VaMEx-VTB

Modulares virtuelles Testbed fiir die VaMEx-
Fordervorhaben

T-T-CGVR-2000-0001

Simulation- and Visualization-System

Prepared by
Contributors

Checked by

Approved by

Name and Institution
Jorn Teuber (JT)

Jorn Teuber (JT)
Marc Jochens
Alexander Klier
Carlotta Herrmann
Christopher Wolff
Haya Al Maree

Julian Mehwald-Hoffman
Kai Gatjen

Lukas Gossé

FKZ: 50NA1712 Fordermittelgeber

Date
28.01.2019

20.10.2020
20.10.2020
20.10.2020
20.10.2020
20.10.2020
20.10.2020
20.10.2020
20.10.2020

Document Change Log

Issue A N Date Name
@ Universitat Bremen 4#7 Deutsches Zentrum

Revision DLR fir Luft- und Raumfahrt
Changes

0 0 28.01.2019 Initial Version T
1 20.10.2020 VaMEx2020 Bachelorproject

Table of Contents

I Ao = U TSR 4
1 [N oo TUT1 4o T3 HU OO SOUURRUUSRRSRRRRPPN 5
1.1 SO .ttt ettt e ette ettt e e tte e ettt e e bt e e te e e e b e eebee e etaeeabeeaabaeebaeeabaeebeeeabaeebeeeabeeebaeeabaeebeeeabeeebaeebeeetaeeneeebeeeateeeats 5
1.2 APPIICADIE DOCUMENTES.....ctieieeiieie ettt ettt ettt ettt et e e be e e saeesbeebeeabeeaseeseeebeebeenbeensesseesaeesreenreenns 5
1.3 RETEIENCE DOCUMEBNES ...ccutieiiiie ettt ettt ettt h e b e bt e b e st e satesae e s bt e beeabeeabeeatesbeesbeenbeebeenseensesas 5
14 A CTONYIMIS . ceteeetee ettt eteeeeteeeeteeeeteeesteeeeteeesbaeeesaeebeeeasseesseeasseensseeasseenssseasseensseeasseesseeasseetssessseensseessseensnas 5

2 T [TR=T 0 T o S Vg F= 1 V2] P 6
3 SYSTEIM DESIGN . utitieiietteie et ettt e st s bt e bt et e ettt esbt e s bt et e esbeeabesatesaeeshee bt e st easesaeesatesaeanbeenbeenbeentesatesaeesaeenes 6
3.1 HIGN-LEVEI ATCRITECTUIE .. .eiitiieiee ettt ettt ettt e et e e et e e te e e etee e taeessaeeeteeeesaeetseessseensseeesseesees 6
3.2 COMPONENES IN ROS...oiiiiieiiieitie ettt ettt eette st e et e e st eeeteeesbaeestee e baeesee e baeasesebaeaabeeenbaesasesebaseseseseenseeans 7
3.3 Architecture of the SIMUIBTIONc..eiiiiiire ettt b et b e st be bbb seebe 8
3.3.1 Architecture of the SWarm-UNitScccueieiiiririne ittt ettt sttt sae e sbe e 8
3.3.2 Architecture of SUPPOIT-UNItS......ccciiiiiieeiieeciee et cteeste sttt eeee e veesveestbeesbeesabeesaseesabeesaneesaseesasaenans 9

3.4 VAMEX UNTEAI OVEIVIEW......eueuiitirieiietiiettetesteitete sttt sttt st et e b st e s et e be st ebe b e st ebe b e st ebesbentebesbeneebesbeneenes 10
g B T T OSSP RSOUSRRPRUSRN 11
3.4.2 SWarm UNit & COMPANION ...ccueieiiieeeiieeciteeeteeecteeetteestveeeteeestaeestseestseeesseessseessseesabeessseesabeessseessseensseens 12
K . | 0) TS 13
3.4.4 3D-Ul Parts, TOOIS & Related 10 TOOIS....c.uiieeiiireecereeeeteeceteecetee et eetee s eetee et s eeteeetesesteeetesenteeenreas 14
4.5 DUSE DBVIIS .ttt ettt ettt st b e s h e ehe e st et et et e b e eh e e bt e aeea b et et e b sheebeeaeeat et enean 15
3.4.6 Other & VISUGlISATIONocueiuiiieiiieiieieee sttt st st ettt bbbt b nee 16
3.4.7 SENSOT & ROSDALA .. ccueeuieieriieeeriieeeetete e steste st ste st e st e tetessestestesaeeseeseessensesesesaeesesneensensensensessensenes 17
Bi4.8 ULIIIEY (1/2)veeveeeeeeeeeeeeseeeseeseessees e ss s sseessesesess s esseseseessee s essees et eees s es et eees et eseseeesseeseseseseseeeseseses 18
B9 ULHIEY (2/2) e vereereeeseeeeeeeeseeeeeeeeeeeeeseeee e seese s esese e esessaeeseeeeseseesesesesese s eseesesessseaee s esene s eseeeseseeeseeeeesenes 19

4 I P EMIENTATION ..ttt ettt e et e e b e s taesteesbeebeeabeeaeeeaeaebeebeenbeeabeeasestaesaeebeenneenneenranns 20
4.1 Ct DOKUMEBNTATION. ¢ttt ettt et b et e et et et e she e bt eaeea e et et e ssesbesbesaeeseeneensensens 20
4.1.1 ROSMethanSeNSOrCOMPONENTcceeccviiiiiieeitieeitieeiteeeiteeeiteeeeteeebeeesteeesesesseeeresssaessesenseessesans 20
4.1.2 MethanSensorViZCOMPONENT.......cciiviiieeteete e ereeeeseesteeereeereeresteeeteesteeebeebeessessaesseesseesesaneennens 20

o I T o o Tol T3V TV =1 12T OSSP RRSRRPRR 20

4. 1.4 ProCESSCOMPONENT...ccuiiiitiieitieeiteeeetee ettt eeteeesteeesteeesteeeeseeestaseaseseatssesseseabseessssetesensseesseeasesensesanseeants 21

4.2 Unreal Engine Blueprints DOKUMENTAtION.......c.cciiiiiiieiieecie ettt stre et e taeene e e baeenee s 23
4,21 VAMEX MENU SYSTEIM.....eiuiiiiiiitietieteeieiestesteste st stesseesteseestessestessesseeseessensessessessessesseeneensensensessessessennens 23
... 23
4.2.2 3DTOUCNADIE .. e et saees 23
4.2.3 VAMEXPQWN ..ottt st st r et s s ea e s ae e s he e n e e ne s s sre e r e ne e 24
G248 TOOIS ...ttt et h et e b e e b et e s bt e h bt e s bt e nhe e e s beeenteesaneenareas 24

4.3 ROS INTEITACE ... ettt b e bt bt e ae et e b et sb e b s bt ebe e st et et e sbeebesbesbeeaeenean 24

5 USEE IMIANUAL. ettt sttt et e b bt sb e bt et e et e s b e e b s bt e bt e st e st et et e b nr e bt e bt se e enten 24
51 (D= o =T aTe [T o Tol 1T OO OO OO SO PSPPSRI 24

5.2 CONFIGUIING ThE VTB....eiieeeeiee ettt ettt et ettt e et e e teeebeeeeteeebeeeesaeebeeesaeeabaeenseesnbaseseeentesenseeenses 25

5.2.1 Configuration iN UNFEal.......ccueiiiiiiiieiiie ettt ettt e e te e e te e e be e e eteesabeesaeesabaesbeesabeesnseenans 25

5.2.2 Configuration in the SIMUIGTIONc.iiiiiiieiecece ettt et e sae e sreeeaeereenre e 25
5.2.3 Configuration of the COmMPONENtS iN ROS........cccueiiiriiriririnieeteteree ettt se et s ens 25

5.3 Starting the VTB @Nd ROSviiiiieeiee ettt ettt e e ste e e te e st e e sabeesabeeeaseesabeeeaseesabeessseesabeensseens 25
54 INEErACTING INTHE VT B ..oeiiiiecieeeee ettt te e e re e st e e st e e s teesabe e sateesaseesataesaseesasaesnsessasasanseens 25
55 The VAMEX LAQUNCRET ...ttt et sttt s bt e be e s bt e e bt e s b e e e b e sabeeeneenane 25

6 EXPANAING ThE VT B ..ottt ettt ettt ettt et ettt e tte et e e s taeeetee e stbeeetbeesabeeesbeesabeeesseesabeeesseesareessseesabeennreess 26
6.1 Adding another TYPe of SWarmM-UNit........cicciiiiieeiieiiie et esee e esteeesre e estaeesaeeestaeesseeestaeenseeenns 26
6.2 AddiNG @ NEW VISUGIZATION....uiiieiie ettt sttt ettt et esae e sb et e beeatesatesaeesas 26
6.3 SEELING UP @ NEW IMIAP...uieciieiriectee et ettt e ettt e e teeeteesteeeabeesbeeeabeesabeesabesebeeeasesstaesabeesnteesnbessseesnreean 26

RETEIENCES ...ttt et e e et e e st e e e e e e e es b b e e e e e e eeea st bbb e e aeeeeaa bbb b e aeeeeeaa bbb aeaeeeeeaaaarrereeeeeeaarrees 26

List of Figures

No table of figures entries found.

List of Tables

No table of figures entries found.

1 Introduction

1.1 Scope

This document describes briefly, at a high level, the requirements, concepts, engineering and algorithms of the
simulation and visualization systems used in the VaMEx-VTB.

1.2 Applicable Documents

N/A

1.3 Reference Documents
N/A

1.4 Acronyms
VTB Virtual Test Bed

ROS Robot Operation System

2 Requirements Analysis

At the beginning of the project all the partners were contacted to assess their requirements for the VTB. That
included the requirements for the environment, the visualizations, the synthesised sensors, and the interfaces
from ROS to the VTB and vice versa.

These assessments were regularly updated during the splinter meetings at the DLR synergy-meetings and
incorporated into the VTB whenever possible.

VaMEx 2020:

Initially requested features:

Unreal Engine upgrade to 4.25
New Terrains

@& Sensorsin VR

@® Environmental Process (Methane-Sensor)
@ Visualisation of all sensors

@® Simulate slip on slopes

® GUI for sensor visualisation settings
@ Obstacles for SUs

@ Dust Devils

@ SU Interaction

@ Companion

®

®

3 System Design

The system architecture was designed according to the component-based software architecture, which is also
favoured by the Unreal-Engine. This makes it possible to create the swarm units as a plug-and-play system,
which each sensor or even behaviour as a component that can easily be attached to it.

3.1 High-Level Architecture
Integration Simulation

" #ROS) [

UNREAL

ENGINE

VaMEx — CoSMIC

VaMEx — LAOLa

a
v

VaMEx — VIPE

VaMEx — VTB Orbiter

_ J

Figure 1: High-level overview of the architecture of the VTB.
As you can see in Figure 1, the VTB consists of two separate parts. The left part is an installation of ROS,
containing all algorithms and software-components of the partners packaged in self-contained ROS-nodes. The

right part is an Unreal Engine-project that contains the visualization, the interaction, and the simulation of the
swarm units including the virtual sensors. This part will be called the simulation from now on.

The two parts are connected by ROSbridge, which provides an interface for ROS that is accessible via a network
connection. This means that the two parts of the VTB can be housed on two entirely different computer
systems, for example the ROS system can be set up on a central computer accessible to all partners in the
VaMEx-initiative and every partner can run the Unreal-part on their computers to visualize and interact with
this central ROS system.

For development and testing purposes a setup using a virtual machine running ROS on a Windows system
which is running the simulation is the easiest option though.

3.2 Components in ROS

vamex_vtb

: : hokuyo_sensor
lidar_recombiner Yo_
_model

N|
\
f dynamixel_sensor
k

exploration_manager

E
v _error_model pcl_3d_builder } ;OU
- > (%)
> g
E ={ odom2imu]—-[imu_error } a
(@) Q
— J—l vamex_orbiter } > S-Dr
()] S (@)
(@) » laola >
S) C
t: 3
=
2 g
)] =
(o'

*» waypoint_publisher } »

‘-{ sensors_dlr I
4" vipe_slam I

) S— | S—
Figure 2: Components and data-flow in the ROS-system.

The above figure shows all ROS-nodes and how they interact with each other and the simulation via the
ROSbridge. All rectangles in the middle represent ROS-nodes, which can also contain other ROS-nodes, like the
vamex_vtb-node.

The vamex_vtb-node contains all nodes that can and should be started before the Unreal part. That includes
nodes to convert the depth-measurements sent by the virtual lidar into point clouds (all nodes up to and
including pcl_3d_builder), a node that converts ground-truth odometry sent by the simulation into imu-data
and adds an error to it, a node containing the SPICE-kernels simulating the orbits of the orbiters, and a node
containing the algorithms developed in VaMEx-LAOLa.

The exploration_manager-node contains the exploration strategy developed by VaMEx-CoSMiC, which has
to be started after the simulation. It supplies an environmental process for the swarm-units to explore and the
simulation to visualize, and goal-points for the swarm-units to make measurements at.

The bottom-most node, vipe_slam, contains the ORB-SLAM?2 algorithm it was used in VaMEx-VIPE with a few
modifications. This is not included in the vamex_vtb-node even though it needs to be started before the
simulation as it needs to be run as its own application (it is not a ROS-node in the sense that it can’t be started
by ROS, but it communicates with ROS) and takes some time to start up.

3.3 Architecture of the Simulation

The simulation can be split into 3 parts: the swarm-units, the support-units and the environment. In the
following subchapters, the architecture of the swarm-units and the support-units is shown. The environment,
i.e. the terrain, rocks and other features of the landscape, and the sky, is handled completely by the Unreal
Engine and is therefore not part of the architecture.

3.3.1 Architecture of the Swarm-Units

Swarm Units
SimulationSystem
uGv Charlie UAV
Components
8 Visualization -
o ConfidenceEllipsoids 8
E » RelativelMUVisualization o
O :o
— » RelativeOdometryVisualization Q
= (@)
(D) (@]
o) Ghost s
_'C_J o
rum .
e Exploration » Path 8
[72)
QC:D LidarPointCloud H PointCloudVisualization W
/‘{ LidarVisualization

ROSLidar >

ROSCamera >

ROSPosition >

Figure 3: Actors, Components and data-flow of the swarm-units in the simulation. Data flows from left to right along the
arrows. The swarm-units (UGV, Charlie and UAV) use components to add functionality.

The swarm-units and their components are designed with reusability in mind. Most of a swarm-unit’s abilities
are encapsulated in components which can be programmed once and then used on any swarm-unit. This
results in a plug-and-play-like architecture where new functionality, like virtual sensors or visualizations, can be
added, removed or just moved on a robot whenever needed.

The SimulationSystem is implemented as a GameInstance, which is a central component of the Unreal
Engine. When the simulation is started, the Unreal Engine creates an instance of the SimulationSystem,
which in turn spawns all swarm-units and arranges them around the origin of the scene. Additionally,
simulation wide actors for swarm-/support-unit independent global interactions, such as the

ProcessVisualizer, are spawned. The ProcessVisualizer-Actor uses two ProcessComponents to
visualize the ground-truth and estimated environmental process as sent by the ExplorationManager in ROS.
The visualization-components (in the green rectangle in Figure 3) have a common interface to make it
easy to hide and show them and make them invisible to all ROSCamera-components, which simulates a
Camera and shouldn’t picture, for example, the point-clouds generated by the ROSLidar-component and
shown by the PointCloudVisualization-component. The new MethanSensorVizComponent displays
the value at the parents location within the scene of the currently tracked ProcessComponent by the
SimulationSystems ProcessVisualizer actor.

The ROSLidar-, ROSCamera- and, ROSPosition and ROSMethanSensor-components synthesize ground-
truth sensor outputs, specifically of a lidar, a RGB(D)-camera, and an odometry-sensor and environmental
process methane measurement data respectively. The lidar can also visualize the plane it is currently scanning,
which is encapsulated in the LidarVisualization-component. The ROSMethaneSensorComponent is not
attached to any ROS Topics yet, due to lack of these in the vtb-ros-source project, which currently uses a
static demo implementation. For now, a measurement is only signaled to the currently tracked
ProcessComponent for side effects to be observed at visualization, which is required during demo-mode
only.

3.3.2 Architecture of Support-Units

r .)
Support Units
8 BeaconSpawner -
o Beacon LAOLALocalization 8
- O
—
O Q'
= OrbiterSpawner «Q
) > (g
(@) » Orbiter —
O O
—
2 O
n » ProcessVisualizer ProcessComponent
Q wn
o
Clock
" v ——

Figure 4: Actors and components of the support-units.

The support-units fulfil a variety of tasks within the VTB and the VaMEx-swarm in general. Instead of one class
spawning all these like the swarm-units, each type of support-unit has its own spawner-class. This provides
more flexibility and encapsulates the individual subsystems better.

The beacons, which are spawned according to the settings in the BeaconSpawner, are used by LAOLa as static
landmarks for their localization algorithms. They are used by the LAOLALocalization-Actor to generate the
messages that are send to the LAOLa-algorithms in ROS.

The OrbiterSpawner-actor spawns a set number of Orbiter-actors with settings that can be specified in the
spawner, for example a scaling factor. The orbiters then get their position from their respective ROS-topic.

The ProcessVisualizer-Actor uses two ProcessComponents two visualize the ground-truth and estimated
environmental process as sent by the ExplorationManager in ROS.

Lastly, the Clock-Actor is a very simple class that sends out the simulations “official” timestamp every frame.
This timestamp needs to be used by ROS-nodes that, for their measurements, rely on the current time, for
example the vamex_orbiter-node. This makes it possible to accelerate the time (time-warping) in the
simulation and see the orbiters following their orbits much quicker.

|II

3.4 VaMEx Unreal Overview

The following UML-Class Diagram will show an overview of the whole VaMEx_Unreal Module. To see
the full map, please download either the exported picture or the .vpp file. The vpp-file is made with
Visual Paradigm Community Version 16.2.

In the box at the top are the Unreal-Engine Classes and below are the VaMEx_Unreal Classes. This
UML Diagram does not focus on the UnrealEngine contents. For a detailed UnrealEngine
Documentation, visit the official one.

General
GameModeB ase Gamelnstance AGameState
Base
i A
==Blueprint=:= SimulationSystem AVaMExG ameState
MainMenuGameMode
==Blueprint>= ==Blueprint>>
S Wi SimulationSystemBP

==Blueprint>>
DisplayClusterTestMode

==Blueprint==
TestGameMode

==Blueprint>=
UnofficialTestGameMode

3.4.1 Player

Anything related to players and inputs

2 AActor
~__ Player
APlayerController MCharacter
SpectatorPawn B Animinstance iy HUD
N / A
I\ /X I\
AVaME xPlayerController ==Blueprint== =<Blueprint== == Blugprint==
VaMExPawn VaMExSpectatorPawn VaMEx_HUD
A"
==Blugprint==
==Blueprint>=> BP_MaotionController
L | PCPawn
==Blueprint== ==Blueprint==
MotionController Pawn TouchFinger
==Blueprint==> ==Blueprint==
DisplayClusterP awn VRPH _InputTracker —

o T

==Blueprint=> =< Blueprint>=
Emulated_DisplayClusterPawn Emulated VRPHN_InputTracker

==Blueprint==
MainMenuPawn

| ==Blueprint==
TEST_DisplayClusterP awn

==Blueprint==
~| wiTestChar

3.4.2 Swarm Unit & Companion

Swarm Unit MAniminstance
APawn A
AActor VehicleWheel
i
A
[L3
ACharlie U CharlieAnimation
L’I}‘ ==Blueprint==
=< Blueprint=:= UGV_Whes=lBlueprint
CharlieBP ==Blueprint=:=
Charlie_Ghost |
AUGY
— ==Blueprint=:=
L?. UAV Ghost [
==Blueprint==> x
: ==Blueprint==>
UGV _Blueprint UGV Ghost |
==Blueprint>> <<Blueprint=>> | |
|| SwarmlnitBP Path
Companion
SAlController 4 Character
JaN ¥
==Blueprint== ==Blueprint==
CompanionAlController Companion

3.4.33D-UlI

==Blueprint= =
CurvedMenuD ata

<=Blueprint==
MainMenuGame

==Blueprint==>

Watch_MainMenu

<<Blueprint= =
ToollnfoF rame

£\

=< Blueprint=>

SpawnerT oolinfoF rame

==Blueprint= =

G ravityGuninfoF rame

== Blueprint==

DustD evil ToolinfoF rame

== Blueprint==
Charlielnfof rame

<=Blueprint:= =
U AVInfoF rame

==Blueprint=>
Mars_L evelSelect

30U R
UOhject
Fa
A
==Blueprint== =<Blueprint== <=Blueprint=:=
Base_HoloWatch JDUIFrame Base3iDUI

i

==Blueprint==
Testinterface

<<Blueprint=:>

<<Blueprint==
abstractCarvedVBny

Holo_MainMenu

A

==Blueprint>=

==Blueprint==

Holo_Options E xampleCurvedMenu
==Blueprint==>
VisualisationOptions

==Blueprint= >
Holo_Robotik-infos

==Blueprint==
Holo_LevelSelect

== Blueprint==
FindRobotshMenu

T

SelectToolsMenu

3.4.4 3D-Ul Parts, Tools & Related to Tools

The Ul Parts are used as building blocks in assembling the 3D-Ul pages (frames).

Tools & Related

4 AActor

3D-Ul Parts

P

4 AActor

4 APawn

A

N

==Blueprint==
3D Touchahle

T

<=Blueprint=:=

<<Blueprint==

3DButton | 3DSlider
==Blueprint=>=> ==Blueprint>:=>
3D CheckCube 3DButtonText

T

==Blugprint==
3DDialogB utton

=<Blueprint==

==Blueprint==>
Interactable

==Blueprint== GravievVehicle
] Tool
{j =<=Blueprint==
AF‘ GravityGun

== Blueprint==

SpawnTool ==Blueprint==

DustD evilTool

<< Blueprint=: ==Blueprint==

BaseRock [} Rockl

Jal

== Blueprint==
Rock2

i

==Blueprint==
Rock3

==Blueprint==
VehicleBase

1

==Blueprint>=
Rockd

==Blueprint=:=
HowerP latform

== Blueprint==
Rocks

==Blueprint=>
Rockb

3.4.5Dust Devils

Dust Devils
4 Character MAIController BTService BlueprintBase
AR JA

==Blueprint==

| AIC-DustStorm ==Blueprint>=
|| Service-SetRandoml ocation-D ustD evill

==Blueprint==

AIC-DustD evill ==Blugprint==
==Blueprint== | Service-SetRandoml ocation-D ustD evil2

DustStorm [

==Blueprint==

AIC-DustD evil? ==Blugprint=:=
— | Service-SetRandoml ocationDustStorm

==Blugprint==

Dusthevill —

<=Blugprint=:=
DustDevil2 [~

3.4.6 Other & Visualisation

Other Visualisation
2 AActor a AActor BSceneComponent
A £\
VaMEx_Unreal
==Blueprint== ==Blueprint=: UVisualizationComponent
—| LewelSphere —| BeaconLine0fSights
N
i ULineVisualizationC onent
| [==Blueprint== <<Blusprint>> || omp
BRI E — PresentationH elper
=<Blueprint==> ~ UMethans ensorizComponent
LAOL aTester MvisualizationActor il
=<Blueprint>=> ZF UPointCloudWizComponent
™ £y R AProcessVisualizer
UE stimatedP oseVisualization

UPathVisualizationComponent

ULidarWizComponent

UConfidenceE llipsoidComponent

UR elative0 dometryVizComponent

UR elativelMU VizComponent

3.4.7 Sensor & ROSData

Anything that is in the chain from collecting sensor data until sending it over.

Sensor & ROSData
HSceneCurmmmt UActor Componen USceneCapture
t Component2D
N v Ja

UROS CameraComponent

UROSLidarComponent

UExplorationComponent

UROS MethanS ensor Component =

UROS PositionComponent

UProcessComponent

LAOLaLineOfSightConverter

LAOLalL ineOfSight

LAOLaLineOfSightMatrix
) Comwerter

LAOLaLineOfSightMatrix

LAOLaPoselistComnwerter

LAOLaPoselist —

UDynamixelSensorE morModel
B JointStateConverter

ROSIntegration

FROSBaseMsg UBaseMessage
Comwv erter

3.4.8 Utility (1/2)

3.4.9 Utility (2/2)

4 Implementation

4.1 C++ Dokumentation

4.1.1 ROSMethanSensorComponent
If attached to a parent component, this component will perform and publish measurements of the specified

measuredProcess to ROS (currently not implemented due to lack of associated topics on the ros
implementation side) as well as the visualizing ProcessComponent for demo mode filtering purposes.

4.1.1.1 Fields

Signature Description
float UpdateIntervall Time intervall on which to perform new measurements.
(default: 1.0f)
EProcessVizEnum Enum specifying the currently tracked process.
measuredProcess (default: EProcessVizEnum: :None)

4.1.2 MethanSensorVizComponent

This component displays the value of the ProcessComponent which is currently tracked by the
ProcesVisualizer at the location of the parent it is attached to.

4.1.2.1 Fields

Signature Description
FColor Color The color of the displayed measured value.
(default: FColor(@, 255, @, 125))
UTextRenderComponent* Pointer to the UTextRenderComponent used to visualize the
DisplayLabel process value at the attached parents location.
(default: nullptr) [set during initialization]
float UpdateIntervall Time intervall [s] on which to update the displayed value of the
process at the attached parents location in seconds.
(default: 1.0f)

4.1.2.2 Methods

Signature Description

void SetColor(FColor Set the color of the displayed value of the process at the attached
color) parents location.

4.1.3 ProcessVisualizer

This actor gets spawned during initialization of the USimulationSystem and is responsible for controlling
the display of the environmental process data ground truth and estimate by usage of two
UProcessComponent.

4.1.3.1 Fields

Signature Description
EProcessVizEnum Enum specifying the currently visualized process.
VisualizedProcess (default: EProcessVizEnum: :None)

UMaterial* DecalMaterial

Pointer to the material to be used for the UProcessComponents
managed.
(default: nullptr) [fetched during setup]

UProcessComponent* Pointer to the ProcessComponent handling the environmental
GroundTruth process data ground truth received from ROS.

(default: nullptr) [created during initialization]
UProcessComponent* Pointer to the ProcessComponent handling the environmental
Estimate process data estimate received from ROS.

(default: nullptr) [created during initialization]

4.1.3.2 Methods

Signature

Description

virtual void

process)

Set which UProcessComponents data shall be

SetVisualizedProcess(EProcessVizEnum | displayed, if visualized.

UProcessComponent*
GetVisualizedProcess()

Returns a pointer to the tracked UProcessComponent
whose data is currently being visualized, if
UProcessVisualizer itself is being visualized.

UProcessComponent*

EProcessVizEnum type)

GetTrackedProcessByType(const

Returns a pointer to the tracked UProcessComponent
for the passed type of environmental process data
received from ROS.

4.1.4 ProcessComponent

This component processes environmental process data received from ROS for display. Instances of this are

used in UProcessVisualizer.

4.1.4.1 Fields

Signature

Description

FString TopicName

The name of the topic used to receive environmental process data
from ROS
(default: “/process”)

UMaterial* DecalMaterial

Pointer to a UMaterial instance to be used for visualization.
(default: nullptr)

UDecalComponent* Decal

Pointer to the UDecalComponent instance to be used to generate
the visualization of the received environmental process data.
(default: nullptr)

OverlayMaterialDynamic

UMaterialInstanceDynamic*

Pointer to the UMaterialInstanceDynamic set for the material of
field Decal derived from field DecalMaterial
(default: nullptr) [set during startup]

4.1.4.2 Methods

Signature

Description

bool isValidLocation(const

Returns true, if the passed location in unreal units is covered by the

FVector& location) environmental process data received from ROS, false otherwise. In
demo mode always returns true.

uint8 returns the value of the visualized environmental process at the

valueAtLocation(const passed location in unreal units.

FVector& location)

void Notifies the UProcessComponent about a measurement at a passed

measurementAtLocation(location in unreal units to enable filtering of visualized environmental

const FVector& location) process data received from ROS in demo mode only.

4.1.5 SimulationSystem

This class is a Gamelnstance for the Unreal-Engine and the inheriting SimulationSystemBP Blueprint class is set
up for that purpose. This is where most of the ROS startup is implemented but also where the start parameters
are parsed. Those help configuring the VTB to the users wishes. Valid start parameters from the
SimulationSystem side are:

-vr Used to start in vr mode. Not compatible with -pw, -dc_cluster or -vr-emulate-pw.

-dc_cluster Used to start in powerwall mode. Not compatible with -vr or -vr-emulate-pw.

-pw Same as -dc_cluster, used for debugging purposes.

-vr-emulate-pw Used to start in emulated powerwall mode. Not compatible with -vr, -pw or -
dc_cluster

-oVrw Overwrites the following settings in the SimulationSystemBP unless

OverwriteStartParams is true. It is usually recommended to give -ovrw as parameter
when starting the simulation.

-demo Starts the simulation in demo mode which effectively disables the exit buttin within
the simulation currently.

-visualizationsFiltered |Wether to use filtered visualisations for the methane visualisation or not.

-ezaf Enables or disables Easy and Fast Mode. Recommended to be used for beginners.

-companion Enables or disables the companion.

To start the VTB with these they can be appended in a cmd or powershell command this way:
Unreal-Engine_path .uproject_file_path -game append_parameters_here

4.2 Unreal Engine Blueprints Dokumentation
4.2.1 VaMEx Menu System

VaMEx Pawn

1

VaMEx Watch

3DUIFrame

3DTouchable

All menus used in the simulation are bound to a VaMEx Watch which is bound to a players left arm. One Watch
has different Submenus which are technically all on the same level in the outliner even though some are
practically “deeper” (submenus of submenus) than others. Every Menu derives from the 3DUIFrame which
comes with helping functions and a background so all menus have the same size. Each menu can contain
multiple 3DTouchable which can come in different flavours depending on the need. Every Menu contains a
Back or Close button for convenience. The VaMEx Watch holds functions to switch synchronously (client-
server) between the menus. The client-server functionality however is implemented in the VaMEx Pawn.

4.2.2 3DTouchable

The 3DTouchable is the base class for all 3D Buttons used in VaMEx. The derivates such as buttons, sliders or
checkbuttons (buttons that stay pressed for true and not pressed for false) hold event dispatchers for
buttonDown, buttonUp and their appropriate Highlight colliders to support being pressed by a TouchFinger.

The Basic 3DTouchable reacts to being pressed and released. It has no animation properties besides changing
it’s material when being pressed or highlighted.

3DButtons give user feedback by scaling down the button to give a impression of being pressed down.
3DButtonText is a 3DButton with a label for text being attached.

3DChechCubes Stay pressed in when pressed once and release on the second press action making them ideal
for boolean decisions in menus.

Sliders can be pressed and moved to trigger an OnSliderMoved event.

4.2.3 VaMExPawn

The VaMEx Pawn inherits from the Unreal base Character and is used in all simulation maps. It’s children reflect
the different input and output devices. The model including hands is the same for all pawns and implemented
here. Also replication for multiplayer is set up in this Pawn.
There are currently 4 Pawns:
- PCPawn:
For use with mouse and keyboard and regular display device such as a monitor. Has the ability to click
on Menus, Robots and the Companion by using the mouse cursor. Can also fly freely around in the
level and teleports to robots automatically when clicking on them.

- MotionControllerPawn:
For use with an HMD and appropriate Controllers. Uses the Motion Controllers as virtual Hands to
touch but also click on Buttons, Robots or the Companion. Hands Location will also be used for
gestures for other players on the server.

- DisplayClusterPawn:
For use with a Powerwall and an Optitrack tracking System. Requires the powerwall.cfg to be setup
correcty. This can be found in VaMEx_Unreal\Content\Config. Menu Controls work the same as seen
in the MotionControllerPawn however without the clicking actions. To call the companion a waving
gesture is used. Movement is done streching the arms forward for going forward, up for upwards,
down for downwards and T-Pose for backwards. The player can turn by holding either the right or the
left hand to his right or left.

- EmulatedDisplayClusterPawn:
For use with an HMD and appropriate Controllers but only exists for testing purposes and can only be
selected within the engine. Has the same functions as the DisplayClusterPawn but does not require a
powerwall or Optitrack system to work. All input is emulated with motion controllers and output is
shown on the HMD.

There is also another Pawn used in the Main Menu. It provides similar controls to the menu as theI
VaMExPawns do depending on the selected output/input methods. It is not able to move and only required forI
changing simulation options and starting a map.

4.2.4 Tools

For the user to change the way the simulation behaves 3 tools have been implemented. These can be selected
in the SelectToolsMenu. Depending on the mode and tool they receive different inputs from mouse, motion
controllers or 3DButtons. All tools however can purely controlled using the 3DButtons.

There are currently 3 Tools implemented which all inherit from the Tools class. They are: Spawning-Tool,
Gravity-Gun and Dust Devil-Tool. Further explanation of these Tools is given in chapter 5.4 Interacting in the
VTB.

4.3 ROS Interface

5 User Manual

5.1 Dependencies
- Windows 10
- Unreal Engine 4.25
- Substance in UE4 Plugin (Unreal Marketplace)
- ROSIntegration Plugin (included)
- ROS (only for use with ROS)
- VaMEx Launcher (optional but highly recommended)

5.2 Configuring the VTB

Some of the configuration of the simulation can be changed with the launcher or in the SystemSimulationBP
within in the engine. Also it can be overwritten for easier testing.

5.2.1 Configuration in Unreal

The SystemSimulationBP contains all variables passed to it during standalone start which can also be
overwritten. These variables include the amount of robots, HoverUl, ConnectToROS, easyAFMode, demoMode
and Companion. When Overwrite is enabled passed standalone parameters will be ignored.

5.2.2 Configuration in the simulation

In the Main Menu ROS can be enabled or disabled and another type of Ul the HoverUI can be enabled. Also the
Amount of Robots can be set.

5.2.3 Configuration of the Components in ROS
5.3 Starting the VTB and ROS

For this Chapter read the Quick Start guide. It provides all information required to start the simulation and ROS.

5.4 Interacting in the VTB

Menu interaction can happen by touching the buttons or clicking them with the trigger button (in VR). To open
the menu the watch needs to be activated.

Robots can only be clicked on but they can be tipped over when touched.

In the ‘Tools’ section of the menu 3 different tools can be equipped. A tool can be unequipped by holding it
behind the users back/camera or by pressing the tool toggle button (Left Motion Controller Menu Button or T
for PC). The tools are:

- Spawning-Tool: Used to spawn different sized and shaped Rocks

- Gravity-Gun: Used to move Objects around. Without EasyAF it has the ability to activate a second mode by
clicking the button on the top right corner of the tool which allows holding Objects. This mode is default in
EasyAF Mode. By moving the lever on the side or the mouse wheel (PC) the Object in front of the gun can be
moved closer or further away.

- Dust Devil-Tool: Used to spawn a dust devil in front of the user. When pointed at the ground the Dust Deuvil
will go towards the pointed location. To move around on PC use WASD Space and Ctrl. For VR use the Trackpad
to teleport around. The trackpad finger position is used to determine the rotation after the teleport when
easyAF mode is off.

@ VaMEx Launcher - [m]

5.5 The VaMEx Launcher

The VaMEx Launcher can be used to easily start the VTB. It also
has some built in utilities to clean up the Binaries and the

fi Eie\reloperUtiIiiies

Intermediate folder of the Unreal-Engine project and can repairI Start Simulation Options
Symlinks if their destination does not exist anymore. This was ‘
used to externalize the Binaries and Intermediate folder to a ¢ Stat VR Standzlone

RAM drive due to the Unreal-Engines behaviour of writing and ;

reading very often from these locations which can heavily

decrease the write cycles of an SSD and speed up the building DI

and hot reload process rapidly especially when using slower —

storage media. =T-
| 1
— T

Start PC Standalone

. . . . Start PW Standalone
It works by locating the Unreal-Engine installation folder

automatically and starting it with some the given parameters. P Bt Ak
In case the simulation is started -game is being used to start [Essy and Fast Mode
the engine for directly starting a standalone game. Comparion

Visualizations Fittered

Start Unreal Engine

The Launcher is the recommended way to start the simulation as the editor does not show the variables that
can be chosen here with user friendly buttons. Also using the Launcher two instances of the same simulation
can be started by staring first the engine and starting an instance using the launcher afterwards.

It is written in C# and can be built using the csproj file located in: VaMEx_StandaloneLauchner\VaMEx-
StandalonelLauchner\VaMEx-StandalonelLauchner\VaMEx-StandalonelLauchner.csproj.

If Visual Studio says the dotNET Framework version is not the right one, also 6.1 can be use and others may
work too. Build the Launcher as Release and copy the resulting .exe from VaMEx_StandalonelLauchner\VaMEx-
Standalonelauchner\VaMEx-StandaloneLauchner\bin\Release\StandalonelLauchner.exe

to the projects directory.

6 Expanding the VTB
6.1 Adding another Type of Swarm-Unit

To add another Swarm-Unit, there is a series of things that need to be done to provide the full intended
functionality:
@ A ROS Interface that supports the desired number of the new Swarm-Unit is needed.
@ The Behaviour, Appearance and Components need to be defined by a custom Blueprint.
@ For full functionality as well as data consistency a few changes in the USimulationSystem are needed
o All Swarm-Units are saved in the array SwarmUnits, the new ones should be added
o numSwarmUnits should be updated to equal the sum of all Swarm-Units now including the new
one
o A new variable for the new Swarm-Unit amount (numberOf<name>s) should be added
@ The spawn script should be updated to also spawn the new Swarm-Unit
@ On spawn, Swarm-Units of the new type should register to LAOLA.
@ The GUI should give control over the new Swarm Units sensor visualisation, offer an info page similar
to the other ones and also implement the search feature.
@ To ensure proper physical interactions, the collision should be set to match the other Swarm-Units.
@& The new Swarm-Unit needs to be replicated
o To properly replicate and set up the Actor, make sure to factor in network latency in combination
with the fact that actor-initialisation is not an atomic operation.

6.2 Adding a new Visualization

If the new visualisation is supposed to be attached to individual actors, such as swarm- or support-units, it
should consist of a reusable component implementing its behaviour. To use it it should then get added to the
desired Unit. If the visualisation is global, this restriction does not apply and it can be placed in the world using
a custom Actor. Currently the visualisations are set for each individual player and done client-side, so no
replication is desired.

6.3 Setting up a new Map

When a new Map is used, it requires a valid NavMesh in the middle because of automatic robot spawns. Also a
LAOLa Localisation Actor is required for the visualisations to work and a Clock-Actor for the ROS timings to
work. For the Beacons there is the BeaconsSpawner and for Orbiters to work the Orbiters Spawner is required.

References

Im aktuellen Dokument sind keine Quellen vorhanden.

