
2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 1 of 63http://3dgep.com/?p=4151

CUDA 5

Introduction to CUDA 5.0

In this article, I will introduce the reader to CUDA 5.0. I
will briefly talk about the architecture of the Kepler
GPU (Graphics Processing Unit) and I will show you
how you can take advantage of the many CUDA (Com-
pute Unified Device Architecture) cores in the GPU to
create massively parallel programs.

List of Figures

Figure 1. Floating Point Operations per Second
Figure 2. Memory Bandwidth
Figure 3. Kepler GK110 Die
Figure 4. Kepler Architecture
Figure 5. Kepler Streaming Multiprocessor (SMX)
Figure 6. Warp Scheduler
Figure 7. Dynamic Parallelism
Figure 8. Dynamic Parallelism
Figure 9. Hyper-Q
Figure 10. Grid Management Unit
Figure 11. GPUDirect
Figure 12. Control Panel
Figure 13. System Manager
Figure 14. Device Manager
Figure 15. Command Prompt
Figure 16. Device Query
Figure 17. New Project Dialog
Figure 18. Cuda Execution Model
Figure 19. CUDA Grid Example
Figure 20. Warp Scheduler
Figure 21. Thread Divergence

http://3dgep.com/wp-content/uploads/2012/10/CUDA-5-thumb.png
http://developer.nvidia.com/cuda/cuda-toolkit
http://3dgep.com/?p=4151#fig-1
http://3dgep.com/?p=4151#fig-2
http://3dgep.com/?p=4151#fig-3
http://3dgep.com/?p=4151#fig-4
http://3dgep.com/?p=4151#fig-5
http://3dgep.com/?p=4151#fig-6
http://3dgep.com/?p=4151#fig-7
http://3dgep.com/?p=4151#fig-8
http://3dgep.com/?p=4151#fig-9
http://3dgep.com/?p=4151#fig-10
http://3dgep.com/?p=4151#fig-11
http://3dgep.com/?p=4151#fig-12
http://3dgep.com/?p=4151#fig-13
http://3dgep.com/?p=4151#fig-14
http://3dgep.com/?p=4151#fig-15
http://3dgep.com/?p=4151#fig-16
http://3dgep.com/?p=4151#fig-17
http://3dgep.com/?p=4151#fig-18
http://3dgep.com/?p=4151#fig-19
http://3dgep.com/?p=4151#fig-20
http://3dgep.com/?p=4151#fig-21

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 2 of 63http://3dgep.com/?p=4151

Figure 22. CUDA Memory Model
Figure 23. Matrix Multiply – Global Memory
Figure 24. Tiles
Figure 25. Matrix Multiply – Tiles
Figure 26. CUDA Occupancy Calculator

List of Tables

Table 1. Threading Compute Capability
Table 2. Memory Compute Capability
Table 3. Properties of Memory Types

Introduction

Using the power of the NVIDIA GPU, CUDA allows the programmer to cre-
ate highly parallel applications that can perform hundreds of times faster
than an equivalent program that is written to run on the CPU alone. The
NVIDIA CUDA Tookit provides several API’s for integrating a CUDA pro-
gram into your C and C++ applications.

CUDA supports a heterogeneous programming environment where parts of
the application code is written for the CPU and other parts of the application
are written to execute on the GPU. The application is compiled into a single
executable that can run on both devices simultaneously.

In a CUDA intensive application, the CPU is used to allocate CUDA memory
buffers, execute CUDA kernels and retrieve and analyze the result of run-
ning a kernel on the GPU. The GPU is used to synchronously process large
amounts of data or to execute a simulation that can easily be split into a large
grid where each grid executes a part of the simulation in parallel.

The NVIDIA GPU consists of hundreds (even thousands) of CUDA cores
that can work in parallel to operate on extremely large datasets in a very
short time. For this reason, the NVIDIA GPU is much more suited to work in

http://3dgep.com/?p=4151#fig-22
http://3dgep.com/?p=4151#fig-23
http://3dgep.com/?p=4151#fig-24
http://3dgep.com/?p=4151#fig-25
http://3dgep.com/?p=4151#fig-26
http://3dgep.com/?p=4151#table-1
http://3dgep.com/?p=4151#table-2
http://3dgep.com/?p=4151#table-3
http://www.nvidia.com/
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/cuda/cuda-toolkit

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 3 of 63http://3dgep.com/?p=4151

a highly parallel nature than the CPU.

The image below shows the computing power of the GPU and how it com-
pares to the CPU. The vertical axis shows the theoretical GFLOP/s (Giga
Floating Point Operations per Second). The horizontal axis shows the ad-
vances in technology over the years[1].

Figure 1. Floating Point Operations Per Second

As can be seen from the image, the latest GPU from NVIDIA (The GTX 680
at the time of this writing) can theoretically perform 3 Trillion ()

Floating Point Operations per Second (or 3 teraFLOPS)[1].

http://3dgep.com/?p=4151#cite-1
http://3dgep.com/wp-content/uploads/2012/10/Floating-Point-Operations-Per-Second.png
http://3dgep.com/?p=4151#cite-1

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 4 of 63http://3dgep.com/?p=4151

The GPU is also capable of transferring large amounts of data through the
AGP bus. The image below shows the memory bandwidth in GB/s of the lat-
est NVIDIA GPU compared to the latest desktop CPUs from Intel[1].

Figure 2. Memory Bandwidth

In this article, I will introduce the latest GPU architecture from NVIDIA: Ke-
pler. I will also introduce the CUDA threading model and demonstrate how
you can execute a CUDA kernel in a C++ application. I will also introduce
the CUDA memory model and I will show how you can optimize your
CUDA application by making use of shared memory.

http://3dgep.com/cite-1
http://3dgep.com/wp-content/uploads/2012/10/Memory-Bandwidth.png

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 5 of 63http://3dgep.com/?p=4151

Kepler Architecture

Kepler is the name given to the latest line of desktop GPUs from NVIDIA. It
is currently NVIDIA’s flagship GPU replacing the Fermi architecture.

The Kepler GPU consits of 7.1 billion transistors[2] making it the fastest and
most complex microprocessor ever built.

Figure 3. Kepler GK110 Die

Despite it’s huge transistor count, the Kepler GPU is much more power effi-

http://3dgep.com/cite-2
http://3dgep.com/wp-content/uploads/2012/10/Kepler-GK110-Die.jpg

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 6 of 63http://3dgep.com/?p=4151

cient than its predecessor delivering up to 3x the performance per watt of the
Fermi architecture[2].

The Kepler GPU was designed to be the highest performing GPU in the
world. The Kepler GK110 consists of 15 SMX (streaming multiprocessor)
units and six 64-bit memory controllers[2] as shown in the image below.

Figure 4. Kepler Architecture

If we zoom into a single SMX unit, we see that each SMX unit consists of 192
single-precision CUDA cores, 64 double-precision units, 32 special function
units (SFU), and 32 load/store units (LD/ST).

http://3dgep.com/cite-2
http://3dgep.com/cite-2
http://3dgep.com/wp-content/uploads/2012/10/Kepler-Architecture.jpg

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 7 of 63http://3dgep.com/?p=4151

Figure 5. Kepler Streaming Multiprocessor (SMX)

The 192 single-precision CUDA cores each contain a single-precision float-
ing-point unit (FPU) as well as a 32-bit integer arithmetic logic unit (ALU).

http://3dgep.com/wp-content/uploads/2012/10/CUDA-SMX-Unit.png

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 8 of 63http://3dgep.com/?p=4151

Each SMX supports 64 KB of shared memory, and 48 KB of read-only data
cache. The shared memory and the data cache are accessible to all threads ex-
ecuting on the same streaming multiprocessor. Access to these memory ar-
eas is highly optimized and should be favored over accessing memory in
global DRAM.

The SMX will schedule 32 threads in a group called a warp. Using compute
capability 3.5, the GK110 GPU can schedule 64 warps per SMX for a total of
2,048 threads that can be resident in a single SMX at a time (not all threads
will be active at the same time as we will see in the section describing the
threading model).

Each SMX has four warp schedulers and eight instruction dispatch units
(two dispatch units per warp scheduler) allowing four warps to be issued
and executed concurrently on the streaming multiprocessor[2].

http://3dgep.com/?p=4151#cite-2

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 9 of 63http://3dgep.com/?p=4151

Figure 6. Warp Scheduler

Dynamic Parallelism

The GK110 GPU supports a feature called Dynamic Parallelism. Dynamic
Parallelism allows the GPU to create new work for itself by creating new ker-
nels as they are needed without the intervention of the CPU.

http://3dgep.com/wp-content/uploads/2012/10/Warp-Scheduler.png

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 10 of 63http://3dgep.com/?p=4151

Figure 7. Dynamic Parallelism

As can be seen from the image, on the left, the Fermi GPU requires the CPU
to execute kernels on the GPU. On the right side of the image, the Kepler
GPU is capable of launching kernels from within a kernel itself. No interven-
tion from the CPU is required.

This allows the GPU kernel to be more adaptive to dynamic branching and
recursive algorithms which has some impact on the way we can implement
certain functions on the GPU (such as Ray Tracing, Path Tracing and other
rasterization techniques).

Dynamic Parallelism also allows the programmer to better load-balance their
GPU based application. Threads can by dynamically launched based on the
amount of work that needs to be performed in a particular region of the grid
domain. In this case, the initial compute grid can be very coarse and the ker-
nel can dynamically refine the grid size depending on the amount of work
that needs to be performed.

http://3dgep.com/wp-content/uploads/2012/10/Dynamic-Parallelism.png

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 11 of 63http://3dgep.com/?p=4151

Figure 8. Dynamic Parallelism

As can be seen from the image, the left grid granularity is too coarse to pro-
duce an accurate simulation. The grid in the center is too fine and many ker-
nels are not performing any actual work. On the right image we see that us-
ing dynamic parallelism, the grid can be dynamically refined to produce just
the right balance between granularity and workload.

Hyper-Q

The Fermi architecture relied on a single hardware work queue to schedule
work from multiple streams. This resulted in false intra-stream dependencies
requiring dependent kernels within one stream to complete before addition-
al kernels in a separate stream could be executed[2].

The Kepler GK110 resolves this false intra-stream dependency with the in-
troduction of the Hyper-Q feature. Hyper-Q increases the total number of
hardware work-queues to 32 compared to the single work-queue of the Fer-
mi architecture.

http://3dgep.com/wp-content/uploads/2012/10/Dynamic-Parallelism-2.png
http://3dgep.com/?p=4151#cite-2

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 12 of 63http://3dgep.com/?p=4151

Figure 9. Hyper-Q

CUDA applications that utilize multiple streams will immeditaly benifit
from the multiple hardware work queues offered by the Hyper-Q feature.
These stream intensive applications can see a potential increase in perfor-
mance of up to 32x[2].

Grid Management Unit

In order to facilitate the Dynamic Parallelism feature introduced in the
GK110 GPU a new Grid Managment Unit (GMU) needed to be designed. In
the previous Fermi architecture, grids were passed to the CUDA Work Dis-
tributor (CWD) directly form the stream queue. Since it is now possible to
execute more kernels directly in a running CUDA kernel, a bi-directional
communication link is required from the SMX to the CWD via the GMU.

http://3dgep.com/wp-content/uploads/2012/10/Hyper-Q.png
http://3dgep.com/?p=4151#cite-2

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 13 of 63http://3dgep.com/?p=4151

Figure 10. Grid Management Unit

NVIDIA GPUDirect

The Kepler GK110 supports the Remote Direct Memory Access (RDMA)
feature in NVIDIA GPUDirect[2]. GPUDirect allows data to be transferred
directly from one GPU to another via 3rd-party devices such as InfiniBand
(IB), Network Interface Cards (NIC), and Solid-State disc drives (SSD).

http://3dgep.com/wp-content/uploads/2012/10/Grid-Management-Unit.png
http://3dgep.com/?p=4151#cite-2

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 14 of 63http://3dgep.com/?p=4151

Figure 11. GPUDirect

Getting Started with CUDA

In this article, I will use Visual Studio 2010 to create a CUDA enabled appli-
cation. The settings and configurations for Visual Studio 2008 will be similar
and you should be able to follow along even if you have not yet upgraded to
VS2010.

System Requirements

Before you can run a CUDA program, you must make sure that your system
meets the minimum requirements.

CUDA-capable GPU
Microsoft Windows XP, Vista, 7, or 8 or Windows Server 2003 or 2008
NVIDIA CUDA Toolkit
Microsoft Visual Studio 2008 or 2010 or a corresponding version of Mi-
crosoft Visual C++ Express

http://3dgep.com/wp-content/uploads/2012/10/GPUDirect.jpg

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 15 of 63http://3dgep.com/?p=4151

Verify your GPU

To verify you have a CUDA enabled GPU first check the graphics device you
have installed.

1. Open the Contol Panel from the Start Menu.

Figure 12. Control Panel

2. Double-Click the System applet to open the System Control Panel.
3. In Windows XP, click on the Hardware tab then click the Device Man-

ager button. In Windows 7 click the Device Manager link.

http://3dgep.com/wp-content/uploads/2012/10/Control-Panel.png

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 16 of 63http://3dgep.com/?p=4151

Figure 13. System Manager

4. In the Device Manager window that appears, expand the Display
Adapters node in the device tree.

http://3dgep.com/wp-content/uploads/2012/10/System-Manager.png

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 17 of 63http://3dgep.com/?p=4151

Figure 14. Device Manager

If your device is listed at https://developer.nvidia.com/cuda-gpus then
you have a CUDA-capable GPU.

Install CUDA

Download and install the latest NVIDIA CUDA Toolkit. The CUDA Toolkit
is available at https://developer.nvidia.com/cuda-downloads.

At the time of this writing, the latest version of the CUDA toolkit is CUDA
5.0 Production Release.

The CUDA Toolkit contains the drivers and tools needed to create, build and
run a CUDA application as well as libraries, header files, and CUDA sam-
ples source code and other resource[3].

http://3dgep.com/wp-content/uploads/2012/10/Device-Manager.png
https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-downloads
http://3dgep.com/?p=4151#cite-3

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 18 of 63http://3dgep.com/?p=4151

By default, the CUDA toolkit is installed to C:\Program Files\NVIDIA
GPU Computing Toolkit\CUDA\v#.#, where #.# refers to the CUDA ver-
sion you have installed. For the CUDA 5.0 toolkit, the complete path to the
CUDA installation will be C:\Program Files\NVIDIA GPU Computing
Toolkit\CUDA\v5.0.

The installation will include the following directories:

bin: This folder contains the CUDA compiler and runtime libraries
(DLLs)
include: The C header files that are needed to compile your CUDA pro-
grams.
lib: The library files that are needed to link your CUDA programs.
doc: This directory contains the documentation for the CUDA Toolkit
such as the CUDA C Programming Guide, the CUDA C Best Practices
Guide and the documentation for the different CUDA libraries that are
available in the Toolkit.

The CUDA Samples contain sample source code and projects for Visual Stu-
dio 2008 and Visual Studio 2010. On Windows XP, the samples can be found
in C:\Document and Settings\All Users\Application Data\NVIDIA Cor-
poration\CUDA Samples\v#.# and for Windows Vista, Windows 7, and
Windows Server 2008, the samples can be found at
C:\ProgramData\NVIDIA Corporation\CUDA Samples\v#.# where #.#
is the installed CUDA version.

Verify the Installation

Before you start creating a CUDA application, it is important to verify that
your CUDA installation is working correctly.

1. Open a Command Prompt window by going to Start Menu > All Pro-
grams > Accessories > Command Prompt

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 19 of 63http://3dgep.com/?p=4151

Figure 15. Command Prompt

2. In the Command Prompt window type:

nvcc -V

You should see something similar to what is shown in the Command
Prompt screenshot above. The output may differ slightly depending on
the version of the CUDA Toolkit you installed but you should not get an
error.

Run Compiled Sample

The CUDA Toolkit comes with both the source code and compiled exe-
cutable for the Toolkit samples. On Windows XP the compiled samples can
be found at C:\Document and Settings\All Users\Application
Data\NVIDIA Corporation\CUDA Samples\v#.#\bin\win32\Release\
and on Windows 7, Windows 8, Windows Server 2003, and Windows Server
2008 the compiled samples can be found at C:\ProgramData\NVIDIA Cor-
poration\CUDA Samples\v#.#\bin\win32\Release. On a 64-bit version of
Windows, you can replace the win32 with win64 to run the 64-bit version of

http://3dgep.com/wp-content/uploads/2012/10/Command-Prompt.png

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 20 of 63http://3dgep.com/?p=4151

the samples.

Try to run the deviceQuery sample in a Command Prompt window. You
should see some output similar to the following image:

Figure 16. deviceQuery

Of course the output generated on your system will be different than this

http://3dgep.com/wp-content/uploads/2012/10/deviceQuery.png

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 21 of 63http://3dgep.com/?p=4151

(unless you also have a GeForce GT 330M mobile GPU). Of course, the im-
portant thing is that your device(s) is(are) found and the device information
is displayed without any errors.

Creating your First Project

For this article, I will create a CUDA application using Microsoft Visual Stu-
dio 2010. If you are still using Microsoft Visual Studio 2008 the steps will be
very similar and you should still be able to follow along.

Open your Visual Studio IDE and create a new project.

As of CUDA Toolkit 5.0, Visual Studio project templates will be available
that can be used to quickly create a project that is ready for creating a CUDA
enabled application. Previous to CUDA Toolkit 5.0, Visual Studio project
templates were only available when you installed NVIDIA Nsight Visual
Studio Edition.

In the New Project dialog box, select NVIDIA > CUDA from the Installed
Templates pane. In the right pane, select the CUDA 5.0 Runtime template.

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 22 of 63http://3dgep.com/?p=4151

Figure 17. New Project Dialog

Give your project a meaningful name such as “CUDATemplate” or some-
thing similar.

Click OK to create a new project.

This will create a new Visual Studio C++ project with a single CUDA source
file called kernel.cu

You should be able to compile and run this sample already at this point to
confirm it is working. You should get the following output:

{1,2,3,4,5} + {10,20,30,40,50} = {11,22,33,44,55}

If you got any errors or something went wrong, then you should check that

http://3dgep.com/wp-content/uploads/2012/10/New-Project-Dialog.png

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 23 of 63http://3dgep.com/?p=4151

do have a CUDA enabled GPU and that you installed the CUDA Toolkit pri-
or to installing Visual Studio 2010. Follow the steps in the previous sections
again and make sure you did everything correctly.

Using the Visual Studio project template for the CUDA 5.0 Runtime will au-
tomatically configure the build settings necessary to compile a CUDA en-
abled application. If you want to know how to add the configure necessary
to build CUDA source files to an existing C/C++ project, then you can refer
to my previous article titled Introduction to CUDA that I wrote last year.
That article focuses on CUDA 4.0 using Visual Studio 2008 but the steps are
almost identical for CUDA 5.0 using Visual Studio 2010.

Threading Model

The CUDA threading model describes how a kernel is executed on the GPU.

CUDA Threads

Each kernel function is executed in a grid of threads. This grid is divided
into blocks also known as thread blocks and each block is further divided
into threads.

http://3dgep.com/?p=1821

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 24 of 63http://3dgep.com/?p=4151

Figure 18. Cuda Execution Model

In the image above we see that this example grid is divided into nine thread
blocks (3×3), each thread block consists of 9 threads (3×3) for a total of 81
threads for the kernel grid.

This image only shows 2-dimensional grid, but if the graphics device sup-
ports compute capability 2.0 or higher, then the grid of thread blocks can ac-
tually be partitioned into 1, 2 or 3 dimensions, otherwise if the device sup-
ports compute capability 1.x, then thread blocks can be partitioned into 1, or
2 dimensions (in this case, then the 3rd dimension should always be set to 1).

The thread block is partitioned into individual threads and for all compute

http://3dgep.com/wp-content/uploads/2011/11/Cuda-Execution-Model.png

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 25 of 63http://3dgep.com/?p=4151

capabilities, threads in a block can be partitioned into 1, 2, or 3 dimensions.
The maximum number of threads that can be assigned to a thread block is
512 for devices with compute capability 1.x and 1024 threads for devices that
support compute capability 2.0 and higher.

Table 1. Threading Compute Capability
Technical Specifications 1.0 1.1 1.2 1.3 2.x 3.0 3.5
Maximum dimensionality of a grid of thread blocks. 2 3
Maximum x-, dimension of a grid of thread blocks. 65535 231-1
Maximum y- or z-dimension of a grid of thread blocks. 65535
Maximum dimensionality of a thread block. 3
Maximum x- or y-dimension of a block. 512 1024
Maximum z-dimension of a block. 64
Maximum number of threads per block. 512 1024
Warp size. 32
Maximum number of resident blocks per multiprocessor. 8 16
Maximum number of resident warps per multiprocessor. 24 32 48 64
Maximum number of resident threads per
multiprocessor. 768 1024 1536 2048

The number of blocks within a gird can be determined within a kernel by us-
ing the built-in variable gridDim and the number of threads within a block
can be determined by using the built-in variable blockDim.

A thread block is uniquely identified in a kernel function by using the built-
in variable blockIdx and a thread within a block is uniquely identified in a
kernel function by using the built-in variable threadIdx.

The built-in variables gridDim, blockDim, blockIdx, and threadIdx are each
3-component structs with members x, y, z.

With a 1-D kernel, the unique thread ID within a block is the same as the x
component of the threadIdx variable.

and the unique block ID within a grid is the same as

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 26 of 63http://3dgep.com/?p=4151

the x component of the blockIdx variable:

To determine the unique thread ID in a 2-D block, you
would use the following formula:

and to determine the unique
block ID within a 2-D grid, you would use the following formula:

I’ll leave it as an exercise for the
reader to determine the formula to compute the unique thread ID and block
ID in a 3D grid.

Matrix Addition Example

Let’s take a look at an example kernel that one might execute.

Let’s assume we want to implement a kernel function that adds two matrices
and stores the result in a 3rd.

The general formula for matrix addition is:

That is, the sum of matrix A and matrix B is the sum of
the components of matrix A and matrix B.

Let’s first write the host version of this method that we would execute on the
CPU.

MatrixAdd.cpp
1

2

3

4

5

void MatrixAddHost(float* C, float* A, float* B, unsigned int
matrixDim)

{

 for(unsigned int j = 0; j < matrixDim; ++j)

 {

 for (unsigned int i = 0; i < matrixDim; ++i)

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 27 of 63http://3dgep.com/?p=4151

6

7

8

9

10

11

 {

 unsigned int index = (j * matrixDim) + i;

 C[index] = A[index] + B[index];

 }

 }

}

This is a pretty standard method that loops through the rows and columns of
a matrix and adds the components and stores the results in a 3rd. Now let’s
see how we might execute this kernel on the GPU using CUDA.

First, we need to think of the problem domain. I this case, the domain is triv-
ial: it is the components of a matrix. Since we are operating on 2-D arrays, it
seems reasonable to split our domain into two dimensions; one for the rows,
and another for the columns of the matrices.

We will assume that we are working on square matrices. This simplifies the
problem but mathematically matrix addition only requires that the two ma-
trices have the same number of rows and columns but does not have the re-
quirement that the matrices must be square.

Since we know that a kernel is limited to 512 threads/block with compute
capability 1.x and 1024 threads/block with compute capability 2.x and 3.x,
then we know we can split our job into square thread blocks each consisting
of 16×16 threads (256 threads per block) with compute capability 1.x and
32×32 threads (1024 threads per block) with compute capability 2.x and 3.x.

If we limit the size of our matrix to no larger than 16×16, then we only need
a single block to compute the matrix sum and our kernel execution configu-
ration might look something like this:

main.cpp
1

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 28 of 63http://3dgep.com/?p=4151

2

3

dim3 gridDim(1, 1, 1);

dim3 blockDim(matrixDim, matrixDim, 1);

MatrixAddDevice<<<gridDim, blockDim>>>(C, A, B, matrixDim);

In this simple case, the kernel grid consists of only a single block with ma-
trixDim x matrixDim threads.

However, if we want to sum matrices larger than 512 components, then we
must split our problem domain into smaller groups that can be processed in
multiple blocks.

Let’s assume that we want to limit our blocks to execute in 16×16 (256)
threads. We can determine the number of blocks that will be required to op-
erate on the entire array by dividing the size of the matrix dimension by the
maximum number of threads per block and round-up to the nearest whole
number:

And we can determine the number of threads per
block by dividing the size of the matrix dimen-

sion by the number of blocks and round-up to the nearest whole number:

So for example, for a 4×4 matrix, we would get

and the number of threads is computed as:

resulting in a 1×1 grid of 4×4 thread
blocks for a total of 16 threads.

Another example a 512×512 matirx, we would get:

and the number of threads is computed as:

resulting in a 32×32 grid of 16×16
thread blocks for a total of 262,144

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 29 of 63http://3dgep.com/?p=4151

threads.

The host code to setup the kernel granularity might look like this:

main.cpp

1

2

3

4

5

6

size_t blocks = ceilf(matrixDim / 16.0f);

dim3 gridDim(blocks, blocks, 1);

size_t threads = ceilf(matrixDim / (float)blocks);

dim3 blockDim(threads, threads, 1);

MatrixAddDevice<<< gridDim, blockDim >>>(C, A, B, matrixDim
);

You may have noticed that if the size of the matrix does not fit nicely into
equally divisible blocks, then we may get more threads than are needed to
process the array. It is not possible to configure a gird of thread blocks with 1
block containing less threads than the others. The only way to solve this is to
execute multiple kernels – one that handles all the equally divisible blocks,
and a 2nd kernel invocation that handles the partial block. The other solution
to this problem is simply to ignore any of the threads that are executed out-
side of our problem domain which is generally the easier (and more effi-
cient) than invoking multiple kernels (this should be profiled to be proven).

The Matrix Addition Kernel Function

On the device, one kernel function is created for every thread in the problem
domain (the matrix elements). We can use the built-in variables gridDim,
blockDim, blockIdx, and threadIdx, to identify the current matrix element
that the current kernel is operating on.

If we assume we have a 9×9 matrix and we split the problem domain into
3×3 blocks each consisting of 3×3 threads as shown in the CUDA Grid be-

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 30 of 63http://3dgep.com/?p=4151

low, then we could compute the ith column and the jth row of the matrix
with the following formula:

So for thread (0,0) of block (1,1)
of our 9×9 matrix, we would

get:

for the column and:

for the row.

The index into the 1-D buffer that store the matrix is then computed as:

and substituting gives:

Which is the correct element in the matrix.
This solution assumes we are accessing the

matrix in row-major order.

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 31 of 63http://3dgep.com/?p=4151

Figure 19. CUDA Grid Example

Let’s see how we might implement this in the kernel.

MatrixAdd.cu

1

2

3

4

5

__global__ void MatrixAddDevice(float* C, float* A, float* B,
unsigned int matrixDim)

{

 unsigned int column = (blockDim.x * blockIdx.x) +
threadIdx.x;

 unsigned int row = (blockDim.y * blockIdx.y) +
threadIdx.y;

http://3dgep.com/wp-content/uploads/2011/11/Cuda-Execution-Model-2.png

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 32 of 63http://3dgep.com/?p=4151

6

7

8

9

10

11

 unsigned int index = (matrixDim * row) + column;

 if (index < matrixDim * matrixDim) // prevent
reading/writing array out-of-bounds.

 {

 C[index] = A[index] + B[index];

 }

}

The kernel function is defined using the __global__ declaration specifier.
This specifier is used to identify a function that should execute on the device.
Optionally you can also specify host functions with the __host__ declaration
specifier within a CUDA source file but this is implied if no specifier is ap-
plied to the function declaration.

On line 3, and 4 we compute the column and row of the matrix we are oper-
ating on using the formulas shown earlier.

On line 6, the 1-d index in the matrix array is computed based on the size of
a single dimension of the square matrix.

We must be careful that we don’t try to read or write out of the bounds of
the matrix. This might happen if the size of the matrix does not fit nicely into
the size of the CUDA grid (in the case of matrices whose size is not evenly
divisible by 16) To protect the read and write operation, on line 7 we must
check that the computed index does not exceed the size of our array.

Thread Synchronization

CUDA provides a synchronization barrier for all threads in a block through
the __syncthreads() method. A practical example of thread synchronization
will be shown in a later article about optimization a CUDA kernel, but for

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 33 of 63http://3dgep.com/?p=4151

now it’s only important that you know this functionality exists.

Thread synchronization is only possible across all threads in a block but not
across all threads running in the grid. By not allowing threads across blocks
to be synchronized, CUDA enables multiple blocks to be executed on other
streaming multiprocessors (SM) in any order. The queue of blocks can be
distributed to any SM without having to wait for blocks from another SM to
be complete. This allows the CUDA enabled applications to scale across plat-
forms that have more SM at it’s disposal, executing more blocks concurrently
than another platforms with less SM’s.

Thread synchronization follows strict synchronization rules. All threads in a
block must hit the synchronization point or none of them must hit synchro-
nization point.

Give the following code block:

sample.cu
1

2

3

4

5

6

7

8

if (threadID % 2 == 0)

{

 __syncthreads();

}

else

{

 __syncthreads();

}

will cause the threads in a block to wait indefinitely for each other because
the two occurrences of __syncthreads are considered separate synchroniza-
tion points and all threads of the same block must hit the same synchroniza-
tion point, or all of them must not hit it.

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 34 of 63http://3dgep.com/?p=4151

Thread Assignment

When a kernel is invoked, the CUDA runtime will distribute the blocks
across the SM’s on the device. With compute compatibility 1.x and 2.x a max-
imum of 8 blocks will be assigned to each SM and with compute compatibili-
ty 3.x a maximum of 16 blocks will be assigned to each SM as long as there
are enough resources (registers, shared memory, and threads) to execute all
the blocks. In the case where there are not enough resources on the SM, then
the CUDA runtime will automatically assign less blocks per SM until the re-
source usage is below the maximum per SM.

The total number of blocks that can be executed concurrently is dependent
on the device. In the case of the Fermi architecture a total of 16 SM’s can con-
currently handle 8 blocks for a total of 128 blocks executing concurrently on
the device. Kepler devices can handle 16 thread blocks per SMX for a total of
240 thread blocks that can execute concurrently on a single device.

Both the Fermi and Kepler architecture support thread blocks consisting of
at most 1024 threads. The Fermi device can support a maximum of 48 warps
per SM. The Kepler architecture increases the amount of resident warps per
SMX to 64.

The Fermi device can support a maximum of 1,536 resident threads (32×48)
per SM. Kepler supports 2,048 threads per SMX (32×64). With 15 SMX units,
the Kepler GPU can have a total of 30,720 resident threads on the device.
This does not mean that every clock tick the devices is executing 30,720 in-
struction simultaneously (there are only 2,880 CUDA Cores on the GK110
device). In order to understand how the blocks are actually executed on the
device, we must look one step further to see how the threads of a block are
actually scheduled on the SM’s.

Thread Scheduling

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 35 of 63http://3dgep.com/?p=4151

When a block is assigned to a SMX, it is further divided into groups of 32
threads called a warp. Warp scheduling is different depending on the plat-
form, but if we take a look at the Kepler architecture, we see that a single
SMX consists of 192 CUDA cores (a CUDA core is also sometimes referred to
a streaming processor or SP for short).

Each SMX in the Kepler architecture features four warp schedulers allowing
four warps to be issued and executed concurrently. Kepler’s quad-warp
scheduler selects four warps and issues two independent instructions from
each warp every cycle[2].

Figure 20. Warp Scheduler

You might be wondering why it would be useful to schedule 16 blocks of a
maximum of 1024 threads if the SMX only has 192 cuda cores? The answer is

http://3dgep.com/?p=4151#cite-2
http://3dgep.com/wp-content/uploads/2012/10/Warp-Scheduler.png

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 36 of 63http://3dgep.com/?p=4151

that each instruction of a kernel may require more than a few clock cycles to
execute (for example, an instruction to read from global memory will require
multiple clock cycles). Any instruction that requires multiple clock cycles to
execute incurs latency. The latency of long-running instructions can be hid-
den by executing instructions from other warps while waiting for the result
of the previous warp. This technique of filling the latency of expensive oper-
ations with work from other threads is often called latency hiding.

Thread Divergence

It is reasonable to imagine that your CUDA program contains flow-control
statements like if-then-else, switch, while loops, or for loops. Whenever you
introduce these flow-control statements in your code, you also introduce the
possibility of thread divergence. It is important to be aware of the conse-
quence of thread divergence and also to understand how you can minimize
the negative impact of divergence.

Thread divergence occurs when some threads in a warp follow a different
execution path than others. Let’s take the following code block as an exam-
ple:

test.cu

1

2

3

4

5

6

7

8

__global__ void TestDivergence(float* dst, float* src)

{

 unsigned int index = (blockDim.x * blockIdx.x) +
threadIdx.x;

 float value = 0.0f;

 if (threadIdx.x % 2 == 0)

 {

 // Threads executing PathA are active while threads

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 37 of 63http://3dgep.com/?p=4151

9

10

11

12

13

14

15

16

17

18

19

20

 // executing PathB are inactive.

 value = PathA(src);

 }

 else

 {

 // Threads executing PathB are active while threads

 // executing PathA are inactive.

 value = PathB(src);

 }

 // Threads converge here again and execute in parallel.

 dst[index] = value;

}

Then our flow control and thread divergence would look something like
this:

Figure 21. Thread Divergence

http://3dgep.com/wp-content/uploads/2011/11/Thread-Divergence.png

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 38 of 63http://3dgep.com/?p=4151

As you can see from this example, the even numbered threads in each block
will execute PathA while the odd numbered threads in the block will execute
PathB. This is pretty much the worst-case scenario for simple divergence ex-
ample.

Both PathA and PathB cannot be executed concurrently on all threads be-
cause their execution paths are different. Only the threads that execute the
exact same execution path can run concurrently so the total running time of
the warp is the sum of the execution time of both PathA and PathB.

In this example, the threads in the warp that execute PathA are activated if
the condition is true and all the other threads are deactivated. Then, in an-
other pass, all the threads that execute PathB are activated if the condition is
false are activated and the other threads are deactivated. This means that to
resolve this condition requires 2-passes to be executed for a single warp.

The overhead of having the warp execute both PathA and PathB can be
eliminated if the programmer takes careful consideration when writing the
kernel. If possible, all threads of a block (since warps can’t span thread
blocks) should execute the same execution path. This way you guarantee
that all threads in a warp will execute the same execution path and there will
be no thread divergence within a block.

Memory Model

There are several different types of memory that your CUDA application has
access to. For each different memory type there are tradeoffs that must be
considered when designing the algorithm for your CUDA kernel.

Global memory has a very large address space, but the latency to access this
memory type is very high. Shared memory has a very low access latency but
the memory address is small compared to Global memory. In order to make
proper decisions regarding where to place data and when, you must under-
stand the differences between these memory types and how these decisions

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 39 of 63http://3dgep.com/?p=4151

will affect the performance of your kernel.

In the next sections, I will describe the different memory types and show ex-
amples of using different memory to improve the performance of your ker-
nel.

CUDA Memory Types

Every CUDA enabled GPU provides several different types of memory.
These different types of memory each have different properties such as ac-
cess latency, address space, scope, and lifetime.

The different types of memory are register, shared, local, global, and con-
stant memory.

On devices with compute capability 1.x, there are 2 locations where memory
can possibly reside; cache memory and device memory.

The cache memory is considered “on-chip” and accesses to the cache is very
fast. Shared memory and cached constant memory are stored in cache mem-
ory with devices that support compute capability 1.x.

The device memory is considered “off-chip” and accesses to device memory
is about ~100x slower than accessing cached memory. Global memory, local
memory and (uncached) constant memory is stored in device memory.

On devices that support compute capability 2.x, there is an additional memo-
ry bank that is stored with each streaming multiprocessor. This is considered
L1-cache and although the address space is relatively small, it’s access laten-
cy is very low.

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 40 of 63http://3dgep.com/?p=4151

Figure 22. CUDA Memory Model

In the following sections I will describe each type and when it is best to use
that memory type.

Register

Scalar variables that are declared in the scope of a kernel function and are
not decorated with any attribute are stored in register memory by default.

http://3dgep.com/wp-content/uploads/2011/11/CUDA-memory-model.gif

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 41 of 63http://3dgep.com/?p=4151

Register memory access is very fast, but the number of registers that are
available per block is limited.

Arrays that are declared in the kernel function are also stored in register
memory but only if access to the array elements are performed using con-
stant indexes (meaning the index that is being used to access an element in
the array is not a variable and thus the index can be determined at compile-
time). It is currently not possible to perform random access to register vari-
ables.

Register variables are private to the thread. Threads in the same block will
get private versions of each register variable. Register variables only exists as
long as the thread exists. Once the thread finishes execution, a register vari-
able cannot be accessed again. Each invocation of the kernel function must
initialize the variable each time it is invoked. This might seem obvious be-
cause the scope of the variable is within the kernel function, but this is not
true for all variables declared in the kernel function as we will see with
shared memory.

Variables declared in register memory can be both read and written inside
the kernel. Reads and writes to register memory does not need to be syn-
chronized.

Local

Any variable that can’t fit into the register space allowed for the kernel will
spill-over into local memory. Local memory has the same access latency as
global memory (that is to say, slow). Accesses to local memory is cached
only on GPU’s with compute capability 2.x or higher[4].

Like registers, local memory is private to the thread. Each thread must ini-
tialize the contents of a variable stored in local memory before it should be
used. You cannot rely on another thread (even in the same block) to initialize
local memory because it is private to the thread.

http://3dgep.com/?p=4151#cite-4

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 42 of 63http://3dgep.com/?p=4151

Variables in local memory have the lifetime of the thread. Once the thread is
finished executing, the local variable is no longer accessible.

You cannot decorate a variable declaration with any attribute but the compil-
er will automatically put variable declarations in local memory under the fol-
lowing conditions:

Arrays that are accessed with run-time indexes. That is, the compiler
can’t determine the indices at compile time.
Large structures or arrays that would consume too much register space.
Any variable declared that exceeds the number of registers for that ker-
nel (this is called register-spilling).

The only way that you can determine if the compiler has put some function
scope variables in local memory is by manual inspection of the PTX assem-
bly code (obtained by compiling with the -ptx or -keep option). Local vari-
ables will be declared using the .local mnemonic and loaded using the ld.lo-
cal mnemonic and stored with the st.local mnemonic.

Variables in local memory can be both read and written within the kernel
and access to local memory does not need to be synchronized.

Shared

Variables that are decorated with the __shared__ attribute are stored in
shared memory. Accessing shared memory is very fast (~100 times faster
than global memory) although each streaming multiprocessor has a limited
amount of shared memory address space.

Shared memory must be declared within the scope of the kernel function but
has a lifetime of the block (as opposed to register, or local memory which has
a lifetime of the thread). When a block is finished execution, the shared
memory that was defined in the kernel cannot be accessed.

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 43 of 63http://3dgep.com/?p=4151

Shared memory can be both read from and written to within the kernel.
Modification of shared memory must be synchronized unless you guarantee
that each thread will only access memory that will not be read-from or writ-
ten-to by other threads in the block. Block synchronization is acheived using
the __syncthreads() barrier function inside the kernel function.

Since access to shared memory is faster than accessing global memory, it is
more efficient to copy global memory to shared memory to be used within
the kernel but only if the number of accesses to global memory can be re-
duced within the block (as we’ll see with the matrix multiply example that I
will show later).

Global

Variables that are decorated with the __device__ attribute and are declared
in global scope (outside of the scope of the kernel function) are stored in
global memory. The access latency to global memory is very high (~100
times slower than shared memory) but there is much more global memory
than shared memory (up to 6GB but the actual size is different across graph-
ics cards even of the same compute capability).

Unlike register, local, and shared memory, global memory can be read from
and written to using the C-function cudaMemcpy.

Global memory has a lifetime of the application and is accessible to all
threads of all kernels. One must take care when reading from and writing to
global memory because thread execution cannot be synchronized across dif-
ferent blocks. The only way to ensure access to global memory is synchro-
nized is by invoking separate kernel invocations (splitting the problem into
different kernels and synchronizing on the host between kernel invocations).

Global memory is declared on the host process using cudaMalloc and freed
in the host process using cudaFree. Pointers to global memory can be passed
to a kernel function as parameters to the kernel (as we will see in the exam-

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 44 of 63http://3dgep.com/?p=4151

ple later).

Reads from global memory is cached only on devices that support compute
capability 2.x or higher[4] but any write to global memory will invalidate the
cache thus eliminating the benefit of cache. Access to global memory on de-
vices that support compute capability 1.x is not cached.

It is a bit of an art-form to reduce the number of accesses to global memory
from within a kernel by using blocks of shared memory because the access
latency to shared memory is about 100 times faster than accessing global
memory. Later, I will show an example of how we can reduce the global
memory access using shared memory.

Constant

Variables that are decorated with the __constant__ attribute are declared in
constant memory. Like global variables, constant variables must be declared
in global scope (outside the scope of any kernel function). Constant variables
share the same memory banks as global memory (device memory) but un-
like global memory, there is only a limited amount of constant memory that
can be declared (64KB on all compute capabilities).

Access latency to constant memory is considerably faster than global memo-
ry because constant memory is cached but unlike global memory, constant
memory cannot be written to from within the kernel. This allows constant
memory caching to work because we are guaranteed that the values in con-
stant memory will not be changed and therefor will not become invalidated
during the execution of a kernel.

Constant memory can be written to by the host process using the cudaMem-
cpyToSymbol function and read-from using the cudaMemcpyFromSymbol
function. As far as I can tell, it is not possible to dynamically allocate storage
for constant memory (the size of constant memory buffers must be statically
declared and determined at compile-time).

http://3dgep.com/?p=4151#cite-4

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 45 of 63http://3dgep.com/?p=4151

Like global memory, constant memory has a lifetime of the application. It
can be accessed by all threads of all kernels and the value will not change
across kernel invocations unless explicitly modified by the host process.

Properties of Memory

The amount of memory that is available to the CUDA application is (in most
cases) specific to the compute capability of the device. For each compute ca-
pability, the size restrictions of each type of memory (except global memory)
id defined in the table below. The application programmer is encouraged to
query the device properties in the application using the
cudaGetDeviceProperties method.

Table 2. Memory Compute Capability
Technical Specifications 1.0 1.1 1.2 1.3 2.x 3.0 3.5
Number of 32-bit registers per thread 128 63 255
Maximum amount of shared memory per SM 16 KB 48 KB
Amount of local memory per thread 16 KB 512 KB
Constant memory size 64 KB

The following table summarizes the different memory types and the proper-
ties of those types.

Table 3. Properties of Memory Types
Memory Located Cached Access Scope Lifetime

Register cache n/a Host: None
Kernel: R/W thread thread

Local device 1.x: No
2.x: Yes

Host: None
Kernel: R/W thread thread

Shared cache n/a Host: None
Kernel: R/W block block

Global device 1.x: No
2.x: Yes

Host: R/W
Kernel: R/W application application

Constant device Yes Host: R/W
Kernel: R application application

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 46 of 63http://3dgep.com/?p=4151

Pointers to Memory

You can use pointers to memory in a kernel but you must be aware that the
pointer type does not determine where the memory is located.

For example, the following code declares a pointer to constant memory and
a pointer to global memory. You should be aware that only the pointer vari-
able is constant – not what it points to.

test.cu

1

2

3

4

5

6

7

8

9

10

11

12

13

14

__constant__ float* constPtr;

__device__ float* globalPtr;

__global__ void KernelFunction(void)

{

 // Assign the pointer to global memory to a pointer to
constant memory.

 // This will not compile because the pointer is constant
and you can't change

 // what a const-pointer points to in the kernel.

 constPtr = globalPtr;

 // This will compile because what the const pointer
points to is not

 // necessarily const (if it is, you'll probaly get a
runtime error).

 *constPtr = *globalPtr;

}

Since you can’t dynamically allocate constant memory, this example would

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 47 of 63http://3dgep.com/?p=4151

not be very useful anyways.

Be careful when using pointers like this. It is a best-practice rule to ensure
that a declared pointer only points to one type of memory (so a single point-
er declaration will only point to global memory and another pointer declara-
tion will only point to shared memory).

Minimize Global Memory Access

Since access latency is much higher for global memory than it is for shared
memory, it should be our objective to minimize accesses to global memory in
favor of shared memory. This doesn’t mean that every access to data in glob-
al memory should first be copied into a variable in shared (or register) mem-
ory. Obviously we will not benefit from the low latency shared memory ac-
cess if our algorithm only needs to make a single access to global memory.
But it happens in some cases that multiple threads in the same block will all
read from the same location in global memory. If this is the case, then we can
speed-up our algorithm by first allowing each thread in a block to copy one
part of the global memory into a shared memory buffer and then allowing
all of the threads in a block to access all elements in that shared memory buf-
fer.

To demonstrate this, I will show several flavors the classic matrix multiply
example. The first example I will show is the standard implementation of the
matrix multiply using only global memory access. Then, I will show an opti-
mized version of the algorithm that uses shared memory to reduce the num-
ber of accesses to global memory for threads of the same block.

Matrix Multiply using Global Memory

This version of the matrix multiply algorithm is the easiest to understand
however it is also a very naive approach.

MatrixMultiply.cu

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 48 of 63http://3dgep.com/?p=4151

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

__global__ void MatrixMultiplyKernel_GlobalMem(float* C,
const float* A, const float* B, unsigned int matrixDim)

{

 // Compute the row index

 unsigned int i = (blockDim.y * blockIdx.y) +
threadIdx.y;

 // Compute the column index

 unsigned int j = (blockDim.x * blockIdx.x) +
threadIdx.x;

 unsigned int index = (i * matrixDim) + j;

 float sum = 0.0f;

 for (unsigned int k = 0; k < matrixDim; ++k)

 {

 sum += A[i * matrixDim + k] * B[k * matrixDim + j];

 }

 C[index] = sum;

}

The parameters A, B, and C all point to buffers of global memory.

The fist step is to figure out which row (i) and which column (j) we are oper-
ating on for this kernel.

On line 10, we loop through all of the elements of row i of matrix A and the
column j of matrix B and compute the summed product of corresponding
entries (the dot product of row i and column j). A visual aid of this algo-
rithm is shown below.

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 49 of 63http://3dgep.com/?p=4151

Figure 23. Matrix Multiply – Global Memory

If we analyze this algorithm, we may notice that the same row elements of
matrix A are being accessed for every resulting row element of matrix C and
all the column elements of matrix B are being accessed for every resulting
column element of matrix C. If we say that the resulting matrix C is N x M
elements, then each element of matrix A is being accessed M times and each

http://3dgep.com/wp-content/uploads/2011/11/matrix-multiply1.png

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 50 of 63http://3dgep.com/?p=4151

element of matrix B is being accessed N times. That seems pretty wasteful to
me.

Matrix Multiply using Shared Memory

What if we could reduce the number of times the elements of matrix A and B
are accessed to just 1? Well, depending on the size of our matrix, we could
just store the contents of matrix A and matrix B into shared memory buffers
then just compute the resulting matrix C from those buffers instead. This
might work with small matrices (remember that shared memory is local to a
single block and with compute capability 1.3, we are limited to matrices of
about 20 x 20 because we are limited to 512 threads that can be assigned to a
single block).

But what if we had larger matrices to multiply? If we can find a way to split
the problem into “phases” then we could simply load each “phase” into
shared memory, process that “phase”, then load the next “phase” and
process that one until we have exhausted the entire domain.

This technique of splitting our problem domain into phases is called “tiling”
named because of the way we can visualize the technique as equal sized tiles
that represent our problem domain.

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 51 of 63http://3dgep.com/?p=4151

Figure 24. Tiles

For this particular problem, the best partitioning of the problem domain is
actually the same as partitioning of the grid of threads that are used to com-
pute the result.

If we split our grid into blocks of 16 x 16 threads (which I showed previously
in the section about CUDA thread execution to be a good granularity for this
problem) then we can create two buffers in shared memory that are the same
size as a single thread block in our kernel grid, one that holds a “tile” of ma-
trix A, and other to store a “tile” of matrix B.

Let’s see how this might look:

http://3dgep.com/wp-content/uploads/2011/11/tiles.jpg

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 52 of 63http://3dgep.com/?p=4151

Figure 25. Matrix Multiply – Tiles

So the idea is simple, each thread block defines a pair of shared memory buf-
fers that are used to “cache” a “tile” of data from matrix A and matrix B.
Since the “tile” is the same size as the thread block, we can just let each
thread in the thread block load a single element from matrix A into one of
the shared memory buffers and a single element from matrix B into the oth-

http://3dgep.com/wp-content/uploads/2011/11/matrix-multiply-2.png

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 53 of 63http://3dgep.com/?p=4151

er. Using this technique, we can reduce the number of global memory access
to matrixDim / BLOCK_SIZE per thread (where BLOCK_SIZE is the size of
the thread block and shared memory buffer in a single dimension).

But will this work? We only have access to 16 KB (16,384 Bytes) of shared
memory per streaming multiprocessor for devices of compute capability 1.x.
If our BLOCK_SIZE is 16 then we need 162 floating point values (4-bytes
each) per shared memory buffer. So the size in bytes of each shared memory
buffer is:

And we need 2 buffers, so we will need 2,048 Bytes of
shared memory per block. If you remember from the
previous article about the CUDA thread execution

model,
thread blocks of size 16 x 16 will allow 4 resident blocks to be scheduled per
streaming multiprocessor. So 4 blocks each requiring 2,048 Bytes gives a total
requirement of 8,192 KB of shared memory which is 50% of the available
shared memory per streaming multiprocessor. So this this tiling strategy will
work.

So let’s see how we might implement this in the kernel.

MatrixMultiply.cu

1

2

3

4

5

6

#define BLOCK_SIZE 16

__global__ void MatrixMultiplyKernel_SharedMem(float* C,
const float* A, const float* B, unsigned int matrixDim)

{

 unsigned int tx = threadIdx.x;

 unsigned int ty = threadIdx.y;

 unsigned int bx = blockIdx.x;

http://3dgep.com/?p=1913

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 54 of 63http://3dgep.com/?p=4151

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

 unsigned int by = blockIdx.y;

 // Allocate share memory to store the matrix data in
tiles

 __shared__ float sA[BLOCK_SIZE][BLOCK_SIZE];

 __shared__ float sB[BLOCK_SIZE][BLOCK_SIZE];

 // Compute the column index

 unsigned int j = (blockDim.x * bx) + tx;

 // Compute the row index

 unsigned int i = (blockDim.y * by) + ty;

 unsigned int index = (i * matrixDim) + j;

 float sum = 0.0f;

 // Loop through the tiles of the input matrices

 // in separate phases of size BLOCK_SIZE

 for(unsigned int phase = 0; phase < matrixDim/BLOCK_SIZE;
++phase)

 {

 // Allow each thread in the block to populate the
shared memory

 sA[ty][tx] = A[i * matrixDim + (phase * BLOCK_SIZE +
tx)];

 sB[ty][tx] = B[(phase * BLOCK_SIZE + ty) * matrixDim
+ j];

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 55 of 63http://3dgep.com/?p=4151

31

32

33

34

35

36

37

38

39

 __syncthreads();

 for(unsigned int k = 0; k < BLOCK_SIZE; ++k)

 {

 sum += sA[ty][k] * sB[k][tx];

 }

 __syncthreads();

 }

 C[index] = sum;

}

On line 5-8, we just store some “shorthand” versions of the thread and block
indexes into private thread variables (these are stored in registers).

On line 11, and 12 the two shared memory buffers are declared to store
enough values that each thread in the thread block can store a single entry in
the arrays.

On line 15, the index of the column is computed and stored in another reg-
istry variable j and on line 16, the row is computed and stored in registry
variable i.

On line 20, the 1-D index into the result matrix C is computed and the sum of
the products is stored in the float variable sum.

On line 25, we will loop over the “tiles” (called phases here) of matrix A and
matrix B. You should note that this algorithm assumes the size of the matrix
is evenly divisible by the size of the thread block.

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 56 of 63http://3dgep.com/?p=4151

On lines 28 and 29 is where the magic happens. Since the shared memory is
accessible to every thread in the block, we can let every thread in the block
copy 1 element from matrix A and one element from matrix B into the
shared memory blocks.

Before we can access the data in the shared memory blocks, we must ensure
that all threads in the entire block have had a chance to write their data. To
do that we need to synchronize the execution of all the threads in the block
by calling the __syncthreads() method.

Then the for loop on line 32 will loop through the elements of shared memo-
ry and sum the products.

Before we leave this loop and start filling the next “tile” into shared memory,
we must ensure that all threads are finished with the shared memory buf-
fers. To do that, we must execute __syncthreads() again on line 36.

This will repeat until all phases (or tiles) of the matrix have been processed.

Once all phases are complete, then the value stored in sum will contain the
final result and it is written to the destination matrix C.

Running the global memory version of the matrix multiply on my laptop
with a 512 x 512 matrix runs in about 45 milliseconds. Running the shared
memory version on the same matrix completes in about 15 milliseconds (in-
cluding copying memory from host to device and copying the result back to
host memory). This provides a speed-up of 300%!

Resources as a Limiting Constraint

It is entirely possible to allocate more shared memory per block than 2,048
bytes, but the block scheduler will reduce the number of blocks scheduled
on a streaming multiprocessor until the shared memory requirements are
met. If you want to allocate all 16 KB of shared memory in a single block,

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 57 of 63http://3dgep.com/?p=4151

then only a single block will be resident in the streaming multiprocessor at
any given moment which will reduce the occupancy of the streaming multi-
processor to 25% (for a 16 x 16 thread block on compute capability 1.x).

This reduced thread occupancy is not ideal, but it is conceivable to imagine
that a single block might have this requirement. In most cases the GPU will
still out-perform the CPU if the benefit of using the low-latency memory is
fully realized.

This is also true for the number of registers that can be allocated per block. If
a single kernel declares 32 32-bit variables that must be stored in registers
and the thread block consists of 16 x 16 threads, then the maximum number
of blocks that can be active in a streaming multiprocessor on a device with
compute capability 1.3 is 2 because the maximum number of 32-bit registers
that can be used at any moment in time is 16,384.

So the number of 32-bit registers/block is 8,192. So
the streaming multiprocessor can accommodate a
maximum of 8,192 / 16,384 = 2 blocks.

CUDA GPU Occupancy Calculator

Since version 4.1, the CUDA Toolkit comes with a tool called the CUDA
GPU Occupancy Calculator. This tool is a Microsoft Excel file that can be
used to compute the maximum thread occupancy of the streaming multipro-
cessor given a set of limiting constraints (threads per block, registers per
thread, and shared memory (bytes) per block). This tool is provided in the
following folder:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vX.X\tools

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 58 of 63http://3dgep.com/?p=4151

Figure 26. CUDA Occupancy Calculator

http://3dgep.com/wp-content/uploads/2012/10/CUDA-Occupancy-Calculator.png

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 59 of 63http://3dgep.com/?p=4151

The CUDA Occupancy Calculator allows you to compute the best thread
granularity for your thread blocks given a specific compute capability and
resource constraints.

You can refer to the second worksheet titled “Help” to learn how to use the
CUDA GPU Occupancy Calculator.

Exercises

Q1. Would the MatrixAddDevice kernel function shown in this article bene-
fit from the use of shared memory? Explain your answer.

A1. No, it would not benefit from the use of shared memory because each
matrix element is only accessed once. You would still need to access each
matrix component to store it in shared memory only to require an access
from shared memory to access it again. In this case, store the data in shared
memory will only increase the time to execute the kernel because more
load/store operations will need to be performed.

Q2. In almost all of the examples shown here, I decided to use a 16×16
thread granularity for the thread blocks. Can you explain why this is a good
choice for thread granularity on devices of compute capability (you can as-
sume that register use and shared memory allocation are within the limits in
each case):

1. 1.3?
2. 2.0?
3. 3.0?

A2. To answer this question, let’s take a look at each individual compute ca-
pability.

a. For Compute Capability 1.3 threads are split into groups of 32 threads
called warps. The maximum number of warps/SM is 32. If we create a 16×16

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 60 of 63http://3dgep.com/?p=4151

thread block, then we have a total of 256 threads/block. Each block will be
split into 8 warps to be scheduled on the SM. Since we know that the maxi-
mum number of warps/SM for devices with compute capability 1.3 is 32,
then 4 thread blocks will be scheduled on each SM. Each SM can support up
to 8 resident blocks per SM and 4 is still within our limit. Also with a maxi-
mum resident thread limit of 1024 threads and we exactly meet this require-
ment (4×256) so we also achieve 100% thread occupancy on the SM! So yes, a
16×16 thread block is a good choice for devices with compute capability 1.3.

b. For devices with compute capability 2.0 threads are also split into groups
of 32 threads called warps. In this case, the maximum number of warps/SM
is 48. Again, we have 256 threads per block which are split into 8 warps to be
scheduled on the SM then 6 thread blocks will be scheduled per SM (48/8).
6 blocks is within the 8 block limit, so we haven’t exceeded the block limit.
And with a maximum resident thread limit of 1536 threads, we exactly meet
this requirement (6×256) so we also achieve a 100% thread occupancy on the
SM! So yes, a 16×16 thread block is also a good choice for devices with com-
pute capability 2.0.

c. For devices with compute capability 3.0 the threads are also split into
groups of 32 threads called warps. So again, each block will be split into 8
warps. The maximum number of warps that can be active in a SM is 64. This
allows for 8 thread blocks to be scheduled per SM. This is within the limit of
16 blocks/SM and again matches exactly the maximum number of threads of
2048 threads (8×256) that can be scheduled for each SM so we also achieve
100% thread occupancy. So yes, a 16×16 thread block is also a good choice
for devices with compute capability 3.0 (and consequently this is also true
for devices of compute capability 3.5).

Q3. Assuming we have a block of 256 threads each, what is the maximum
amount of shared memory we can use per block and still maintain 100%
thread occupancy for devices of compute capability (assume the register
count is not a limiting resource):

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 61 of 63http://3dgep.com/?p=4151

1. 1.3?
2. 2.0?
3. 3.0?

a. In the previous exercise we already established that with a thread blocks
of 256 threads, we will have 4 resident blocks per SM. Since devices of com-
pute capability 1.3 have a maximum 16 KB (16,384 bytes) of shared memory
then each block can use a maximum of 4,096 bytes (16,384/4) of shared
memory while still maintaining 100% thread occupancy.

b. In the previous exercise we saw that we could schedule 6 blocks of 256
threads. Devices of compute capability 2.0 have a maximum of 48 KB (49,152
bytes) of shared memory per SM. This means that we can allocate a maxi-
mum of 8,192 bytes (49,152/6) of shared memory while still maintaining
100% thread occupancy.

c. In the previous exercise we saw that we could schedule 8 blocks of 256
threads to get 100% thread occupancy. Devices with compute capability 3.0
also have a maximum of 48 KB (49,152 KB) of shared memory per SM. In
this case, we can only allocate 6,144 bytes (49,152/8) of shared memory
while still maintaining 100% thread occupancy.

Q4. In the case (c) above, what would happen if we created thread blocks of
1024 threads? Would we still have 100% thread occupancy? How much
shared memory could we allocate per thread block and maintain 100%
thread occupancy? Explain your answer.

Q5. Answer question (3) and (4) again but this time compute the number of
registers you have available per thread while still maintaining 100% thread
occupancy. In this case, you can assume that shared memory is not a limiting
resource.

Hint: To answer Q5 correctly, you must also take the register allocation gran-
ularity and unit size into consideration. For compute capability 1.3, the regis-

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 62 of 63http://3dgep.com/?p=4151

ter allocation granularity is at the block level and the register allocation unit
size is 512. For compute capability 2.x register allocation granularity is at the
warp level and the register allocation unit size is 64. For compute capability
3.x, the register allocation granularity is at the warp level and the register al-
location unit size is 256.

References

1. NVIDIA Corporation (2012, October). CUDA C Programming Guide. (PG-
02829-001_v5.0). USA. Available from:
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf. Ac-
cessed: October 2012.

2. NVIDIA Corporation (2012, October). NVIDIA’s Next Generation CUDA
Compute Architecture: Kepler GK110. (V1.0). USA. Available from:
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Ar-
chitecture-Whitepaper.pdf. Accessed: October 2012.

3. NVIDIA Corporation (2012, October). NVIDIA CUDA Getting Started Guide
For Microsoft Windows. (DU-05349-001_v5.0). USA. Available from:
http://developer.download.nvidia.com/compute/cuda/5_0/rel/docs/CU-
DA_Getting_Started_Guide_For_Microsoft_Windows.pdf. Accessed: Octo-
ber 2012.

4. NVIDIA Corporation (2012, October). CUDA C Best Practices Guide. (DG-
05603-001_v5.0). USA. Available from:
http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf.
Accessed: October 2012.

5. Kirk, David B. and Hwu, Wen-mei W. (2010). Programming Massively Paral-
lel Processors. 1st. ed. Burlington, MA 01803, USA: Morgan Kaufmann Pub-
lishers.

This entry was posted in CUDA, General Purpose GPU Programming and

http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://developer.download.nvidia.com/compute/cuda/5_0/rel/docs/CUDA_Getting_Started_Guide_For_Microsoft_Windows.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
http://3dgep.com/?cat=154
http://3dgep.com/?cat=3

2/27/13 3:38 PMIntroduction to CUDA 5.0 | 3D Game Engine Programming

Page 63 of 63http://3dgep.com/?p=4151

tagged 3.0, 3.5, C++, compute capability, CUDA, introduction, NVIDIA, Pro-
gramming, tutorial, Visual Studio by Jeremiah van Oosten. Bookmark the
permalink.

http://3dgep.com/?tag=3-0
http://3dgep.com/?tag=3-5
http://3dgep.com/?tag=c
http://3dgep.com/?tag=compute-capability
http://3dgep.com/?tag=cuda
http://3dgep.com/?tag=introduction
http://3dgep.com/?tag=nvidia
http://3dgep.com/?tag=programming
http://3dgep.com/?tag=tutorial
http://3dgep.com/?tag=visual-studio
http://3dgep.com/?author=2
http://3dgep.com/?p=4151

