controlled particles
must be maintained at their correct values. Otherwise, velocity-dependent forces such as damped
spring forces will behave incorrectly.
Structures. A variety of interesting non-rigid structures—beams, blocks, etc.—can be built out
of masses and springs. By allowing several springs to meet at a single particle, these pieces can
be connected with a variety of joints. With some experimentation and ingenuity it is possible to
construct entire mechanisms, complete with motors, out of masses and springs. The topic of regular
mass-and-spring lattices as an approximation to continuum models will be discussed later.[2]
Mouse springs. The simplest way to manipulate mass-and-spring models is to use the mouse
directly to control the positions of grabbed particles. However, this method is not recommended
because very rapid mouse motions can lead to stability problems. These problems can be avoided
by coupling the grabbed particle to the mouse position using a spring.

6 Energy Functions

Generically, the position-, velocity-, and time-dependent formulae that we use to calculate forces
are known as force laws. Forces laws are not laws of physics. Rather, they form part of our descrip-
tion of the system we are modeling. Some of the standard ones, like linear springs and dashpots,
represent time-honored idealizations of the behavior of real materials and structures. However, if
we wanted to accurately model the behavior of a pair of particles connected by, say, a strand of
gooey taffy, the resulting equations would probably be even messier than the taffy.

Often, we can regard force laws as things we design to hold things in a desired configuration —
for instance a spring with nonzero rest length makes the points it connects “want” to be a fixed
distance apart. In many cases it is possible to specify the desired configuration by giving a function
that reaches zero exactly when things are “happy.” We can call this kind of function a behavior
Sfunction. For example, a behavior function that says that two particles a and b should be in the same
place is just C(a, b) = a — b (which is a vector expression each of whose components is supposed
to vanish.) If instead we want a and b to be distance r apart, then a suitable behavior function is
C(a, b) = |a — b| — r (which is a scalar expression.)

Later on, when we study constrained dynamics, we will use this kind of function as a way to

SIGGRAPH 2001 COURSE NOTES Cc9 PHYSICALLY BASED MODELING

specify constraints, and we will consider in detail the problem of maintaining such constraints ac-
curately. For now, we will be content to impose forces that pull the system toward the desired state,
but that compete with other forces. These energy-based forces can be used to impose approximate,
sloppy constraints. However, attempting to make them accurate by increasing the spring constant
leads to numerical instability.[3]

Converting a behavior function C(x; . .., X,) into a force law is a pure cookbook procedure. We
first define a scalar potential energy function

ks
E=—C.C,
2
where k; is a generalized stiffness constant. Since the force due to a scalar potential is minus the
energy gradient, the force on particle x; due to C is
_ —0E 0C

f; = = —k,C
! 8Xl' $ 8X,’.

In general C is a vector, and this expression denotes its product with the transpose of the Jacobian
matrix dC/dx;. We will look much more closely at this kind of expression when we study constraint
methods, and in particular Lagrange multipliers. For now, it is sufficent to think of the forces f; as
generalized spring forces that attract the system to states that satisfy C = 0. When a behavior
function depends on a number of particles’ positions, we get a different force expression for each
by using C’s derivative with respect to that particle.

The force we just defined isn’t quite the one we want: in the absence of any damping, this
conservative force will cause the system to oscillate about C = 0. To add damping, we modify the

force expression to be
0C

where k, is a generalized damping constant, and C is the time derivative of C. Note that when you
derive expressions for C, you will be using the fact that x; = v;. So, in a trivial case, if C = x; —X»,
it follows that C = v; — v,.

As an extremely simple example, we take C = x; — X,, which wants the points to coincide. We
have

f; = (—k,C — k;C) (2)

0C 0C
1 ==

) _I7
8X] 3X2
where I is the identity matrix. The time derivative is
C = V] — V).
So, substituting into equation 2, we have

fi = —ks(x1 —X2) —kq(vi —v2), B =ki(X1 —X2) + kg(vi —V2),

which is just the force law for a damped zero-rest-length spring.
As another example, we use the behavior function

C=|l-r,
where 1 = x; — X,, which says the two points should be distance r apart. Its derivative w.r.t. 1 is

oCc 1
a1

SIGGRAPH 2001 COURSE NOTES C10 PHYSICALLY BASED MODELING

a unit vector in the direction of 1. Then, since l = x; — x5,

9C _9C oC 93C
ax; o9l o9x,

The time derivative of is)
11 1-(vi—v
c-_ (Vi 2).
I I
These expressions are then substituted into the general expression of equation 2 to get the forces.
You should verify that this produces the damped spring force of equation 1.

7 Particle/Plane Collisions and Contact

The general collision and contact problem is difficult, to say the least. Later in the course we will
examine rigid body collision and contact. Here we only consider, in bare bones form, the simplest
case of particles colliding with a plane (e.g. the ground or a wall.) Even these simple collision
models can add significant interest to an interactive simulation.

7.1 Detection

There are two parts to the collision problem: detecting collisions, and responding to them. Although
general collision detection is hard, particle/plane collision detection is trivial. If P is a point on the
plane, and N is a normal, pointing inside (i.e. on the legal side of the barrier,) then we need only
test the sign of (X — P) - N to detect a collision of point X with the plane. A value greater than zero
means it’s inside, less than zero means it’s outside (where it isn’t allowed to be) and zero means it’s
in contact.

If after an ODE step a collision is detected, the right thing to do is to solve (perhaps by linear
interpolation between the old and new positions) for the instant of contact, and roll back the whole
system to that time. A less accurate but easier alternative is just to displace the point that has
collided.

7.2 Response

To describe collision response, we need to partition velocity and force vectors into two orthogonal
components, one normal to the collision surface, and the other parallel to it. If N is the normal to
the collision plane, then the normal component of a vector x is x,, = (N - X)X, and the tangential
component is X, = X — X;,.

The simplest collision to consider is an elastic collision without friction. Here, the normal
component of the particle’s velocity is negated, whereafter the particle goes its merry way. In an
inelastic collision, the normal velocity component is instead multiplied by —r, where r is a constant
between zero and one, called the coefficient of restitution. At r = 0, the particle doesn’t bounce at
all, and r = .9 is a superball.

7.3 Contact

If a particle is on the collision surface, with zero normal velocity, then it is in contact. If a particle is
pushed into the contact plane (N - f < 0) a contact force £, = —(N - H)f is exerted, exactly canceling

SIGGRAPH 2001 COURSE NOTES C11 PHYSICALLY BASED MODELING

the normal component of f. However, if the applied force points away from the contact plane, no
contact force is exerted (unless the surface is sticky,) the particle begins to accelerate away from the
surface, and contact is broken.

In the very simplest linear friction model, the frictional force is —k ¢(—f - N)v;, a drag force
that acts in the tangential direction, with magnitude proportional to the normal force. To model a
perfectly non-slippery surface, v, is simply zeroed.

References

[1] R.W Hocknew and J.W. Eastwood. Computer Simulation Using Particles. Adam Hilger, New
York, 1988.

[2] Gavin S. P. Miller. The motion dynamics of snakes and worms. Computer Graphics, 22:169—
178, 1988.

[3] Andrew Witkin, Kurt Fleischer, and Alan Barr. Energy constraints on parameterized models.
Computer Graphics, 21(4):225-232, July 1987.

SIGGRAPH 2001 COURSE NOTES C12 PHYSICALLY BASED MODELING

Physically Based Modeling
Implicit Methods for Differential Equations

David Baraff
Pixar Animation Studios

Please note: This document is ©2001 by David Baraff. This chapter may be freely
duplicated and distributed so long as no consideration is received in return, and
this copyright notice remains intact.

Implicit Methods for Differential Equations

David Baraff
Pixar Animation Studios

1 TImplicit Methods

The methods we have looked at for solving differential equations in the first section of these notes
(Euler’s method, the midpoint method) are all called “explicit” methods for solving ODE’s. How-
ever, sometimes an ODE can become “stiff,” in which case explicit methods don’t do a very good
job of solving them. Whenever possible, it is desirable to change your problem formulation so that
you don’t have to solve a stiff ODE. Sometimes however that’s not possible, and you have just have
to be able to solve stiff ODE’s. If that’s the case, you’ll usually have to use an ODE solution method
which is “implicit.”

2 Example Stiff ODE

First, what is the meaning and cause of stiff equations? Lets consider an example that arises fre-
quently in dynamics. Suppose that we have a particle, with position (x(z), y(¢)), and suppose that
we want the y-coordinate to always be zero. One way of doing this is to add a component —ky(¢)
to y(#) where k is a large positive constant. If k is large enough, then the particle will never move
too far away from y(¢) = 0, since the —ky(¢) term always brings y(¢) back towards zero. However,
lets assume that there is no restriction on the x-coordinate, and that we want a user to be able to pull
the particle arbitrarily along the x-axis. So lets assume that over some time interval our differential

equation is simply
con_ 4 x@) _(—x(@® B
xO= dz(y(0)) ‘(—ky(1)) ' .

(We’ll also assume that the particle doesn’t start exactly with yo = 0.) What’s happening here is that
the particle is strongly attracted to the line y = 0, and less strongly towards x = 0. If we solve the
ODE far enough forward in time, we expect the particle’s location to converge towards (0, 0) and
then stay there once it arrives.

Now suppose we use Euler’s method to solve the equation. If we take a step of size h, we get

: X0 —X0
X,ew = Xo + X (1)) = +h .
w 0 (t0) (Yo) (kyo)

This yields

X . X0 — hXO _ (1 — h)XO
U\ yo—hkyo)\ (1=hk)yo)

D1

If we look at the y component of this equation, we see that if |1 — hk| > 1 then the y,.,, we compute
will have an absolute value which is larger than |yg|. In other words, if |1 — hk| > 1, Euler’s method
will not converge to an answer: each step will result in a value of y,,,, which is larger than the last.
Technically, Euler’s method is unstable for |1 — hk| > 1. Thus, we better have 1 — hk > —1 orhk <2
if we hope to converge. The largest step we can hope to take is less than 2/ k.

Now, if k is a large number, we’ll have to take very small steps. This means that the particle
slides towards (0, 0) excruciatingly slowly. Even though the particle may nearly satisfy yg = 0, we
have to take such small steps that the particles’ progress along the x-axis is pretty much nonexistent.
That’s the embodiment of a stiff ODE. In this case, the stiffness arises from making k very large in
order to keep the particle close to the line y = 0. Later on, when we connect particles with second-
order dynamics together with springs, we’ll experience exactly the same effect: stiff ODE’s. Even
if we use a more sophisticated explicit method such as fourth-order Runge-Kutta, we may do a little
better in the size of our steps, but we’ll still have major problems.

Now as we said above, the name of the game is to pose your dynamics problems so that you don’t
experience stiff ODE’s. However, when you can’t, you’ll have to turn towards an implicit solution
method. The method we’ll show below is the simplest of the implicit methods, and its based on
taking an Euler step “backwards.”

3 Solving Stiff ODE’s

Given a differential equation

d
X0 =fX(1),

the explicit Euler update would be X,,.,, = Xo + Af (X(#y)), to advance the system forward /4 in time.
For a stiff problem though, we change the update to instead be

Xnew = XO + hf(Xnew) (3_1)

That is, we’re going to evaluate f at the point we’re aiming at, rather than where we came from. (If
you think about reversing the world and running everything backwards, the above equation makes
perfect sense. Then the equation says “if you were at X,,.,,, and took a step —Af (X,,ew), you’d end up
at Xy.” So if your differential equation represents a system that is reversible in time, this step makes
sense. It’s just finding a point X,,.,, such that if you ran time backwards, you’d end up at X.) So,
we’re looking for a X,,.,, such that f, evaluated there, times /, points directly back at where we came
from. Unfortunately, we can’t in general solve for X,,.,,, unless f happens to be a linear function.

To cope with this, we’ll replace f(X,,.,) With a linear approximation, again based on f’s Taylor
series. Lets define AX by AX = X, — Xp. Using this, we rewrite equation (3—1) as

Xo + AX = Xp + 1f (Xo + AX).
or just
AX = hf (Xo + AX).
Next, lets approximate f(Xo + AX) by

fXo) + f(Xp)AX.

SIGGRAPH 2001 COURSE NOTES D2 PHYSICALLY BASED MODELING

(Note that since f(Xy) is a vector, the derivative f'(Xy) is a matrix.) Using this approximation, we
can approximate AX with

AX = h(f(Xo) + f'(Xo)AX) .
or
AX — hf'(Xo)AX = hf (Xo)

Rewriting this as

1
(EI - f’(X0)> AX = f(Xop),

where I is the identity matrix, we can solve for AX as

1

ax= (1= r %) s 6-2)

Computing X,,.,, = Xo + AX is clearly more work than using an explicit method, since we have
to solve a linear system at each step. While this would seem a serious weakness, computationally
speaking, don’t despair (yet). For many types of problems, the matrix f’ will be sparse—for exam-
ple, if we are simulating a spring-lattice, f” will have a structure which matches the connectivity
of the particles. (For a discussion of sparsity and solution techniques, see Baraff and Witkin [1].
Basic material in Press et al. [2] will also prove useful.) As a result, it is usually possible to solve
equation (3-2) in linear time (i.e. time proportional to the dimension of X). In such cases, the payoff
is dramatic: we can usually take considerably large timesteps without losing stability (i.e. without
divergence, as happens with the explicit case if the stepsize is too large). The time taken in solving
each linear system is thus more than offset by the fact that our timesteps are often orders of magnitude
bigger than we could manage using an explicit method. (Of course, the code needed to do all this is
much more complicated than in the explicit case; like we said, make your problems un-stiff if you
can, and if not, pay the price.)

Lets apply the implicit method to equation (2—1). We have that f(X(¢)) is

rexan=(0) .

Differentiating with respect to X yields
a -1 0
/ — —
X (0) = o f (X(0) = (0 i)

Then the matrix %I — ' Xp) is

1 14+h
(75")=)
AT o

SIGGRAPH 2001 COURSE NOTES D3 PHYSICALLY BASED MODELING

Inverting this matrix, and multiplying by f(Xg) yields

g Ty
sx=(F) (50)
(%) ()
0 o —kyo
h
h+1
h

X0
"k
T+ kh >0

What is the limit on the stepsize in this case? The answer is: there is no limit! In this case, if we
let & grow to infinity, we get

h
h+ 1 X0
lim AX = lim — + ——| 1 ——("),
h— 00 h—00 h —kyo Yo
Yo k
1+ kh

This means that we achieve X,,.,, = Xy + (—Xo) = 0 in a single step! For a general stiff ODE, we
won’t be able to take steps of arbitrary size, but we will be able to take much larger steps using an
implicit method than using an explicit method. The extra cost of solving a linear equation is more
than made up by the time saved by taking large timesteps.

4 Solving Second-Order Equations
Most dynamics problems are written in terms of a second-order differential equation:
X(1) =f(x(1), x(1)). (4-1)

This equation is easily converted to a first-order differential equation by adding new variables. If we
define v = x, then we can rewrite equation (4—1) as

d(x@) '\ _ v(t) B
m(wn)‘(ﬂmawm> (“4-2)

which is a first-order system. However, applying the backward Euler method to equation (4-2)
results in a linear system of size 2n x 2n where 7 is the dimension of x. A fairly simple transformation
allows us to reduce the size of the problem to solving ann x n linear system instead. It is important
to note that both the 21 x 2n and n x n systems will have the same degree of sparsity, so solving the
smaller system will be faster.

The n x n system that needs to be solved is derived as follows. Let us simplify notation by writing
Xo = X(7p) and vo = v(#y). We also define Ax = x(f) + h) — x(ty) and Av =v(ty + h) — v(ty). The
backward Euler update, applied to equation (4-2), yields

Ax '\ _ vo + Av
(AV)_h<ﬂm+A&w+Aw)' (4-3)

SIGGRAPH 2001 COURSE NOTES D4 PHYSICALLY BASED MODELING

Applying a Taylor series expansion to f —which in this context is a function of both x and v—
yields the first-order approximation

9 G
S (Xo + AX, vg + Av) :f0+le_|_ —fAV.
ox v

In this equation, the derivative df/ox is evaluated for the state (X, vo) and similarly for 9f /av.
Substituting this approximation into equation (4-3) yields the linear system

Ax vo + Av
< Av) =h (f0+%Ax+alAv) ' 4

ox ov

Taking the bottom row of equation (4—4) and substituting Ax = h(vy + Av) yields
) a
Av=nh|fy+ —fh(vo + Av) + IAv .
ox ov

Letting I denote the identity matrix, and regrouping, we obtain

(1 — halr - h2%> Av=h (fo + halvo) (4-5)
ov ox 13).

which we then solve for Av. Given Av, we trivially compute Ax = h(vy + Av).

The above assumes that the function f has no direct dependence on time; in the case that f varies
directly with time (for example, if f describes time-varying external forces, or references moving
points or coordinate frames that are not variables of x) then equation (4—5) needs an additional term
to account for this dependence:

A .
(I—hg—h &) AV—h(f0+haXV0+ 81) (4—6)

References

[1] D. Baraff and A. Witkin. Large steps in cloth simulation. Computer Graphics (Proc. SIG-
GRAPH), 1998.

[2] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipes. Cambridge
University Press, 1986.

SIGGRAPH 2001 COURSE NOTES D5 PHYSICALLY BASED MODELING

Physically Based Modeling
Constrained Dynamics

Andrew Witkin
Pixar Animation Studios

Please note: This document is ©2001 by Andrew Witkin. This chapter may be
freely duplicated and distributed so long as no consideration is received in return,
and this copyright notice remains intact.

Constrained Dynamics

Andrew Witkin
Pixar Animation Studios

1 Beyond penalty methods

The idea of constrained particle dynamics is that our description of the system includes not only
particles and forces, but restrictions on the way the particles are permitted to move. For example,
we might constrain a particle to move along a specified curve, or require two particles to remain
a specified distance apart. The problem of constrained dynamics is to make the particles obey
Newton’s laws, and at the same time obey the geometric constraints.

As we learned earlier, energy functions provide a sloppy, approximate constraint mechanism.
A spring with rest length r makes the particles it connects “want” to be distance r apart. How-
ever, the spring force competes with all other forces acting on the particles —gravity, other springs,
forces applied by the user, etc. The constraint can only win this tug-of-war if its spring constant is
large enough to overpower all competing influences, so that very small displacements induce large
restoring forces. As we saw in the last section, this is really no solution because it gives rise to
stiff differential equations which are all but numerically intractible. The use of extra energy terms
to impose constraints is known as the penalty method. If we want both accurate constraints and
numerical tractibility, then penalty methods will not fill the bill.

Penalty constraints work, to the extent they do, because the restoring forces cancel applied forces
that would otherwise break the constraints. The fundamental difficulty with penalty constraints is
that the applied forces and restoring forces communicate only indirectly, through displacements.
In effect, the displacements produced by applied forces act as signals that tell the constraint what
restoring force is required. This is not a good communication mechanism because it is impossible
to acheive accuracy without stiffness.

The basic approach to avoiding this problem is to directly calculate the forces required to main-
tain the constraints, rather than relying on displacements and restoring forces to do the job. The job
of these constraint forces is to cancel just those parts of the applied forces that act against the con-
straints. Since forces influence acceleration, this means specifically that the constraint forces must
convert the particles’ accelerations into “legal” accelerations that are consistent with the constraints.

2 A bead on a wire

We introduce the approach using the simple example of a 2D particle constrained to move on the
unit circle. We can express the constraint by writing a scalar behavior function, as we did in Chapter
C to create energy functions,

C(X)=%(X'X—1), ey

F1

Point-on-circle constraint;:
C= %(XX -1)

C =0 legal position
C =0 legal velocity
C=0 legal acceleration

Add in a constraint force that
ensures legal acceleration.

Maintaining Constraints Differentially

Figure 1: If the initial position and velocity are consistent with the constraints, then the constraint
can be maintained by ensuring that the acceleration is always legal thereafter.

so that the legal positions of x are all those that satisfy C(x) = 0. The function C is an implicit
function for the constraint. If x is a legal position, then the legal velocities are all those that satisfy

C=x-%x=0. 2

In turn, the legal accelerations are all those that satisfy

C=%-x+x-x=0. 3)

If we start out with a legal position and velocity, then to maintain the constraint, in principal, we
need only ensure that equation 3 is satisfied at every instant thereafter. See figure 1 The particle’s

acceleration is R
f+f
=t)
m

where f is the given applied force, and fis the as yet unknown constraint force. Substituting for X in
equation 3 gives
.+t .
C=— X+x-x=0, 5
m

or

A

f-x=—f-x—mx-x (6)
2.1 The principal of virtual work

We have only one equation and two unknowns—the two components of f—so we cannot solve
for the constraint force without an additional condition. We get that condition by requiring that

SIGGRAPH 2001 COURSE NOTES F2 PHYSICALLY BASED MODELING

the constraint force never add energy to nor remove energy from the system, i.e. the constraint is
passive and lossless. The kinetic energy is

m. .
T = —x-X,
2

and its time derivative is
T =mx-x=mf-x+mf-x,

which is the work done by f and f. Requiring that the constraint not change the energy means that
the last term must be zero, i.e. that the constraint force does no work. A subtle point is that we are
enjoining the constraint force from ever doing work, rather than saying that it happens not to be at
the moment. We therefore require thet f - X vanish for every legal x,i.e.

f-x=0,Vx|x-x=0.

This condition simply states that f must point in the direction of X, so we can rewrite the constraint
force as
f = Ax,

where A is an unknown scalar. Substituting for fin equation 6, and solving for A gives

—f-x—mx-x
A= ——. @)
XX
Having solved for A, we calculate f=Ax,thenk = f+10) /m, and proceed with the simulation in
the usual way.
In its general form, the condition we imposed on f is known as the principal of virtual work.[2]
See figure 2 for an illustration.

2.2 Feedback

If we were solving the differential equation exactly, this procedure would keep the particle exactly
on the unit circle, provided we began with valid initial conditions. In practice, we know that nu-
merical solutions to ODE’s drift. We must add an extra feedback term to prevent this numerical
drift from accumulating, turning the circle into an outward spiral. The feedback term can be just a
damped spring force, pulling the particle back onto a unit circle. The feedback force needs to be
added in after the constraint force calculation, or else the constraint force will dutifully cancel it!
We will discuss feedback in more detail in the next section.

2.3 Geometric Interpretation

When the system is at rest, the constraint force given in equation 7 reduces to

LN (®)
XX
which has clear geometric interpretation as the vector that orthogonally projects f onto the circle’s
tangent. This interpretation makes intuitive sense because the force component that is removed by
this projection is the component that points out of the legal motion direction. The orthogonality of
the projection also makes sense, because it ensures that the particle will not experience gratuitous
accelerations in the allowed direction of motion.

SIGGRAPH 2001 COURSE NOTES F3 PHYSICALLY BASED MODELING

e Restrict constraint
force to the normal
direction.

* Orthogonal to all legal
displacements.

* No work, no energy
gain or loss.

¢ One DOF: A

Constraint Forces

Figure 2: In the case of a point-on-circle constraint, the principle of virtual work simply requires
the constraint force to lie in a direction normal to the circle.

When x is nonzero, we unfortunately lose this simple geometric picture, but we can still interpret
the addition of the constraint force as a projection. Rather than a force projection, it is the projection
of the acceleration onto the set of legal accelerations. The velocity-dependent term in equation 7
ensures that the curvature of the particle’s trajectory matches that of the circle. some effort, we could
try to regain the geometric picture by visualizing a projection in phase space, but this is hardly worth
the trouble.

3 The general case

In the last section we derived the constraint force expression for a single particle subject to a single
scalar constraint. Our goal in this section is to extend this special case to the general one of a whole
system of particles, collectively subjected to a number of constraints. The derivation follows the
more detailed one presented in [5].

The key to making this a managable task is to adopt a uniform, monolithic view, much as we
do in solving ODEs. Rather than considering each particle separately, we lump their positions into
a single state vector, which we will call q. Unlike the phase-space vector that we hand to the solver,
this one contains positions only, not velocities,so, in 3D, it has length 3.

To collapse all the particles’ equations of motion into one global equation, we next define a mass
matrix, M, whose diagonal elements are the particles’ masses, and whose off-diagonal elements are
zero. The diagonal mass matrix for n 3D points is a 3n x 3n matrix whose diagonal elements are
[my,my,my,my, my, my, ..., my,, m,, m,|. implementation, a diagonal matrix may be represented
as a vector. Multiplication of a vector by the matrix is then just element-by-element multiplication.
The inverse of a diagonal matrix is just the element-by-element reciprocal.

SIGGRAPH 2001 COURSE NOTES F4 PHYSICALLY BASED MODELING

Finally, we concatenate the forces on all the particles, just as we do the positions, to create a
global force vector, which we denote by Q. Now we can write the global equation governing the
particle system as

q=WQ,

where W is the inverse of M.

We will also use global notation for the constraints, concatenating all the scalar constraint func-
tions to form a single vector function C(q). If we have n 3D particles, subject to m scalar con-
straints, then the output of this global constraint function is an m-vector, and its input is a 3n-vector.

At this point, you may well be wondering how all this global notation will ever actually apply
to a real network of particles and constraints. This is an example of just the same kind of duality
that we encountered in applying ODE solvers to mass-and-spring models. On the one hand, we
want to build particle-and-constraint models as networks of distinct interacting objects. On the
other, we want to allow the code that calculates constraint forces to act as if the system on which it
operates really were a structureless monolith, just as an ODE solver does. Soon, we will show very
concretely how this dual view can be maintained.

As in the point-on-circle example, we assume that the configuration q and the velocity q are
both initially legal, i.e. that C = C = 0. Then our problem is to solve for a constraint force Q that,
added to the applied force Q, guarantees that C = 0.

To do this, we will need to take derivatives of C. In the previous section, we had a specific
algebraic expression for the constraint function, so we were able to derive expressions for their
derivatives as well. Now, since we are regarding C as an anonymous function of state, we will be
writing derivatives generically, using expressions such as 5= q To keep things down to earth, you
should think of expressions such as these, as well as C itself, as things we are able to evaluate
numerically by invoking functions. !

By the chain rule,

C= 3a q.

The matrix 0C/dq is called the Jacobian of C. We will denote it henceforward by J. Differentiating
again w.r.t. time gives

C =Jq+Jd.
The quantity J, the time derivative of the Jacobian, might be a little puzzling. By the chain rule we
could write it as J = 8J/dqq. However, taking the derivative of a matrix w.r.t. a vector yields a
rank 3 tensor (essentially, a 3D array). We can avoid introducing this new kind of object by writing,
equivalently J = 9C/dq. Assuming we have an expression for C, this entails only differentiating a
vector expression w.r.t. a vector, which is less menacing.

Next, we use the system’s equations of motion to replace ¢ by a force expression, giving

C=Jqg+IWQ+Q.
Setting C to zero and re-arranging gives

JWQ = —Jjg— JWQ,)

'Speaking of derivatives, it is important to understand what a quantity such as dC/dq is. Since both C and q are
vectors, the derivative of one with respect to the other is a matrix, obtained by taking the scalar derivative of each
component of C w.r.t. each component of q.

SIGGRAPH 2001 COURSE NOTES F5 PHYSICALLY BASED MODELING

which is the counterpart, in general form, to equation 7. As in the point-on-circle example, we have
more unknowns than equations, and once again we introduce the principle of virtual work. The
legal velocities (i.e. the ones that don’t change C) are all the ones that satisfy Jx = 0. To ensure
that the constraint force does no work, we therefore require that

Q- x=0, Vx|Jx=0.
All and only vectors Q that satisfy this requirement can be expressed in the form
Q=J"x,

where X is a vector with the dimension of C.

To understand what this expression means, it helps to regard the matrix J as a collection of vec-
tors, each of which is the gradient of one of the scalar constraint functions comprising C. Since our
fundamental requirement is that C = 0, these gradients are normals to the constraint hypersurfaces,
representing the state-space directions in which the system is not permitted to move. The vectors
that have the form J7 A are the linear combinations of these gradient vectors, and hence span exactly
the set of prohibited directions. Restricting the constraint force to this set ensures that its dot prod-
uct with any legal displacement of the system will be zero, which is exactly what the principle of
virtual work demands.

In matrix parlance, the set of vectors J7 A is known as the null space complement of J. The
null space of J is the set of vectors v that satisfy Jv = 0. The null space vectors are the legal
displacements, while the null space complement vectors are the prohibited ones.

The components of A are known as Lagrange multipliers. These quantities, which determine
how much of each constraint gradient is mixed into the constraint force, are the unknowns for which
we must solve. To do so, we replace Q by J” A in equation 9, which gives

JWITA = —Jq - JWQ, (10)

which is a matrix equation in which all but A are known. The matrix JWJ7 is a square matrix with
the dimensions of C. Once A is obtained, it is multiplied by J” to obtain Q, which is added to the
applied force before calculating acceleration.

We already noted the need for a feedback term to prevent the accumulation of numerical drift.
This term can be incorporated directly into the constraint force calculation. Instead of solving for

C = 0, as we did above, we solve for

C = —k,C — k,C,

where kg and k; are spring and damping constants. By adding this term, we make the constraint
force perform the extra function of returning, with damping, to a valid state should drift occur. The
final constraint force equation, with feedback, is

IWITx = —Jq— JWQ — k,C — k,C. a1

The values assigned to ks and k; are not critical, since this term only plays the relatively undemand-
ing role of absorbing drift. See [1, 3, 5] for further discussion.

SIGGRAPH 2001 COURSE NOTES Fo6 PHYSICALLY BASED MODELING

4 Tinkertoys: Implementing Constrained Particle Dynamics

The general formula of equation 11 is just a skeleton. To actually simulate anything, a specific
constraint function C(q) must be provided, in a form that lets us evaluate the function itself and
its various derivatives. One way to flesh out the skeleton would be to write down an expression
for such a function, symbolically take the required derivatives, substitute these expressions into
equation 11 and, after simplifying and massaging the resulting mess, write code that performs the
numerical evaluations required for a simulation. This is essentially what we did in section 2, but
only for a trivially simple example. As an exercise, you might try working through a somewhat
more complicated example, say a double pendulum. If you actually do try it, you will probably
be able to carry it through to a working implementation, but it will be readily apparent that this
derive-and-implement methodology does not scale up!

Instead of hand-deriving and hand-coding models, we want to build models interactively by
snapping the pieces together, drawing freely from a set of useful pre-defined constraints, such as
distance and point-on-curve constraints. The main problem we must solve to acheive this goal is
to evaluate the global matrices and vectors that comprise equation 11. The evaluations must be
quick, and also dynamic in the sense that we can freely change the structure of the model on the fly.
Naturally, we want constraints to be modular just as forces are.

In this section we describe an architecture for constrained particle dynamics simulation that
meets these objectives. The approach is to represent individual constraints using objects similar
to those that represent forces. Each constraint object is responsible for evaluating the constraint
function it represents, and also that functions derivatives. These evaluations produce fragments of
the vectors and matrices comprising equation 11. The fragments are then combined dynamically by
the constrained particle system.

4.1 The constrained simulation loop

The machinery required to support constraints fits neatly into our basic particle system architecture.
From the standpoint of the ODE solver, the main job of the particle system, in both the unconstrained
and constrained case, is to perform derivative evaluations. The sequence of steps that the particle
system must perform to evaluate the derivative is nearly the same, with one important addition:
calculating the constraint force. This is how the extra step fits in:

1. Clear forces: zero each particle’s force accumulator.

2. Calculate forces: loop over all force objects, allowing each to add forces to the particles it
influences.

3. Calculate constraint forces: On completion of the previous step, each particle’s force accu-
mulator contains the total force on that particle. In this step, the global equation 11 is set up
and solved, yielding a constraint force on each particle, which is added into the applied force.

4. Calculate the derivative: Divide force by mass to get acceleration, and gather the derivatives
into a global vector for the solver.

In this section, we are concerned exclusively with the third step in this sequence.

SIGGRAPH 2001 COURSE NOTES F7 PHYSICALLY BASED MODELING

C ¢ Each constraint
contributes one or more
blocks to the matrix.

X

* Sparsity: many empty
| Xj blocks.

* Modularity: let each
J constraint compute its
own blocks.

Matrix Block Structure

Figure 3: The block-sparse Jacobian matrix. The constraints are shown above, and the particles
along the right side. Each constraint/particle pair corresponds to a block in the matrix. A block is
non-zero only if the constraint depends on the particles. Here, we show a binary constraint, such as
a distance constraint, that connects two particles. The two shaded blocks are that constraint’s only
contributions to the sparse Jacobian.

4.2 Block-structured matrices

Each individual constraint contributes a slice to the global constraint vector C, just as each particle
contributes a slice to the global state vector q. In addition to a list of particles, and a list of forces,
a constrained particle system must also maintain a list of constraints. Evaluating the global vectors
such as C and C is straightforward, assuming that each constraint points to a function that performs
its own portion of these evaluations. We simply loop over the constraints, invoking the functions,
and placing the results in the global vectors with appropriate offsets. This is essentially the same
gather operation that we use for communication with the ODE solver.

The main new ingredient is that we must evaluate global matrices as well as vectors. Whereas
constraints and particles each occupy a slice of their respective global vectors, each constraint-
particle pair occupies a block of the global derivative matrix. The vector slice that is “owned” by
a constraint can be described by an offset and a length, say i and ilength. Similarly, a particle’s
global station can be described by j and jlength. While jlength is always the dimension of the
space that the particles live in, ilength may vary from constraint to constraint. The derivative of a
constraint with respect to a particle occupies an ilength x jlength block of the Jacobian matrix J,
with originn at position (i, j). See figure 3.

A typical constraint influences at most just a few particles. The value of the constraint function
depends on only these particles; its derivative with respect to all other particles is zero. This means
that the matrices J and J are typically very sparse. Of the n blocks per constraint in an n-particle
system, a unary constraint contributes only one non-zero block, a binary one two non-zero blocks,

SIGGRAPH 2001 COURSE NOTES F8 PHYSICALLY BASED MODELING

etc. Given this structure, a natural way to represent the sparse matrices is by lists of the non-zero
blocks. In this scheme, each matrix block is represented by a structure that specifies the block’s
origin, (i, j), and dimensions, (ilength, jlength), and that contains an ilength x jlength float
array holding the block’s data, e.g.

struct{
int i;
int j;
int ilength;
int jlength;
float *data;
}i

To support constrained particle dynamics using block-sparse matrices, as we will soon see,
we must implement only two operations: matrix times vector, and matrix-transpose times vector.
Both are simple operations, looping over the matrix blocks, and performing an ordinary matrix
multiplication for each block, using the block’s i and j as offsets into the destination and source
vectors.

4.3 Building the matrices

In addition to holding lists of particles and forces, the constrained particle system will hold a list of
constraints, block-sparse matrices to represent J and J, and vectors to hold C, C, etc. The structures
that represent the constraints may be similar in many respects to the structures we use to represent
simple forces, i.e. they point to the particles on which they depend and they point to functions that
perform their type-specific operations.

When a constraint is instantiated, matrix blocks must be created for each particle on which the
constraint depends, and the blocks must be added to the global matrices. Since the number and
shape of blocks involved varies with the constraint type, this initialization may be handled by the
constraint in a type-specific way. Thereafter, the constraint must be able to evaluate its portions of
the vectors C and C, and of the matrices J and J . The results of the matrix evaluations are placed in
the matrix blocks that were created by the constraint on initialization.

All the required global quantities can then be computed simply by looping over the constraints,
and invoking the functions that perform these evaluations.

4.4 Solving the linear system

The solution of sparse linear systems is a field unto itself. Of the many available options, we give
one that is simple and readily available. A matrix equation of the form Mx = b may be solved
iteratively by finding a vector x that minimizes (Mx —b) - (Mx —b). A conjugate gradient algorithm
that solves this problem is given in Numerical Recipes [4], Chapter 2. The conjugate gradient
algorithm offers the advantage that it gives a least-squares solution for over-determined systems, and
tolerates redundant constraints. The solver takes as arguments two routines which contitute its only
access the matrix: vector-times-matrix, and vector-transpose-times matrix. Sparsity is exploited
by implementing these routines efficiently. The routine requires O (n) iterations to solve an n X n
matrix, and the cost of each iteration is O (i), where m is the number of non-zero entries in the
matrix.

SIGGRAPH 2001 COURSE NOTES F9 PHYSICALLY BASED MODELING

The matrix of equation 11 is JWJ” , where J is block-sparse and W is diagonal. We need never
actually calculate the matrix. Instead we need only calculate JWJ” x, given a vector x. We do this
by calculating J7 x, using the block-sparse matrix-transpose multiply routine described above, then
performing an element-by-element multiplication of the result by the vector representing the diag-
onal W. Finally, the resulting vector is multiplied by J. Since the compound matrix is symmetric,
we do not need a separate function for multiplication by the transpose.

Evaluating the right hand side vector of equation 11 is a straightforward application of the
block-sparse matrix routines, and standard vector operations.

Finally, once the linear system has been solved, the vector A is multiplied by J” to produce the
global constraint force vector Q, which is then scattered into the particles’ force accumulator.

4.5 Summary

To introduce constraints into a particle system simulation, we add the additional step of constraint
force calculation to the derivative evaluation operation. After the ordinary applied forces have been
calculated, but before computing accelerations, we perform the following steps:

e Loop over the constraints, letting each evaluate its own portion of C, C, J and J. Each
constraint points to one or more matrix blocks that receive its contributions to the global
matrices.

e Form the right-hand-side vector of equation 11.
e Invoke the conjugate gradient solver to obtain the Lagrange multiplier vector, A.

e Multiply A by J” to obtain the global constraint force vector, and scatter this force to the
particles.

S Lagrangian Dynamics: modeling objects other than particles

In the previous sections we have seen how to constrain the behavior of a particle system through
the use of constraint forces. Our starting point for the derivation was the use of implicit functions—
functions of state that are supposed to be zero—to represent the constraints. Each scalar implicit
function defines a hypersurface in state space, and the legal states of the system are those that lie on
the intersection of all the hypersurfaces.

Suppose instead that we represented the constraints using a parametric function—a function
q(u), with dimu < dim q, so that q(u) specifies all and only the legal states. In the case of a unit
circle, the parametric function would of course be x = [cos 8, sin#], leaving 6 as the single degree
of freedom.

In order to use parametric functions to represent constraints, we need to express the constrained
system’s equations of motion in terms of the new, constrained degrees of freedom, u, rather than
the unconstrained q. These new equations, which we will derive in this section, are known as
Lagrange’s equations of motion.[2].

A clear advantage of the parametric constraint representation is that the extra degrees of freedom
are actually removed from the system, rather than being neutralized through the use of constraint
forces. This, as one would expect, can lead to better performance. However, Lagrangian dynamics
has a very serious drawback: it is often difficult or impossible to find a parametric function that

SIGGRAPH 2001 COURSE NOTES F10 PHYSICALLY BASED MODELING

captures the desired constraints. Moreover, in contrast to the implicit form, there is no automatic
way to combine multiple constraints. Lagrangian dynamics is therefore unsuitable as a vehicle for
interactive model building. Its important role is as an off-line tool for defining new primitive objects
that are more complex than particles.

As before, we begin with a collection of particles whose positions are described by a global state
vector (, a diagonal mass matrix M, and a global applied force vector Q. We also retain the idea of
a constraint force vector Q that satisfies the principle of virtual work. Now, however, the q’s are not
independent variables, but are given by a function q(u). Our goal is to solve for u, accounting for
the constraint forces.

In developing the constraint force formulation we made extensive use of the Jacobian of the
implicit constraint function. The Jacobian of the parametric function,

_9q

o’

has a different meaning but is equally important. By the chain rule, the legal particle velocities are
given by

J

q=Ju
The principle of virtual work therefore requires that
Q' Ja=0, i,

which simply means that J T() = 0. As before, we can write the unconstrained equations of motion
as

Mij=Q+Q.
Now, however, instead of solving for the constraint force, we can simply make it go away, by
multiplying both sides of the equation by J7, giving
J'Mg-J'Q=0. (12)
Since q is a function of u, wecan now remove (from the expression, leaving u as the unknown.
Once again invoking the trusty chain rule,
4 = Jii + Ju.
Substituting this expression into equation 12 gives
J™Ji 4+ J"MJu — J7Q =o. (13)

which is a matrix equation to be solved for i. Although you will usually see it expressed in a
superficially quite different form, equation 13 is equivalent to the classical Lagrangian equation of
motion. As we’ve expressed it here, its close relation to the constraint force formulation should be
strikingly clear.

5.1 Hybrid models

The Lagrangian dynamics formulation is well-suited to creating compound objects off-line, while
constraint force methods are well-suited to creating constrained models on the fly. In [5] we describe
an architecture that combines both methods, allowing constraints to be applied dynamically to com-
plex objects that had been pre-defined using Lagrangian dynamics. In [6], Lagrangian dynamics is
used to create simplified non-rigid bodies.

SIGGRAPH 2001 COURSE NOTES F11 PHYSICALLY BASED MODELING

References

[1] Ronen Barzel and Alan H. Barr. A modeling system based on dynamic constaints. Computer
Graphics,?22:179-188, 1988.

[2] Herbert Goldstein. Classical Mechanics. Addision Wesley, Reading, MA, 1950.

[3] John Platt and Alan Barr. Constraint methods for flexible models. Computer Graphics,22:279—
288, 1988.

[4] W.H. Press, B.P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes in C.
Cambridge University Press, Cambridge, England, 1988.

[5] Andrew Witkin, Michael Gleicher, and William Welch. Interactive dynamics. Computer Graph-
ics,24,1990. Proc. 1990 Symposium on 3-D Interactive Graphics.

[6] Andrew Witkin and William Welch. Fast animation and control of non-rigid structures. Com-
puter Graphics, 24(4):243-252, July 1990. Proc. Siggraph *90.

SIGGRAPH 2001 COURSE NOTES F12 PHYSICALLY BASED MODELING

Physically Based Modeling
Rigid Body Simulation

David Baraff
Pixar Animation Studios

Please note: This document is ©2001 by David Baraff. This chapter may be freely
duplicated and distributed so long as no consideration is received in return, and
this copyright notice remains intact.

Rigid Body Simulation

David Baraff
Pixar Animation Studios

Introduction

This portion of the course notes deals with the problem of rigid body dynamics. To help get you
started simulating rigid body motion, we’ve provided code fragments that implement most of the
concepts discussed in these notes. This segment of the course notes is divided into two parts. The first
part covers the motion of rigid bodies that are completely unconstrained in their allowable motion;
that is, simulations that aren’t concerned about collisions between rigid bodies. Given any external
forces acting on a rigid body, we’ll show how to simulate the motion of the body in response to these
forces. The mathematical derivations in these notes are meant to be fairly informal and intuitive.

The second part of the notes tackles the problem of constrained motion that arises when we
regard bodies as solid, and need to disallow inter-penetration. We enforce these non-penetration
constraints by computing appropriate contact forces between contacting bodies. Given values for
these contact forces, simulation proceeds exactly as in the unconstrained case: we simply apply all
the forces to the bodies and let the simulation unfold as though the motions of bodies are completely
unconstrained. If we have computed the contact forces correctly, the resulting motion of the bodies
will be free from inter-penetration. The computation of these contact forces is the most demanding
component of the entire simulation process.!

ICollision detection (i.e. determining the points of contact between bodies) runs a close second though!

Gl

Part I. Unconstrained Rigid Body Dynamics

1 Simulation Basics

This portion of the course notes is geared towards a full implementation of rigid body motion. In this
section, we’ll show the basic structure for simulating the motion of a rigid body. In section 2, we’ll
define the terms, concepts, and equations we need to implement a rigid body simulator. Following
this, we’ll give some code to actually implement the equations we need. Derivations for some of the
concepts and equations we will be using will be left to appendix A.

The only thing you need to be familiar with at this point are the basic concepts (but not the numer-
ical details) of solving ordinary differential equations. If you’re not familiar with this topic, you’re
in luck: just turn back to the beginning of these course notes, and read the section on “Differential
Equation Basics.” You also might want to read the next section on “Particle Dynamics” as well,
although we’re about to repeat some of that material here anyway.

Simulating the motion of a rigid body is almost the same as simulating the motion of a particle,
so let’s start with particle simulation. The way we simulate a particle is as follows. We let a function
x(t) denote the particle’s location in world space (the space all particles or bodies occupy during
simulation) at time ¢. The function v(¢) = x(¢) = %x(t) gives the velocity of the particle at time .
The state of a particle at time ¢ is the particle’s position and velocity. We generalize this concept by
defining a state vector X(t) for a system: for a single particle,

X (1) = < ig;) . (1-1)

When we’re talking about an actual implementation, we have to “flatten” out X(#) into an array.
For a single particle, X(#) can be described as an array of six numbers: typically, we’d let the first
three elements of the array represent x(¢), and the last three elements represent v(¢). Later, when we
talk about state vectors X(¢) that contain matrices as well as vectors, the same sort of operation is
done to flatten X(7) into an array. Of course, we’ll also have to reverse this process and turn an array
of numbers back into a state vector X (#). This all comes down to pretty simple bookkeeping though,
so henceforth, we’ll assume that we know how to convert any sort of state vector X(#) to an array
(of the appropriate length) and vice versa. (For a simple example involving particles, look through
the “Particle System Dynamics” section of these notes.)

For a system with n particles, we enlarge X(7) to be

x1 (1)
v1(2)
X(t) = : (1-2)
Xn (1)
Uy (1)

SIGGRAPH 2001 COURSE NOTES G2 PHYSICALLY BASED MODELING

where x;(¢) and v;(¢) are the position and velocity of the ith particle. Working with n particles is no
harder than working with one particle, so we’ll let X(¢) be the state vector for a single particle for
now (and when we get to it later, a single rigid body).

To actually simulate the motion of our particle, we need to know one more thing—the force
acting on the particle at time . We’ll define F'(¢) as the force acting on our particle at time ¢. The
function F(¢) is the sum of all the forces acting on the particle: gravity, wind, spring forces, etc. If
the particle has mass m, then the change of X over time is given by

Xty = i(HE)) =(v)) (1-3)

dt dr \ v(?) F@)/m
Given any value of X(7), equation (1-3) describes how X(t) is instantaneously changing at time ¢.
A simulation starts with some initial conditions for X(0), (i.e. values for x(0) and v(0)) and then
uses a numerical equation solver to track the change or “flow” of X over time, for as long as we’re
interested in. If all we want to know is the particle’s location one second from now, we ask the solver
to compute X (1), assuming that time units are in seconds. If we’re going to animate the motion of
the particle, we’d want to compute X(%), X(%) and so on.

The numerical method used by the solver is relatively unimportant with respect to our actual
implementation. Let’s look at how we’d actually interact with a numerical solver, in a C++-like
language. Assume we have access to a numerical solver, which we’ll generically write as a function
named ode. Typically, ode has the following specification:

typedef void (*DerivFunc) (double t, double x[], double xdot[]);

void ode(double x0[], double xEnd[], int len, double tO,
double tl1, DerivFunc dxdt);

We pass an initial state vector to ode as an array x0. The solver ode knows nothing about the
inherent structure of x0. Since solvers can handle problems of arbitrary dimension, we also have to
pass the length 1en of x0. (For a system of n particles, we’d obviously have 1len = 6n.) We also
pass the solver the starting and ending times of the simulation, t0 and t1. The solver’s goal is to
compute the state vector at time t1 and return it in the array xEnd.

We also pass a function Dxdt () to ode. Given an array y that encodes a state vector X(¢) and
a time ¢, Dxdt () must compute and return %X(z) in the array xdot. (The reason we must pass
t to Dxdt () is that we may have time-varying forces acting in our system. In that case, Dxdt ()
would have to know “what time it is” to determine the value of those forces.) In tracing the flow of
X(¢) from tO0 to t1, the solver ode is allowed to call Dxdt () as often as it likes. Given that we
have such a routine ode, the only work we need to do is to code up the routine Dxdt () which we’ll
give as a parameter to ode.

Simulating rigid bodies follows exactly the same mold as simulating particles. The only differ-
ence is that the state vector X(¢) for arigid body holds more information, and the derivative %X(t) is
a little more complicated. However, we’ll use exactly the same paradigm of tracking the movement
of a rigid body using a solver ode, which we’ll supply with a function Dxdt ().

SIGGRAPH 2001 COURSE NOTES G3 PHYSICALLY BASED MODELING

2 Rigid Body Concepts

The goal of this section is to develop an analogue to equation (1-3), for rigid bodies. The final
differential equation we develop is given in section 2.11. In order to do this though, we need to define
a lot of concepts first and relations first. Some of the longer derivations are found in appendix A. In
the next section, we’ll show how to write the function Dxdt () needed by the numerical solver ode
to compute the derivative %X(r) developed in this section.

2.1 Position and Orientation

The location of a particle in space at time ¢ can be described as a vector x(¢), which describes the
translation of the particle from the origin. Rigid bodies are more complicated, in that in addition to
translating them, we can also rotate them. To locate a rigid body in world space, we’ll use a vector
x(t), which describes the translation of the body. We must also describe the rotation of the body,
which we’ll do (for now) in terms of a 3 x 3 rotation matrix R(¢). We will call x(¢) and R(¢) the
spatial variables of a rigid body.

A rigid body, unlike a particle, occupies a volume of space and has a particular shape. Because a
rigid body can undergo only rotation and translation, we define the shape of a rigid body in terms of
a fixed and unchanging space called body space. Given a geometric description of the body in body
space, we use x(¢) and R(¢) to transform the body-space description into world space (figure 1). In
order to simplify some equations we’ll be using, we’ll require that our description of the rigid body
in body space be such that the center of mass of the body lies at the origin, (0, 0, 0). We’ll define the
center of mass more precisely later, but for now, the center of mass can be thought of as a point in the
rigid body that lies at the geometric center of the body. In describing the body’s shape, we require
that this geometric center lie at (0, 0, 0) in body space. If we agree that R(¢) specifies a rotation of
the body about the center of mass, then a fixed vector r in body space will be rotated to the world-
space vector R(¢t)r at time t. Likewise, if pg is an arbitrary point on the rigid body, in body space,
then the world-space location p(¢) of pg is the result of first rotating py about the origin and then
translating it:

p(t) = R(t) po + x(1). (2-1)

Since the center of mass of the body lies at the origin, the world-space location of the center of
mass is always given directly by x(#). This lets us attach a very physical meaning to x(¢) by saying
that x(#) is the location of the center of mass in world space at time ¢. We can also attach a physical
meaning to R(¢). Consider the x axis in body space i.e. the vector (1,0,0). At time ¢, this vector
has direction

1
R®| O
0

in world space. If we write out the components of R(¢) as
Fyx Tyx Tox

R(t) = Txy Tyy Tzy) (2-2)
Txz Tyz Tz

SIGGRAPH 2001 COURSE NOTES G4 PHYSICALLY BASED MODELING

body space world space y!
y
A
: A .
28 y , p()
0 /
/ X
X / Z
/

Figure 1: The center of mass is transformed to the point x(#) in world space, at time ¢. The fixed x, y,
and z axes of the body in body space transform to the vectors X' = R(¢)x,y' = R(t)yand 7 = R(?)z.
The fixed point pg in body space is transformed to the point p(t) = R(t) po + x(¢).

then
1 Tex
R[0 | =] ry (2-3)
0 Fyz

which is the first column of R(#). The physical meaning of R(t) is that R(¢)’s first column gives the
direction that the rigid body’s x axis points in, when transformed to world space at time ¢. Similarly,
the second and third columns of R(?),

Iyx Tzx
Tyy and T2y
I'yz Tzz

are the directions of the y and z axes of the rigid body in world space at time ¢ (figure 2).

2.2 Linear Velocity

For simplicity, we’ll call x(¢) and R(¢) the position and orientation of the body at time ¢. The next
thing we need to do is define how the position and orientation change over time. This means we
need expressions for x(¢) and R(t). Since x(¢) is the position of the center of mass in world space,
Xx(¢) is the velocity of the center of mass in world space. We’ll define the linear velocity v(t) as this
velocity:

v(t) = x(1). (2-4)

If we imagine that the orientation of the body is fixed, then the only movement the body can undergo
is a pure translation. The quantity v(¢) gives the velocity of this translation.

SIGGRAPH 2001 COURSE NOTES G5 PHYSICALLY BASED MODELING

world space

R(y=[x"y"z']

Figure 2: Physical interpretation of the orientation matrix R(¢). At time ¢, the columns of R(z) are
the world-space directions that the body-space x, y, and z axes transform to.

2.3 Angular Velocity

In addition to translating, a rigid body can also spin. Imagine however that we freeze the position of
the center of mass in space. Any movement of the points of the body must therefore be due to the
body spinning about some axis that passes through the center of mass. (Otherwise the center of mass
would itself be moving). We can describe that spin as a vector w(¢). The direction of w(t) gives the
direction of the axis about which the body is spinning (figure 3). The magnitude of w(?), |w(¢)], tells
how fast the body is spinning. |w(¢)| has the dimensions of revolutions/time; thus, |w(¢)| relates the
angle through which the body will rotate over a given period of time, if the angular velocity remains
constant. The quantity w(t) is called the angular velocity.

For liqear velocity, x(¢) and v(¢) are related by v(¢) = %x(t). How are R(t) and w(t) related?
(Clearly, R(t) cannot be w(t), since R(¢) is a matrix, and w(t) is a vector.) To answer this question,
let’s remind ourselves of the physical meaning of R(¢). We know that the columns of R() tell us
the directions of the transformed x, y and z body axes at time . That means that the columns of R(1)
must describe the velocity with which the x, y, and z axes are being transformed. To discover the
relationship between w(¢) and R(?), let’s examine how the change of an arbitrary vector in a rigid
body is related to the angular velocity w(z).

Figure 4 shows a rigid body with angular velocity w(¢). Consider a vector r(¢) at time ¢ specified
in world space. Suppose that we consider this vector fixed to the body; that is, 7 (#) moves along with
the rigid body through world space. Since r(¢) is a direction, it is independent of any translational
effects; in particular, 7(¢) is independent of v(¢). To study 7(¢), we decompose r(¢) into vectors a
and b, where a is parallel to w(¢) and b is perpendicular to w(#). Suppose the rigid body were to
maintain a constant angular velocity, so that the tip of 7(¢) traces out a circle centered on the w(¢) axis
(figure 4). The radius of this circle is |b|. Since the tip of the vector r () is instantaneously moving
along this circle, the instantaneous change of r(¢) is perpendicular to both b and w(t). Since the tip
of r(¢) is moving in a circle of radius b, the instantaneous velocity of 7(¢) has magnitude |b||w(?)].

SIGGRAPH 2001 COURSE NOTES G6 PHYSICALLY BASED MODELING

(\) w(7)

w(t)

v

X

Figure 3: Linear velocity v(¢) and angular velocity w(¢) of a rigid body.

Since b and w(¢) are perpendicular, their cross product has magnitude
lw(t) x b| = |w(®)]]b]. (2-5)

Putting this together, we can write 7(¢) = w(t) x (b). However, since () = a + b and a is parallel
to w(t), we have w(t) x a = 0 and thus

F)=w@) xb=w@)xb+w(t) xa=w(t) x (b+a). (2-6)
Thus, we can simply express the rate of change of a vector as
F(t) = w(t) x r(t). (2-7)

Let’s put all this together now. At time ¢, we know that the direction of the x axis of the rigid
body in world space is the first column of R(#), which is

At time ¢, the derivative of the first column of R(#) is just the rate of change of this vector: using the
cross product rule we just discovered, this change is

Fxx

w(t) X T'xy

I'xz

SIGGRAPH 2001 COURSE NOTES G7 PHYSICALLY BASED MODELING

A

Figure 4: The rate of change of a rotating vector. As the tip of r(¢) spins about the w(¢) axis, it traces
out a circle of diameter |b|. The speed of the tip of r(¢) is |w(?)]||b|.

The same obviously holds for the other two columns of R(¢). This means that we can write

) Fxx Fyx Tzx
R=1w()x | ry w(t) x | ryy w(t) X Ty (2-8)
Fxz Tyz Tzz

This is too cumbersome an expression to tote around though. To simplify things, we’ll use the

following trick. If @ and b are 3-vectors, then a x b is the vector

ayb, —bya,
—axb, + bya;
axby, —b,ay

Given the vector a, let us define a™ to be the matrix

Then?
0 —a; ay by ayb, —bya,
a*b = a, 0 —a, by | =| —ab,;+bra, | =axb. (2-9)
—ay, ay 0 b, axby, —b,a,

2This looks a little too “magical” at first. Did someone discover this identity accidentally? Is it a relation that just
happens to work? This construct can be derived by considering what’s known as infinitesimal rotations. The interested
reader might wish to read chapter 4.8 of Goldstein[10] for a more complete derivation of the a* matrix.

SIGGRAPH 2001 COURSE NOTES GS8 PHYSICALLY BASED MODELING

Using the “«” notation, we can rewrite R(f) more simply as

) Txx Tyx Tzx
Rt =|w®* Txy w()* Tyy w®)* Fzy . (2-10)
T'xz Iyz Izz

By the rules of matrix multiplication, we can factor this into

) Txx Fyx Tzx
R(t) = w(t)* Fxy Iy Fay (2-11)
Txz I'yz I'zz

which is a matrix-matrix multiplication. But since the matrix on the right is R(¢) itself, we get simply
that

R(t) = w(t)*R(1). (2-12)
This, at last, gives us the relation we wanted between R(t) and w(t). Note the correspondence
between /(1) = w(t) x r(¢) for a vector, and R(#) = w(?)*R(¢) for the rotation matrix.
2.4 Mass of a Body

In order to work out some derivations, we’ll need to (conceptually) perform some integrations over
the volume of our rigid body. To make these derivations simpler, we’re going to temporarily imagine
that a rigid body is made up of a large number of small particles. The particles are indexed from
1 to N. The mass of the ith particle is m;, and each particle has a (constant) location ry; in body
space. The location of the ith particle in world space at time #, denoted r;(¢), is therefore given by
the formula

ri(t) = R(t)ro; + x(¢). (2-13)

The total mass of the body, M, is the sum

M=>"m. (2-14)
(Henceforth, summations are assumed to be summed from 1 to N with index variable i.)

2.5 Velocity of a Particle

The velocity r;(t) of the ith particle is obtained by differentiating equation (2—13): using the relation
R(t) = w*R(¢), we obtain

Fi(t) = 0" R(D)ro; + v(1). (2-15)

We can rewrite this as

Fi(t) = ()" R(t)ro; + v (1)
= ()" (R()ro; + x(t) — x(1)) + v(t) (2-16)
=w()" (ri(t) — x(1)) + v(1)

SIGGRAPH 2001 COURSE NOTES G9 PHYSICALLY BASED MODELING

w(t)

ﬁ

y w(t) ‘
(t)x (ri(t)— x(1))
/ Z
X v(t)+ o) x (ri(t)— x(1)) A{

Figure 5: The velocity of the ith point of a rigid body in world space. The velocity of r;(¢) can be
decomposed into a linear term v(¢) and an angular term w(z) x (r;(¢) — x(¢)).

using the definition of r;(¢) from equation (2—13). Recall from the definition of the “x” operator that
w(t)*a = w(t) x a for any vector a. Using this, we can simply write

ri(t) = (1) x (ri(t) — x(1)) + v(0). 2-17)

Note that this separates the velocity of a point on a rigid body into two components (figure 5): a
linear component v(¢), and an angular component w x (r;(¢) — x(¢)).

2.6 Center of Mass

Our definition of the center of mass is going to enable us to likewise separate the dynamics of bodies
into linear and angular components. The center of mass of a body in world space is defined to be

Zn;;i(t) (2-18)

where M is the mass of the body (i.e. the sum of the individual masses m;). When we say that we
are using a center of mass coordinate system, we mean that in body space,

0
Lmiroi _o_| o |. (2-19)
M 0

Note that this implies that Y m;ro; = 0 as well.

We have spoken of x(¢) as being the location of the center of mass at time ¢. Is this true? Yes:
since the ith particle has position r; () = R(t)ry; + x(¢) at time ¢, the center of mass at time 7 is

> miri(t) _ >_mi(R(t)ro; + x(1)) _R® > miro; + Y mix(t) _ >m

M M M D= =x0.

SIGGRAPH 2001 COURSE NOTES G10 PHYSICALLY BASED MODELING

(1) = (ri(t) — x(t)) x Fi(t)

vl

v

X

Figure 6: The torque 7;(¢) due to a force F;(¢) acting at r;(¢) on a rigid body.

Additionally, the relation

Y mi(ri() = x(1) =Y mi(R()ro; + x(1) — x(1)) = R(1) Y mirg; =0 (2-20)

is also very useful.

2.7 Force and Torque

When we imagine a force acting on a rigid body due to some external influence (e.g. gravity, wind,
contact forces), we imagine that the force acts on a particular particle of the body. (Remember that
our particle model is conceptual only. We can have a force act at any geometrical location on or inside
the body, because we can always imagine that there happens to be a particle at that exact location.)
The location of the particle the force acts on defines the location at which the force acts. We will let
F; () denote the total force from external forces acting on the ith particle at time 7. Also, we define
the external forque t;(t) acting on the ith particle as

(1) = (ri(t) — x(2)) x Fi(1). (2-21)

Torque differs from force in that the torque on a particle depends on the location r; () of the
particle, relative to the center of mass x(¢). We can intuitively think of the direction of 7;(¢) as
being the axis the body would spin about due to F;(¢), if the center of mass were held firmly in place

(figure 6).
The total external force F(t) acting on the body is the sum of the F;(¢):
F()=) Fi) (2-22)
while the total external torque is defined similarly as
()= () =Y (ri(t) — x(t)) x Fi(t). (2-23)

SIGGRAPH 2001 COURSE NOTES G11 PHYSICALLY BASED MODELING

Note that F(¢) conveys no information about where the various forces acted on the body; however,
7(t) does tell us something about the distribution of the forces F;(t) over the body.

2.8 Linear Momentum

The linear momentum p of a particle with mass m and velocity v is defined as
p = mu. (2-24)

The total linear momentum P(¢) of a rigid body is the sum of the products of the mass and velocity
of each particle:

P(t)=) " mii(t). (2-25)

From equation (2-17), the velocity r;(¢) of the ith particle is 7;(t) = v(¢) + w(t) x (r;i(t) — x(1)).
Thus, the total linear momentum of the body is

P(t) =) miFi(1)
=Y (miv () + mieo() x (ri(0) = x(1)) (2-26)
=Y mp() + o) x Y mi(ri(t) — x(1)).

Because we are using a center of mass coordinate system, we can apply equation (2-20) and ob-
tain

P =Y mu(r) = <Zm,-> V(1) = Mu(r). (2-27)

This gives us the nice result that the total linear momentum of our rigid body is the same as if the
body was simply a particle with mass M and velocity v(z). Because of this, we have a simple trans-
formation between P(t) and v(z): P(t) = Mv(t) and v(¢) = P(¢)/M. Since M is a constant,

. P()

1) =——. 2-28
vt =—, (2-28)
The concept of linear momentum lets us express the effect of the total force F(¢) on a rigid body

quite simply. Appendix A derives the relation

P(t) = F(1) (2-29)

which says that the change in linear momentum is equivalent to the total force acting on a body. Note
that P(¢) tells us nothing about the rotational velocity of a body, which is good, because F(¢) also
conveys nothing about the change of rotational velocity of a body!

Since the relationship between P(t) and v(¢) is simple, we will be using P(¢) as a state variable
for our rigid body, instead of v(¢). We could of course let v(¢) be a state variable, and use the
relation

. F(1)
)= —-. 2-30
b0 = (2-30)
However, using P(t) instead of v(¢) as a state variable will be more consistent with the way we will
be dealing with angular velocity and acceleration.

SIGGRAPH 2001 COURSE NOTES G12 PHYSICALLY BASED MODELING

2.9 Angular Momentum

While the concept of linear momentum is pretty intuitive (P(¢) = Mv(t)), the concept of angular mo-
mentum (for a rigid body) is not. The only reason that one even bothers with the angular momentum
of arigid body is that it lets you write simpler equations than you would get if you stuck with angular
velocity. With that in mind, it’s probably best not to worry about attaching an intuitive physical
explanation to angular momentum—all in all, it’s a most unintuitive concept. Angular momentum
ends up simplifying equations because it is conserved in nature, while angular velocity is not: if you
have a body floating through space with no torque acting on it, the body’s angular momentum is
constant. This is not true for a body’s angular velocity though: even if the angular momentum of a
body is constant, the body’s angular velocity may not be! Consequently, a body’s angular velocity
can vary even when no force acts on the body. Because of this, it ends up being simpler to choose
angular momentum as a state variable over angular velocity.

For linear momentum, we have the relation P(¢) = Mv(¢). Similarly, we define the total angular
momentum L(¢) of arigid body by the equation L(¢) = I(t)w(t), where I(¢) is a 3 x 3 matrix (tech-
nically a rank-two tensor) called the inertia tensor, which we will describe momentarily. The inertia
tensor /(¢) describes how the mass in a body is distributed relative to the body’s center of mass. The
tensor /() depends on the orientation of a body, but does not depend on the body’s translation. Note
that for both the angular and the linear case, momentum is a linear function of velocity —it’s just that
in the angular case the scaling factor is a matrix, while it’s simply a scalar in the linear case. Note
also that L(¢) is independent of any translational effects, while P(¢) is independent of any rotational
effects.

The relationship between L(¢) and the total torque 7(¢) is very simple: appendix A derives

L(t) = ©(1), (2-31)

analogous to the relation P(t) = F(1).

2.10 The Inertia Tensor

The inertia tensor I(z) is the scaling factor between angular momentum L(#) and angular veloc-
ity w(r). At a given time ¢, let r; be the displacement of the ith particle from x(z) by defining
ri =ri(t) — x(t). The tensor I(¢) is expressed in terms of r} as the symmetric matrix

2 /2 /o v
ml(rl-/V + i) —MT; T, —Mmil; F;.
_] (12 /2 o
I(t) = E —IT Ty m;(ri; +1;;) —MmiT T, (2-32)
Y R (2 2
Ty —miri ryy, mi(ri 1)

For an actual implementation, we replace the finite sums with integrals over a body’s volume in
world space. The mass terms m; are replaced by a density function. At first glance, it seems that
we would need to evaluate these integrals to find /(#) whenever the orientation R(¢) changes. This
would be prohibitively expensive to do during a simulation unless the body’s shape was so simple
(for example, a sphere or cube) that that the integrals could be evaluated symbolically.

Fortunately, by using body-space coordinates we can cheaply compute the inertia tensor for any
orientation R(?) in terms of a precomputed integral in body-space coordinates. (This integral is typ-
ically computed before the simulation begins and should be regarded as one of the input parameters

SIGGRAPH 2001 COURSE NOTES G13 PHYSICALLY BASED MODELING

describing a physical property of the body.) Using the fact that rgTrg = r;i + rgi +r

1(¢) as the difference

72

i-» Wecan rewrite

/2 ’o ’o
1 0 0 Ml T TG T
/Ty ;o 2 ’o
I(t) = mir;;r;] 01 0 |- Mir T MG T (2-33)
a a 2
0 01 M ri, M r, i
Taking the outer product multiplication of r; with itself, that is
2 /o a—
7‘; <r/_ r v) Fix rixriy TixTig
X ix iy iz
' T / _ ;o 2 ;o
rir; = rl;y = Fihix — Tiy Tidig (2-34)
i /o ’o 2
z rizrix rizriy riz
and letting 1 denote the 3 x 3 identity matrix, we can express /(¢) simply as
/T ' T
1) =Y mi((r} 1 =riri") (2-35)

How does this help?
Since r;(t) = R(t)ro; + x(t) where ry; is a constant, r; = R(t)ro;. Then, since R(ORMHT =1,

1) =Y mi(f 1= riri")
=Y mi((R()rop)" (RWyron1 — (R(1)rop) (R(ro) ")
=Y mi(ro] RO R(t)ro 1 — R(tyro;ro] R(1)T)
=Y " mi((ro] ro)1 = R(t)roiro] R()T).

(2-36)

Since ro! ro; is a scalar, we can rearrange things by writing
1ty =Y mi((ro] ro)1 = R(D)rozro] R())
=Y mi(R(0)(ro] ro) R()"1 = R()rogro] R (2-37)
= R() (D milrolron1 = rouro])) R,
If we define I,y as the matrix
Tvoay =Y mi((ro] ro)1 = ro;ro]) (2-38)
then from the previous equation we have
1(t) = R(DIpoay R (2-39)

Since 1504y is specified in body-space, it is constant over the simulation. Thus, by precomputing /5,4y
for a body before the simulation begins, we can easily compute /(¢) from /4, and the orientation
matrix R(z). Section 5.1 derives the body-space inertia tensor for a rectangular object in terms of an
integral over the body’s volume in body space.

SIGGRAPH 2001 COURSE NOTES G14 PHYSICALLY BASED MODELING

Also, the inverse of (¢) is given by the formula

1711 = (R poay RYT) ™

= (RDOT) ™ Ly R (2-40)

= R(1) Iy, R(1)"

since, for rotation matrices, R(f)” = R(¢)~! and (R(t) T) r— R(t). Clearly, 1 l;)ldy is also a constant
during the simulation.

2.11 Rigid Body Equations of Motion

Finally, we have covered all the concepts we need to define the state vector X(#)! For a rigid body,
we will define X(¢) as

x(1)
R(7)
P(1)
L(1)

X(1) = (2-41)

Thus, the state of a rigid body is its position and orientation (describing spatial information), and its
linear and angular momentum (describing velocity information). The mass M of the body and body-
space inertia tensor /.4y, are constants, which we assume we know when the simulation begins. At
any given time, the auxiliary quantities /(¢), w(t) and v(¢) are computed by

P(1)

vt = — . 1(t) = RO Ipoay R and @ (1) = ()" L(r). (2-42)

The derivative %X(t) is

x(1) v(t)
d _d| R® | _ | «®*R®) B
=g o |T| Fo | (2-43)
L(t) (1)

The next section gives an implementation for the function Dxdt () that computes %X(t).

One final note: rather than represent the orientation of the body as a matrix R(¢) in X(7), it is
better to use quaternions. Section 4 discusses using quaternions in place of rotation matrices. Briefly,
a quaternion is a type of four element vector that can be used to represent a rotation. If we replace
R(¢) in X(¢) with a quaternion ¢(¢), we can treat R(t) as an auxiliary variable that is computed
directly from ¢(t), just as w(¢) is computed from L(#). Section 4 derives a formula analogous to
R(t) = w(t)*R(1), that expresses ¢(t) in terms of g(¢) and w(¢).

e d
3 Computing 7 X(7)
Lets consider an implementation of the function Dxdt () for rigid bodies. The code is written

in C++, and we’ll assume that we have datatypes (classes) called matrix and triple which
implement, respectively, 3 x 3 matrices and points in 3-space. Using these datatypes, we’ll represent

SIGGRAPH 2001 COURSE NOTES G15 PHYSICALLY BASED MODELING

arigid body by the structure

struct RigidBody {

/* Constant quantities

double mass;
matrix Ibody,
Ibodyinv;

/* State variables */
triple x;
matrix R;
triple P,
L;

/* Derived

matrix Iinv;
triple v,
omega;

/* Computed quantities
triple force,
torque;

and assume a global array of bodies

RigidBody Bodies[NBODIES];

The constant quantities mass, Ibody and Ibodyinv are assumed to have been calculated for
each member of the array Bodies, before simulation begins. Also, the initial conditions for each
rigid body are specified by assigning values to the state variables x, R, P and L of each member of
Bodies. The implementation in this section represents orientation with a rotation matrix; section 4

*/
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*

*/

/*
/*

mass M */
Ibody */
51& (inverse of Ilypay) */

x(t) */
R(t) */
P(t) */
L) */

quantities (auxiliary variables) */

I~'(t) */
v(t) */
w(t) */

F@) */
() */

describes the changes necessary to represent orientation by a quaternion.

We communicate with the differential equation solver ode by passing arrays of real numbers.

Several bookkeeping routines are required:

/* Copy the state information into an array */
void StateToArray(RigidBody *rb, double *y)

{

*y++ = rb->x[0];
*y++ = rb->x[1];
*y++ = rb->x[2];
for(int i = 0; i < 3; i++)

for(int j = 0;
*y++ =

SIGGRAPH 2001 COURSE NOTES

j < 3;
rb->R[1i,31];

Gl1e6

/* x component of position */

/* etc. */

/* copy rotation matrix */
Jt+)

PHYSICALLY BASED MODELING

*y++ = rb->P[0];
*y++ = rb->P[1];
*y++ = rb->P[2];
*y++ = rb->L[0];
*y++ = rb->L[1];
*y++ = rb->L[2];

and

/* Copy information from an array into the state variables */
void ArrayToState(RigidBody *rb, double *y)

{
rb->x[0] = *y++;
rb->x[1] = *y++;
rb->x[2] = *y++;
for(int i = 0; 1 < 3; i++)
for(int j = 0; j < 3; j++)
rb->R[1,3] = *y++;
rb->P[0] = *y++;
rb->P[1] = *y++;
rb->P[2] = *y++;
rb->L[0] = *y++;
rb->L[1] = *y++;
rb->L[2] = *y++;
/* Compute auxiliary variables... */
/% v(t)=EL %/
rb->v = rb->P / mass;
/% I7Ht) = R(0) Ly R */
rb->Iinv = R * Ibodyinv * Transpose(R);
/* w(t)=1"1(t)L(t) */
rb->omega = rb->Iinv * rb->L;
}

Note that ArrayToState is responsible for computing values for the auxiliary variables Iinv,
v and omega. We’ll assume that the appropriate arithmetic operations have been defined between
real numbers, triple’s and matrix’s, and that Transpose returns the transpose of a matrix.

SIGGRAPH 2001 COURSE NOTES G17 PHYSICALLY BASED MODELING

Examining these routines, we see that each rigid body’s state is represented by 3+9+3 +3 =18

numbers. Transfers between all the members of Bodies and an array y of size 18 - NBODIES are
implemented as

#define STATE SIZE 18

void ArrayToBodies (double x[])

{
for(int i = 0; i < NBODIES; i++)
ArrayToState(&Bodies[i], &x[i * STATE SIZE]);

and

void BodiesToArray(double x[1)

{

for(int i = 0; i < NBODIES; i++)
StateToArray(&Bodies[i], &x[i * STATE SIZE]);

Now we can implement Dxdt (). Let’s assume that the routine

void ComputeForceAndTorque (double t, RigidBody *rb);
computes the force F(¢) and torque t(¢) acting on the rigid body *rb at time t, and stores F(t)

and t(¢) inrb->forceand rb->torquerespectively. ComputeForceAndTorquetakes into

account all forces and torques: gravity, wind, interaction with other bodies etc. Using this routine,
we’ll define Dxdt () as

void Dxdt(double t, double x[], double xdot[])

{
/* put data in x[] into Bodies[] */
ArrayToBodies (Xx);
for(int i = 0; i < NBODIES; i++)
{
ComputeForceAndTorque(t, &Bodies[i]);
DdtStateToArray(&Bodies[i],
&xdot[i * STATE SIZE]);
}
}

The numerical solver ode calls calls Dxdt () and is responsible for allocating enough space for the
arrays y, and xdot (STATE_SIZE-NBODIES worth for each). The function which does the real
work of computing %X(t) and storing it in the array xdot is ddtStateToArray:

SIGGRAPH 2001 COURSE NOTES G18 PHYSICALLY BASED MODELING

void DdtStateToArray(RigidBody *rb, double *xdot)
{

/* copy %x0)=1xﬂ into xdot */

*xdot++ = rb->v[0];

*xdot++ = rb->v[1l];

*xdot++ = rb->v[2];

/* Compute R(t) = w()*R(t) */
matrix Rdot = Star(rb->omega) * rb->R;

/* copy R(7) into array */
for(int i = 0; i < 3; i++)
for(int j = 0; j < 3; j++)
*xdot++ = Rdot[i,]];

xdot++ = rb->force[0]; / %IKﬂ::FKﬂ */
*xdot++ = rb->force[l];
*xdot++ = rb->force[2];

xdot++ = rb->torque[0]; / %l&ﬂ::r@) */
*xdot++ = rb->torque[l];
*xdot++ = rb->torque[2];

}

The routine Star, used to calculate R(¢) is defined as
matrix Star(triple a);

and returns the matrix

0 —af[2] al[l]
af[2] 0 —af[o0]
—al[l] a[o] 0

Given all of the above, actually performing a simulation is simple. Assume that the state vari-
ables of all NBODIES rigid bodies are initialized by a routine InitStates. We’ll have our simu-
lation run for 10 seconds, calling a routine DisplayBodies every ﬁth of a second to display the
bodies:

void RunSimulation()

{
double =x0[STATE SIZE * NBODIES],

xFinal [STATE SIZE * NBODIES];

InitStates();
BodiesToArray (xFinal);

SIGGRAPH 2001 COURSE NOTES G19 PHYSICALLY BASED MODELING

for(double t = 0; t < 10.0; t += 1./24.)

{
/* copy xFinal back to x0 */
for(int i = 0; i < STATE SIZE * NBODIES; i++)
{
x0[i] = xFinal[i];
ode(x0, xFinal, STATE SIZE * NBODIES,
t, t+1./24., Dxdt);
/* copy %XKt%—ﬁ) into state variables */
ArrayToBodies (xFinal);
DisplayBodies();
}

4 Quaternions vs. Rotation Matrices

There is a better way to represent the orientation of a rigid body than using a 3 x 3 rotation matrix.
For a number of reasons, unit quaternions, a type of four element vector normalized to unit length,
are a better choice than rotation matrices[16].

For rigid body simulation, the most important reason to avoid using rotation matrices is because
of numerical drift. Suppose that we keep track of the orientation of a rigid body according to the
formula

R(t) = w(t)*R(1).

As we update R(r) using this formula (that is, as we integrate this equation), we will inevitably
encounter drift. Numerical error will build up in the coefficients of R(z) so that R(¢) will no longer
be precisely a rotation matrix. Graphically, the effect would be that applying R(¢) to a body would
cause a skewing effect.

This problem can be alleviated by representing rotations with unit quaternions. Since quater-
nions have only four parameters, there is only one extra variable being used to describe the three
freedoms of the rotation. In contrast, a rotation matrix uses nine parameters to describe three degrees
of freedom; therefore, the degree of redundancy is noticeably lower for quaternions than rotation
matrices. As a result, quaternions experience far less drift than rotation matrices. If it does become
necessary to account for drift in a quaternion, it is because the quaternion has lost its unit magnitude
This is easily correctable by renormalizing the quaternion to unit length. Because of these two
properties, it is desirable to represent the orientation of a body directly as a unit quaternion g (7).
We will still express angular velocity as a vector w(¢). The orientation matrix R(¢), which is needed
to compute 7~ (¢), will be computed as an auxiliary variable from g(z).

3 Any quaternion of unit length corresponds to a rotation, so quaternions deviate from representing rotations only if
they lose their unit length. These notes will deal with that problem in a very simplistic way.

SIGGRAPH 2001 COURSE NOTES G20 PHYSICALLY BASED MODELING

We will write a quaternion s + v, + vyj + v k as the pair

[s, v].

Using this notation, quaternion multiplication is

[s1, vi]ls2, vo] = [s152 — vy « V2, S1V2 + $2V1 + V1 X V2] (4-1)

A rotation of 6 radians about a unit axis u is represented by the unit quaternion

[cos(8/2), sin(8/2)u].

In using quaternions to represent rotations, if ¢; and ¢, indicate rotations, then g,q; represents the
composite rotation of ¢; followed by ¢g>.* In a moment, we’ll show how to change the routines of
section 3 to handle the quaternion representation for orientation. Before we can make these changes
though, we’ll need a formula for g(¢). Appendix B derives the formula

§(t) = 1a()q(@). (4-2)

where the multiplication w(#)g(¢) is a shorthand for multiplication between the quaternions [0, w(#)]
and ¢(t). Note the similarity between equation (4-2) and

R(t) = w(1)*R(1).
To actually use a quaternion representation, we’ll need to redefine the type RigidBody:

struct RigidBody {
/* Constant quantities */

double mass; /* mass M */
matrix Ibody, /* Ipoay */
Ibodyinv; /* ij)ldy (inverse of Ilp,qy) */

/* State variables */

triple x; /* x(t) */
quaternion qg; /* q) */
triple P, /* P(t) */
L; /* L(t) */
/* Derived quantities (auxiliary variables) */
matrix Iinv, /% I71(@) %/
R; /* R(t) */
triple v, /% v(t) */
omega; /% w(t) */

/* Computed quantities */

“This is according to the convention that the rotation of a point p by a quaternion ¢ is gpg~'. Be warned! This is
opposite the convention for rotation in the original paper Shoemake[16], but it is in correspondence with some more recent
versions of Shoemake’s article. Writing a composite rotation as g,q; parallels our matrix notation for composition of
rotations.

SIGGRAPH 2001 COURSE NOTES G21 PHYSICALLY BASED MODELING

triple force, /* F(t) */
torque; /% 1(t) */

Next, in the routine StateToArray, we’ll replace the double loop

for(int i = 0; i < 3; i++) /* copy rotation matrix */
for(int j = 0; j < 3; j++)
*y++ = rb->R[i,7];
with

* Assume that a quaternion is represented in
* terms of elements ‘r’ for the real part,
* and ‘i’, ‘j’, and ‘k’ for the vector part.

*/

*y++ = rb->qg.r;
*y++ = rb->q.i;
*y++ = rb->qg.j;
*y++ = rb->qg.k;

A similar change is made in ArrayToState. Also, since ArrayToStateis responsible for com-
puting the auxiliary variable 7~!(¢), which depends on R(¢), ArrayToState must also compute
R(¢) as an auxiliary variable: in the section

/* Compute auxiliary variables... */

/* vty =L */
rb->v = rb->P / mass;

/% 171t = R(t) Ly R */
rb->Iinv = R * Ibodyinv * Transpose(R);

/* w@)=I1""1)L(@t) */

rb->omega = rb->Iinv * rb->L;
we add the line

rb->R = QuaterionToMatrix(normalize(rb->q));
prior to computing rb->Iinv. The routine normalize returns g divided by its length; this

unit length quaternion returned by normalize is then passed to QuaterionToMatrix which
returns a 3 x 3 rotation matrix. Given a quaternion g = [s, v], QuaterionToMatrix returns the

SIGGRAPH 2001 COURSE NOTES G22 PHYSICALLY BASED MODELING

matrix

1—2%—2% 2,0y — 25V, 20,0, + 250y
20,0y +2sv;, 1202 =202 2vyv, — 250,
2,0, — 25V, 2vyv; + 250, 1—-2v§——2v§

In case you need to convert from a rotation matrix to a quaternion,

quaternion matrixToQuaternion(const matrix &m)

{

quaternion d;
double tr, s;

tr = m[0,0] + m[1,1] + m[2,2];

if(tr >= 0)
{
s = sqgrt(tr + 1);
g.r = 0.5 * s;
s = 0.5/ s;
g.i = (m[2,1] - m[1,2]) * s;
g.j = (m[0,2] - m[2,0]) * s;
g.k = (m[1,0] - m[0,1]) * s;
}
else
{
int i = 0;

if(m[1,1] > m[0,0])

i=1;
if(m[2,2] > m[i,i))
i=2;

switch (1)

{
case 0
s = sqrt((m[0,0] - (m[1,1] + m[2,2])) + 1);
g.i = 0.5 * s;
s =0.5/ s;
qg.j = (m[0,1] + m[1,0]) * s;
g.k = (m[2,0] + m[0,2]) * s;
g.r = (m[2,1] - m[1,2]) * s;
break;
case 1:
s = sqrt((m[1,1] - (m[2,2] + m[0,0])) + 1);
g.j = 0.5 * s;
s = 0.5/ s;

SIGGRAPH 2001 COURSE NOTES G23 PHYSICALLY BASED MODELING

g.k = (m[1,2] + m[2,1]) * s;
g.i = (m[0,1] + m[1,0]) * s;
g.r = (m[0,2] - m[2,0]) * s;
break;

case 2:
s = sqrt((m[2,2] - (m[0,0] + m[1,1])) + 1);
g.k = 0.5 * s;
s = 0.5/ s;
q.i = (m[2,0] + m[0,2]) * s;
9. = (m[1,2] + m[2,1]) * s;
g.r = (m[1,0] - m[0,1]) * s;

}

return qg;

}

The matrix m is structured so thatm[0,0],m[0,1] andm[0, 2] form the first row (not column)
of m.

The routines ArrayToBodies and BodiesToArraydon’t need any changes at all, but note
that the constant STATE _SIZE changes from 18 to 13, since a quaternion requires five less elements
than a rotation matrix. The only other change we need is inddtStateToArray. Instead of

matrix Rdot = Star(rb->omega) * rb->R;

/* copy R(t) into array */
for(int i = 0; i < 3; i++)
for(int j = 0; j < 3; j++)
*xdot++ = Rdot[i,j];

we’ll use

quaternion gdot = .5 * (rb->omega * rb->q);
*xdot++ = qdot.r;
*xdot++ = gdot.i;
*xdot++ gdot.j;
*xdot++ gdot.k;

We’re assuming here that the multiplication between the triple rb—>omega and the quaternion
rb->q is defined to return the quaternion product

[0, rb->0omegalq.

SIGGRAPH 2001 COURSE NOTES G24 PHYSICALLY BASED MODELING

Fa3

Figure 7: A rectangular block of constant unit density, with center of mass at (0,0,0).

5 Examples

5.1 Inertia Tensor of a Block

Let us calculate the inertia tensor I, of the rectangular block in figure 7. The block has dimensions
Xo X Yo X zo. As required, the center of mass of the block is at the origin. Thus, the extent of the
block is from —3 to 3 along the x axis, and similarly for the y and z axes. To calculate the inertia
tensor, we must treat the sums in equation (2—32) as integrals over the volume of the block. Let us
assume that the block has constant unit density. This means that the density function p(x, y, z) is
always one. Since the block has volume x(ygzg, the mass M of the block is M = xyypzo. Then, in

SIGGRAPH 2001 COURSE NOTES G25 PHYSICALLY BASED MODELING

X Y 20 X0

2 2 2 2 2 2 ‘TO % 2 >
Ixx=/ / / p(x, y, 2)(y +z)dxdydz=/ / / Y- +z-dxdydz
~0 Jon Jza 0 Jon Joa

2

(-1

_%
=2 ydzox0 z3¥0Xo _ X0Y020
o 12 2 12

M
05+ 20) = ﬁ(yﬁ +25).

Similarly, 1, = %(x% + z%) and [, = %(x% + y%). Now, the off-diagonal terms, such as Iy,

are
X0 20 2 X0 20 2
2 2 2 2 2 2
Ixy:/ (/m/Op(x,y,z)(xy)dxdydz=/0/(/(xydxdydz:O (5-2)
—Xp - —Z X —o 0
2 Y2 Y2 2 Y2 Y2

(and similarly for the others) because the integrals are all symmetric. Thus, the inertia tensor of the
block is

v Yta 0 0
Lhody = - 0 x5+ 0) (5-3)
0 0 X3+

5.2 A Uniform Force Field

Suppose a uniform force acts on each particle of a body. For example, we typically describe a
gravitational field as exerting a force m; g on each particle of arigid body, where g is a vector pointing
downwards. The net force F, acting due to gravity on the body then is

Fg:Zmlg:Mg (5_4)

which yields an acceleration of % = g of the center of mass, as expected. What is the torque due
to the gravitational field? The net torque is the sum

i) = x(0) x mig = (Y mitri() = x(1))) x g =0 (5-5)
by equation (2-20). We see from this that a uniform gravitational field can have no effect on the

angular momentum of a body. Furthermore, the gravitational field can be treated as a single force
Mg acting on the body at its center of mass.

SIGGRAPH 2001 COURSE NOTES G26 PHYSICALLY BASED MODELING

y
/ |
|
x(tz. i .

— ~

~

A TA
ﬂ (-3,0,-2) 3,0,-2) ’

Figure 8: A block acted on by two equal forces F at two different points.

5.3 Rotation Free Movement of a Body

Now, let us consider some forces acting on the block of figure 8. Suppose that an external force
F = (0,0, f) acts on the body at points x(¢) + (—3,0, —2) and x(¢) 4+ (3,0, —2). We would expect
that this would cause the body to accelerate linearly, without accelerating angularly. The net force
acting on the body is (0, 0, 2 f), so the acceleration of the center of mass is

2f
M
along the z axis. The torque due to the force acting at x(¢) + (—3,0, —2) is
-3 -3
((x(t) + 0 |)—x() xF= 0 x F
-2 -2
while the torque due to the force acting at x(¢) + (3,0, —2) is
3 3
((x(t) + 0 |)—x(t) x F= 0 | xF.
-2 -2
The total torque 7 is therefore
-3 3 -3 3 0
T= 0 | xF+ 0 | xF=(0|+ 0 |)xF= 0 | xF.
-2 -2 -2 -2 -2
But this gives
0 0
T = O X O = 0
) f

SIGGRAPH 2001 COURSE NOTES G27 PHYSICALLY BASED MODELING

y
/ |

|

x(1) °

—~ N X

~
~

A A
A 30-2) (30.-2) o

Figure 9: A block acted on by two opposite forces F; and F, = — Fj, at two different points.

As expected then, the forces acting on the block impart no angular acceleration to the block.

5.4 Translation Free Movement of a Body

Suppose now that an external force F; = (0, 0, f) acts on the body at point x(¢) 4+ (—3, 0, —2) and an
external force F>» = (0, 0, — f) acts on the body at point x(¢) + (3, 0, 2) (figure 9). Since F| = —F;,
the net force acting on the block is F| + F> = 0, so there is no acceleration of the center of mass. On
the other hand, the net torque is

SIGGRAPH 2001 COURSE NOTES G28 PHYSICALLY BASED MODELING

F F

> | ©® (ten seconds latet) @ ———p | @ | ——p
%
Energy: Energy: 1
0 =My
2

Figure 10: A rectangular block acted on by a force through its center of mass.

-3
((x(t) + 0))x(t)) x F1 +
-2
3 -3 0 3 0
(x®)+1 0 |)—x(t) x i, = 0 | x 0]+ 0 | x 0 (5-6)
2 -2 f -2 —f
0 0 0
=| 3f |+ 3f |=| 6f
0 0 0

Thus, the net torque is (0, 6 f, 0), which is parallel to the y axis. The final result is that the forces
acting on the block cause it to angularly accelerate about the y axis.

5.5 Force vs. Torque Puzzle

In considering the effect of a force acting at a point on a body, it sometimes seems that the force is
being considered twice. That is, if a force F acts on a body at a point r 4 x(#) in space, then we first
consider F as accelerating the center of mass, and then consider F as imparting a spin to the body.

This gives rise to what at first seems a paradox: Consider the long horizontal block of figure 10
which is initially at rest. Suppose that a force F acts on the block at the center of mass for some
period of time, say, ten seconds. Since the force acts at the center of mass, no torque is exerted on
the body. After ten seconds, the body will have acquired some linear velocity v. The body will not
have acquired any angular velocity; thus the kinetic energy of the block will be %M [v]?.

Now suppose that the same force F is applied off-center to the body as shown in figure 11. Since
the force acting on the body is the same, the acceleration of the center of mass is the same. Thus,

SIGGRAPH 2001 COURSE NOTES G29 PHYSICALLY BASED MODELING

o (ten seconds later)

Energy: Energy: |
5 Mv'v + > o' lw

Figure 11: A block acted on by a force, off-center of the center of mass.

after ten seconds, the body will again have linear velocity v. However, after ten seconds, the body
will have picked up some angular velocity w, since the force F, acting off center, now exerts a torque
on the body. Since the kinetic energy is (see appendix C)

%Mlvl2 + %wTIw

the kinetic energy of the block is higher than when the force acted through the center of mass. But
if identical forces pushed the block in both cases, how can the energy of the block be different?
Hint: Energy, or work, is the integral of force over distance.

SIGGRAPH 2001 COURSE NOTES G30 PHYSICALLY BASED MODELING

o (ten seconds later)

Energy: Energy:

1
0 EMvTv+£wTIw

Figure 12: The path the force acts over is longer than in figure 10. As a result, the force does more
work, imparting a larger kinetic energy to the block.

Figure 12 shows why the force acting off center results in a higher kinetic energy. The kinetic
energy of the block is equivalent to the work done by the force. The work done by the force is the
integral of the force over the path traveled in applying that force. In figure 11, where the force acts off
the center of mass, consider the path traced out by the point where the force is applied. This path is
clearly longer than the path taken by the center of mass in figure 10. Thus, when the force is applied
off center, more work is done because the point p at which the force is applied traces out a longer
path then when the force is applied at the center of mass.

SIGGRAPH 2001 COURSE NOTES G31 PHYSICALLY BASED MODELING

Part I1. Nonpenetration Constraints

6 Problems of Nonpenetration Constraints

Now that we know how to write and implement the equations of motion for a rigid body, let’s consider
the problem of preventing bodies from inter-penetrating as they move about an environment. For
simplicity, suppose we simulate dropping a point mass (i.e. a single particle) onto a fixed floor. There
are several issues involved here.

Because we are dealing with rigid bodies, that are totally non-flexible, we don’t want to allow any
inter-penetration at all when the particle strikes the floor. (If we considered our floor to be flexible,
we might allow the particle to inter-penetrate some small distance, and view that as the floor actually
deforming near where the particle impacted. But we don’t consider the floor to be flexible, so we
don’t want any inter-penetration at all.) This means that at the instant that the particle actually comes
into contact with the floor, what we would like is to abruptly change the velocity of the particle. This
is quite different from the approach taken for flexible bodies. For a flexible body, say a rubber ball,
we might consider the collision as occurring gradually. That is, over some fairly small, but non-zero
span of time, a force would act between the ball and the floor and change the ball’s velocity. During
this time span, the ball would deform, due to the force. The more rigid we made the ball, the less the
ball would deform, and the faster this collision would occur. In the limiting case, the ball is infinitely
rigid, and can’t deform at all. Unless the ball’s downward velocity is halted instantaneously, the
ball will inter-penetrate the floor somewhat. In rigid body dynamics then, we consider collisions as
occurring instantaneously.

This means we have two types of contact we need to deal with. When two bodies are in contact
at some point p, and they have a velocity towards each other (as in the particle striking the floor), we
call this colliding contact. Colliding contact requires an instantaneous change in velocity. Whenever
a collision occurs, the state of a body, which describes both position, and velocity, undergoes a
discontinuity in the velocity. The numerical routines that solve ODE’s do so under the assumption
that the state X(¢) always varies smoothly. Clearly, requiring X(¢) to change discontinuously when
a collision occurs violates that assumption.

We get around this problem as follows. If a collision occurs at time ¢., we tell the ODE solver to
stop. We then take the state at this time, X(#.), and compute how the velocities of bodies involved
in the collision must change. We’ll call the state reflecting these new velocities X(z.)". Note that
X(t.) and X(#.)" agree for all spatial variables (position and orientation), but will be different for
the velocity variables of bodies involved in the collision at time z.. We then restart the numerical
solver, with the new state X(¢.), and instruct it to simulate forward from time z,..

Whenever bodies are resting on one another at some point p (e.g. imagine the particle in contact
with the floor with zero velocity), we say that the bodies are in resting contact. In this case, we
compute a force that prevents the particle from accelerating downwards; essentially, this force is the
weight of the particle due to gravity (or whatever other external forces push on the particle). We call
the force between the particle and the floor a contact force. Resting contact clearly doesn’t require
us to stop and restart the ODE solve at every instant; from the ODE solver’s point of view, contact
forces are just a part of the force returned by ComputeForceAndTorque.

SIGGRAPH 2001 COURSE NOTES G32 PHYSICALLY BASED MODELING

fh + At

(inter-penetration detected)

Figure 13: At time #y + At, the particle is found to lie below the floor. Thus, the actual time of
collision 7. lies between the time of the last known legal position, 7y, and 79 + At.

So far then, we have two problems we’ll need to deal with: computing velocity changes for
colliding contact, and computing the contact forces that prevent inter-penetration. But before we can
tackle these problems we have to deal with the geometric issue of actually detecting contact between
bodies. Let’s go back to dropping the particle to the floor. As we run our simulation, we compute
the position of the particle as it drops towards the floor at specific time values (figure 13). Suppose
we consider the particle at times ty, o + At, tg + 2At etc.’ and suppose the time of collision, ., at
which the particle actually strikes the floor, lies between #y and 7y 4+ At. Then at time #y, we find that
the particle lies above the floor, but at the next time step, fy + At, we find the particle is beneath the
floor, which means that inter-penetration has occurred.

If we’re going to stop and restart the simulator at time ¢, we’ll need to compute #.. All we know
so far is that 7. lies between 7y and ty + At. In general, solving for ¢, exactly is difficult, so we
solve for ¢, numerically, to within a certain tolerance. A simple way of determining ¢, is to use a
numerical method called bisection[14]. If at time #y + At we detect inter-penetration, we inform the
ODE solver that we wish to restart back at time #y, and simulate forward to time ¢ty + At/2. If the
simulator reaches 7y + At/2 without encountering inter-penetration, we know the collision time ¢,
lies between ty + Az/2 and fy + At. Otherwise, t. is less than #y + At/2, and we try to simulate from
to to ty + At/4. Eventually, the time of collision ¢, is computed to within some suitable numerical
tolerance. The accuracy with which 7. is found depends on the collision detection routines. The
collision detection routines have some parameter €. We decide that our computation of ¢, is “good
enough” when the particle inter-penetrates the floor by no more than €, and is less than € above the
floor. At this point we declare that the particle is in contact with the floor (figure 14).

The method of bisection is a little slow, but its easy to implement and quite robust. A faster
method involves actually predicting the time 7. of the collision, based on examining X(#y) and
X(tg + At). Baraff[1, 2] describes how to make such predictions. How to actually implement all of

3The ODE solver doesn’t have to proceed with equal size time steps though.

SIGGRAPH 2001 COURSE NOTES G33 PHYSICALLY BASED MODELING

t. found (within tolerance)

ty + At

(inter-penetration detected)

Figure 14: When the particle is found to be within some tolerance € of contacting the floor, then ¢,
is considered to have been computed to within sufficient accuracy.

this depends on how you interact with your ODE routines. One might use exception handling code
to signal the ODE of various events (collisions, inter-penetration), or pass some sort of messages to
the ODE solver. We’ll just assume that you have some way of getting your ODE solver to progress
just up to the point 7.

Once you actually reach the time of a collision, or whenever you’re in a state X(#) where no
inter-penetration has occurred, a geometric determination has to be made to find all the points of
contact. (Just because you may be looking for the time of collision between two bodies A and B
doesn’t mean you get to neglect resting contact forces between other bodies C and D. Whenever
you’re trying to move the simulation forward, you’ll need to compute the point of contact between
bodies and the contact forces at those points.) There is a vast amount of literature dealing with the
collision detection problem. For instance, some recent SIGGRAPH papers dealing with the subject
are Von Herzen, Barr and Zatz[17] and Moore and Wilhelms[12]; in robotics, a number of papers of
interest are Canny|[4], Gilbert and Hong[6], Meyer[11] and Cundall[5]. Preparata and Shamos[13]
describes many approaches in computational geometry to the problem. In the next section, we’ll
briefly describe a collision detection “philosophy” that leads to very efficient algorithms, for the sorts
of simulation these course notes are concerned with. Actual code for the algorithms is fairly easy to
write, but a little too lengthy to fit in these notes. Following this, we’ll move on to consider colliding
and resting contact.

7 Collision Detection

The collision detection algorithm begins with a preprocessing step, in which a bounding box for each
rigid body is computed (a box with sides parallel to the coordinate axes). Given n such bounding
boxes, we will want to quickly determine all pairs of bounding boxes that overlap. Any pair of rigid
bodies whose bounding boxes do not overlap need not be considered any further. Pairs of rigid

SIGGRAPH 2001 COURSE NOTES G34 PHYSICALLY BASED MODELING

bodies whose bounding boxes do overlap require further consideration. We’ll first describe how
to efficiently check for inter-penetration or contact points between rigid bodies defined as convex
polyhedra. Then we’ll show how to perform the bounding box check efficiently.

As described in section 1, the simulation process consists of the repeated computation of the
derivative of the state vector, %X(t), at various times . The numerical ODE solver is responsible
for choosing the values of ¢ at which the state derivative is to be computed. For any reasonably
complicated simulation, the values of 7 chosen are such that the state X does not change greatly be-
tween successive values of 7. As a result, there is almost always great geometric coherence between
successive time steps. At a time step 7y + At, the idea is to take advantage of the collision detection

results computed at the previous time step #y.

7.1 Convex Polyhedra

Our primary mechanism for exploiting coherence will be through the use of witnesses. In our context,
given two convex polyhedra A and B, a witness is some piece of information that can be used to
quickly answer the “yes/no” question “are A and B disjoint”? We will utilize coherence by caching
witnesses from one time step to the next; hopefully a witness from the previous time step will be a
witness during the current time step.

Since we are considering convex polyhedra, two polyhedra do not inter-penetrate if and only if a
separating plane between them exists. A separating plane between two polyhedra is a plane such that
each polyhedron lies on a different side of the plane. A given plane can be verified to be a separating
plane by testing to make sure that all of the vertices of A and B lie on opposite sides of the plane.
Thus, a separating plane is a witness to the fact that two convex polyhedra do not inter-penetrate. If
a separating plane does not exist, then the polyhedra must be inter-penetrating.

The cost of initially finding a witness (for the very first time step of the simulation, or the first
time two bodies become close enough to require more than a bounding box test) is unavoidable.
A simple way to find a separating plane initially is as follows. If a pair of convex polyhedra are
disjoint or contacting (but not inter-penetrating), then a separating plane exists with the following
property: either the plane contains a face of one of the polyhedra, or the plane contains an edge from
one of the polyhedra and is parallel to an edge of the other polyhedra. (That is, the separating plane’s
normal is the cross product of the two edge directions, and the plane itself contains one of the edges.)
We will call the face or edges in question the defining face or edges. Initially, we simply check all
possible combinations of faces and edges to see if one such combination forms a separating plane
(figure 15). Although this is inefficient, it’s done so infrequently that the inefficiency is unimportant.
For subsequent time steps, all we need to do is form a separating plane from the defining face or edges
found during the previous time step, and then verify the plane to see that it is still valid (figure 16).

On those (rare) occasions when the cached face or two edges fails to form a valid separating plane
(figure 17), faces or edges adjacent to the previously cached face or edges can be examined to see if
they form a separating plane; however, this happens infrequently enough that it may be simpler to
start from scratch and compute a new separating plane without using any prior knowledge.

Once the separating place has been found, the contact region between the two polyhedra is
determined, assuming the polyhedra are not disjoint. Contact points between the two polyhedra can
only occur on the separating plane. Given the separating plane, the contact points can be quickly and
efficiently determined by comparing only those faces, edges, and vertices of the polyhedra that are
coincident with the separating plane.

However, if no separating plane can be found, then the two polyhedra must be inter-penetrating.
When two polyhedra inter-penetrate, it is almost always the case that either a vertex of one poly-

SIGGRAPH 2001 COURSE NOTES G35 PHYSICALLY BASED MODELING

separating
plane

Figure 15: Exhaustive search for a separating plane. Only one face of the two polygons forms a
separating plane.

defining
44— face

Figure 16: (a) At this time step, the separating plane is defined by a face of one of the polygons. (b) At
the next time step, the polygons have moved, but the same face still defines a separating plane.

SIGGRAPH 2001 COURSE NOTES G36 PHYSICALLY BASED MODELING

(@) (b)

\ \
\
. \
\
\
\
\ N
\

\

\ \

\

Figure 17: The face that has been defining a separating plane no longer does so, and a new separating
plane must be found.

hedron is inside the other, or an edge of one polyhedron has intersected a face of the other® In
this case, the inter-penetrating vertex, or intersecting edge and face are cached as a witness to the
inter-penetration. Since this indicates a collision at some earlier time, the simulator will back up and
attempt to compute %X(r) at some earlier time. Until the collision time is determined, the first action
taken by the collision/contact determination step will be to check the cached vertex or edge and face
to see if they indicate inter-penetration. Thus, until the collision time is found, states in which the
inter-penetration still exists are identified as such with a minimum of computational overhead.

7.2 Bounding Boxes

To reduce the number of pairwise collision/contact determinations necessary, a bounding box hierar-
chy is imposed on the bodies in the simulation environment. If two bounding boxes are found not to
overlap, no further comparisons involving the contents of the boxes are needed. Given a collection
of n rectangular bounding boxes, aligned with the coordinate axes, we would like to efficiently
determine all pairs of boxes that overlap. A naive pairwise comparison of all pairs requires O(n?)
work and is too inefficient, unless the number of bodies is small. Computational geometry algorithms
exist that can solve this problem in time O(nlogn 4+ k) where k is the number of pairwise overlaps; a
general result is that the problem can be solved in time O (nlog?=?n + k) for d-dimensional bounding
boxes[13]. Using coherence, we can achieve substantially better performance.

An exception is the following. Stack two cubes of equal size atop one another so that their contacting faces exactly
coincide. Lower the top one. This produces an inter-penetration such that no vertex is inside either cube, and no edge
penetrates through any face.

SIGGRAPH 2001 COURSE NOTES G37 PHYSICALLY BASED MODELING

IR I [| |
I [I I

|
b3 b6 bl € €1 bs b2 (] b4 (2 €y €n

Figure 18: The sweep/sort algorithm. (a) When b, is encountered, the active list contains intervals
3 and 6; interval 1 is reported to overlap with these two intervals. Interval 1 is added to the active
list and the algorithm continues. (b) When e3 is encountered, the active list contains intervals 2, 3
and 5. Interval 3 is removed from the active list.

7.2.1 The one-dimensional case

Consider the problem of detecting overlap between one-dimensional bounding boxes, aligned with
the coordinate system. Such a bounding box can be described simply as an interval [b, e] where b
and e are real numbers. Let us consider a list of 7 such intervals, with the ith interval being [b;, ¢;].
The problem is then defined to be the determination of all pairsi and j such that the intervals [b;, ;]
and [b}, e;] intersect.

The problem can be solved initially by a sort and sweep algorithm. A sorted list of all the b;
and e; values is created, from lowest to highest. The list is then swept, and a list of active intervals,
initially empty, is maintained. Whenever some value b; is encountered, all intervals on the active list
are output as overlapping with interval i, and interval i is then added to the list (figure 18a). Whenever
some value e; is encountered , interval i is removed from the active list (figure 18b). The cost of this
process is O(nlogn) to create the sorted list, O(n) to sweep through the list, and O (k) to output each
overlap. This gives a total cost of O(nlogn 4+ k), and is an optimal algorithm for initially solving
the problem.

Subsequent comparisons can be improved as follows. First, there is no need to use an O(nlogn)
algorithm to form the sorted list of b; and e; values. It is considerably more efficient to start with
the order found for b; and e; values from the previous time step; if coherence is high, this ordering
will be nearly correct for the current time step. A sorting method called an insertion sort[15] is used
to permute the “nearly sorted” list into a sorted list. The insertion sort algorithm works by moving
items towards the beginning of the list, until a smaller item is encountered. Thus, the second item
is interchanged with the first if necessary, then the third item is moved towards the beginning of the
list until its proper place is found, and so on; each movement of an item indicates a change in the
ordering of two values. After the last item on the list has been processed, the list is in order. Such

SIGGRAPH 2001 COURSE NOTES G38 PHYSICALLY BASED MODELING

Ig Is
I5 14
I I,
e N
| | | | | | [| | | |
| | | | | I | | | |
b3 b6 bl € €1 b5 b2 €3 €s b4 €y €9

Figure 19: A coherence-based method of detecting overlaps. The order produced in figure 18 is
nearly correct for this arrangement of intervals. Only b4 and e5 need to be exchanged. When the
exchange occurs, the change in overlap status between interval 4 and 5 is detected.

a sort takes time O(n + c¢) where c is the number of exchanges necessary. For example, the only
difference between figures 19 and 18 is that interval 4 has moved to the right. Starting from the
ordered list of b; and e; values of figure 18, only a single exchange is necessary to sort the list for
figure 19. The insertion sort is not recommendeded as a sorting procedure in general, since it may
require O(n?) exchanges; however, it is a good algorithm for sorting a nearly sorted list, which is
what occurs in our highly coherent environment. To complete the algorithm, note that if two intervals
i and j overlap at the previous time step, but not at the current time step, one or more exchanges
involving either a b; or ¢; value and a b; or e; value must occur. The converse is true as well when
intervals i and j change from not overlapping at the previous time step to overlapping at the current
time step.

Thus, if we maintain a table of overlapping intervals at each time step, the table can be updated
at each time step with a total cost of O(n 4 ¢). Assuming coherence, the number of exchanges ¢
necessary will be close to the actual number k of changes in overlap status, and the extra O(c — k)
work will be negligible. Thus, for the one-dimensional bounding box problem, the coherence view
yields an efficient algorithm of extreme (if not maximal) simplicity that approaches optimality as
coherence increases.

7.2.2 The three-dimensional case

Efficient computational geometry algorithms for solving the bounding box intersection problem in
R? are much more complicated than the sort and sweep method for the one-dimensional case. How-
ever, these algorithms all have in common a step that is essentially a sort along a coordinate axis, as in
the one-dimensional case. Each bounding box is described as three independent intervals [ng), efx)] ,
[bfy), el(y)], and [bl@, el@] which represent the intervals spanned on the three coordinate axes by
the ith bounding box. Thus, our first thought towards improving the efficiency of a computational
geometry algorithm for coherent situations would be to sort a list containing the b}x) and e}x) values,

and similarly for the y and z axes. Again, such a step will involve O(n + c) work, where c is now the

SIGGRAPH 2001 COURSE NOTES G39 PHYSICALLY BASED MODELING

total number of exchanges involved in sorting all three lists. However, if we observe that checking
two bounding boxes for overlap is a constant time operation, it follows that if we simply check
bounding boxes i and j for overlap whenever an exchange is made between values indexed by i and
Jj (on any coordinate axis), we will detect all changes in overlap status in O(n + ¢) time.

Again, we can maintain a table of overlapping bounding boxes, and update it at each time step
in O(n+ c) time. The extra work involved is again O(c — k). For the three-dimensional case, extra
work can occur if the extents of two bounding boxes change on one coordinate axis without an actual
change of their overlap status. In practice, the extra work done has been found to be completely
negligible, and the algorithm runs essentially in time O(n + k).

8 Colliding Contact

For the remainder of these notes, we’re going to be concerned with examining the bodies in our
simulator at a particular instant of time #,. At this time 7y, we assume that no bodies are inter-
penetrating, and that the simulator has already determined which bodies contact, and at which points.
To simplify matters, we’ll imagine that all bodies are polyhedra, and that every contact point between
bodies has been detected. We’ll consider contacts between polyhedra as either verfex/face contacts
or edgel/edge contacts. A vertex/face contact occurs when a vertex on one polyhedra is in contact
with a face on another polyhedra. An edge/edge contact occurs when a pair of edges contact; it is
assumed in this case that the two edges are not collinear. (Vertex/vertex and vertex/edge contacts
are degenerate, and are not considered in these notes.) As examples, a cube resting on a plane would
be described as four vertex/face contacts, one contact at each corner of the cube. A cube resting on
a table, but with its bottom face hanging over the edge of the table would still be described as four
contacts; two vertex/face contacts for the vertices on the table, and two edge/edge contacts, one on
each edge of the cube that crosses over an edge of the table.
Each contact is represented by a structure

struct Contact {

RigidBody *a, /* body containing vertex */
b; / body containing face */
triple o) /* world-space vertex location */
n, /* outwards pointing normal of face */
ea, /* edge direction for A */
eb; /* edge direction for B */
bool vE; /* true if vertex/face contact */
}i
int Ncontacts;

Contact *Contacts;

If the contact is a vertex/face contact, then the variable a points to the rigid body that the contact
vertex is attached to, while b points to the body the face is attached to. We’ll call these two bodies
A and B respectively. For vertex/face contacts, the variable n is set to the outwards pointing unit
normal of the contact face of body B, and the variables ea and eb are unused.

For edge/edge contacts, ea is a triple of unit length, that points in the direction of the contacting
edge of body A (pointed to by a). Similarly, eb is a unit vector giving the direction that the contact

SIGGRAPH 2001 COURSE NOTES G40 PHYSICALLY BASED MODELING

ﬁm(2

Py(1)

B

Figure 20: (a) The points p,(¢) and p,(¢) for a vertex/face contact. (b) At time #y, the bodies come
into contact at p,(ty) = pp (tp).

edge on body B points. For edge/edge contacts, n denotes a unit vector in the ea x eb direction.
We’ll adopt the convention that the two contacting bodies are labeled A and B such that the normal
direction ea x eb points outwards from B, towards A, as it does for vertex/face contacts.

For both types of contact, the position of the contact in world space (which is either the contact
vertex, or the point where the two edges intersect) is given by p. The collision detection routines
are responsible for discovering all the contact points, setting Ncontacts to the number of contact
points, and allocating space for and initializing an array of Contact structures.

The first thing we’ll need to do is examine the data in each Contact structure to see if colliding
contact is taking place. For a given contact point, the two bodies A and B contact at the point p. Let
Ppa(t) denote the particular the point on body A that satisfies p,(#y) = p. (For vertex/face contacts,
this point will be the vertex itself. For edge/edge contacts, it is some particular point on the contact
edge of A.) Similarly, let p,(¢) denote the particular point on body B that coincides with p,(fy) = p
attime 7y (figure 20). Although p,(¢) and p; (¢) are coincident at time ¢y, the velocity of the two points
at time 7y may be quite different. We will examine this velocity to see if the bodies are colliding or
not.

From section 2.5, we can calculate the velocity of the vertex point, p,(#y) by the formula

Pa(to) = va(t0) + wa(to) X (Pa(to) — xa(to)) (8-1)

where v, (t) and w,(t) are the velocities for body A. Similarly, the velocity of the contact point on
the face of B is

Py (to) = vp(to) + wp(to) X (pp(to) — xp(t0)). (3-2)

Let’s examine the quantity

Vret = A(to) « (Palto) — Pp (1)), (8-3)

SIGGRAPH 2001 COURSE NOTES G41 PHYSICALLY BASED MODELING

Pa(to) = pp(1o)

Figure 21: The vector p,(#) — pp(fo) points in the same direction as 71 (¢y); the bodies are separating.

which is a scalar. In this equation, 7(fy) is the unit surface normal, described by the variable n, for
each contact point. The quantity v,,.; gives the component of the relative velocity p,(ty) — pp(to)
in the 71(#y) direction. Clearly, if v, is positive, then the relative velocity p,(fy) — pp(to) at the
contact point is in the positive 7(#y) direction. This means that the bodies are moving apart, and that
this contact point will disappear immediately after time 7y (figure 21). We don’t need to worry about
this case. If v,,; is zero, then the bodies are neither approaching nor receding at p (figure 22). This
is exactly what we mean by resting contact, and we’ll deal with it in the next section.

In this section, we’re interested in the last possibility, which is v,,; < 0. This means that the
relative velocity at p is opposite 71(#y), and we have colliding contact. If the velocities of the bodies
don’t immediately undergo a change, inter-penetration will result (figure 23).

How do we compute the change in velocity? Any force we might imagine acting at p, no matter
how strong, would require at least a small amount of time to completely halt the relative motion
between the bodies. (No matter how strong your car brakes are, you still need to apply them before
you hit the brick wall. If you wait until you’ve contacted the wall, it’s too late...) Since we want
bodies to change their velocity instantly though, we postulate a new quantity J called an impulse.
An impulse is a vector quantity, just like a force, but it has the units of momentum. Applying an
impulse produces an instantaneous change in the velocity of a body. To determine the effects of a
given impulse J, we imagine a large force F that acts for a small time interval At. If we let F go to
infinity and At go to zero in such a way that

FAt=1J (84
then we can derive the effect of J on a body’s velocity by considering how the velocity would change

if we let the force F act on it for At time.
For example, if we apply an impulse J to a rigid body with mass M, then the change in linear

SIGGRAPH 2001 COURSE NOTES G42 PHYSICALLY BASED MODELING

Pa(t0) = (1)

contact force

Figure 22: The vector p,(fy) — py (o) is perpendicular to 7(fy); the bodies are in resting contact. A
contact force may be necessary to prevent bodies from accelerating towards each other.

Pa(to) = (1)

Figure 23: Colliding contact. The relative velocity p,(ty) — pp(tp) is directed inwards, opposite
n(ty). Unless the relative velocity is abruptly changed, inter-penetration will occur immediately after
time 7.

SIGGRAPH 2001 COURSE NOTES G43 PHYSICALLY BASED MODELING

velocity Av is simply

Av=—. 85
V=47 (8-5)
Equivalently, the change in linear momentum A P is simply A P = J. If the impulse acts at the point
D, then just as a force produces a torque, J produces an impulsive torque of

Timpulse = (p—x(1)) x J. (8-6)

As one would imagine, the impulsive torque e also gives rise to a change in angular momentum
AL of AL = Tjpuis.- The change in angular velocity is simply / -1 (0) Timpuise» assuming the impulse
was applied at time .

When two bodies collide, we will apply an impulse between them to change their velocity. For
frictionless bodies, the direction of the impulse will be in the normal direction, 71(#y). Thus, we can
write the impulse J as

J = jito) @7

where j is an (as yet) undetermined scalar that gives the magnitude of the impulse. We’ll adopt the
convention that the impulse J acts positively on body A, that is, A is subject to an impulse of + jn(y),
while body B is subject to an equal but opposite impulse — j7ii(#) (figure 24). We compute j by using
an empirical law for collisions. Let’s let p, (#p) denote the velocity of the contact vertex of A prior
to the impulse being applied, and let p (#o) denote the velocity after we apply the impulse J. Let
D, (to) and p; (to) be defined similarly. Using this notation, the initial relative velocity in the normal
direction is

Uy = 11(10) + (Py (t0) — Py (0)); (8-8)

after the application of the impulse,

vt =) - (b3 (t) — P (10))- (8-9)

The empirical law for frictionless collisions says simply that

vt = —e€vpy. (8-10)
The quantity € is called the coefficient of restitution and must satisfy 0 < € < 1. If € = 1, then
v:rel = —v,,;, and the collision is perfectly “bouncy”; in particular, no kinetic energy is lost. At the
other end of the spectrum, € = 0 results in Ur+e ; = 0, and a maximum of kinetic energy is lost. After
this sort of collision, the two bodies will be in resting contact at the contact point p (figure 25).
Calculating the magnitude j of the impulse J = jn(#) is fairly simple, although the equations are
a bit tedious to work through. Let’s define the displacements r, and rj, as p — x,(#y),and p — x,(tp).
If we let v, (fo) and w] (1)) be the pre-impulse velocities of body A, and v} (f9) and w,} (1) be the

post-impulse velocities, we can write

Pa (o) = vy (t0) + wy (to) X r4 (8-11)

SIGGRAPH 2001 COURSE NOTES G44 PHYSICALLY BASED MODELING

Figure 24: The impulse between two bodies at a contact point. Animpulse of jn(zy) acts on A, while
an impulse of — jn(zy) acts on B.

(@) (b) Pa(to)— py (1)

pa(to)= Py (1)

(©)
o @
P (1) = py () Pa(to)— Py (1)

Figure 25: (a) The relative velocity before application of the impulse. (b) The component of the
relative velocity in the 71(#y) direction is reversed for an € = 1 collision. The relative velocity
perpendicular to 7(zy) remains the same. (c) A collision with 0 < e< 1. The bodies bounce away
in the 7(fy) direction with less speed than they approached. (d) A collision with € = 0. The bodies
do not bounce away from each other, but the relative velocity perpendicular to 71(zy) is unaffected by
the collision.

SIGGRAPH 2001 COURSE NOTES G45 PHYSICALLY BASED MODELING

along with

Jn(to)
M,

vy (1) = vy (10) + and o (1) = w, (to) + I, (10) (ra x jii(t0)) (8-12)

where M, is the mass of body A, and 1,(#y) is its inertia tensor. Combining the two previous equa-

tions yields

Jjn(to)
M,

pa (o) = (vg(m) +) + (w5 (t0) + I} ' (t0) (ra x jA(ty))) X 74

Ji(to)
M,

= v, (to) + w, (t) X rq + <) + (I, (t0) (ra x jit(to))) x 14 (8-13)

=p, +j<n]$0) + I;l(to) (ra X ﬁ(to))) X Fg.

It is important to note the form of p;f (#o): it is a simple linear function of j. For body B, an opposite
impulse — jn(fy) acts, yielding

:) - .
Py (10) =y —J (72 + 15 (10) (ry n(to))) 30 (8-14)
This yields
. . . . X ﬁ(kﬂ ﬁ(M)
pZ(to)—pZ=(pZ(to)—pZ)+J(w, T, T

(8-15)
(1" (10) (ra x 2(t0))) X ra + (I; " (t0) (ry x A(10))) X rb).

To calculate v;! , we dot this expression with 7i(fy). Since 7i(fy) is of unit length, 7i(fo) - i(1p) = 1,
and we obtain

vl =Alt) - (P (t) — pyy)

n o L (1 1
= n(tp) - (p, (1) —Pb)+J<ﬁ +ﬁb +

Ato) « (I, (t0) (ra x A1) X ra+A(t0) - (1, (1) (rp x 7i(to))) x rb) (8-16)

_ [1 1
_vrel+./(ﬁa+ﬁb+

Alty) « (I (t0) (ra x Alty))) X ra+ilto) « (I, ' (t0) (rp x Alty))) x rb> .

By expressing U::;z in terms of j and v,;, we can compute j according to equation (8-10). If we
substitute equation (8—16) into equation (8—10), we get

_ A1 1 R _ N
Vper + J<E + , +7(to) « (I ' (o) (ra x Ailty))) X rat

(8-17)
Aty) - (I, ' (t0) (rp x A(tg))) x Vb) = —€V,,.

SIGGRAPH 2001 COURSE NOTES G46 PHYSICALLY BASED MODELING

Finally, solving for j,

j= —(1+e)v,, (8-18)
3 + 3 T AG0) - (171 (t0) (ra X A1) X ra+Alto) « (I; 1 (10) (ry x A10))) x 3

Let’s consider some actual code (written for clarity, not speed). First, we determine if two bodies
are in colliding contact.

/*

* Operators: if ‘x’ and ‘y’ are triples,

* assume that ‘x ~ y’ is their cross product,
* and ‘x * y’ is their dot product.

*/

/* Return the velocity of a point on a rigid body */
triple pt velocity(Body *body, triple p)
{

return body->v + (body->omega "~ (p - body->x));

/*
* Return true if bodies are in colliding contact. The
* parameter ‘THRESHOLD'’ is a small numerical tolerance
* used for deciding if bodies are colliding.
*/
bool colliding(Contact *c)
{
triple padot = pt velocity(c->a, p), /* py(ty) */
pbdot = pt _velocity(c->b, p); /* p,(ty) */
double vrel = c->n * (padot - pbdot); /* v_, */

rel

if (vrel > THRESHOLD) /* moving away */
return false;

if(vrel > -THRESHOLD) /* resting contact */
return false;

else /* vrel < -THRESHOLD */
return true;

Next, we’ll loop through all the contact points until all the collisions are resolved, and actually
compute and apply an impulse.

void collision(Contact *c, double epsilon)
{
triple padot = pt velocity(c->a, c->p), /* p,(ty) */
pbdot = pt_velocity(c->b, c->p), /* p, (to) */
n = c->n, /* n(ty) */

SIGGRAPH 2001 COURSE NOTES G47 PHYSICALLY BASED MODELING

ra = p - c->a->x, /* r, */

rb = p - c->b->x; /* ry */
double vrel = n * (padot - pbdot), /* v, */
numerator = -(1 + epsilon) * vrel;

/* We’'ll calculate the denominator in four parts */

double terml = 1 / c->a->mass,
term2 = 1 / c->b->mass,
term3 = n * ((c->a->Iinv * (ra ~ n)) "~ ra),
term4 = n * ((c->b->Iinv * (rb ~ n)) = rb);

/* Compute the impulse magnitude */

double j = numerator / (terml + term2 + term3 + termd);
triple force = j * n;

/* Apply the impulse to the bodies */
c->a->P += force;

c->b->P -= force;
c->a->L += ra ~ force;
c->b->L -= rb = force;

/* recompute auxiliary variables */
c->a->v = c->a->P / c->a->mass;
c->b->v = ¢->b->P / c->b->mass;

c->a->omega = c->a->Iinv * c->a->L;
c->b->omega c->b->Iinv * c->b->L;

void FindAllCollisions(Contact contacts[], int ncontacts)

{

bool had_collision;
double epsilon = .5;
do {

had_collision = false;

for(int i = 0; i < ncontacts; i++)
if(colliding(&contacts[i]))
{

collision(&contacts[i], epsilon);
had_collision = true;

/* Tell the solver we had a collision */
ode discontinuous();

SIGGRAPH 2001 COURSE NOTES G48 PHYSICALLY BASED MODELING

} while(had collision == true);

Note several things. First, € = .5 was chosen arbitrarily. In a real implementation, we’d allow the
user to use different values of € depending on which two bodies were colliding. Also, every time we
find a collision, we have to rescan the list of contacts, since bodies that were at rest may no longer be
so, and new collisions may develop. If there are initially several collisions to be resolved (such as a
cube dropped flat onto a plane, with all four vertices colliding at once), the order of the contact list
may have an effect on the simulation. There is a way to compute impulses at more than one contact
point at a time, but it more complicated, and is based on the concepts used for resting contact in the
next section. For further information, see Baraff]1].

Incidentally, if you want to have certain bodies that are “fixed”, and cannot be moved (such as
floors, or walls), you can use the following trick: for such bodies, let ﬁ be zero; also let the
inverse inertia tensor also be the 3 x 3 zero matrix. You can either special-case the code to check if
a body is supposed to be fixed, or you can recode the definition of RigidBody to have the variable
invmass instead of mass. For ordinary bodies, invmass is the inverse of the mass, while for
fixed bodies, invmass is zero. The same goes for the inertia tensor. (Note that nowhere in any of
the dynamics computations (including the next section) is the mass or inertia tensor ever used; only
their inverses are used, so you won’t have to worry about dividing by zero.) The same trick can be
used in the next section on resting contact to simulate bodies that can support any amount of weight
without moving.

9 Resting Contact

The case of resting contact, when bodies are neither colliding nor separating at a contact point, is the
last (and hardest) dynamics problem we’ll tackle in these notes. To implement what’s in this section,
you’ll have to obtain a fairly sophisticated piece of numerical software, which we’ll describe below.

At this point, let’s assume we have a configuration with n contact points. At each contact point,
bodies are in resting contact, that is, the relative velocity v,.;, from section 8, is zero (to within the
numerical tolerance THRESHOLD). We can say that this is so, because colliding contact is eliminated
by the routine FindAl1lCollisions(),and any contact points with v,,; larger than THRESHOLD
can be safely ignored, since the bodies are separating there.

As was the case for colliding contact, at each contact point, we have a contact force that acts
normal to the contact surface. For the case of colliding contact, we had an impulse ji(ty) where j
was an unknown scalar. For resting contact, at each contact point there is some force fin;(t), where
fi is an unknown scalar, and 7;(fy) is the normal at the ith contact point (figure 26). Our goal is to
determine what each f; is. In computing the f;’s, they must all be determined at the same time, since
the force at the ith contact point may influence one or both of the bodies of the j contact point. In
section 8, we wrote how the velocity of the contact points p,(#y) and p;(fy) changed with respect to
Jj. We’ll do the same thing here, but now we’ll have to describe how the acceleration of p,(ty) and
Py (ty) depends on each f;.

For colliding contact, we had an empirical law which related the impulse strength j to the relative
velocity and a coefficient of restitution. For resting contact, we compute the f;’s subject to not one,
but three conditions. First, the contact forces must prevent inter-penetration; that is, the contact

SIGGRAPH 2001 COURSE NOTES G49 PHYSICALLY BASED MODELING

Figure 26: Resting contact. This configuration has five contact points; a contact force acts between
pairs of bodies at each contact point.

forces must be strong enough to prevent two bodies in contact from being pushed “towards” one
another. Second, we want our contact forces to be repulsive; contact forces can push bodies apart, but
can never act like “glue” and hold bodies together. Last, we require that the force at a contact point
become zero if the bodies begin to separate. For example, if a block is resting on a table, some force
may act at each of the contact points to prevent the block from accelerating downwards in response
to the pull of gravity. However, if a very strong wind were to blow the brick upwards, the contact
forces on the brick would have to become zero at the instant that the wind accelerated the brick off
the table.

Let’s deal with the first condition: preventing inter-penetration. For each contact point i, we
construct an expression d; () which describes the separation distance between the two bodies near the
contact point at time ¢. Positive distance indicates the bodies have broken contact, and have separated
at the ith contact point, while negative distance indicates inter-penetration. Since the bodies are in
contact at the present time ¢y, we will have d;(#y) = 0 (within numerical tolerances) for each contact
point. Our goal is to make sure that the contact forces maintain d;(#) > O for each contact point at
future times ¢ > 1.

For vertex/face contacts, we can immediately construct a very simple function for d;(t). If p,(¢)
and p;, (¢) are the contact points of the ith contact, between bodies A and B, than the distance between
the vertex and the face at future times ¢ > ¢, is given by

di(t) = ni(1) « (pa(t) — pp(1)). (9-D

At time ¢, the function d(¢) measures the separation between A and B near p,(¢). If d;(t) is zero,
then the bodies are in contact at the ith contact point. If d;(¢) > 0, then the bodies have lost contact
at the ith contact point. However, if d;(t) < 0, then the bodies have inter-penetrated, which is what
we need to avoid (figure 27). The same function can also be used for edge/edge contacts; since 7i; ()

SIGGRAPH 2001 COURSE NOTES G50 PHYSICALLY BASED MODELING

(a) (b) (©)

Pa(1) A
1) nt) Pa(L 1)

Py(1) Py(1)
Pa(1)

Figure 27: (a) The displacement p,(t) — p,(?), indicated by an arrow, points in the same direction
as 71(t). Thus, the distance function d(#) would be positive. (b) The distance function d(¢) is zero.
(c) The displacement p,(#) — p,,(¢) points in the opposite direction as 71(¢). The distance function
d(t) is negative, indicating inter-penetration.

points outwards from B towards A (by convention), 7;(¢) - (p.(t) — pp(¢)) will be positive if the
two contacting edges move so as to separate the bodies.

Since d;(fy) = 0, we have to keep d;(#y) from decreasing at time #y; that is, we have to have
di(t9) > 0. What is d;(fy)? Differentiating,

di(t) = 1i(t) - (pa(t) = pp(®)) + i 1) « (pa(t) — pp(1)). (9-2)

Since d;(t) describes the separation distance, d,-(t) will describe the separation velocity at time ¢.
However, at time g, p,(ty) = pp(ty), which means that d;(1o) = ni(ty) - (pa(to) — pp(to)). This
should look familiar: its v,,; from the previous section! The function d;(#,) is a measure of how
the bodies are separating, and for resting contact, we know that d(to) is zero, because the bodies are
neither moving towards nor away from each other at a contact point.

At this point then, we have d;(#y) = d,-(to) = 0. Now we’ll look at c.l',-(to). If we differentiate
equation (9-2), we get

di(1y = (1) - (pa(t) = py(0) +71(0) + (palt) = po()) +
(i(0) + (Bat) = o) + s 0) + (Bal®) = Fp(1))) ©-3)
= 1i(1) + (Pa(t) = Pp(1) +25(1) + (Pa(t) = Pp(D) + (1) + (1) = i (1)).
Since py(ty) = pp(to), we can write d;(zo) as

d(to) = Ai(to) - (Palto) — Pp(10)) + 20 (t0) » (pa(to) — pp(10))- (9-4)

SIGGRAPH 2001 COURSE NOTES G51 PHYSICALLY BASED MODELING

The quantity d;(ty) measures how the two bodies are accelerating towards each other at the contact
point p. If d}(to) > 0, the the bodies have an acceleration away from each other, and contact will
break immediately after 5. If d, (tp) = 0, then contact remains. The case c.l',-(to) < 0 must be avoided,
for this indicates the bodies are accelerating towards each other. Note that if 72;(fy) is a constant (if
body B is fixed), then ﬁ,-(to) is zero, leading to further simplifications.

Thus, we satisfy our first condition for contact forces by writing the constraint

di(t) =0 (9-5)

for each contact point. Since the acceleration d}(to) depends on the contact forces, this is really a
constraint on the contact forces.

Let’s turn our attention to the second and third constraints. Since contact forces must always
be repulsive, each contact force must act outward. This means that each f; must be positive, since
a force of f;n;(fy) acts on body A, and 71;(fy) is the outwards pointing normal of B. Thus, we
need

fi=0 (9-6)

for each contact point. The third constraint is expressed simply in terms of f; and d;(1y). Since the
contact force f;n;(#) must become zero if contact is breaking at the ith contact, this says that f; must
be zero if contact is breaking. We can express this constraint by writing

fidi(to) = 0; (9-7)

if contact is breaking, d;(t9) > 0 and equation (9-7) is satisfied by requiring f; = 0. If contact is not
breaking, then d}(to) = 0, and equation (9-7) is satisfied regardless of f;.

In order to actually find f;’s which satisfy equations (9-5), (9-6), and (9-7), we need to express
each dl (tp) as a function of the unknown f;’s. It will turn out that we will be able to write each d'i(to)
in the form

di(to) = an fi + anfo+ -+ + ain fu + bi. (9-8)
In matrix parlance, this means we will be able to write

fi b;
Do =Al s]+ (9-9)
du (1) fn by

d, (to)

where A is the n x n matrix of the a;; coefficients of equation (9-8). Although the code needed to
calculate the a;;’s and the b;’s is not too complicated, working out the derivations on which the code
is based is somewhat tedious. The derivations are worked out in appendix D, along with code to
compute the matrix of a;;’s and b;’s.

Appendix D gives an implementation of the routines

void compute a matrix(Contact contacts[], int ncontacts,
bigmatrix &a);

SIGGRAPH 2001 COURSE NOTES G52 PHYSICALLY BASED MODELING

void compute b vector(Contact contacts[], int ncontacts,
vector &b);

where the types bigmatrixand vector represent matrices and vectors of arbitrary size. The first
routine computes the a;;’s, while the second routine computes the b;’s.

Once we’ve computed all this, we can think about solving equations (9-5), (9-6), and (9-7).
This system of equations forms what is called a quadratic program (QP); that is, f;’s that satisfy these
three equations are found by an algorithm called quadratic programming. Not all quadratic programs
can be solved efficiently, but because our contact forces are all normal to the contact surfaces (that is,
they do not involve friction), it turns out that our QP can always be solved efficiently. One interesting
thlng to note is that QP codes can easily handle the case d (tp) = O instead of d (tp) = 0. We use
dl (t9) = 0 (and also drop the constraint f; > 0) if we wish to constrain two bodies to never separate
at a contact point. This enables us to implement hinges, and pin-joints, as well as non-penetration
constraints during simulation.

Quadratic programming codes aren’t terribly common though; certainly, they are not nearly as
common as linear equation codes, and are much harder to implement. The quadratic programming
routines used by the author were obtained from the Department of Operations Research at Stanford
University. See Gill et al.[7, 8, 9] for further details. More recently, we have been using code
described by Baraff[3] to solve the quadratic programs. If you are determined to really implement
this, we suggest a thorough study of this paper (excepting for the section on contact with friction).

At any rate, let’s assume that you’ve got a working QP solver at your disposal. We’ll assume
that you pass the matrix A, and the vector of b;’s to the QP solver, and you get back the vector of
fi’s. Let’s pretend the interface is

void gp solve(bigmatrix &a, vector &b, vector &f);

Let’s see how to compute all the resting contact forces. The following routine is presumably called
from ComputeForceAndTorque (), after FindAl1lCollisions () has been called.

void ComputeContactForces(Contact contacts[], int ncontacts, double t)

{

/* We assume that every element of contacts]]
* represents a contact in resting contact.
*
* Also, we’ll assume that for each element of Bodies[],
* the ‘force’ and ‘torque’ fields have been set to the
* net external force and torque acting on the body, due
* to gravity, wind, etc., perhaps by a call to
*
* ComputeExternalForceAndTorqueForAllBodies(t);
*/
/*
* Allocate nxn matrix ‘amat’ and n-vectors ‘fvec’, and ‘bvec’.
*/

SIGGRAPH 2001 COURSE NOTES G53 PHYSICALLY BASED MODELING

bigmatrix amat = new bigmatrix(ncontacts, ncontacts);
vector bvec = new vector(ncontacts),
fvec new vector(ncontacts);

/* Compute a;; and b; coefficients */

compute a matrix(contacts, ncontacts, amat);
compute b vector(contacts, ncontacts, bvec);

/* Solve for fij's */
gp_solve(amat, bmat, fvec);

/* Now add the resting contact forces we just computed into
the ‘force’ and ‘torque’ field of each rigid body. */

for(int i = 0; i < ncontacts; i++)

{
double f = fvec[i]; /* fi */
triple n = contacts[i]->n; /* ni(ty) */
RigidBody *A = contacts[i]->a, /* body A */

B = contacts[i]->b; / body B */

/* apply the force ‘f n’ positively to A... */
A->force += f * n;
A->torque += (contacts[i].p - A->x) * (f*n);
/* and negatively to B */
B->force -= £ * n;
B->torque -= (contacts[i].p - B->x) * (f*n);

}

That’s pretty much it! Now that the resting forces have been computed and combined with the
external forces, we return control to the ODE solver, and each body goes merrily along its way, in a
physically correct manner, without inter-penetration.

SIGGRAPH 2001 COURSE NOTES G54 PHYSICALLY BASED MODELING

Appendix A Motion Equation Derivations

In this appendix, we’ll fill in some of the missing details from section 2, with regards to the equa-
tions P(t) = F(1), L(t) = 7(t), and L(t) = I(t)w(t). The derivation method used here is some-
what nonstandard, and was proposed by Andy Witkin. The derivation in this appendix is (we
feel) much shorter and considerably more elegant than the one found in traditional sources such as
Goldstein[10].

We’ve described the external force acting on a rigid body in terms of forces F;(¢), where F;(t)
is the external force acting on the ith particle. However, for a rigid body to maintain its shape,
there must be some “internal” constraint forces that act between particles in the same body. We will
make the assumption that these constraint forces act passively on the system and do not perform any
net work. Let F;(¢#) denote the net internal constraint force acting on the ith particle. The work
performed by F;; on the ith particle from time #; to ¢, is

141
/ Foilt) - ia(t) dt

To

where 7;(t) is the velocity of the ith particle. The net work over all the particles is the sum

> [Findr= [3 it

which must be zero for any interval ¢ to #;. This means that the integrand
D Feilt) - (D) (A-1)
i

is itself always zero for any time 7. (Henceforth we’ll just write these expressions as » _ F; - 7, =0.)

We can use this fact to eliminate any mention of the constraint forces F,; from our derivations.
First, some quick notes about the “x” operator defined in section 2.3: since a*b = a x b, and
axb=—bxa,we get

—a*b=bxa=b*a. (A-2)
Since a* is an antisymmetric matrix,
(@)’ = —a*. (A-3)

Finally, since the “x” operator is a linear operator,
-\ K ' d *
(@)" = (a*) = —(a") (A—4)

and for a set of vectors q;

Sar= <Za> (A-5)

SIGGRAPH 2001 COURSE NOTES G55 PHYSICALLY BASED MODELING

Recall that we can write the velocity 7; as r; = v+ @ x (r; — x) where r; is the particle’s location,
x is the position of the center of mass, and v and w are linear and angular velocity. Letting 7} =r; — x

[T30% 2]

and using the “x” notation,
. *_/ /%
Fri=v+or=v—r; 0. (A-6)

Substituting this into) F,; - r;, which is always zero, yields

Z F.i-(v—rw)=0. (A-T)

Note that this equation must hold for arbitrary values of v and w. Since v and w are completely
independent, if we choose w to be zero, then) F,; - v = 0 for any choice of v, from which we
conclude that in fact) F,; = 0 is always true. This means that the constraint forces produce no
net force. Similarly, choosing v to be zero we see that Y. —F,; - (ri*w) = 0 for any w. Rewriting
F. - (r*w) as F;T (r*w) we get that

N R = (Z —FC,-Tr;*) w=0 (A-8)
Tr;*

for any w,so > —F.;Tr}* = 0. Transposing, we have

Y = Fy=) () Fej=Y rix Fei=0 (A-9)

which means that the internal forces produce no net torque.

We can use the above to derive the rigid body equations of motion. The net force on each particle
is the sum of the internal constraint force F,; and the external force F;. The acceleration 7; of the ith
particle is

d d
Er',- = E(v —rw) =0 - o —rio. (A-10)
Since each individual particle must obey Newton’s law f = ma, or equivalently ma — f = 0, we
have

i =

miit; — Fi— Fop=mi(0— 7w —ri"@) — Fi— F,; =0 (A-11)

for each particle.
To derive P = F =) _ F;, we sum equation (A—11) over all the particles. We obtain

Y omi(d =i w —r{"@) — F; — Fo =0. (A-12)
Breaking the large sum into smaller ones,
Y mi(o =i o —ri"@) — Fi— Fe =
Y= Ym0 Yomit o= F= Y R
o= (Lomit) @ = (Lmai) o= 30 Fi= 3 Fu=
S i — <%Zmir§)*a)— (Xmir) o= =3 Fi=0.

(A-13)

SIGGRAPH 2001 COURSE NOTES G56 PHYSICALLY BASED MODELING

Since we are in a center-of-mass coordinate system, equation (2-20) from section 2.6 tells us that
> m;r; =0, which also means that % 3" m;r; = 0. Removing terms with }_ m;r}, and the term 3 F,;
from the above equation yields

Y miv—Y F=0 (A-14)
or simply Mo = P = > F; as advertised.

To obtain L = 7 = > ri x F;, we again start with equation (A—11). Multiplying both sides by
ri* yields

im0 — o — @) — i F—r Fy =170 = 0. (A-15)
Summing over all the particles, we obtain
D orm =Y rmi o =Y ritmio =Y riTFi— Y Fey=0. (A-16)
Since Zrﬁ*Fci = 0, we can rearrange this to obtain
(Z mir;>* v — <Z mﬂ"?f?) w— (Z mirg*rg*) ® — Z rF=0. (A-17)
Using) m;r; = 0, we are left with
— (Z m,-r;*r';*) w— (Z m,-r;*r;*> o= F—=0 (A—18)
or, recognizing that > ri*F; = > rix F; =1,

_ (Z miré*r‘ﬁ-*> w— (Z mir;*r,’.*) o=r. (A-19)

We’re almost done now: if we refer back to the matrix defined by the “x” notation, one can easily
verify the relation that the matrix —a*a* is equivalent to the matrix (a’a)1 — aa” where 1 is the
3 x 3 identity matrix. (This relation is equivalent to the vector rule a x (b x ¢) = ba"c — calb))
Thus

> —matr = mi 1=y = 1), (A-20)

Substituting into equation (A—19), this yields
(Z —mir;*r';.*) o+ (b= (A-21)
The above expression is almost acceptable, as it gives an expression for @ in terms of t, ex-
cept that it requires us to evaluate the matrix »_ m;r;"r¥, which is as expensive as computing the

inertia tensor from scratch. We’ll use one last trick here to clean things up. Since 7, = w X r; and
ri*w = —w X r}, we can write

D omiE e = " mi(w x i) (—o x) =Y —mi(@xrj) x (@ xr;) =0. (A-22)

SIGGRAPH 2001 COURSE NOTES G57 PHYSICALLY BASED MODELING

Thus, we can add — Y m;#*r;*w = 0 to equation (A-21) to obtain

(Z e A m,-r';*r;*) o+ 1o =1 (A-23)
Finally, since
. d . .
I =— D e =Y —m = m (A-24)
we have
. . d
Iho+106=—(INw) =1 (A-25)

Since L(t) = I(t)w(t), this leaves us with the final result that

L) =r1. (A-26)

Appendix B Quaternion Derivations

A formula for ¢(¢) is derived as follows. Recall that the angular velocity w(¢) indicates that the body
is instantaneously rotating about the w(#) axis with magnitude |w(#)|. Suppose that a body were to
rotate with a constant angular velocity w(#). Then the rotation of the body after a period of time At
is represented by the quaternion

S|a)(t)|At . o)At w(t)

[co > , sin > POk

Let us compute ¢g(¢) at some particular instant of time fy. At times #ty + Af (for small Af), the
orientation of the body is (to within first order) the result of first rotating by ¢(#y) and then further
rotating with velocity w(#) for At time. Combining the two rotations, we get

lw(to)|AL - . |w(to)|Ar w(ty)

1 At - ’
q(to + At) = [cos 5 sin 5 o li0)]

1q(t0). (B-1)

Making the substitution ¢ = fy + At, we can express this as

|w(t) [t —10) . |w()|(t—1y) (i)
2 ’ 2 lw(to)]

q(t) = [cos lq(to). (B-2)

Let us differentiate g(¢) at time #y. First, since g(ty) is a constant, let us differentiate

[cos lw(t0)[(— 1) sin lw(t0) (1 —19) w(t9)
2 ' 2 (o)™
At time t = 19,
gcos lw(t)[(r —10) _ |w(to)] sin lw(to) (2 —10)
dt 2 B 2 2 (B-3)
= —L)(ZO)' sin0 = 0.

SIGGRAPH 2001 COURSE NOTES G58 PHYSICALLY BASED MODELING

Similarly,

d . |o()|(t—1) |o)l o)l —1)
sin = cos

dt 2 2 2

B4
ol _ o)l =
= =—
Thus, at time t = 1y,
o d lw(t)|(t —19) . |w(tp)|(t—1) w(ty)
q(1) = — <[cos > , sin > Iw(to)l] q(to))
_d ([COS)|t —10) . o)t —1y) wlto)]) (o)
i l0()] w(to)
=10, — |a)(t0)|]q(t0)

= [0, ()] q(to) = 310, w(t0)] (to).

The product [0, w(#y)] g(ty) is abbreviated to the form w(#)¢q(#y); thus, the general expression for
q() is

q(t) = La()q(@). (B-6)

Appendix C Some Miscellaneous Formulas

C.1 Kinetic Energy
The kinetic energy T of a rigid body is defined as

Letting r; = r; — x, we have 7; = v(¢) + r{* . Thus

= Z Imi(v+ o) (v +r¥w)

(C-2)
=1 Z mv’v+ Z vimirl o+ 3 Z mi(ri*) (r w)
*
= %UT <Z mi) v+ ol (Z mir§> o+ %a)T (Z mi(rg*)Trg*) w.
Using Y myr; =0 and ()" = —/*, we have
T = %UTMU + %a)T (Z —mir;*r;*> W= %(UTMU + o’ lw) (C-3)

since [= Y —m;ri*r}* from appendix A. Thus, the Kinetic energy can be decomposed into two
terms: a linear term %UTM v, and an angular term %a)TI .

SIGGRAPH 2001 COURSE NOTES G59 PHYSICALLY BASED MODELING

C.2 Angular Acceleration

It is often necessary to compute w(t). Since L(t) = I(t)w(t), we know w(t) = I7'(t)L(¢). Thus,

o(t) = IV @OL@) + I @) LG@). (C-4)
Since we know that L(¢) = 7(¢), let us consider I~ (¢). From equation (2-40),

I7(1) = RO Ly RO,

50
7't = RO Lpyy ROT + R Ly RO (C-5)
Since R(t) = w(1)*R(1),
R = (@@)*R@)" = RO (0(1)")". (C-6)
Since w(1)* is antisymmetric, (i.e. (w(1)*)! = —w(1)*),
ROT=—-R)Tw(®)*. (C-7)
This yields
I71(1) = RO Ly ROT + RO [y (— R (1))
= o(t)* RO g RO — I (D o(1)* (C-8)
= o) T () = I (Do),
Then

o) =I""(OL@6) + I (1) L(1)
= (0 I (1) = "' (Do @)*) L) + T () L(1) (C-9)
=@ T " (L) — T (Do) L) + T (1) L(1).

But since I~ (r) L(1) = w (1), the first term, w(¢)* I~ () L(¢) is equivalent to w(¢)*w (1), or (1) x w(t),
which is zero. This leaves the final result of

o) = —I"" (Do) L) + I () L)
=—I""Dw@) x L&)+ "' @) L@®)
(C-10)
=I"'(O(LE®) x 0@®) + I ()L(1)

=I"'()(L(1) x 0(t) + L(1)).

SIGGRAPH 2001 COURSE NOTES G60 PHYSICALLY BASED MODELING

We can see from this that even if no forces act, so that L(¢) is zero, @(¢) can still be non-zero. (In fact,
this will happen whenever the angular momentum and angular velocities point in different directions,
which in turn occurs when the body has a rotational velocity axis that is not an axis of symmetry for
the body.)

C.3 Acceleration of a Point

Given a point of a rigid body with world space coordinate p(#), it is often necessary to compute p(t).
Let the body space coordinate that transforms at time 7 to p(¢) be pg; then

p(t) = R(t) po + x(1)
If weletr(t) = p(¢t) — x(¢), then
p(t) = R(t)po + %(t) = w(t)*R(t) po + v(¢)

= (1) x (R(1)po + x(1) — x(1)) +v(?)

(C-11)
= w(t) X (p(t) —x(1)) + v(?)
=w(t) xr(t) +v@).
Then
pt) =w(t) xr(t) +o(t) x r(t) + 0(t)
(C-12)

= o(t) x (1) + w(t) x (@(t) x (1)) + v(1).

We can interpret this as follows. The first term, @w(¢) x r(t) is the tangential acceleration of the point;
that is, @(t) x r(t) is the acceleration perpendicular to the displacement r(¢) as a result of the body
being angularly accelerated. The second term, w(#) x (w(¢) x r(¢)) is the centripetal acceleration of
the point; this centripetal acceleration arises because the body is rigid, and points on the body must
rotate in a circular orbit about the center of mass. The last term, v(7) is the linear acceleration of the
point due to the linear acceleration of the center of mass of the body.

Appendix D Resting Contact Derivations

If you’re determined to implement resting contact in your simulator, you’ll need the derivations and
the code in this appendix. This is probably not a fun appendix to work through; then again, this
wasn’t a fun appendix to write! The derivations in here are somewhat terse, but the code at the end
of the appendix will hopefully make things clearer.

D.1 Derivations

We nqe;d to express d, (tp) in terms of all the unknown f;’s. It will turn out that we’ll be able to write
each d;(ty) in the form

di(to) = an fr + ap fo+ - + @i fr + bi. (D-1)

SIGGRAPH 2001 COURSE NOTES G61 PHYSICALLY BASED MODELING

Given i and j, we need to know how d}(to) depends on f;, that is, we need to know a;;. Also, we
need to compute the constant term b;.

Let’s start by determining a;; and ignoring the constant part b;. We’ll assume the ith contact
involves two bodies A and B. From equation (9—4), we can write d}(to) as

d(to) = ii(10) + (Palto) — Pp(t0)) +20:(t) - (Palto) — Pu(10)) (D-2)

where p,(tg) = p; = pp(tp) is the contact point for the ith contact at time #y. The right-most
term 2ﬁi(to) - (pa(to) — pp(tp)) is a velocity dependent term (i.e. you can immediately calculate
it without knowing the forces involved), and is part of b;, so we’ll ignore this for now.

So we only need to know how p,(f9) and p;(fy) depend on f;, the magnitude of the jth contact
force. Consider the jth contact. If body A is not one of the bodies involved in the jth contact, then
Pa(to) is independent of f;, because the jth contact force does not act on body A. Similarly, if B is
also not one of the two bodies involved in the jth contact, then p; () is also independent of f;. (For
example, in figure 26, the acceleration of the contact points at the first contact is completely unaf-
fected by the contact force acting at the fifth contact. Thus, d, (to) would be completely independent
of f5. Conversely, c'l'5(t0) is completely independent of f;.)

Suppose though that in the jth contact, body A is involved. For definiteness, suppose that in the
Jjth contact, a force of jin ;(ty) acts on body A, as opposed to — ji j(ty). Let’s derive how p,(f) is
affected by the force ji j(ty) acting on A.

From equation (C-12), we can write

Pa(t) = 04(t) + @a(t) X 16(1) + wa(t) X (0a(t) X 14(1)) (D-3)

where r,(¢) = pa(t) — x,(t), and x,(t), v,(t), and w,(¢) are all the variables associated with body
A. We know that v,(?) is the linear acceleration of body A, and is equal to the total force acting on
A divided by the mass. Thus, a force of jin ;(f)) contributes

()

finj(t) s (D)
mg mg

to v, () and thus p,(¢). Similarly, consider w,(t), from equation (C-10):

wa(t) = L, ()T, (1) + I, (1) (La(t) X 04 (1))

where 7,(t) is the total torque acting on body A. If the jth contact occurs at the point p;, then the
force jn () exerts a torque of

(pj—xa(t0)) x fifij(to).

Thus, the angular contribution to p,(#y) is

Fi (17 o) ((pj — xalt0)) X 7j(t0))) X Ta. (D-5)

The total dependence of p,(fy) on f; is therefore

fi (”;’qilo) + (1" (o) ((pj — xa(t0)) x (1)) x Va) '

a

SIGGRAPH 2001 COURSE NOTES G62 PHYSICALLY BASED MODELING

Now, if a force of — f jﬁ(to) had acted on A instead, we’d get the same dependence, but with a minus
sign in front of f;. Clearly, p,(#p) depends on f; in the same sort of manner. Once we compute
how p,(tp) and p;(ty) depend on f;, we combine the results together and take the dot product with
n;(1y), to see how d}(to) depends on f;. This gives us a;;. Confused? See the code below.

We still need to compute b;. We know that d}(to) contains the constant term

20;(t0) - (Palto) — Pi(10))-

But we also have to take into account the contributions to p,(fy) and p,(#)) due to known ex-
ternal forces such as gravity, as well as the force-independent terms w,(fy) X (wq(fy) X r,) and
(Igl(to)(La(to) X wq(ty))) x ry. If we let the net external force acting on A be F,(ty), and the net
external torque be t, (%)), then from equations (D—4) and (D-5), we get that F,(#y) contributes

Fa(1o)
my

and that 7,(#y) contributes

(1o (t0)7a(10)) x ra.
Thus, the part of p, () that is independent from all the f;’s is

Fa(tO)

ng

+ (171 (t0)Ta(10)) X Ta + wa(to) X (wa(to) X 1) + (I (o) Ra(ty) X waltn))) X rq

and similarly for p, (7). To compute b;, we combine the constant parts of p, (%), pp(f), dot with
n;(ty), and add the term 272;(ty) - (pa(to) — pp(t))-

SIGGRAPH 2001 COURSE NOTES G63 PHYSICALLY BASED MODELING

D.2 Code

Here’s the code to implement the above derivations. Let’s start by computing the constant b; terms.

/* return the derivative of the normal vector */
triple computeNdot (Contact *c)

{
if(c->vf) /* vertex/face contact */
{
/* The vector ‘n’ is attached to B, so... */
return c->b->omega ~ c->n;
}
else
{
/* This is a little trickier. The unit normal ‘n’ is
h = _€a x eb
~ Jea x eb|°
Differentiating n with respect to time is left
as an exercise... but here’s some code */
triple eadot = c->a->omega "~ ea, /* e, */
ebdot = c->b->omega "~ eb; /* &, */
nl = ea * eb,
z = eadot * eb + ea * ebdot;
double 1 = length(nl);
nl = nl / length; /* normalize */
return (z - ((z * n) * n)) / 1;
}
}

void compute b vector(Contact contacts[], int ncontacts, vector &b)

{

for(int i = 0; i < ncontacts; i++)
{
Contact *c = &contacts[i];
Body *A = c->a,
*B = c->b;
triple n = c->n, /* ni(ty) */
ra = c->p - A->x, /* p—x.(ty) */
rb = ¢c->p - B->Xx; /* p—xp(ty) */

/* Get the external forces and torques */
triple f ext _a = A->force,

f ext b B->force,

t ext a A->torque,

SIGGRAPH 2001 COURSE NOTES G64 PHYSICALLY BASED MODELING

t _ext b = B->torque;

triple a_ext part, a_vel part,
b ext part, b vel part;

/* Operators: ‘"' is for cross product, ‘*’, is for
dot products (between two triples), or matrix-vector
multiplication (between a matrix and a triple). */

/* Compute the part of p,(fy) due to the external

force and torque, and similarly for p,(f). */
a ext part = f ext a / A->mass + ((A->Iinv * t ext a) ~ ra),
b_ext part f ext b / B->mass + ((B->Iinv * t _ext b) " rb);

/* Compute the part of p,(f) due to velocity,
and similarly for p,(t). */

a_vel part = (A->omega ~ (A->omega ~ ra)) +
((A->Iinv * (A->L ~ A->omega)) ~ ra);

b vel part = (B->omega ~ (B->omega = rb)) +
((B->Iinv * (B->L "~ B->omega)) ~ rb);

/* Combine the above results, and dot with #n;(fy) */
double kl = n * ((a_ext part + a vel part) -

(b_ext part + b vel part));
triple ndot = computeNdot(c);

/* See section 8 for ‘pt velocity’ definition */
double k2 = 2 * ndot * (pt_velocity(A, c->p) -
pt _velocity(B, c->p));

b[i] = k1 + k2;

Computing the a;; terms is a little more tricky, because we have to keep track of how the jth
contact force affects the ith contact point. The following routine is not the most efficient way to do
things, because with a good data structure, you can tell in advance which of the a;;’s are going to
be zero. Still unless you’re working with really huge numbers of contacts, not too much extra work
will be done.

SIGGRAPH 2001 COURSE NOTES G65 PHYSICALLY BASED MODELING

void compute a matrix(Contact contacts[], int ncontacts, bigmatrix &a)

{

for(int i = 0; i < ncontacts; i++)
for(int j = 0; j < ncontacts; j++)
a[i,j] = compute aij(contacts[i], contacts[]]);

double compute aij(Contact ci, Contact cj)

{
/* If the bodies involved in the ith and jth contact are

distinct, then g;; is zero. */

if((ci.a != cj.a) && (ci.b != cj.b) &&
(ci.a != cj.b) && (ci.b != cj.a))
return 0.0;
Body *A = ci.a,
*B = ci.b;
triple ni = ci.n, /* ni(ty) */
nj = c¢j.n, /* nj(ty) */
pi = ci.p, /* ith contact point location */
pi = cj.p, /* jth contact point location */

ra = pi - A->x,
rb = pi - B->x;

/* What force and torque does contact j exert on body A? */
triple force on_a = 0,
torque on a = 0;

if(cj.a == ci.a)

{

/* force direction of jth contact force on A */
force on a = nj;

/* torque direction */

torque on a = (pj - A->x) " nj;
}
else if(cj.b == ci.a)
{

force on a = - nj;

torque on a = (pj - A->x) ~ nj;
}

SIGGRAPH 2001 COURSE NOTES G66 PHYSICALLY BASED MODELING

/* What force and torque does contact j exert on body B? */
triple force on b = 0,
torque on b = 0;

if(cj.a == ci.b)

{

/* force direction of jth contact force on B */
force on b = nj;

/* torque direction */

torque _on b = (pj - B->x) " nj;
}
else if(cj.b == ci.b)
{

force on b = - nj;

torque on b = (pj - B->x) "~ nj;
}

/* Now compute how the jth contact force affects the linear
and angular acceleration of the contact point on body A */

triple a linear = force on_a / A->mass,
a_angular = (A->Iinv * torque on a) "~ ra;

/* Same for B */

triple b linear = force on b / B->mass,
b_angular = (B->Iinv * torque on b) ~ rb;

return ni * ((a_linear + a_angular) - (b_linear + b _angular));

SIGGRAPH 2001 COURSE NOTES G67 PHYSICALLY BASED MODELING

References

[1] D. Baraff. Analytical methods for dynamic simulation of non-penetrating rigid bodies. In
Computer Graphics (Proc. SIGGRAPH), volume 23, pages 223-232. ACM, July 1989.

[2] D. Baraff. Curved surfaces and coherence for non-penetrating rigid body simulation. In
Computer Graphics (Proc. SIGGRAPH), volume 24, pages 19-28. ACM, August 1990.

[3] D.Baraff. Fast contact force computation for nonpenetrating rigid bodies. Computer Graphics
(Proc. SIGGRAPH), 28:23-34, 1994.

[4] J. Canny. Collision detection for moving polyhedra. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 8(2), 1986.

[5] P.A. Cundall. Formulation of a three-dimensional distinct element model—Part I. A scheme
to represent contacts in a system composed of many polyhedral blocks. International Journal
of Rock Mechanics, Mineral Science and Geomechanics, 25, 1988.

[6] E.G. Gilbert and S.M. Hong. A new algorithm for detecting the collision of moving objects.
In International Conference on Robotics and Automation, pages 8—13. IEEE, 1989.

[7] P.Gill, S. Hammarling, W. Murray, M. Saunders, and M. Wright. User’s guide for LSSOL: A
Fortran package for constrained linear least-squares and convex quadratic programming. Tech-
nical Report Sol 86-1, Systems Optimization Laboratory, Department of Operations Research,
Stanford University, 1986.

[8] P.Gill, W. Murray, M. Saunders, and M. Wright. User’s guide for QPSOL: A Fortran package
for quadratic programming. Technical Report Sol 84-6, Systems Optimization Laboratory,
Department of Operations Research, Stanford University, 1984.

[9] P.Gill, W. Murray, M. Saunders, and M. Wright. User’s guide for NPSOL: A Fortran package
for nonlinear programming. Technical Report Sol 86-2, Systems Optimization Laboratory,
Department of Operations Research, Stanford University, 1986.

[10] H. Goldstein. Classical Mechanics. Addison-Wesley, Reading, 1983.

[11] W. Meyer. Distance between boxes: Applications to collision detection and clipping. In
International Conference on Robotics and Automation, pages 597-602. IEEE, 1986.

[12] P.M. Moore and J. Wilhelms. Collision detection and reponse for computer animation. In
Computer Graphics (Proc. SIGGRAPH), volume 22, pages 289-298. ACM, August 1988.

[13] F.P.Preparata and M.I. Shamos. Computational Geometry. Springer-Verlag, New York, 1985.

[14] W.H.Press,B.P.Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipes. Cambridge
University Press, 1986.

[15] R. Sedgewick. Algorithms. Addison-Wesley, 1983.

[16] K. Shoemake. Animating rotation with quaternion curves. In Computer Graphics (Proc.
SIGGRAPH), volume 19, pages 245-254. ACM, July 1985.

[17] B. Von Herzen, A. Barr, and H. Zatz. Geometric collisions for time-dependent parametric
surfaces. In Computer Graphics (Proc. SSIGGRAPH), volume 24, pages 39-48. ACM, August
1990.

SIGGRAPH 2001 COURSE NOTES G68 PHYSICALLY BASED MODELING

