
24
. April 2 Vor les ang

meshing

Input : set poly lines S in square Eo , U2
?

Simplification : I only lnleogor cards

2 only angles in 10945 : 90 ; 1359

Goal : a triangulation M of the domain

with the following properties

1- Conforming mesh M u
= no T vertices :

⑧ oh
.

2
. it is constrained mesh = no segment from
original input crosses a triangle of M

s¥
part of #

ig , poutine
no

3 . µ is well - Shaped =

no angles other than 45
°

or 90
°

Kate
. no long thin triangles)

no ?

4 . M is not uniform =

not all triangles are same size

* meat remits '

mi8mn%n

Edt Edt Hiibsdneraufsdrreiber

Quad tree over pay lines :

stopping criterion : no segment of the input intersects 't the node

or square has size 1×1

* Def "

intersects
"
: proper intersection or segment

isheconntdaeined
in the side of ④ ode

-

Drawing diagonals

in the simple quad tree could lead
to

Henna no

to small

⇒

Algorithm :

Generale quad tree T over input pay lines

balance T → quad tree Q

Init M with all edges induced by Q for each leaf GE Q :

its
er
't ' ' diaingknrase.de?obYuseomentes:o#

else

ciohnfa.hiaioii.ner.IE?.::esibonsides
:

the sides

insert

Lamma :

• Given poly lines S with above properties in @ in ?a

* we can construct a triangle mesh M with above
Fs

.

§ Properties .

M has 0 (PCs) KSU) many triangles .

M can be constructed in time 0 (PCs) log ' U)
.

Where PCs) - sum of length of all segments in S
.

Proof :

I Size of T (unbalanced) .

Nodes that are intersected have size 1 :

(
linear in length L

A Segment of length l can intersect at most 41-3 IT
" " " " "

.FI# he "
t¥¥÷¥÷¥¥

⇒ leaves intersect by poly lines E O (pcs))
⇒
##

leaves on bottom layers of T E OC 4 . pls)) = 0 Gp I
-

contains all unit cells

Each 4 leaves share one parent ,
which can have at most 3

leaf siblings ⇒

leaves in TE O C pas . log U)
w

Cayes

Each node generated at most 8 triangles

⇒ # triangles in ME 0 # log u)

2 Construct Time :

observe that # nodes in T E O (PCs > log u)
⇒ balanced a tree Q has Ocp log U) nodes :

constructing Q costs OC log U . # nodes) = 0 (pcs) log
' U)

constructing triangles costs o # leaves) ⇒ o Cp log - u) time

-

Node : The bound is tight .
Example ¥⑦ ¥ Iff! sty . e. guts in T

ueshinsforabitaryinp.at#

Leaf criterion : Example :

-

1) Max depth

↳
empty (no intersects with poly lines)

141

exactly one segment from input y y
exactly one vertex from input, and all segments in the node [3)
Are incident to that vortex

.

full fills (4

2efaspectofaange
L'IIe.IE! .

A := f-
-

where e -
- longest side

,
h -

- height 141

Noles : x > Is an .es (in case of equilateral Eri) f y
(3)

Also : let -0 - smallest angle in tri ⇒ fine ⇐ as ÷ fulfills 14

(gives a way to estimated

small = better !

.

< e-

Modifymeshgenoationconsider

3 cases for triangulation :

1 Empty node → triangulate according to the following templates :

it iii. i
4-- # sides with neighbors at smaller size

2 Node with one segment or one vertex like this : a yellow input
• pink part of output m

" "

/÷÷÷÷÷

" ' Then triangulate like : ¥

3 Else deform square " title "

⑦ ⇒ ⑥ Igt @ maybe some mistakes

⑦ ⇒ Q
② ⇒ 0¥?
Generalizations

ol d- dim octree

1) Bin tree : only split along one axis
,

2) Split node by N
"

children (in 2 - D)

in round robin fashion " N
'

- quad tree
"

:

y#L# µ⇒
Ei one win

- ¥ .

"

I
-

- - - - ¥
4) oblique quad tree vantage

quad tree

l l l l EH

(l X l ' Il 3)
← Triangle quad tree

5) Exact octree Advantage : works nicely for spheres

Nodes store geometry ; different types of nodes :

• "
WEEEfaneonan

• black -
- inside the Obi

' White = outside - " -

e

.

" vertex node →feh

if:& Tafe
.

Emt

now :
"

Gabriel Zachmann

Gabriel Zachmann
south pole

poiatlocationprob.ie#

Given x. YE @ in]
Find the leaf containing day) =p

Algo :

let m - mcp Morton code
start at root : c -

- root

branchbit = a cold - n) K "

shift 1 d- a places "

bit num - Cdd - I) depth of QT
while c has children

child index -
-

cm & branch bitt ⇒ bitnum
Child i

.

= branch bit ⇒ A

child i. it = (m & branchbitt ⇒ (birth um - r)

C = children ④hild indeed
bit human - = I

branch bit -
- branch bit → 1

end while

