
22/11/14 01:12Rendering 3D Anaglyph in OpenGL :: animesh mishra > thoughts | code | craft

Page 1 of 25http://www.animesh.me/2011/05/rendering-3d-anaglyph-in-opengl.html

Rendering 3D Anaglyph in OpenGL
It's quite easy (and fun!) to render 3D anaglyphs with OpenGL. I expect you to
know what anaglyphs are and how to view them. If not, read this earlier
article. The focus of this tutorial is to provide you enough background and
code snippets for the task, so that you may have fun rendering anaglyphs with
your own programs.

We will focus on producing a red-cyan anaglyph from a given 3D scene. The
scene will be rendered twice: Once by setting up the camera for the left eye
which will be subsequently filtered to let only red color pass, and other time
for the right eye, which will then be filtered so that 'green plus blue' (cyan)
components pass. To implement this idea, you'll need to understand the role
of parallax in stereoscopic vision and the concept of projection and viewing as
they apply to OpenGL. This tutorial assumes familiarity with OpenGL
projection and modelview transforms. If you know all that stuff, go on ahead,
else just skim through this chapter from the redbook and you'll be prepared.

What is parallax? When you look at a 3D anaglyph without the glasses, you
will find that the edges of the objects appear displaced in the red and cyan
components of the picture. Observe it in the cylinder below:

http://quiescentspark.blogspot.com/2011/04/poor-mans-stereo-3d.html
http://fly.cc.fer.hr/%7Eunreal/theredbook/chapter03.html
http://www.opengl.org/documentation/red_book/
http://1.bp.blogspot.com/-SqI57ebQU8M/TeIDd9yDj9I/AAAAAAAAAa8/GJqYaEPdXoU/s1600/parallax_cylinder.jpg

22/11/14 01:12Rendering 3D Anaglyph in OpenGL :: animesh mishra > thoughts | code | craft

Page 2 of 25http://www.animesh.me/2011/05/rendering-3d-anaglyph-in-opengl.html

Fig. 1: Sample anaglyph - a cylinder

The human visual system needs depth cues from a flat image (photograph or
display-screen) in terms of how much an object shifts laterally between the
left eye and the right eye. When we say parallax, we mean exactly this kind of
displacement in the image. To see the effect of parallax in the above image,
use red/cyan glasses (red on left eye) and try hovering mouse pointer over the
left end of the cylinder. It will look sunken into the screen whereas the front of
the cylinder will appear more or less at the same depth as the screen. In
rendering an anaglyph, all that we're trying to achieve is to get the right kind
of parallax for the objects in the scene and the rest is automatically done in
the brain, for free!

Parallax is not just qualitative, it has a numeric value and can be positive,
negative or zero. In the application, parallax is created by defining two
cameras corresponding to the left and right eyes separated by some distance
(called interocular distance or simply eye-separation) and having a plane at a
certain depth along the viewing direction (called convergence distance) at
which the parallax is zero. Objects at the convergence depth will appear to be

http://1.bp.blogspot.com/-SqI57ebQU8M/TeIDd9yDj9I/AAAAAAAAAa8/GJqYaEPdXoU/s1600/parallax_cylinder.jpg

22/11/14 01:12Rendering 3D Anaglyph in OpenGL :: animesh mishra > thoughts | code | craft

Page 3 of 25http://www.animesh.me/2011/05/rendering-3d-anaglyph-in-opengl.html

at the same depth as the screen. Objects closer to the camera than the
convergence distance will seem to be out-of-screen and objects further in
depth than the convergence distance will appear inside the screen. Following
figure illustrates this situation:

Fig. 2: Parallax resulting from vertices at different depths

http://2.bp.blogspot.com/-thm-zhD8Rr8/TeE9LwLvDlI/AAAAAAAAAaw/zZWnSiI1_4k/s1600/parallax.jpg

22/11/14 01:12Rendering 3D Anaglyph in OpenGL :: animesh mishra > thoughts | code | craft

Page 4 of 25http://www.animesh.me/2011/05/rendering-3d-anaglyph-in-opengl.html

In this figure, there are two virtual cameras, one for the left eye (with some
negative offset from the origin on the X-axis) and the other for the right eye
(with some positive offset from the origin on the X-axis). They are separated
by the same amount as the offset between human eyes, which averages
around 65 mm. Then there is the depth of zero-parallax called convergence
depth. You can imagine it as a plane along x-y axes and located at depth of
convergence along the negative Z-axis. For illustration of different kinds of
parallax three vertices - v1, v2 and v3 are shown.

For each vertex, consider a line from the vertex to each camera and observe
where they intersect with the convergence plane. The gap between the points
on the convergence plane for left and the right cameras is the measure of
parallax generated by the vertex:

The vertex v1 which is at a greater depth compared to the convergence
creates a parallax. Observe that the red and the cyan dots on the
convergence plane are oriented the same way as the two cameras: Red
dot is towards the left camera and cyan dot is towards the right camera.
This is called positive parallax, and the vertex v1 will appear inside the
screen upon being rendered.
The vertex v2 which is at the same depth as the convergence plane creates
zero parallax. There are no separate red and cyan points on the
convergence plane here, as there were in the previous case. The vertex v2
will appear at the same depth as the screen when rendered.
The vertex v3, which is located at a distance less than the convergence
distance also causes parallax. But the red and cyan points projected on
the convergence plane are oriented opposite to the orientation of the
cameras. The point corresponding to the left camera is on the right and
the point corresponding to the right camera is on the left. This is called
negative parallax and the vertex v3 will seem to appear out of the screen
when rendered.

22/11/14 01:12Rendering 3D Anaglyph in OpenGL :: animesh mishra > thoughts | code | craft

Page 5 of 25http://www.animesh.me/2011/05/rendering-3d-anaglyph-in-opengl.html

Let's look at another anaglyph which illustrates above characteristics of
parallax generated by vertices at different depths:

Fig. 3: Icosahedrons showing negative, zero and positive parallax

In the figure, there are three icosahedrons. The one the bottom is furthest in
the scene and the one at the top is closest to the camera. The icosahedron in
the centre is approximately at the same depth as the screen. Notice how the
parallax generated for the near and far icosahedrons is of opposite alignment.
The closest icosahedron has red edges to the right and cyan edges to the left.
This illustrates negative parallax (for glasses with red filter on left eye) and
the icosahedron appears slightly out of the screen when viewed from the red-
cyan colored glasses. The small icosahedron at the bottom of the figure has
red edges to the left and cyan edges to the right. This alignment is same as the
colored glasses used to view them. The parallax created is positive and the
icosahedron appears inside the screen behind the icosahedron in the centre

http://2.bp.blogspot.com/-bgXXOTYQKag/TeIfZpowdZI/AAAAAAAAAbA/ZXCJlDM6Taw/s1600/icosa_parallax.jpg

22/11/14 01:12Rendering 3D Anaglyph in OpenGL :: animesh mishra > thoughts | code | craft

Page 6 of 25http://www.animesh.me/2011/05/rendering-3d-anaglyph-in-opengl.html

which is rendered with (almost) no parallax and is at the same depth as the
screen.

As I mentioned before, parallax can be measured qualitatively. I will now
proceed to obtain an equation for parallax introduced in a vertex at a certain
depth. While this is not crucially important in setting up the OpenGL for
rendering anaglyphs, it is important when you plan the scene and overall
range of usable parallax in your interactive application. Consider the following
diagram, in which the vertex V is located at depth w and lies beyond the
convergence distance:

22/11/14 01:12Rendering 3D Anaglyph in OpenGL :: animesh mishra > thoughts | code | craft

Page 7 of 25http://www.animesh.me/2011/05/rendering-3d-anaglyph-in-opengl.html

Fig. 4: Measuring the amount of parallax for a vertex beyond convergence distance

The eye separation is D and the convergence distance is C. The line joining the
left camera L and vertex V meets the convergence plane at P. Similarly the line
joining the right camera R and the vertex V meets the convergence plane at Q.
The parallax p associated with the vertex V is the distance PQ. Now consider
ΔLVR, wherein by use of the intercept theorem we have:

PQLR=VQVR

http://2.bp.blogspot.com/-Z9ggnilO5Cg/TeKF7SRwIYI/AAAAAAAAAbI/0DTVeGiR9C4/s1600/parallax_derv_far.jpg
http://en.wikipedia.org/wiki/Intercept_theorem

22/11/14 01:12Rendering 3D Anaglyph in OpenGL :: animesh mishra > thoughts | code | craft

Page 8 of 25http://www.animesh.me/2011/05/rendering-3d-anaglyph-in-opengl.html

And by the similarity ΔQVM∼ΔVRN, we have

VQVR=VMRN=w−Cw=1−C/w

Thus,

PQLR=pD=1−C/w

Or

p=D(1−C/w)

Similarly for a vertex that is closer than the convergence distance as shown in
the figure:

22/11/14 01:12Rendering 3D Anaglyph in OpenGL :: animesh mishra > thoughts | code | craft

Page 9 of 25http://www.animesh.me/2011/05/rendering-3d-anaglyph-in-opengl.html

Fig. 5: Measuring the amount of parallax for a vertex closer than the convergence
distance

 The parallax p can be evaluated again by applying the intercept theorem:

PQLR=QVVR=QVQR−QV=QVQR1−QVQR

Now in ΔQNR since VM∥RN, we have

QVQR=VMRN=C−wC=1−w/C

Thus,

PQLR=pD=1−w/Cw/C=C/w−1

http://2.bp.blogspot.com/-HXtMoipfF5U/TeKQtOPYRUI/AAAAAAAAAbM/YKSPLpJjZiU/s1600/parallax_derv_near.jpg

22/11/14 01:12Rendering 3D Anaglyph in OpenGL :: animesh mishra > thoughts | code | craft

Page 10 of 25http://www.animesh.me/2011/05/rendering-3d-anaglyph-in-opengl.html

Or,

p=−D(1−C/w)

This equation is the same as that for a vertex further than the convergence
distance, with a negative sign. The negative sign implies that the projections
of the vertex are on the convergence plane are on opposite side as the
corresponding camera. If we disregard the sign in the equation, a negative
parallax can be understood as the vertex being closer than the convergence
distance. A plot of p=D(1−C/w) is shown below:

Fig. 6: Variation of parallax with vertex depth for a given convergence distance and
eye-separation

The graph shows that as the vertex moves further and further into the scene,
the parallax generated asymptotically approaches the value of eye separation
D. The parallax remains positive at all vertex depths greater than the
convergence distance C, at which the parallax is zero. For vertices that are
closer in the scene that the distance C, the parallax is negative and quickly

http://4.bp.blogspot.com/-H8qWeu_s-Xs/TeKlccPQ81I/AAAAAAAAAbQ/XPNJz4_T8z4/s1600/parallax+graph.jpg

22/11/14 01:12Rendering 3D Anaglyph in OpenGL :: animesh mishra > thoughts | code | craft

Page 11 of 25http://www.animesh.me/2011/05/rendering-3d-anaglyph-in-opengl.html

approaches −∞. Note that for a vertex at w=C/2, the parallax obtained is the
same as eye separation. Such large vales of negative parallax can make the
viewer's eyes diverge causing strain and should be avoided. The practical
value of convergence depth is chosen on the basis of the shot being prepared
and the type of effect (out of the screen or inside screen) used. Eye separation
is typically kept at 1/30th of the convergence distance and objects closer than
half the convergence distance are avoided in the scene.

The only remaining task is to discuss how we set up a twin camera in OpenGL.
In non-stereo mode, you require only one camera, whose viewing parameters
are defined by calling glFrustum() or gluPerspective(). The frustum obtained
looks like the following:

http://www.opengl.org/sdk/docs/man/xhtml/glFrustum.xml
http://www.opengl.org/sdk/docs/man/xhtml/gluPerspective.xml
http://4.bp.blogspot.com/-9L65bAqkVws/TeoWjjClwfI/AAAAAAAAAbs/9CHvz5aCLlo/s1600/monofrustum_with_theta.jpg

22/11/14 01:12Rendering 3D Anaglyph in OpenGL :: animesh mishra > thoughts | code | craft

Page 12 of 25http://www.animesh.me/2011/05/rendering-3d-anaglyph-in-opengl.html

Fig. 7(a): A mono frustum

22/11/14 01:12Rendering 3D Anaglyph in OpenGL :: animesh mishra > thoughts | code | craft

Page 13 of 25http://www.animesh.me/2011/05/rendering-3d-anaglyph-in-opengl.html

Fig. 7(b): Mono frustum (orthographic view from top)
The twin-camera setup needed for stereoscopic rendering, however,
resembles the following:

http://2.bp.blogspot.com/-OimcDm_BkbE/Tej48_Y6MGI/AAAAAAAAAbY/5_ZDg-Q0d0M/s1600/monofrustum_new_top.jpg

22/11/14 01:12Rendering 3D Anaglyph in OpenGL :: animesh mishra > thoughts | code | craft

Page 14 of 25http://www.animesh.me/2011/05/rendering-3d-anaglyph-in-opengl.html

Fig. 8(a): Twin-camera system for stereoscopic rendering

In this setup, we have two frustums: One originating at point L (for the left
eye) and the other originating at point R (for the right eye). The distance LR is
the eye-separation, so that the points L and R are offset from the origin along
negative and the positive X-axes respectively by an amount LR2 each.
Observant readers might have already noticed that the the two frustums in the
figure above are not the same as the mono-frustum that was shown before
and that we did not offset a mono-frustum along the X-axis to obtain the
twin-camera system. In fact, the two frustums shown above are asymmetric,

http://4.bp.blogspot.com/-M8y-ms1yjEo/TekJCDvKOwI/AAAAAAAAAbc/lYIkHAJ6cZY/s1600/stereo_perspective_new.jpg

22/11/14 01:12Rendering 3D Anaglyph in OpenGL :: animesh mishra > thoughts | code | craft

Page 15 of 25http://www.animesh.me/2011/05/rendering-3d-anaglyph-in-opengl.html

whereas the mono-frustum was symmetric (see the next two figures for a
better idea). If the two frustums were symmetric and displaced laterally, they
wouldn't converge at all. Asymmetry causes the two frustums to converge at
the convergence distance. The magenta colored rectangle at the convergence
distance represents the virtual screen for the stereoscopic rendering. Any
vertex at on the virtual screen will be appear with zero-parallax. Vertices
closer or further than this distance will cause appropriate amounts of negative
or positive parallax. Following figure shows the same system with an
orthographic view from top:

22/11/14 01:12Rendering 3D Anaglyph in OpenGL :: animesh mishra > thoughts | code | craft

Page 16 of 25http://www.animesh.me/2011/05/rendering-3d-anaglyph-in-opengl.html

Fig. 8(b): Stereo-frustum (orthographic view from top)
The asymmetry of the frustums is clearly evident above. Also notice that the
view direction for each frustum is parallel to the other and also to the the Z-
axis, same as would be for a mono-frustum. This is the correct way to set-up
the stereo pair. There is another twin-camera setup method called toed-in
cameras that involves symmetric frustums but the left and right view
directions are at an angle to each other. It is sufficient to say that toed-in

http://2.bp.blogspot.com/-TnGWuLqTq3E/TekQ9SgFsBI/AAAAAAAAAbg/PbFiCPkFmQ4/s1600/stereo_ortho_top_new.jpg

22/11/14 01:12Rendering 3D Anaglyph in OpenGL :: animesh mishra > thoughts | code | craft

Page 17 of 25http://www.animesh.me/2011/05/rendering-3d-anaglyph-in-opengl.html

camera setup is incorrect. Here's another figure showing our stereo-camera
system along the Z-axis:

Fig. 8(c): Stereo-frustum (orthographic view from back)

At this point we know sufficiently to calculate the stereoscopic frustum
parameters which we can use in an OpenGL program. Observe the following
figure:

http://www.cecs.uci.edu/%7Epapers/icme06/pdfs/0001701.pdf
http://1.bp.blogspot.com/-FFVDmXYs03s/TekXlnwnC-I/AAAAAAAAAbk/Ht-r2onBFXs/s1600/stereo_ortho_back_new.jpg

22/11/14 01:12Rendering 3D Anaglyph in OpenGL :: animesh mishra > thoughts | code | craft

Page 18 of 25http://www.animesh.me/2011/05/rendering-3d-anaglyph-in-opengl.html

Fig.9: Calculation of frustum parameters

While it appears formidable, no new information has been added to the figure
above. If you have understood everything so far, you will breeze through the
simple calculations that follow. We have, as before, two cameras located at
points L and R on the X-axis. The separation LR between them is Deye and
their offsets are symmetric about the origin. The camera directions are
parallel, both looking down −Z axis. The near clipping distance of the

http://2.bp.blogspot.com/-4ZC_QPy72ac/Tek32b8NOjI/AAAAAAAAAbo/lHbTpxt1l7w/s1600/finalcalc.jpg

22/11/14 01:12Rendering 3D Anaglyph in OpenGL :: animesh mishra > thoughts | code | craft

Page 19 of 25http://www.animesh.me/2011/05/rendering-3d-anaglyph-in-opengl.html

frustums is Dnear and the convergence distance is C. The extremities of the
virtual screen are at points A and B as seen in the top-view. Point A is where
the left side of both frustums meet and point B is where the right side of both
frustums meet.

In OpenGL, the only way to create an asymmetric frustum is through the
glFrustum(). The function gluPerspective() creates only symmetric frustums
and hence cannot be used in this case. gluPerspective() takes natural looking
parameters such as the field of view angle along Y-direction θFOVY (see fig.
7(a)), the aspect ratio and the distance of the near and far clipping planes. For
glFrustum(), you need to provide near clipping plane's top, bottom, left and
right coordinates, as well as the distance of the near and far clipping planes.
We will compute these parameters from the geometry of the dual frustum
shown above.

In the figure, the equivalent of a mono-frustum corresponding to the virtual
screen would be AOB. Let its field of view along Y direction be θFOVY and the
aspect ratio be raspect (same way these are in gluPerspective()). Then the top
and bottom parameters for the glFrustum() will evaluate as:

top=DneartanθFOVY2

bottom=−top

These values apply to both left and right frustums. The half-width a of the
virtual screen is

a=raspectCtanθFOVY2

Now look at the left frustum ALB. The near clipping plane intersects it at dleft
distance left of LL′ and dright distance right of LL′. In ΔALL′ and ΔBLL′,

22/11/14 01:12Rendering 3D Anaglyph in OpenGL :: animesh mishra > thoughts | code | craft

Page 20 of 25http://www.animesh.me/2011/05/rendering-3d-anaglyph-in-opengl.html

dleftb=drightc=DnearC

Also, we have

b=a−Deye2

c=a+Deye2

So that we can readily calculate dleft and dright. Similarly for the right
frustum ARB, we could obtain dleft and dright by interchanging b and c. Here
is a code snippet showing how you could wrap the above equations in a small
class called StereoCamera:

05 float Convergence,
06 float EyeSeparation,
07 float AspectRatio,
09 float NearClippingDistance,
10 float FarClippingDistance
13 mConvergence = Convergence;

14 mEyeSeparation = EyeSeparation;

15 mAspectRatio = AspectRatio;

16 mFOV = FOV * PI / 180.0f;

17 mNearClippingDistance = NearClippingDistance;

18 mFarClippingDistance = FarClippingDistance;

21 void ApplyLeftFrustum()
23 float top, bottom, left, right;
25 top = mNearClippingDistance * tan(mFOV/2);

26 bottom = -top;

28 float a = mAspectRatio * tan(mFOV/2) *
mConvergence;

30 float b = a - mEyeSeparation/2;
31 float c = a + mEyeSeparation/2;

22/11/14 01:12Rendering 3D Anaglyph in OpenGL :: animesh mishra > thoughts | code | craft

Page 21 of 25http://www.animesh.me/2011/05/rendering-3d-anaglyph-in-opengl.html

33 left = -b * mNearClippingDistance/mConvergence;

34 right = c * mNearClippingDistance/mConvergence;

37 glMatrixMode(GL_PROJECTION);

38 glLoadIdentity();

39 glFrustum(left, right, bottom, top,

40 mNearClippingDistance,
mFarClippingDistance);

43 glMatrixMode(GL_MODELVIEW);

44 glLoadIdentity();

45 glTranslatef(mEyeSeparation/2, 0.0f, 0.0f);

48 void ApplyRightFrustum()
50 float top, bottom, left, right;
52 top = mNearClippingDistance * tan(mFOV/2);

53 bottom = -top;

55 float a = mAspectRatio * tan(mFOV/2) *
mConvergence;

57 float b = a - mEyeSeparation/2;
58 float c = a + mEyeSeparation/2;

60 left = -c *
mNearClippingDistance/mConvergence;

61 right = b *
mNearClippingDistance/mConvergence;

64 glMatrixMode(GL_PROJECTION);

65 glLoadIdentity();

66 glFrustum(left, right, bottom, top,

67 mNearClippingDistance,
mFarClippingDistance);

70 glMatrixMode(GL_MODELVIEW);

71 glLoadIdentity();

72 glTranslatef(-mEyeSeparation/2, 0.0f, 0.0f);

76 float mConvergence;

22/11/14 01:12Rendering 3D Anaglyph in OpenGL :: animesh mishra > thoughts | code | craft

Page 22 of 25http://www.animesh.me/2011/05/rendering-3d-anaglyph-in-opengl.html

77 float mEyeSeparation;
78 float mAspectRatio;
80 float mNearClippingDistance;
81 float mFarClippingDistance;

The code does exactly what we described with the equations and diagrams
earlier. Once you have created a StereoCamera object, you can call the
methods ApplyLeftFrustum() and ApplyRightFrustum() to set up the
respective asymmetric frustums. Note that in these methods, the projection
transform is followed by a modelview transform in which we translate along
the X-axis. This has the effect of moving the camera to a position offset from
the origin. As such there is no camera transform in OpenGL. What we do is
move the world in a direction opposite to the conceptual camera using the
modelview transform. In order to use the above class, you could write your
OpenGL rendering function as the following:

02 void
DrawGLScene(GLvoid)

04 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

15 cam.ApplyLeftFrustum();

16 glColorMask(true, false, false, false);

18 PlaceSceneElements();

20 glClear(GL_DEPTH_BUFFER_BIT) ;

22 cam.ApplyRightFrustum();

23 glColorMask(false, true, true, false);

25 PlaceSceneElements();

27 glColorMask(true, true, true, true);

31 void PlaceSceneElements()
34 glTranslatef(0.0f, 0.0f, -1800.0f);

37 glRotatef(-60.0f, 1.0f, 0.0f, 0.0f);

22/11/14 01:12Rendering 3D Anaglyph in OpenGL :: animesh mishra > thoughts | code | craft

Page 23 of 25http://www.animesh.me/2011/05/rendering-3d-anaglyph-in-opengl.html

38 glRotatef(-45.0f, 0.0f, 0.0f, 1.0f);

42 glTranslatef(0.0f, 0.0f, 240.0f);

43 glRotatef(90.0f, 1.0f, 0.0f, 0.0f);

44 glColor3f(0.2, 0.2, 0.6);

45 glutSolidTorus(40, 200, 20, 30);

46 glColor3f(0.7f, 0.7f, 0.7f);

47 glutWireTorus(40, 200, 20, 30);

51 glTranslatef(240.0f, 0.0f, 240.0f);

52 glColor3f(0.2, 0.2, 0.6);

53 glutSolidTorus(40, 200, 20, 30);

54 glColor3f(0.7f, 0.7f, 0.7f);

55 glutWireTorus(40, 200, 20, 30);

We begin the rendering function by clearing the color and depth buffers. Then
we set up the stereo camera system. We apply the left frustum and instruct
OpenGL to allow only red components in the color buffer. Then we call the
routine to draw the scene. After this we clear the depth buffer, but retain the
color buffer (which has only red-channel values). With depth buffer cleared
we activate the right frustum and instruct OpenGL to allow only green and
blue color components in the color buffer. We call our drawing routine one
more time. Note that the colors scene for the left eye and the scene for the
right eye have no overlapping color spaces, so no explicit
blending/accumulation is required. Finally we enable all the color channels
and the scene gets rendered as anaglyph. Note that we had to render geometry
twice. That means that the frame-rate gets reduced to half of what we would
obtain with a mono-frustum. This is typical of stereoscopic rendering. If
you're wondering what output is generated by the above snippets, here it is:

22/11/14 01:12Rendering 3D Anaglyph in OpenGL :: animesh mishra > thoughts | code | craft

Page 24 of 25http://www.animesh.me/2011/05/rendering-3d-anaglyph-in-opengl.html

Fig. 10: Output of the drawing routine in the listing above

I will leave you with a video that I made during writing of this (somewhat
lengthy) tutorial. The video uses the same theory and code that I covered
above. Try to watch this one at 720p full-screen for best effect:

Further Reading:
You could find a lot of material on stereographics compiled by Paul Bourke on
this page. You can also watch a video presentation by NVIDIA from GTC 2010
here and download the slides for offline viewing.

http://4.bp.blogspot.com/-z1oAYHlrn2E/TepFO5UL2eI/AAAAAAAAAbw/fFRVfAW8sew/s1600/sample_anaglyph.jpg
http://local.wasp.uwa.edu.au/%7Epbourke/
http://paulbourke.net/miscellaneous/stereographics/
http://nvidia.fullviewmedia.com/gtc2010/0920-c-2010.html
http://www.nvidia.com/content/GTC-2010/pdfs/2010_GTC2010.pdf

22/11/14 01:12Rendering 3D Anaglyph in OpenGL :: animesh mishra > thoughts | code | craft

Page 25 of 25http://www.animesh.me/2011/05/rendering-3d-anaglyph-in-opengl.html

Have fun!

