Summer Semester 2014

Assignment on Massively Parallel Algorithms - Sheet 3

Due Date 14. 05. 2014

Exercise 1 (Reverse Array (single block), 2 Credits)

Starting from the reverse_array_single template, and given an input array $\{a_0, a_1, \ldots, a_{n-1}\}$ in pointer d_a, store the reversed array $\{a_{n-1}, a_{n-2}, \ldots, a_0\}$ in pointer d_b. Launch only one thread block, to reverse an array of size N = numThreads = 256 elements.

All you have to do is implement the body of the kernel reverseArrayBlock(). Each thread moves a single element to reversed position:

- a) Read input from array d_a
- b) Store output in reversed location in array d_b

Exercise 2 (Reverse Array (multiblock), 2 Credits)

Starting from the reverse_array_multi template, and given an input array $\{a_0, a_1, ..., a_{n-1}\}$ in array d_a , store the reversed array $\{a_{n-1}, a_{n-2}, ..., a_0\}$ in array d_b . Launch multiple 256-thread blocks; to reverse an array of size N, you need N/256 blocks.

- a) Compute the number of blocks to launch
- b) Implement the kernel reverseArrayBlock()

Exercise 3 (Fractals, 6 Credits)

Framework fractal_zoomer provides a reference implementation of a Mandelbrot generator. To get the framework compiled and running, you need the freeglut library. For installation please see the slides from the first Tutorial.

a) Convert the reference implementation to a massively parallel GPU kernel and compare the results to the reference implementation. (You can (re-)use the source code from the lecture webpage, if you want). You only have to write the kernel function fractal_gpu.

Compute the root mean square (RMS) error

$$E_{RMS} = \sqrt{\frac{1}{w \cdot h} \sum_{\mathbf{x} = (0,0)}^{(w,h)} \left(I_{CPU}(\mathbf{x}) - I_{GPU}(\mathbf{x}) \right)^2}$$
 (1)

between the CPU and GPU implementation. What does the result mean? *Hint:* You can switch between the CPU and GPU version by pressing the space key.

b) What happens when you zoom in very deeply? Examine a zoom in on the main antenna (Fig.1 arrow 1) that sticks out to the left, and another one into he upper antlers (Fig.1 arrow 2) growing out from the top of the main cardioid. Can you explain the different effects when you approach the limits of floating point precision?

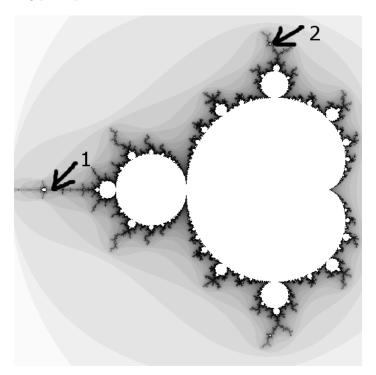


Figure 1: Mandelbrot Points of Interest

c) Vary the block size of the kernel call, e.g. horizontal or vertical stripes, rectangles and squares of different sizes (use powers of two for simplicity). How does that influence running times?