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🌴
QuadTrees

Quadtrees are trees used to efficiently store data of points on a 
two-dimensional space. In this tree, each node has at most four 
children. We can construct a quadtree from a two-dimensional area 
using the following steps:

1. Divide the current two dimensional space into four boxes.

2. If a box contains one or more points in it, create a child object, 
storing in it the two dimensional space of the box

3. If a box does not contain any points, do not create a child for it

Quadtrees are used in image compression, where each node 
contains the average colour of each of its children. The deeper 
you traverse in the tree, the more the detail of the image. 
Quadtrees are also used in searching for nodes in a two-
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dimensional area. For instance, if you wanted to find the closest 
point to given coordinates, you can do it using quadtrees.

4. Recurse for each of the children.

(https://www.geeksforgeeks.org/quad-tree/)

https://en.wikipedia.org/wiki/Quadtree#/media/File:Quadtree_compression_of_an
_image.gif

The problem we want to solve
We have a polyghon in 2d or 3d and we want to find a triangulation wich has some 
“nice” properties, so we want to be able to identify easily the location of some points in 
space

A cool structure that comes helpful is a tree, expecially one that divides the space is 
four equal regions.

https://www.geeksforgeeks.org/quad-tree/
https://en.wikipedia.org/wiki/Quadtree#/media/File:Quadtree_compression_of_an_image.gif


QuadTrees 3

Definitions

Quad tree
A quad tree is a tree where each inner node has 4 children and each of them  
corresponds to a square. It is an unbalanced structure, meaning that every node must 
either be an inner node and have exactly 4 children, or a leaf node and have 0 children

The actual subdivision is made fom the top left corner spinning in anti-clockwise verse

We can define some terminology to use:

Vertex: one of the corners of a square

Edge: one of the sides of a square

Side: one of the edges of the root square

Corner: one of the corners of the root square

Neighbors nodes: two nodes sharing an edge

little note: side ⟹ edge, corner ⟹ vertex



QuadTrees 4

Square of a node
Given a node , , so the square of a node is the actual 
region of the space inside the actual square formed by 

Quad tree over a set of point
given a set of points :

With childrens:

v q(v) = [x ,x ] ×v v
′ [y ,y ]v v

′

[x ,x ] ×v v
′ [y ,y ]v v

′

P ∈ R2

Q(P) := node v : {
v is leave
v is inner node

if  ∣P ∣ ≤ 1
else

V =UL {p ∈ P : x <p (x −2
1

v x ),y <v
′

p (y −2
1

v y )}v
′

V =UR {p ∈ P : x >p (x −2
1

v x ),y <v
′

p (y −2
1

v y )}v
′

1 1
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Depth of a quad tree
the depth of a quad tree depends mostly on the points in the set P we want to 
triangulate, as an example let’s consider the following 2 sets of points:

In the second case it’s possible to use a less deep tree, since the points are more 
uniformely scattered around, in the first case it’s impossible to locate the position of a 
point without using almost a depth 3

Lemma
Let P be a set of points in , s be the side length of q(Root), and c  s.t.:

, so c is the maximum distance between 2 
points in a node, or also the distance between the 2 closest points, then, it follows for 
the depth d of the tree:

Proof

V =BL {p ∈ P : x <p (x −2
1

v x ),y >v
′

p (y −2
1

v y )}v
′

V =BR {p ∈ P : x >p (x −2
1

v x ),y >v
′

p (y −2
1

v y )}v
′

R2 ∈ R
c = min{∥p −i p ∥ :j p ,p ∈i j P , i = j}

d ≤ log ( ) +2 c
s

2
3
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if we split in half a square with side lenght s a number i of times, the side of each sub 
square is long exactly 

so we can say that the maximum distance between two points in the same square 
occours when they are in the deepest division(last level)and they are on the opposite 
vertices of the square, this distance is the diagonal of the square, having size 

, and since edgeLen is , we obtain . if we now take every other 
disctance between points  we can say that

this is true for inner nodes, but in the leaves we need to add another subdivision to i, 
bringing the depth to 

Balanced Quad Trees
A quad tree is a balanced Quad Tree  when the size of the neighbors differ maximum 
by a factor 2:

2i
s

⋅2
edgeLen 2i

s
2i
s2

c′

≥2i
s2 c ≥′ c⇒ ≥

c
s2 2 ⇒i i ≤ log ⇒2 c

s2 i ≤ log +2 c
s log ⇒2 2 i ≤

log +2 c
s

2
1

i ≤ log +2 c
s +2

1 1 = log +2 c
s

2
3

Q̂
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turning a general quad tree to a balanced one can be done in the same time of building 
a quad tree, so the conversion can be done also after the creation, since 

.

to balance a quad tree is necessary to insert new nodes, as in the examle:

In order to make a tree balanced we need to check for every leaf if it needs to be split, 
comparing its depth with the neighbors depth, then check if its neighbors should be split 
too and in case apply  the split

Lemma
Let Q be a quad tree with m nodes,  is the balanced quad tree for Q, then  has 
O(m) nodes that could be constructed in time O(m(d+1))

Proof

∀v, v  s.t. v  is a neighbor of v, ∣depth(v ) −′ ′ ′ depth(v)∣ ≤ 1

O(X +X) = O(2X) = O(X)

Q̂ Q̂
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being D(v) the depth of the subtree with root the node v, we can assume that 
. For each node with  we need to split every neighbor 

node with  only one time. the splitting will always be propagated in the 
direction of the node we mentioned, so we are never propagating the splitting operation 
through the not neighbors nodes, resultingin a maximum number of splits of m.

for the time complexity we can affirm that every “old node” that gets split introduces a 
number of “new nodes” , where 4 is the number of children per node, and 8 is the 
maximm number of neighbors a node can have. ath this point the number of splits 
depends from the depth of the tree, including the number of leaves, so d+1, so the worst 
possible case is when we have to traverse for every node the whole tree, bringing us to 
a complexity of O(m(d+1))

Complexity
A quad tree with depth d and n points has a time complexity of O((d+1)n) and a space 
complexity of O((d+1)n)

Proof

Space complexity
In the worst case we will build a tree with 4 children for each node, until the leaves, and 
have all the leaves balanced on the same level. let’s consider the number of nodes for 
each level

level nodes in level total nodes

0 1 1

1 4 1+4=5

2 16 5+16=21

3 64 21+64=85

… … …

d-1

In general we can affirm that 

D(leafNode) = 0 D(v) ≥ 2
depth < 2

≤ 8 ⋅ 4

4d−1 4
i=0
∑
d−1

i
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and then going through all the levels until level d-1 we obtain that 
, where the 2n is because the quadruplet to exist needs to have minimum 2 

levels with almost a point inside each

Time complexity
Given m points inside the square q(v) of a node v the time to reach the node T(v)=O(m)

and since the number of points in each level must be , being n the total number of 
points, and we have d-1 levels the time complexity is O((d-1)n).

Neighbors finding
Given a node  we want to find one neighbor north, south, west or east  of , fordoing 
so we search for a neighbor such that 

  

def northNeighbor(v): 
  if v is root:  #base step 
    return null 
#at this point we know the parent of v exist 
  if parent(v).LLChild == v: 
    return parent(v).ULChild  
  if parent(v).LRChild == v: 
    return parent(v).URChild  
#at this point we know that the neighbor of v is not child of the same parent 
  u = northNeighbor(parent(v)) 
  if u is null or isLeaf(u): 
    return u #will eventually reach the base step if v is on the top edge 
  if parent(v).ULChild == v: 
    return u.LLChid  
  if parent(v).URChild == v: 
    return u.LRChid  
#this method does not have a return for every path, also if programmatically incorrect,  
#it's almost impossible to reach this point 

def southNeighbor(v): 
  if v is root:  #base step 
    return null 
#at this point we know the parent of v exist 
  if parent(v).ULChild == v: 
    return parent(v).LLChild  

#nodesInLeveli = 3 ⋅ #sumOfNodesUntilLevel(i − 1) + 1

#nodes ≤ n(d−
1) + 2n

≤ n

v v’ v

depth(v’) ≤ depth(v)
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  if parent(v).URChild == v: 
    return parent(v).LRChild  
#at this point we know that the neighbor of v is not child of the same parent 
  u = southNeighbor(parent(v)) 
  if u is null or isLeaf(u): 
    return u #will eventually reach the base step if v is on the top edge 
  if parent(v).LLChild == v: 
    return u.ULChid  
  if parent(v).LRChild == v: 
    return u.URChid  
#this method does not have a return for every path, also if programmatically incorrect,  
#it's almost impossible to reach this point 

def eastNeighbor(v): 
  if v is root:  #base step 
    return null 
#at this point we know the parent of v exist 
  if parent(v).LLChild == v: 
    return parent(v).LRChild  
  if parent(v).ULChild == v: 
    return parent(v).URChild  
#at this point we know that the neighbor of v is not child of the same parent 
  u = eastNeighbor(parent(v)) 
  if u is null or isLeaf(u): 
    return u #will eventually reach the base step if v is on the top edge 
  if parent(v).URChild == v: 
    return u.ULChid  
  if parent(v).LRChild == v: 
    return u.LLChid  
#this method does not have a return for every path, also if programmatically incorrect,  
#it's almost impossible to reach this point 

def westNeighbor(v): 
  if v is root:  #base step 
    return null 
#at this point we know the parent of v exist 
  if parent(v).LRChild == v: 
    return parent(v).LLChild  
  if parent(v).URChild == v: 
    return parent(v).ULChild  
#at this point we know that the neighbor of v is not child of the same parent 
  u = westNeighbor(parent(v)) 
  if u is null or isLeaf(u): 
    return u #will eventually reach the base step if v is on the top edge 
  if parent(v).ULChild == v: 
    return u.URChid  
  if parent(v).LLChild == v: 
    return u.LRChid  
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#this method does not have a return for every path, also if programmatically incorrect,  
#it's almost impossible to reach this point 

Variants and generalization of QuadTrees

Quad-Trees in higher 
dimension
According to the dimension we can 
define:

2 dimensions: QuadTree

3 dimensions OctTree

d>3 dimensions d-dimensional 
OctTree

BinTree
every node has 2 children, so the tree is a binary tree. We split horizontally/vertically in 
an alternate manner, in this case for every 2 node layers we have a node in the original 
quadtree
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 -Tree
generalization of the binTree, evey time we split the tree in N equal children

N2
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it could be considered as the missing ring between a quad tree and a full grid

Triangle quad tree
in this case we use a triangular domain and we subdivide it into triangle subnodes
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it is really well suited to generate hierarchical partitioning of spheres in 3d, since we can 
inscribe a sphere in a tetrahedron, then project the sphere points on the tethraedron 
and we obtain a triangle quad tree and have the minimum distorsion possible
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Storing of a QuadTree
The simplest way to store a quad tree is to use the bottom left vertex. we can store the 
coordinates of the point and its level, so for every node we will have: 

, where  is the side lenght of the quare of the root

in this fashon we will need  bits per each node

QuadTrees usages
🗓 Image compression

🪆 Dynamic meshing

⚾ IsoSurfaces

Good resources
https://jimkang.com/quadtreevis/

https://www.geeksforgeeks.org/quad-tree/

https://graphics.stanford.edu/courses/cs468-06-fall/Slides/steve.pdf

https://i11www.iti.kit.edu/_media/teaching/winter2015/compgeom/algogeom-ws15-vl11-
printable.pdf

https://www.jordansavant.com/book/algorithms/quadtree.md

https://iq.opengenus.org/quadtree/

https://personal.us.es/almar/cg/09quadtrees.pdf

https://ls11-www.cs.tu-dortmund.de/_media/buchin/teaching/akda_ws21/quadtrees.pdf

v =
(x,y, l),x,y ∈ [0,U ] U

2d+ log d2

https://www.notion.so/Image-compression-c90971c6332c4912a1b034eb1ab7fd61?pvs=21
https://www.notion.so/Dynamic-meshing-acca19a8e5d5419688aec9ef92ee2bc7?pvs=21
https://www.notion.so/IsoSurfaces-58996ba2136743bb99343a5ae6e780b0?pvs=21
https://jimkang.com/quadtreevis/
https://www.geeksforgeeks.org/quad-tree/
https://graphics.stanford.edu/courses/cs468-06-fall/Slides/steve.pdf
https://i11www.iti.kit.edu/_media/teaching/winter2015/compgeom/algogeom-ws15-vl11-printable.pdf
https://www.jordansavant.com/book/algorithms/quadtree.md
https://iq.opengenus.org/quadtree/
https://personal.us.es/almar/cg/09quadtrees.pdf
https://ls11-www.cs.tu-dortmund.de/_media/buchin/teaching/akda_ws21/quadtrees.pdf

