
QuadTrees 1

🌴
QuadTrees

Quadtrees are trees used to efficiently store data of points on a
two-dimensional space. In this tree, each node has at most four
children. We can construct a quadtree from a two-dimensional area
using the following steps:

1. Divide the current two dimensional space into four boxes.

2. If a box contains one or more points in it, create a child object,
storing in it the two dimensional space of the box

3. If a box does not contain any points, do not create a child for it

Quadtrees are used in image compression, where each node
contains the average colour of each of its children. The deeper
you traverse in the tree, the more the detail of the image.
Quadtrees are also used in searching for nodes in a two-

QuadTrees 2

dimensional area. For instance, if you wanted to find the closest
point to given coordinates, you can do it using quadtrees.

4. Recurse for each of the children.

(https://www.geeksforgeeks.org/quad-tree/)

https://en.wikipedia.org/wiki/Quadtree#/media/File:Quadtree_compression_of_an
_image.gif

The problem we want to solve
We have a polyghon in 2d or 3d and we want to find a triangulation wich has some
“nice” properties, so we want to be able to identify easily the location of some points in
space

A cool structure that comes helpful is a tree, expecially one that divides the space is
four equal regions.

https://www.geeksforgeeks.org/quad-tree/
https://en.wikipedia.org/wiki/Quadtree#/media/File:Quadtree_compression_of_an_image.gif

QuadTrees 3

Definitions

Quad tree
A quad tree is a tree where each inner node has 4 children and each of them
corresponds to a square. It is an unbalanced structure, meaning that every node must
either be an inner node and have exactly 4 children, or a leaf node and have 0 children

The actual subdivision is made fom the top left corner spinning in anti-clockwise verse

We can define some terminology to use:

Vertex: one of the corners of a square

Edge: one of the sides of a square

Side: one of the edges of the root square

Corner: one of the corners of the root square

Neighbors nodes: two nodes sharing an edge

little note: side ⟹ edge, corner ⟹ vertex

QuadTrees 4

Square of a node
Given a node , , so the square of a node is the actual
region of the space inside the actual square formed by

Quad tree over a set of point
given a set of points :

With childrens:

v q(v) = [x ,x] ×v v
′ [y ,y]v v

′

[x ,x] ×v v
′ [y ,y]v v

′

P ∈ R2

Q(P) := node v : {
v is leave
v is inner node

if ∣P ∣ ≤ 1
else

V =UL {p ∈ P : x <p (x −2
1

v x),y <v
′

p (y −2
1

v y)}v
′

V =UR {p ∈ P : x >p (x −2
1

v x),y <v
′

p (y −2
1

v y)}v
′

1 1

QuadTrees 5

Depth of a quad tree
the depth of a quad tree depends mostly on the points in the set P we want to
triangulate, as an example let’s consider the following 2 sets of points:

In the second case it’s possible to use a less deep tree, since the points are more
uniformely scattered around, in the first case it’s impossible to locate the position of a
point without using almost a depth 3

Lemma
Let P be a set of points in , s be the side length of q(Root), and c s.t.:

, so c is the maximum distance between 2
points in a node, or also the distance between the 2 closest points, then, it follows for
the depth d of the tree:

Proof

V =BL {p ∈ P : x <p (x −2
1

v x),y >v
′

p (y −2
1

v y)}v
′

V =BR {p ∈ P : x >p (x −2
1

v x),y >v
′

p (y −2
1

v y)}v
′

R2 ∈ R
c = min{∥p −i p ∥ :j p ,p ∈i j P , i = j}

d ≤ log () +2 c
s

2
3

QuadTrees 6

if we split in half a square with side lenght s a number i of times, the side of each sub
square is long exactly

so we can say that the maximum distance between two points in the same square
occours when they are in the deepest division(last level)and they are on the opposite
vertices of the square, this distance is the diagonal of the square, having size

, and since edgeLen is , we obtain . if we now take every other
disctance between points we can say that

this is true for inner nodes, but in the leaves we need to add another subdivision to i,
bringing the depth to

Balanced Quad Trees
A quad tree is a balanced Quad Tree when the size of the neighbors differ maximum
by a factor 2:

2i
s

⋅2
edgeLen 2i

s
2i
s2

c′

≥2i
s2 c ≥′ c⇒ ≥

c
s2 2 ⇒i i ≤ log ⇒2 c

s2 i ≤ log +2 c
s log ⇒2 2 i ≤

log +2 c
s

2
1

i ≤ log +2 c
s +2

1 1 = log +2 c
s

2
3

Q̂

QuadTrees 7

turning a general quad tree to a balanced one can be done in the same time of building
a quad tree, so the conversion can be done also after the creation, since

.

to balance a quad tree is necessary to insert new nodes, as in the examle:

In order to make a tree balanced we need to check for every leaf if it needs to be split,
comparing its depth with the neighbors depth, then check if its neighbors should be split
too and in case apply the split

Lemma
Let Q be a quad tree with m nodes, is the balanced quad tree for Q, then has
O(m) nodes that could be constructed in time O(m(d+1))

Proof

∀v, v s.t. v is a neighbor of v, ∣depth(v) −′ ′ ′ depth(v)∣ ≤ 1

O(X +X) = O(2X) = O(X)

Q̂ Q̂

QuadTrees 8

being D(v) the depth of the subtree with root the node v, we can assume that
. For each node with we need to split every neighbor

node with only one time. the splitting will always be propagated in the
direction of the node we mentioned, so we are never propagating the splitting operation
through the not neighbors nodes, resultingin a maximum number of splits of m.

for the time complexity we can affirm that every “old node” that gets split introduces a
number of “new nodes” , where 4 is the number of children per node, and 8 is the
maximm number of neighbors a node can have. ath this point the number of splits
depends from the depth of the tree, including the number of leaves, so d+1, so the worst
possible case is when we have to traverse for every node the whole tree, bringing us to
a complexity of O(m(d+1))

Complexity
A quad tree with depth d and n points has a time complexity of O((d+1)n) and a space
complexity of O((d+1)n)

Proof

Space complexity
In the worst case we will build a tree with 4 children for each node, until the leaves, and
have all the leaves balanced on the same level. let’s consider the number of nodes for
each level

level nodes in level total nodes

0 1 1

1 4 1+4=5

2 16 5+16=21

3 64 21+64=85

… … …

d-1

In general we can affirm that

D(leafNode) = 0 D(v) ≥ 2
depth < 2

≤ 8 ⋅ 4

4d−1 4
i=0
∑
d−1

i

QuadTrees 9

and then going through all the levels until level d-1 we obtain that
, where the 2n is because the quadruplet to exist needs to have minimum 2

levels with almost a point inside each

Time complexity
Given m points inside the square q(v) of a node v the time to reach the node T(v)=O(m)

and since the number of points in each level must be , being n the total number of
points, and we have d-1 levels the time complexity is O((d-1)n).

Neighbors finding
Given a node we want to find one neighbor north, south, west or east of , fordoing
so we search for a neighbor such that

def northNeighbor(v):
 if v is root: #base step
 return null
#at this point we know the parent of v exist
 if parent(v).LLChild == v:
 return parent(v).ULChild
 if parent(v).LRChild == v:
 return parent(v).URChild
#at this point we know that the neighbor of v is not child of the same parent
 u = northNeighbor(parent(v))
 if u is null or isLeaf(u):
 return u #will eventually reach the base step if v is on the top edge
 if parent(v).ULChild == v:
 return u.LLChid
 if parent(v).URChild == v:
 return u.LRChid
#this method does not have a return for every path, also if programmatically incorrect,
#it's almost impossible to reach this point

def southNeighbor(v):
 if v is root: #base step
 return null
#at this point we know the parent of v exist
 if parent(v).ULChild == v:
 return parent(v).LLChild

#nodesInLeveli = 3 ⋅ #sumOfNodesUntilLevel(i − 1) + 1

#nodes ≤ n(d−
1) + 2n

≤ n

v v’ v

depth(v’) ≤ depth(v)

QuadTrees 10

 if parent(v).URChild == v:
 return parent(v).LRChild
#at this point we know that the neighbor of v is not child of the same parent
 u = southNeighbor(parent(v))
 if u is null or isLeaf(u):
 return u #will eventually reach the base step if v is on the top edge
 if parent(v).LLChild == v:
 return u.ULChid
 if parent(v).LRChild == v:
 return u.URChid
#this method does not have a return for every path, also if programmatically incorrect,
#it's almost impossible to reach this point

def eastNeighbor(v):
 if v is root: #base step
 return null
#at this point we know the parent of v exist
 if parent(v).LLChild == v:
 return parent(v).LRChild
 if parent(v).ULChild == v:
 return parent(v).URChild
#at this point we know that the neighbor of v is not child of the same parent
 u = eastNeighbor(parent(v))
 if u is null or isLeaf(u):
 return u #will eventually reach the base step if v is on the top edge
 if parent(v).URChild == v:
 return u.ULChid
 if parent(v).LRChild == v:
 return u.LLChid
#this method does not have a return for every path, also if programmatically incorrect,
#it's almost impossible to reach this point

def westNeighbor(v):
 if v is root: #base step
 return null
#at this point we know the parent of v exist
 if parent(v).LRChild == v:
 return parent(v).LLChild
 if parent(v).URChild == v:
 return parent(v).ULChild
#at this point we know that the neighbor of v is not child of the same parent
 u = westNeighbor(parent(v))
 if u is null or isLeaf(u):
 return u #will eventually reach the base step if v is on the top edge
 if parent(v).ULChild == v:
 return u.URChid
 if parent(v).LLChild == v:
 return u.LRChid

QuadTrees 11

#this method does not have a return for every path, also if programmatically incorrect,
#it's almost impossible to reach this point

Variants and generalization of QuadTrees

Quad-Trees in higher
dimension
According to the dimension we can
define:

2 dimensions: QuadTree

3 dimensions OctTree

d>3 dimensions d-dimensional
OctTree

BinTree
every node has 2 children, so the tree is a binary tree. We split horizontally/vertically in
an alternate manner, in this case for every 2 node layers we have a node in the original
quadtree

QuadTrees 12

 -Tree
generalization of the binTree, evey time we split the tree in N equal children

N2

QuadTrees 13

it could be considered as the missing ring between a quad tree and a full grid

Triangle quad tree
in this case we use a triangular domain and we subdivide it into triangle subnodes

QuadTrees 14

it is really well suited to generate hierarchical partitioning of spheres in 3d, since we can
inscribe a sphere in a tetrahedron, then project the sphere points on the tethraedron
and we obtain a triangle quad tree and have the minimum distorsion possible

QuadTrees 15

Storing of a QuadTree
The simplest way to store a quad tree is to use the bottom left vertex. we can store the
coordinates of the point and its level, so for every node we will have:

, where is the side lenght of the quare of the root

in this fashon we will need bits per each node

QuadTrees usages
🗓 Image compression

🪆 Dynamic meshing

⚾ IsoSurfaces

Good resources
https://jimkang.com/quadtreevis/

https://www.geeksforgeeks.org/quad-tree/

https://graphics.stanford.edu/courses/cs468-06-fall/Slides/steve.pdf

https://i11www.iti.kit.edu/_media/teaching/winter2015/compgeom/algogeom-ws15-vl11-
printable.pdf

https://www.jordansavant.com/book/algorithms/quadtree.md

https://iq.opengenus.org/quadtree/

https://personal.us.es/almar/cg/09quadtrees.pdf

https://ls11-www.cs.tu-dortmund.de/_media/buchin/teaching/akda_ws21/quadtrees.pdf

v =
(x,y, l),x,y ∈ [0,U] U

2d+ log d2

https://www.notion.so/Image-compression-c90971c6332c4912a1b034eb1ab7fd61?pvs=21
https://www.notion.so/Dynamic-meshing-acca19a8e5d5419688aec9ef92ee2bc7?pvs=21
https://www.notion.so/IsoSurfaces-58996ba2136743bb99343a5ae6e780b0?pvs=21
https://jimkang.com/quadtreevis/
https://www.geeksforgeeks.org/quad-tree/
https://graphics.stanford.edu/courses/cs468-06-fall/Slides/steve.pdf
https://i11www.iti.kit.edu/_media/teaching/winter2015/compgeom/algogeom-ws15-vl11-printable.pdf
https://www.jordansavant.com/book/algorithms/quadtree.md
https://iq.opengenus.org/quadtree/
https://personal.us.es/almar/cg/09quadtrees.pdf
https://ls11-www.cs.tu-dortmund.de/_media/buchin/teaching/akda_ws21/quadtrees.pdf

