
CGVR Lab

Software Development in Teams



G. Zachmann TutoriumsfolienComputergrafik WS 13 November 2025

Motivation
• As soon as we start work with other people on a software project, we need
to consider how to incorporate each-others changes.
• Other wise we can land in so-called merge hell, i.e. trying to merge all changes in
the last few days before a deadline with a bunch of merge conflicts.

• Ideally, we always have a working state of our software.
• Useful for presentations, reverting a bugged version, etc.

• Optimally, human error-prone processes could be automated.



G. Zachmann TutoriumsfolienComputergrafik WS 13 November 2025

CI / CD (just fyi)
• Continuous Integration
• The practice of regularly merging to and from your main branch.

• To catch and fix errors early.

• via merge or rebase

• Usually establish a useful branch structure and merging protocol.
• main / prod, dev, feature_…

• Changes are validated by automated build & test suites.



G. Zachmann TutoriumsfolienComputergrafik WS 13 November 2025

CI / CD (just fyi)
• Continuous Integration
• The practice of regularly merging to and from your main branch.

• Usually establish a useful branch structure and merging protocol.

• Changes are validated by automated build & test suites.

• Continuous Delivery
• Automating the release process (can otherwise be error-prone), so changes can
be deployed via a button click at any time, e.g. daily or weekly.



G. Zachmann TutoriumsfolienComputergrafik WS 13 November 2025

CI / CD (just fyi)
• Continuous Integration
• The practice of regularly merging to and from your main branch.

• Usually establish a useful branch structure and merging protocol.

• Changes are validated by automated build & test suites.

• Continuous Delivery
• Automating the release process (can otherwise be error-prone), so changes can
be deployed via a button click at any time, e.g. daily or weekly.

• Continuous Deployment
• Every change that passes the test & build suite, etc. is deployed to customers.



G. Zachmann TutoriumsfolienComputergrafik WS 13 November 2025

The Pipeline (just fyi)
• In larger software projects usually an
automated pipeline (for example, with GitLab
CI) is set up to do e.g. the following things:
• Run the projects test-suite after each push /
merge to check for broken functionality.

• Build the project in an isolated environment after
each push / merge or on demand. This checks
for build errors.

• Deploying the application automatically, e.g. to a
website or app store.

Source: GitLab Docs

https://docs.gitlab.com/ci/quick_start/


G. Zachmann TutoriumsfolienComputergrafik WS 13 November 2025

Merging via Merge / Pull Request
• Merges can be done locally but also online via
a Pull Request (PR).
• Often used when merging changes from a fork
of a repository.

• Can also merge branches of the same
repository.

• Very common in open-source development but
also commercial context (PR + Code Review).

• Changes are reviewed and optionally adjusted
before the merge. Source: GitLab Docs

https://docs.gitlab.com/user/project/merge_requests/
https://gitlab.lcqb.upmc.fr/help/user/project/merge_requests/index.md


G. Zachmann TutoriumsfolienComputergrafik WS 13 November 2025

Issue Lists / Boards
• All git providers offer issue trackers or boards.
• Help you to organize your work and assign tasks / responsibilities:



G. Zachmann TutoriumsfolienComputergrafik WS 13 November 2025

Issue Lists / Boards
• All git providers offer issue trackers or boards.
• Help you to organize your work and assign tasks / responsibilities:



G. Zachmann TutoriumsfolienComputergrafik WS 13 November 2025

What to do in Your Projects?
• Use a smart branch structure:

Source: Substack

https://softwareengineeringwk.substack.com/p/git-workflow


G. Zachmann TutoriumsfolienComputergrafik WS 13 November 2025

What to do in Your Projects?
• Use a smart branch structure:
• main / prod: Always in a working state; should be protected.

• dev: Branch to merge your new features into and to branch from for feature
branches. Avoid pushing to this branch directly. Should ideally also always be in
a working state.
• If not: We recommend fixing it before continuing.

• feature branches: Branches where you work on features before merging them.
• Can be deleted after they have been merged into dev.

• Regularly prune unused / deprecated branches.

Source: Substack

https://softwareengineeringwk.substack.com/p/git-workflow


G. Zachmann TutoriumsfolienComputergrafik WS 13 November 2025

What to do in Your Projects?
• Use a smart branch structure: main / prod , dev, feature branches, etc.

• Use an issue board for task / issue tracking.



G. Zachmann TutoriumsfolienComputergrafik WS 13 November 2025

What to do in Your Projects?
• Use a smart branch structure: main / prod , dev, feature branches, etc.

• Use an issue board for task / issue tracking.
• Set up regular meetings (e.g. weekly, bi-weekly) to check on the state of the
project and make adjustments accordingly (e.g. assigning to more people to
a task or redistributing tasks).
• Find a good middle ground: Both too many and too few meetings / check ups can
hinder the progress of your project.

• Start early and work incrementally.

• Be very conservative with time estimates. It is very easy to be overconfident with
time estimates.



G. Zachmann TutoriumsfolienComputergrafik WS 13 November 2025

References & Additional Resources
• Atlassian – Continuous Delivery Principles (https://www.atlassian.com/continuous-
delivery/principles)

• Atlassian – Continuous Integration vs Delivery vs Deployment
(https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-
delivery-vs-deployment)

• GitLab - CI/CD Pipelines (https://docs.gitlab.com/ci/pipelines/)

• GitLab – Tutorial: Create and Run your First GitLab CI/CD pipeline
(https://docs.gitlab.com/ci/quick_start/)

• GitLab CI/CD Pipeline Tutorial for Beginners (Youtube)

• GitLab – Merge Request Docs
(https://docs.gitlab.com/user/project/merge_requests/)

https://www.atlassian.com/continuous-delivery/principles
https://www.atlassian.com/continuous-delivery/principles
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://docs.gitlab.com/ci/pipelines/
https://docs.gitlab.com/ci/quick_start/
https://www.youtube.com/watch?v=z7nLsJvEyMY
https://docs.gitlab.com/user/project/merge_requests/

