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Exercise Group of 2 or alone

lmcportan Preprocessing
- Domain discretion ( decompose )

- Do grid over it → computational inefficient 4.Ian't
'
uses

→ Uniform Grid not good
- Non - uniform

, conforming mesh that respects the

input .

- Cong & thin triangles , always bad

- quad tree quite nice

Used in simulation to eg . flow Cair) around a vehicle
or crashed test .



Quad trees
store geometry data
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Note : quad tree induces partition ring of
the domain -

covers whole

! Complete quad tree is like a normal
area

,
but does

Grid , called multi - level grid not overlay
other members

Terminology :
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Dsf : nodes are adjacent .

their squares share an edge

Def : square of a node v
-
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Given : set of points PER
'

Def : Quddtree Q over point set P
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If V is inner node →
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⇒ i E log -0€ = log I + I ⇒ Lemma

for leaves : i s log It I th
-

level of parent

cemmaicomplexityofquadtreIA.am
trees of depth d over n points ,

takes 0 ( n ( dtd )) nodes and takes Ocn ( dtr ))
to construct .

I can get rid of it

proof :

# leaves = ( # inner nodes ) . 3 tr (by induction )
Number of J

⇒ upper bounds on inner nodes suffice .



part 1
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# inner nodes on one level

← n ( in each inner node there are at
least 2 points )

= > # inner nodes over all levels E n Cd -1 )

⇒ # nodes S n ( d - t ) t 2h

because in each guadtupel ,
2. leaves must

contain a point .

Parth

For each node on
,

we time TO

Tlv ) = 01mL
,

m = # points in r .

Sum of all points on level is n

ETCH E Ocn )
✓ is node
on level i

⇒ time 0 ( n nd ) or (n - dltr



Findnorthneighbort
:-pgiven : node v

v
.

Sought : r
'

- north neighbor of v
, #/

such that depth ( v ' ) E depth Cv)
T t

Algorithmusgetworthveig.ba#
If V is root → return mic

let p : - parent Cv )

(1) If V is lower Left @ c) child of p → return

UC child of p

(2) If V is LR child of p - > return

UR child of pCASI

R

c- vccasee )

I
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p
'

= get North Neighbor ( p )

if N ' is nil or P
'

is leaf → return N
'

(3) If u is UC child of p → return a child of p
'

(4) If ✓ is UR -11 -
→ return CR - n -

case 3 A 4
=

return
-
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'
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Running . gqµ-
worst case
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West neighbors and why
is it so complex t worst
case ?
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⇒

ttheighborsv ,
v ' :/ depth ( rt - depth ( v 't IET

corollary

If Q is balanced ⇒ size of neighbors
differs by factor 2 at most

.

BalancedQuadEreeALg0forconstructingbalancedquadEree#

Maintain : cist L of leaves

while there are still nodes v in C :

1
. check wether v needs to split
( neighbor finding algo )

2
. If r had to split

,
check wether neighbors need

splitting ,
too

e¥



cemmai
( et Q be a quad tree with m nodes ,

I - balanced quad tree from Q .

Then OT has 0cm ) nodes
,
and it can be constructed in time Ocmcdttd )

.

Proof

Parth : we prove that there are 06h ) splitting operations

( ⇒ Lemma follows , b/c each split

generate 4 additional Nodes .

Definesplitcounter
• Only for old nodes ( from origin quad tree ) : =

how many times did the old node cause split

• split counter at end 0

of balancing
o

#neighbors # d # SEE
• Each old node generated O O O O counter O O 00

at most 8.4 new nodes M
O

-

/# e. Neighbor

I. Neighbor
. . .

-



Assertion ( to be proven ) :
•

✓ A V2 V 3

HEATt
→ No matter how deep subtree under Vr is

, vs never

has to split because of rn .

Def : Dis - depth of subtree under V
.

✓ V2 V 3

Basecasei ftD @ z ) = DC vs ) - o

D( rn ) = 2

Inductive : Lemma is true for DL d

✓ n V2 V 3

DM ) -

- d > 2

D CUR child of v1
=D - 1 . V2 is

situation
for which Lemma holds

,
b/c depth of

split at least ur child of v E D

Once ⇒ ur child of ve will not be split

Parth

Time per node E O @ tr )
,
b/c of const number of

neighbor finding operations Cops .)
.

Each node will be considered only once ⇒ Lemma


