CONSTANT MEMORY AND EVENTS

space for our array of spheres. The other change has been highlighted in the
listing:

HANDLE ERROR(cudaMemcpyToSymbol(s, temp s,
(Sphere) * SPHERES));

We use this special version of cudaMemcpy () when we copy from host

memory to constant memory on the GPU. The only differences between
cudaMemcpyToSymbol () and cudaMemcpy () using cudaMemcpyHostToDevice
are that cudaMemcpyToSymbol () copies to constant memory and
cudaMemcpy () copies to global memory.

Outside the __ constant _ modifier and the two changes tomain (), the
versions with and without constant memory are identical.

Declaring memory as __constant__ constrains our usage to be read-only. In
taking on this constraint, we expect to get something in return. As we previously
mentioned, reading from constant memory can conserve memory bandwidth
when compared to reading the same data from global memory. There are two
reasons why reading from the 64KB of constant memory can save bandwidth over
standard reads of global memory:

e Asingle read from constant memory can be broadcast to other “nearby”
threads, effectively saving up to 15 reads.

e Constant memory is cached, so consecutive reads of the same address will not
incur any additional memory traffic.

What do we mean by the word nearby? To answer this question, we will need to
explain the concept of a warp. For those readers who are more familiar with Star
Trek than with weaving, a warp in this context has nothing to do with the speed
of travel through space. In the world of weaving, a warp refers to the group

of threads being woven together into fabric. In the CUDA Architecture, a warp
refers to a collection of 32 threads that are “woven together” and get executed in
lockstep. At every line in your program, each thread in a warp executes the same
instruction on different data.

106

From the Library of Daisy Alford Smith

6.2 CONSTANT MEMORY

When it comes to handling constant memory, NVIDIA hardware can broadcast

a single memory read to each half-warp. A half-warp—not nearly as creatively
named as a warp—is a group of 16 threads: half of a 32-thread warp. If every
thread in a half-warp requests data from the same address in constant memory,
your GPU will generate only a single read request and subsequently broadcast
the data to every thread. If you are reading a lot of data from constant memory,
you will generate only 1/16 (roughly 6 percent) of the memory traffic as you would
when using global memory.

But the savings don’t stop at a 94 percent reduction in bandwidth when

reading constant memory! Because we have committed to leaving the memory
unchanged, the hardware can aggressively cache the constant data on the GPU.
So after the first read from an address in constant memory, other half-warps
requesting the same address, and therefore hitting the constant cache, will
generate no additional memory traffic.

In the case of our ray tracer, every thread in the launch reads the data corre-
sponding to the first sphere so the thread can test its ray for intersection. After
we modify our application to store the spheres in constant memory, the hard-
ware needs to make only a single request for this data. After caching the data,
every other thread avoids generating memory traffic as a result of one of the two
constant memory benefits:

¢ |t receives the data in a half-warp broadcast.
e |t retrieves the data from the constant memory cache.

Unfortunately, there can potentially be a downside to performance when using
constant memory. The half-warp broadcast feature is in actuality a double-edged
sword. Although it can dramatically accelerate performance when all 16 threads
are reading the same address, it actually slows performance to a crawl when all
16 threads read different addresses.

The trade-off to allowing the broadcast of a single read to 16 threads is that the
16 threads are allowed to place only a single read request at a time. For example,
if all 16 threads in a half-warp need different data from constant memory, the

16 different reads get serialized, effectively taking 16 times the amount of time
to place the request. If they were reading from conventional global memory, the
request could be issued at the same time. In this case, reading from constant
memory would probably be slower than using global memory.

107

From the Library of Daisy Alford Smith

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Authors
	1 WHY CUDA? WHY NOW?
	1.1 Chapter Objectives
	1.2 The Age of Parallel Processing
	1.2.1 Central Processing Units

	1.3 The Rise of GPU Computing
	1.3.1 A Brief History of GPUs
	1.3.2 Early GPU Computing

	1.4 CUDA
	1.4.1 What Is the CUDA Architecture?
	1.4.2 Using the CUDA Architecture

	1.5 Applications of CUDA
	1.5.1 Medical Imaging
	1.5.2 Computational Fluid Dynamics
	1.5.3 Environmental Science

	1.6 Chapter Review

	2 GETTING STARTED
	2.1 Chapter Objectives
	2.2 Development Environment
	2.2.1 CUDA-Enabled Graphics Processors
	2.2.2 NVIDIA Device Driver
	2.2.3 CUDA Development Toolkit
	2.2.4 Standard C Compiler

	2.3 Chapter Review

	3 INTRODUCTION TO CUDA C
	3.1 Chapter Objectives
	3.2 A First Program
	3.2.1 Hello, World!
	3.2.2 A Kernel Call
	3.2.3 Passing Parameters

	3.3 Querying Devices
	3.4 Using Device Properties
	3.5 Chapter Review

	4 PARALLEL PROGRAMMING IN CUDA C
	4.1 Chapter Objectives
	4.2 CUDA Parallel Programming
	4.2.1 Summing Vectors
	4.2.2 A Fun Example

	4.3 Chapter Review

	5 THREAD COOPERAION
	5.1 Chapter Objectives
	5.2 Splitting Parallel Blocks
	5.2.1 Vector Sums: Redux
	5.2.2 GPU Ripple Using Threads

	5.3 Shared Memory and Synchronization
	5.3.1 Dot Product
	5.3.1 Dot Product Optimized (Incorrectly)
	5.3.2 Shared Memory Bitmap

	5.4 Chapter Review

	6 CONSTANT MEMORY AND EVENTS
	6.1 Chapter Objectives
	6.2 Constant Memory
	6.2.1 Ray Tracing Introduction
	6.2.2 Ray Tracing on the GPU
	6.2.3 Ray Tracing with Constant Memory
	6.2.4 Performance with Constant Memory

	6.3 Measuring Performance with Events
	6.3.1 Measuring Ray Tracer Performance

	6.4 Chapter Review

	7 TEXTURE MEMORY
	7.1 Chapter Objectives
	7.2 Texture Memory Overview
	7.3 simulating Heat transfer
	7.3.1 simple Heating Model
	7.3.2 Computing temperature Updates
	7.3.3 Animating the simulation
	7.3.4 Using texture Memory
	7.3.5 Using two-Dimensional texture Memory

	7.4 Chapter Review

	8 GRAPHICS INTEROPERABILITY
	8.1 Chapter objectives
	8.2 Graphics Interoperation
	8.3 GPU Ripple with Graphics Interoperability
	8.3.1 the GPUAnimBitmap structure
	8.3.2 GPU Ripple Redux

	8.4 Heat transfer with Graphics Interop
	8.5 DirectX Interoperability
	8.6 Chapter Review

	9 ATOMICS
	9.1 Chapter objectives
	9.2 Compute Capability
	9.2.1 the Compute Capability of NVIDIA GPUs
	9.2.2 Compiling for a Minimum Compute Capability

	9.3 Atomic operations overview
	9.4 Computing Histograms
	9.4.1 CPU Histogram Computation
	9.4.2 GPU Histogram Computation

	9.5 Chapter Review

	10 STREAMS
	10.1 Chapter Objectives
	10.2 Page-Locked Host Memory
	10.3 CUDA Streams
	10.4 Using a Single CUDA Stream
	10.5 Using Multiple CUDA Streams
	10.6 GPU Work Scheduling
	10.7 Using Multiple CUDA Streams Effectively
	10.8 Chapter Review

	11 CUDA C ON MULTIPLE GPUS
	11.1 Chapter Objectives
	11.2 Zero-Copy Host Memory
	11.2.1 Zero-Copy Dot Product
	11.2.2 Zero-Copy Performance

	11.3 Using Multiple GPUs
	11.4 Portable Pinned Memory
	11.5 Chapter Review

	12 THE FINAL COUNTDOWN
	12.1 Chapter Objectives
	12.2 CUDA Tools
	12.2.1 CUDA Toolkit
	12.2.2 CUFFT
	12.2.3 CUBLAS
	12.2.4 NVIDIA GPU Computing SDK
	12.2.5 NVIDIA Performance Primitives
	12.2.6 Debugging CUDA C
	12.2.7 CUDA Visual Profiler

	12.3 Written Resources
	12.3.1 Programming Massively Parallel Processors: A Hands-on Approach
	12.3.2 CUDA U
	12.3.3 NVIDIA Forums

	12.4 Code Resources
	12.4.1 CUDA Data Parallel Primitives Library
	12.4.2 CULAtools
	12.4.3 Language Wrappers

	12.5 Chapter Review

	A: ADVANCED ATOMICS
	A.1 Dot Product Revisited
	A.1.1 Atomic Locks
	A.1.2 Dot Product Redux: Atomic Locks

	A.2 Implementing a Hash table
	A.2.1 Hash table overview
	A.2.2 A CPU Hash table
	A.2.3 Multithreaded Hash table
	A.2.4 A GPU Hash table
	A.2.5 Hash table Performance

	A.3 Appendix Review

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

