CONSTANT MEMORY AND EVENTS

space for our array of spheres. The other change has been highlighted in the
listing:

HANDLE ERROR( cudaMemcpyToSymbol( s, temp s,
(Sphere) * SPHERES ) );

We use this special version of cudaMemcpy () when we copy from host

memory to constant memory on the GPU. The only differences between
cudaMemcpyToSymbol () and cudaMemcpy () using cudaMemcpyHostToDevice
are that cudaMemcpyToSymbol () copies to constant memory and
cudaMemcpy () copies to global memory.

Outside the __ constant _ modifier and the two changes tomain (), the
versions with and without constant memory are identical.

Declaring memory as __constant__ constrains our usage to be read-only. In
taking on this constraint, we expect to get something in return. As we previously
mentioned, reading from constant memory can conserve memory bandwidth
when compared to reading the same data from global memory. There are two
reasons why reading from the 64KB of constant memory can save bandwidth over
standard reads of global memory:

e Asingle read from constant memory can be broadcast to other “nearby”
threads, effectively saving up to 15 reads.

e Constant memory is cached, so consecutive reads of the same address will not
incur any additional memory traffic.

What do we mean by the word nearby? To answer this question, we will need to
explain the concept of a warp. For those readers who are more familiar with Star
Trek than with weaving, a warp in this context has nothing to do with the speed
of travel through space. In the world of weaving, a warp refers to the group

of threads being woven together into fabric. In the CUDA Architecture, a warp
refers to a collection of 32 threads that are “woven together” and get executed in
lockstep. At every line in your program, each thread in a warp executes the same
instruction on different data.
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6.2 CONSTANT MEMORY

When it comes to handling constant memory, NVIDIA hardware can broadcast

a single memory read to each half-warp. A half-warp—not nearly as creatively
named as a warp—is a group of 16 threads: half of a 32-thread warp. If every
thread in a half-warp requests data from the same address in constant memory,
your GPU will generate only a single read request and subsequently broadcast
the data to every thread. If you are reading a lot of data from constant memory,
you will generate only 1/16 (roughly 6 percent) of the memory traffic as you would
when using global memory.

But the savings don’t stop at a 94 percent reduction in bandwidth when

reading constant memory! Because we have committed to leaving the memory
unchanged, the hardware can aggressively cache the constant data on the GPU.
So after the first read from an address in constant memory, other half-warps
requesting the same address, and therefore hitting the constant cache, will
generate no additional memory traffic.

In the case of our ray tracer, every thread in the launch reads the data corre-
sponding to the first sphere so the thread can test its ray for intersection. After
we modify our application to store the spheres in constant memory, the hard-
ware needs to make only a single request for this data. After caching the data,
every other thread avoids generating memory traffic as a result of one of the two
constant memory benefits:

¢ |t receives the data in a half-warp broadcast.
e |t retrieves the data from the constant memory cache.

Unfortunately, there can potentially be a downside to performance when using
constant memory. The half-warp broadcast feature is in actuality a double-edged
sword. Although it can dramatically accelerate performance when all 16 threads
are reading the same address, it actually slows performance to a crawl when all
16 threads read different addresses.

The trade-off to allowing the broadcast of a single read to 16 threads is that the
16 threads are allowed to place only a single read request at a time. For example,
if all 16 threads in a half-warp need different data from constant memory, the

16 different reads get serialized, effectively taking 16 times the amount of time
to place the request. If they were reading from conventional global memory, the
request could be issued at the same time. In this case, reading from constant
memory would probably be slower than using global memory.
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