II

III

A Report on the Anatomy Atlas and its features

Daniel Tauritis, Waldemar Zeitler, Hannah Kathmann,
Marcel Merten, Patrick Plate, Dustin Augsten
Andy Augsten, Arian Mehrfard, Thomas Tannous,
Florian Rohde, Dominik Sauer, Daniel Albensoeder
CGVR
Bremen University

CONTENTS

Introduction

Problem definition and features

II-A
II-B
II-C
II-D
II-E
II-F
II-G
II-H
II-1
II-J
II-K
II-L
II-M

Center Of Mass o ot e e e e e
SNapping e e
Ghosting
Hiding Organs e e e e e e
SKIn . . L e
Scaling operation bed e e
Movable Furnitures L e e e e e e
Reset
Medicine POSLEIS o v v e e e e e e e e e
TOOIIPS . . o o e e e e e e
Menu e e
Left-Handed Mode
Surface Collision ACLOT o e e e e e e e e e e e

Conclusion and future work

—

[N T NG I NG T NS I NS I NS I e e e e

w

A Report on the Anatomy Atlas and its features

Abstract—This document provides inside into the technical
details of the VR Anatomy Atlas, giving an overview of the
implementation and configuration. The input device was selected
to grant an immersive experience in virtual reality.

Our Software allows users to interact with a human body in a
virtual operating room and learn from it.

I. INTRODUCTION

This technical report introduces the reader into our imple-
mentation of the anatomy atlas, which was developed during
the summer semester 2017 as part of the bachelor’s project
”VR Assembly” of the University of Bremen. It is expected
that the reader has a basic understanding of the Unreal Engine
and working with Blueprints. It is also a virtual reality project,
which is designed for a head mounted display in combination
with the Vive Motion controllers.

II. PROBLEM DEFINITION AND FEATURES

A. Center Of Mass

All organs have their pivot point at the feet of the body but

for proper snapping we need the actors real location. Hence
we need the center of mass of each organ which becomes the
new location of the actor while we subtract it from the initial
position to fix the offset of the geometry.
Due to complex collision the center of mass calculation
included in Unreal Engine did not work properly. Our
workaround was to use a custom calculation which however
only worked in the Editor and not in the packaged project. We
extracted the locations in Editor mode and stored the values
into a datatable so that we can use these in our project.

B. Snapping

Snapping point detection is realized in the Tick event of the
organs. Here it checks if the organs location and rotation are
near the initial values stored earlier in the BeginPlay event. If
true, the boolean FoundSnap is set to true, otherwise to false.

C. Ghosting

Inside the Tick event if FoundSnap is set to true we spawn
the actor OrganHologram and promote it to a variable Ghost.
It copies the transformation and the mesh geometry of the
attached organ. The texture is a transparent green material.
The actor is being destroyed if FoundSnap is set to false or if
no organ is attached.

D. Hiding Organs

When firing the grab trigger of the left controller the user
can move through organs to hide them. For that purpose a
boolean is set to true when firing the trigger and in the Tick
event of the left controller it checks if the boolean is set to true
and disables all overlapping Organ actors and calls the function
DoRumble which gives haptic feedback on the controller.

E. Skin

When the application is being started, the humans body is
being slipped by a skin. Before the user can grab an organ he
first has to remove the skin by overlapping it and firing the grab
trigger of the right controller. The logic of the skin removal is
in the HideSkin function which checks if the skin is slipping
the body. If true, it checks for overlapping and replaces the skin
material of the body with a transparent material. The function
returns either true or false, true meaning that the skin was
already removed before and the caller function which is the
actual Grab function, can grab an organ and false meaning
that the skin was not removed due to no overlapping with the
skin or that the skin was just removed and another call is now
required to grab an organ.

F. Scaling operation bed

The user can scale the operation bed up and down by
using the trackpad of the right controller. Here the function
ScaleOPBed is being called which changes the transformation
of the bed based on the passed ScaleValue parameter and a new
Z coordinate is being calculated for the human body based on
the scale of the bed.

G. Movable Furnitures

The user can move furnitures using the left hand. For that
purpose we have created a new Actor class MoveableFurniture.
When the BeginPlay event is fired, it promotes the instance of
the left controller and its initial position into variables. The
initial position is later being used for the Reset feature.

The whole logic is inside the Tick event. Here it checks if
the boolean Attached is set to true. If not, which means that
this furniture is not being hold, it checks if the controller is
currently grabbing, colliding with the furniture and if no other
furniture is being hold at this moment. If all this results into
true, the X, Y and Z coordinates of the furniture are stored
into variables, whereby the X and Y coordinates of the grab
sphere are being subtracted from the ones of the furniture. The
boolean Attached is being set to true and for the controller we
remember that it is currently holding a furniture.

For the next ticks the boolean Attached is set to true until the
controller is not grabbing anymore because then the booleans
Attached and Holding are set back to false. With each tick we

update the location of the furniture currently being grabbed,
giving it the coordinates we stored earlier and adding the X
and Y coordinates which we extract from the location of the
grab sphere. Thus resulting in the furniture moving smoothly
with the hand.

H. Reset

The Reset function resets the application to its initial state.
It resets the location of the human body, all its organs if no
organ is attached to the hand at the moment, the bed and the
movable furnitures. It also resets the skin material of the body
and the values of several variables.

1. Medicine posters

We have included over 30 medicine posters in our applica-
tion. The user can switch between these by pressing a button.
For that purpose a function is being called on the Poster actor
which simply changes the sprite to the next one of a list.

J. Tooltips

Tooltips are stored as String values in a XML file where
the tooltip for each object is tagged by its name. Reading and
parsing the XML file is being done in the Tooltip.cpp class
which inherits from AActor class so that it can be spawned
to create an instance. The specific object name and the name
of the XML file have to be passed as argument to the Load
function which is declared as UFUNCTION so that it can be
called from Blueprints. The parsed String gets stored in the
variable Text which is declared as UPROPERTY.

The widget TooltipWidget reads the value from the variable
Text to print it. Since we can’t properly spawn widgets on
viewport in Virtual Reality we have created another actor
Tooltip which simply implements the widget as component
and can now be spawned in the world. The position of the
tooltip is being updated with every Tick event where it copies
the location and rotation of the camera and moves a little bit
forward which is the same procedure as for the third person
character in Unreal Engine.

The user can show tooltips for an organ by pressing a button
while holding it. The tooltip then gets intialized if not already
happened and is being spawned in the world and gets removed
if the user releases the tooltip button or the organ itself.

K. Menu

The menu is designed in a widget which is then stored in
a widget component in a new actor: the "MainMenu3D” actor.

The "MainMenu3D” actor is placed in the world and is
acting as a spawner for the menu. At "BeginPlay” it will save
the left and right hand of the player in variables and add a
widget interaction component to the right hand so the player
can interact with the menu. In the "Tick” event there are three
steps to be done:

1. The position and rotation of the menu is constantly updated
so that it stays on the players hand and is facing towards him

2. Check whether the players hand is facing up or down and
then set the visibility of the menu to the appropriate state to
make it visible or hide it.

3. Draw a forward line on the right hand to make interaction
with the menu easier whenever the menu is set to visible. As
the line is implemented as debug line it will only show in
editor mode or if the project is packaged in development or
debug state. The interaction however will work nonetheless if
the project is packaged in shipping. For easier interaction one
could then touch the menu items.

The main menu widget contains the graphics and the func-
tionality for the menu items. There are two graphics: one if
the item is selected by the user and one if not. On top of the
graphics there is a text component with the name of the item.
A progress bar indicates the click event for an item. When
it is filled the appropriate item is clicked. This is done by
the hovered/unhovered events for the items. When the player
hovers over an item a timer starts that calls a function for that
item after a given time. If the player unhovers the item in the
meantime the previous set timer is canceled.

L. Left-Handed Mode

The left-handed mode can be toggled in the menu. A check
box indicates the state. When the player toggles the mode a
function is called which checks the current state and mirros
the hand meshes if it was unchecked before or sets the meshes
back to normal if it was checked before. The player can easily
see that the meshes were mirrored and just needs to switch the
controller afterwards.

M. Surface Collision Actor

Users can grab and move organs using their right controller.
This requires a system determining what organ can currently
be grabbed by the user.

Originally grabbable organs were determined using a sphere
collision around the player controller. This allowed users to
grab any organ, even those encased by other organs. Such
organs would not be accessible during an actual surgery; The
occluding organs would need to be removed first.

The SurfaceCollisionActor collides with objects in its sur-
roundings. It detects collisions along the surfaces of objects,
and cannot collide with objects surrounded by other collidable
objects.

The SurfaceCollisionActor contains the following components:

e CollisionSphere, a small, movable collision sphere that
collides with other objects.

e CollisionSphereRadius, a static collision sphere that is
attached to CollisionSphere. Its radius is slightly larger,
overlapping with objects and making the collision de-
tection more lenient.

e StaticSphere, a large, static collision sphere and the
root of the SurfaceCollisionActor. It also overlaps with
objects.

e A physics constraint constraining the CollisionSphere to
the StaticSphere’s position.

Fig. 1. Surface Collision Actor I

The SurfaceCollisionActor reports a collision when an
objects overlaps with both the CollisionSphereRadius
and the StaticSphere. Other actors can inquire about
collisions using SurfaceCollisionActor’s functions. Actors
requesting a single colliding actor always receive the newest
colliding actor. Otherwise large objects that collide with the
SurfaceCollisionActor for a longer period of time would
prevent smaller objects from being selected.

We use the SurfaceCollisionActor as a component of
RightControllerPawn, positioned between the mesh’s thumb
and index finger. The CollisionSphere is visualized using a
transparent mesh, giving the user feedback about its location.
The RightControllerPawn requests the most recent colliding
Actor from the SurfaceCollisionActor. This lets it determine
what organ can currently be grabbed.

When the SurfaceCollisionActor touches the surface of an
object, the object will overlap both the StaticSphere and the
CollisionSphere radius, selecting it.

If the controller is moved further into the object, the
CollisionSphere remains at the object’s surface. Only objects
on the surface can still be selected.

Should the user move the controller deeper, the objects on the
surface may be too far away to overlap with the StaticSphere.
No objects will be selected.

The physics constraint will attemot to make the
CollisionSphere follow the StaticSphere. If no path can
be found and the distance between the spheres reaches
a threshold, the physics constraint will ‘teleport’ the
CollisionSphere, forcing it closer to the StaticSphere. This
prevents the CollisionSphere from getting stuck on the surface
of an organ if, for example, the user swipes their controller

Fig. 2. Surface Collision Actor II

across the body.

The SurfaceCollisionActor is flexible and can be used
in other context. Parameters like the sphere radii can be
customized while or after spawning SurfaceCollisionActor
instances. The values of the physics constrant are not all
publically accessible, but can easily be edited within the
SurfaceCollisionActor itself.

The SurfaceCollisionActor works best if its parameters are set
correctly. Its current settings have not been extensively tested,
and more testing could reveal if adjusting its parameters
require more tweaking.

III. CONCLUSION AND FUTURE WORK

We have achieved all our goals for the project. At this

moment there are no known bugs, everything is working as
expected and no planned features are missing.
An idea which came up when there was not enough time
anymore to implement the feature is a multiplayer mode. This
would allow a second person to join the virtual world to watch
the first person working with the body.

