

Computer Interfaces for blind people

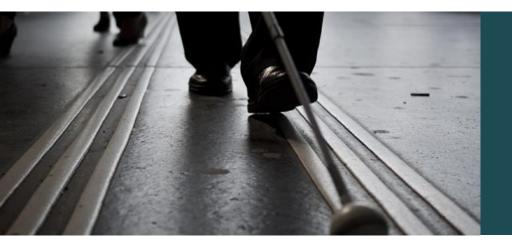
01Motivation

02

Forschung

03

Einleitung


04

Experimente

05

Guidelines

Motivation

1,2 Millionen sehbehinderte und blinde Menschen in Deutschland

- Weltgesundheitsorganisation (WHO)

- Internet als primärer Informationskanal
- Kleine Revolution
- Windows als Bedienoberfläche für die Mehrheit den Menschen
 - Mehr Hindernis als Verbesserung für sehbehinderte Menschen

Forschung

Forschung

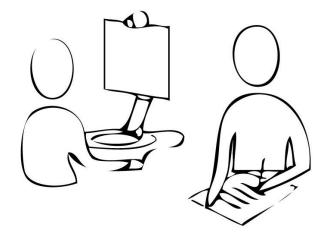
- Vielzahl von Projekten
 - Fokussierung auf Klängen und anderen nicht haptischen Geräten
- Haptik gewinnt an Beliebtheit

| Forschung – Aktuell

- Certec (Lund Universität) seit 1995
- Adaptive Technology Research Center (Universität Toronto)
 - digitaler Lehrplan zum anfassen, hören und verändern
- Immersion Corporation
 - Force Feedback in grafischen Oberflächen und medizinischen Simulationen
- Department of Electrical and Computer Engineering (Universität Delware)
 - Datenvisualisierung mittels haptischen Geräten

- E. D. Mynatt
 - Transformation von grafischen Benutzungsoberflächen zu akustischen Interfaces

Einleitung


Einleitung

- digitaler Inhalt leicht zugänglich für sehbehinderte Menschen
- Neue Art der Kommunikation
- Screen Reader in Kombination mit synthetischer Sprachausgabe und Brailledisplays
 - Ermöglicht Textzugriff
 - Grafiken?

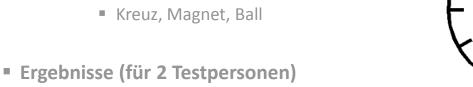
→ Software zur Darstellung von digitalen Informationen mittels haptischen Geräten

Experimente

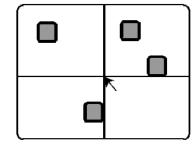
- The Memory House
- Pilot Studies FEELit Mouse
- Haptic Games
- A haptic mathematical program

- Experimente für unterschiedliche Benutzungsoberflächen, Ideen und Spiele
- Wie sinnvoll ist der Einsatz von Haptik?

Experimente – The Memory Game


- Ziel: Ist es möglich ein System wie Windows mit Hilfe von haptischen und akustischen Geräten zu steuern?
- Menge von Buttons mit Klängen
- 12 Paare
- 23 sehende Menschen + 9 blinde Menschen

Ergebnisse


- Fast alle blinden Menschen konnten problemlos im Spiel navigieren
- Anzahl der Versuche haben sich marginal unterschieden
- Blinde Menschen haben durchschnittlich mehr Zeit benötigt

Experimente – Pilot Studies FEELit Mouse

- 3 verschiedene Szenarien
 - FEELit Desktop in Kombination mit synthetischer Sprachausgabe
 - Radial Haptic Menus
 - Virtuelle haptische Suchtools

- FEELit Mouse bietet zu wenig Raum für Bewegungen
- Radial Haptic Menus kamen gut an, Testpersonen waren jedoch skeptisch hinsichtlich der Einführung in grafische Oberflächen
- Möglichkeit zum Wechsel zwischen den unterschiedlichen Suchtools

Experimente – Haptic Games

- Certec hat eine Vielzahl von Spielen entwickelt die nicht formal getestet wurden
- Spiele:
 - Submarines
 - Paint with Your Fingers
- Spiele wurden durch 20 blinde Kinder getestet

Ergebnisse

- Kinder waren durch Virtual Touch in der Lage ein inneres Bild von komplexen Umgebungen zu kreieren
- Gefühle wurden mit früheren Erfahrungen in Verbindung gebracht

Guidelines

Navigation

Deaktivierte Button sollen nicht entfernt werden sondern vielmehr mit einer anderen
Textur versehen werden

Objekte finden / Überblick verschaffen

Hilfestellungen wie z.B. eine magnetische Linie (Suchtools) anbieten

Objekte verstehen

■ Scharfe Kanten vermeiden → Nutzer konnten abgerundete Objekte besser verstehen

Zusammenfassung

Guidelines

- Haptische Interfaces können in vielen Varianten für blinde Menschen eingesetzt werden
- Interfaces liefern bessere Ergebnisse unter Berücksichtigung der Guidelines
- Sound und Haptik ergänzen sich gut

Vielen Dank für Ihre Aufmerksamkeit!