
Co-Organizers
Peter Shirley

University of Utah

Philipp Slusallek
Universität des Saarlandes

Lecturers
Ingo Wald

University of Utah

William R. Mark
University of Texas

Gordon Stoll
Intel Corporation

Dinesh Minocha
University of North Carolina at Chapel Hill

SIGGRAPH 2006 Course 4
State of the Art in Interactive Ray Tracing

�

�

�

�

�

�

�

�

10�

Ray Tracing

Ray tracing is a method to produce realistic images; it determines visible sur-
faces in an image at the pixel level (Appel, 1968; Kay & Greenberg, 1979; Whit-
ted, 1980). Unlike the z-buffer and BSP tree, ray tracing operates pixel-by-pixel
rather than primitive-by-primitive. This tends to make ray tracing relatively slow
for scenes with large objects in screen space. However, it has a variety of nice
features which often make it the right choice for batch rendering and even for
some interactive applications.

Ray tracing’s primary benefit is that it is relatively straightforward to com-
pute shadows and reflections. In addition, ray tracing is well suited to “walk-
throughs” of extremely large models due to advanced ray tracing’s low asymptotic
time complexity which makes up for the required preprocessing of the model
(Snyder & Barr, 1987; Muuss, 1995; Parker et al., 1999; Wald, Slusallek, & Ben-
thin, 2001).

In an interactive 3D program implemented in a conventional z-buffer environ-
ment, it is often useful to be able to select an object using a mouse. The mouse is
clicked in pixel (i, j) and the “picked” object is whatever object is “seen” through
that pixel. If the rasterization process includes an object identification buffer, this
is just a matter of looking up the value in pixel (i, j) of that buffer. However,
if that buffer is not available, we can solve the problem of which object is vis-
ible via brute force geometrical computation using a “ray intersection test.” In
this way, ray tracing is useful also to programmers who use only standard
graphics APIs.

153

�

�

�

�

�

�

�

�

154 9. Ray Tracing

This chapter also discusses distribution ray tracing (Cook, Porter, & Carpen-
ter, 1984), where multiple random rays are sent through each pixel in an image to
simultaneously solve the antialiasing, soft shadow, fuzzy reflection, and depth-of-
field problems.

9.1 The Basic Ray Tracing Algorithm

The simplest use of ray tracing is to produce images similar to those produced
by the z-buffer and BSP-tree algorithms. Fundamentally, those methods make
sure the appropriate object is “seen” through each pixel,and that the pixel color is
shaded based on that object’s material properties, the surface normal seen through
that pixel, and the light geometry.

Figure 9.1. The 3D window we look through is the same as in Chapter 6. The borders of the window
have simple coordinates in the uvw coordinate system with respect to origin e.

Figure 9.1 shows the basic viewing geometry for ray tracing, which is the
same as we saw earlier in Chapter 6. The geometry is aligned to a uvw coordinate
system with the origin at the eye location e. The key idea in ray tracing is to
identify locations on the view plane at w = n that correspond to pixel centers, as
shown in Figure 9.2. A “ray,” really just a directed 3D line, is then sent from e to
that point. We then “gaze” in the direction of the ray to see the first object seen in
that direction. This is shown in Figure 9.3, where the ray intersects two triangles,
but only the first triangle hit, T2, is returned.

�

�

�

�

�

�

�

�

9.2. Computing Viewing Rays 155

Figure 9.2. The sample points on the screen are mapped to a similar array on the 3D window. A
viewing ray is sent to each of these locations.

The structure of the basic ray tracing program is:

Compute u, v, w basis vectors
for each pixel do

compute viewing ray
find first object hit by ray and its surface normal n
set pixel color to value based on material, light, and n

The pixel color can be computed using the shading equations of the last chapter.

Figure 9.3. The ray is “traced” into the scene and the first object hit is the one seen through the pixel.
In this case, the triangle T2 is returned.

9.2 Computing Viewing Rays

First we need to determine a mathematical representation for a ray. A ray is really
just an origin point and a propagation direction; a 3D parametric line is ideal for

�

�

�

�

�

�

�

�

156 9. Ray Tracing

this. As discussed in Section 2.8.1, the 3D parametric line from the eye e to a
point s on the screen (see Figure 9.4) is given by

Figure 9.4. The ray from the
eye to a point on the screen.

p(t) = e + t(s− e).

This should be interpreted as, “we advance from e along the vector (s − e) a
fractional distance t to find the point p.” So given t, we can determine a point p.
Note that p(0) = e, and p(1) = s. Also note that for positive t, if t1 < t2, then
p(t1) is closer to the eye than p(t2). Also, if t < 0, then p(t) is “behind” the eye.
These facts will be useful when we search for the closest object hit by the ray that
is not behind the eye. Note that we are overloading the variable t here which is
also used for the top of the screen’s v-coordinate.

To compute a viewing ray, we need to know e (which is given) and s. Finding
s may look somewhat difficult. In fact, it is relatively straightforward using the
same transform machinery we used for viewing in the context of projecting lines
and triangles.

First, we find the coordinates of s in the uvw-coordinate system with origin e.
For all points on the screen, ws = n as shown in Figure 9.2. The uv-coordinates
are found by the windowing transform that takes [−0.5, nx−0.5]×[−0.5, ny−0.5]
to [l, r]× [b, t]:

us = l + (r − l)
i + 0.5

nx
,

vs = b + (t− b)
j + 0.5

ny
,

where (i, j) are the pixel indices. This gives us s in uvw-coordinates. By defini-
tion, we can convert to canonical coordinates:

s = e + usu + vsv + wsw. (9.1)

Alternatively, we could use the matrix form (Equation 5.8):

⎡
⎢⎢⎣

xs

ys

zs

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 xe

0 1 0 ye

0 0 1 ze

0 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

xu xv xw 0
yu yv yw 0
zu zv zw 0
0 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

us

vs

ws

1

⎤
⎥⎥⎦ , (9.2)

which is just the matrix form of Equation 9.1. We can compose this with the
windowing transform in matrix form if we wished, but this is probably not worth
doing unless you like the matrix form of equations better.

�

�

�

�

�

�

�

�

9.3. Ray-Object Intersection 157

9.3 Ray-Object Intersection

Given a ray e + td, we want to find the first intersection with any object where
t > 0. It will later prove useful to solve a slightly more general problem of
finding the first intersection in the interval [t0, t1], and using [0,∞) for viewing
rays. We solve this for both spheres and triangles in this section. In the next
section, multiple objects are discussed.

9.3.1 Ray-Sphere Intersection

Given a ray p(t) = e + td and an implicit surface f(p) = 0, we’d like to know
where they intersect. The intersection points occur when points on the ray satisfy
the implicit equation

f(p(t)) = 0.

This is just
f(e + td) = 0.

A sphere with center c = (xc, yc, zc) and radius R can be represented by the
implicit equation

(x− xc)2 + (y − yc)2 + (z − zc)2 −R2 = 0.

We can write this same equation in vector form:

(p− c) · (p− c)−R2 = 0.

Any point p that satisfies this equation is on the sphere. If we plug points on the
ray p(t) = e + td into this equation, we can solve for the values of t on the ray
that yield points on the sphere:

(e + td− c) · (e + td− c)−R2 = 0.

Rearranging terms yields

(d · d)t2 + 2d · (e− c)t + (e− c) · (e− c)−R2 = 0.

Here, everything is known except the parameter t, so this is a classic quadratic
equation in t, meaning it has the form

At2 + Bt + C = 0.

The solution to this equation is discussed in Section 2.2. The term under the
square root sign in the quadratic solution, B2 − 4AC, is called the discriminant

�

�

�

�

�

�

�

�

158 9. Ray Tracing

and tells us how many real solutions there are. If the discriminant is negative, its
square root is imaginary and there are no intersections between the sphere and the
line. If the discriminant is positive, there are two solutions: one solution where
the ray enters the sphere and one where it leaves. If the discriminant is zero, the
ray grazes the sphere touching it at exactly one point. Plugging in the actual terms
for the sphere and eliminating the common factors of two, we get

t =
−d · (e− c)±

√
(d · (e− c))2 − (d · d) ((e− c) · (e− c)−R2)

(d · d)
.

In an actual implementation, you should first check the value of the discriminant
before computing other terms. If the sphere is used only as a bounding object for
more complex objects, then we need only determine whether we hit it; checking
the discriminant suffices.

As discussed in Section 2.7.1, the normal vector at point p is given by the
gradient n = 2(p− c). The unit normal is (p− c)/R.

9.3.2 Ray-Triangle Intersection

There are many algorithms for computing ray-triangle intersections. We will use
the form that uses barycentric coordinates for the parametric plane containing the
triangle, because it requires no long-term storage other than the vertices of the
triangle (Snyder & Barr, 1987).

To intersect a ray with a parametric surface, we set up a system of equations
where the Cartesian coordinates all match:

xe + txd = f(u, v),

ye + tyd = g(u, v),

ze + tzd = h(u, v).

Here, we have three equations and three unknowns (t, u, and v), so we can solve
numerically for the unknowns. If we are lucky, we can solve for them analytically.

Figure 9.5. The ray hits the
plane containing the triangle at
point p.

In the case where the parametric surface is a parametric plane, the parametric
equation can be written in vector form as discussed in Section 2.11.2. If the
vertices of the triangle are a, b and c, then the intersection will occur when

e + td = a + β(b− a) + γ(c− a). (9.3)

The hitpoint p will be at e + td as shown in Figure 9.5. Again, from Sec-
tion 2.11.2, we know the hitpoint is in the triangle if and only if β > 0, γ > 0,

�

�

�

�

�

�

�

�

9.3. Ray-Object Intersection 159

and β + γ < 1. Otherwise, it hits the plane outside the triangle. If there are
no solutions, either the triangle is degenerate or the ray is parallel to the plane
containing the triangle.

To solve for t, β, and γ in Equation 9.3, we expand it from its vector form into
the three equations for the three coordinates:

xe + txd = xa + β(xb − xa) + γ(xc − xa),

ye + tyd = ya + β(yb − ya) + γ(yc − ya),

ze + tzd = za + β(zb − za) + γ(zc − za).

This can be rewritten as a standard linear equation:⎡
⎣xa − xb xa − xc xd

ya − yb ya − yc yd

za − zb za − zc zd

⎤
⎦
⎡
⎣β

γ
t

⎤
⎦ =

⎡
⎣xa − xe

ya − ye

za − ze

⎤
⎦ .

The fastest classic method to solve this 3×3 linear system is Cramer’s Rule. This
gives us the solutions

β =

∣∣∣∣∣∣
xa − xe xa − xc xd

ya − ye ya − yc yd

za − ze za − zc zd

∣∣∣∣∣∣
|A| ,

γ =

∣∣∣∣∣∣
xa − xb xa − xe xd

ya − yb ya − ye yd

za − zb za − ze zd

∣∣∣∣∣∣
|A| ,

t =

∣∣∣∣∣∣
xa − xb xa − xc xa − xe

ya − yb ya − yc ya − ye

za − zb za − zc za − ze

∣∣∣∣∣∣
|A| ,

where the matrixA is

A =

⎡
⎣xa − xb xa − xc xd

ya − yb ya − yc yd

za − zb za − zc zd

⎤
⎦ ,

and |A| denotes the determinant ofA. The 3×3 determinants have common sub-
terms that can be exploited. Looking at the linear systems with dummy variables⎡

⎣a d g
b e h
c f i

⎤
⎦
⎡
⎣β

γ
t

⎤
⎦ =

⎡
⎣j

k
l

⎤
⎦ ,

�

�

�

�

�

�

�

�

160 9. Ray Tracing

Cramer’s rule gives us

β =
j(ei− hf) + k(gf − di) + l(dh− eg)

M
,

γ =
i(ak − jb) + h(jc− al) + g(bl − kc)

M
,

t = −f(ak − jb) + e(jc− al) + d(bl − kc)
M

,

where
M = a(ei− hf) + b(gf − di) + c(dh− eg).

We can reduce the number of operations by reusing numbers such as
“ei-minus-hf.”

The algorithm for the ray-triangle intersection for which we need the linear so-
lution can have some conditions for early termination. Thus, the function should
look something like:

boolean raytri (ray r, vector3 a, vector3 b, vector3 c, interval [t0, t1])
compute t

if (t < t0) or (t > t1) then
return false

compute γ

if (γ < 0) or (γ > 1) then
return false

compute β

if (β < 0) or (β > 1− γ) then
return false

return true

9.3.3 Ray-Polygon Intersection

Given a polygon with m vertices p1 through pm and surface normal n, we first
compute the intersection points between the ray e + td and the plane containing
the polygon with implicit equation

(p− p1) · n = 0.

We do this by setting p = e + td and solving for t to get

t =
(p1 − e) · n

d · n .

�

�

�

�

�

�

�

�

9.4. A Ray Tracing Program 161

This allows us to compute p. If p is inside the polygon, then the ray hits it, and
otherwise it does not.

We can answer the question of whether p is inside the polygon by projecting
the point and polygon vertices to the xy plane and answering it there. The easiest
way to do this is to send any 2D ray out from p and to count the number of
intersections between that ray and the boundary of the polygon (Sutherland et al.,
1974; Glassner, 1989). If the number of intersections is odd, then the point is
inside the polygon, and otherwise it is not. This is true, because a ray that goes
in must go out, thus creating a pair of intersections. Only a ray that starts inside
will not create such a pair. To make computation simple, the 2D ray may as well
propagate along the x-axis:

[
x
y

]
=
[
xp

yp

]
+ s

[
1
0

]
.

It is straightforward to compute the intersection of that ray with the edges such as
(x1, y1, x2, y2) for s ∈ (0,∞).

A problem arises, however, for polygons whose projection into the xy plane
is a line. To get around this, we can choose among the xy, yz, or zx planes for
whichever is best. If we implement our points to allow an indexing operation,
e.g., p(0) = xp then this can be accomplished as follows:

if (abs(zn) > abs(xn)) and (abs(zn) > abs(xn)) then
index0 = 0
index1 = 1

else if (abs(yn) > abs (xn)) then
index0 = 0
index1 = 2

else
index0 = 1
index1 = 2

Now, all computations can use p(index0) rather than xp, and so on.

9.4 A Ray Tracing Program

We now know how to generate a viewing ray for a given pixel and how to find
the intersection with one object. This can be easily extended to a program that
produces images similar to the z-buffer or BSP-tree codes of earlier chapters:

�

�

�

�

�

�

�

�

162 9. Ray Tracing

for each pixel do
compute viewing ray
if (ray hits an object with t ∈ [0,∞)) then

Compute n
Evaluate lighting equation and set pixel to that color

else
set pixel color to background color

Here the statement “if ray hits an object...” can be implemented as a function that
tests for hits in the interval t ∈ [t0, t1]:

hit = false
for each object o do

if (object is hit at ray parameter t and t ∈ [t0, t1]) then
hit = true
hitobject = o
t1 = t

return hit

In an actual implementation, you will need to somehow return either a reference
to the object that is hit or at least its normal vector and material properties. This
is often done by passing a record/structure with such information. In an object-
oriented implementation, it is a good idea to have a class called something like
surface with derived classes triangle, sphere, surface-list, etc. Anything that a ray
can intersect would be under that class. The ray tracing program would then have
one reference to a “surface” for the whole model, and new types of objects and
efficiency structures can be added transparently.

9.4.1 Object-Oriented Design for a Ray Tracing Program

As mentioned earlier, the key class hierarchy in a ray tracer are the geometric
objects that make up the model. These should be subclasses of some geometric
object class, and they should support a hit function (Kirk & Arvo, 1988). To
avoid confusion from use of the word “object,” surface is the class name often
used. With such a class, you can create a ray tracer that has a general interface
that assumes little about modeling primitives and debug it using only spheres. An
important point is that anything that can be “hit” by a ray should be part of this
class hierarchy, e.g., even a collection of surfaces should be considered a subclass
of the surface class. This includes efficiency structures, such as bounding volume
hierarchies; they can be hit by a ray, so they are in the class.

�

�

�

�

�

�

�

�

9.5. Shadows 163

For example, the “abstract” or “base” class would specify the hit function as
well as a bounding box function that will prove useful later:

class surface
virtual bool hit(ray e + td, real t0, real t1, hit-record rec)
virtual box bounding-box()

Here (t0, t1) is the interval on the ray where hits will be returned, and rec is
a record that is passed by reference; it contains data such as the t at intersection
when hit returns true. The type box is a 3D “bounding box”, that is two points that
define an axis-aligned box that encloses the surface. For example, for a sphere,
the function would be implemented by:

box sphere::bounding-box()
vector3 min = center - vector3(radius,radius,radius)
vector3 max = center + vector3(radius,radius,radius)
return box(min, max)

Another class that is useful is material. This allows you to abstract the material
behavior and later add materials transparently. A simple way to link objects and
materials is to add a pointer to a material in the surface class, although more
programmable behavior might be desirable. A big question is what to do with
textures; are they part of the material class or do they live outside of the material
class? This will be discussed more in Chapter 10.

9.5 Shadows

Once you have a basic ray tracing program, shadows can be added very easily.
Recall from Chapter 8 that light comes from some direction l. If we imagine
ourselves at a point p on a surface being shaded, the point is in shadow if we
“look” in direction l and see an object. If there are no objects, then the light is not
blocked.

This is shown in Figure 9.6, where the ray p + tl does not hit any objects and
is thus not in shadow. The point q is in shadow because the ray q + tl does hit
an object. The vector l is the same for both points because the light is “far” away.
This assumption will later be relaxed. The rays that determine in or out of shadow
are called shadow rays to distinguish them from viewing rays.

Figure 9.6. The point p is
not in shadow while the point q
is in shadow.

To get the algorithm for shading, we add an if statement to determine whether
the point is in shadow. In a naive implementation, the shadow ray will check
for t ∈ [0,∞), but because of numerical imprecision, this can result in an inter-

�

�

�

�

�

�

�

�

164 9. Ray Tracing

section with the surface on which p lies. Instead, the usual adjustment to avoid
that problem is to test for t ∈ [ε,∞) where ε is some small positive constant
(Figure 9.7).

Figure 9.7. By testing in the
interval starting at ε, we avoid
numerical imprecision causing
the ray to hit the surface p is on.

If we implement shadow rays for Phong lighting with Equation 8.9 then we
have:

function raycolor(ray e + td, real t0, real t1)
hit-record rec, srec
if (scene→hit(e + td, t0, t1, rec)) then

p = e + rec.td
color c = rec.cr rec.ca

if (not scene→hit(p + sl, ε,∞, srec)) then
vector3 h = normalized(normalized(l) + normalized(−d))
c = c + rec.cr clmax (0, rec.n · l) + clrec.cp(h · rec.n)rec.p

return c

else
return background-color

Note that the ambient color is added in either case. If there are multiple light
sources, we can send a shadow ray and evaluate the diffuse/phong terms for each
light. The code above assumes that d and l are not necessarily unit vectors. This
is crucial for d, in particular, if we wish to cleanly add instancing later.

9.6 Specular Reflection

It is straightforward to add specular reflection to a ray tracing program. The
key observation is shown in Figure 9.8 where a viewer looking from direction e
sees what is in direction r as seen from the surface. The vector r is found using
a variant of the Phong lighting reflection Equation 8.6. There are sign changes
because the vector d points toward the surface in this case, so,

r = d + 2(d · n)n, (9.4)

In the real world, some energy is lost when the light reflects from the surface, and
Figure 9.8. When looking
into a perfect mirror, the viewer
looking in direction d will see
whatever the viewer “below” the
surface would see in direction r.

this loss can be different for different colors. For example, gold reflects yellow
more efficiently than blue, so it shifts the colors of the objects it reflects. This can
be implemented by adding a recursive call in raycolor:

color c = c + csraycolor(p + sr, ε,∞)

where cs is the specular RGB color. We need to make sure we test for s ∈ [ε,∞)

�

�

�

�

�

�

�

�

9.7. Refraction 165

for the same reason as we did with shadow rays; we don’t want the reflection ray
to hit the object that generates it.

The problem with the recursive call above is that it may never terminate. For
example, if a ray starts inside a room, it will bounce forever. This can be fixed by
adding a maximum recursion depth. The code will be more efficient if a reflection
ray is generated only if cs is not zero (black).

9.7 Refraction

Another type of specular object is a dielectric—a transparent material that refracts
light. Diamonds, glass, water, and air are dielectrics. Dielectrics also filter light;
some glass filters out more red and blue light than green light, so the glass takes
on a green tint. When a ray travels from a medium with refractive index n into
one with a refractive index nt, some of the light is transmitted, and it bends. This
is shown for nt > n in Figure 9.9. Snell’s law tells us that

n sin θ = nt sin φ.

Computing the sine of an angle between two vectors is usually not as convenient
as computing the cosine which is a simple dot product for the unit vectors such as
we have here. Using the trigonometric identity sin2 θ +cos2 θ = 1, we can derive
a refraction relationship for cosines:

cos2 φ = 1− n2
(
1− cos2 θ

)
n2

t

.

Note that if n and nt are reversed, then so are θ and φ as shown on the right of
Figure 9.9.

Figure 9.9. Snells’ Law describes how the angle φ depends on the angle θ and the refractive indices
of the object and the surrounding medium.

�

�

�

�

�

�

�

�

166 9. Ray Tracing

To convert sinφ and cos φ into a 3D vector, we can set up a 2D orthonormal
basis in the plane of n and d.

From Figure 9.10, we can see that n and b form an orthonormal basis for the
plane of refraction. By definition, we can describe t in terms of this basis:

t = sinφb− cos φn.

Since we can describe d in the same basis, and d is known, we can solve for b:

d = sin θb− cos θn,

b =
d + n cos θ

sin θ
.

This means that we can solve for t with known variables:
Figure 9.10. The vectors
n and b form a 2D orthonor-
mal basis that is parallel to the
transmission vector t.

t =
n (d + n cos θ))

nt
− n cos φ

=
n (d− n(d · n))

nt
− n

√
1− n2 (1− (d · n)2)

n2
t

.

Note that this equation works regardless of which of n and nt is larger. An im-
mediate question is, “What should you do if the number under the square root is
negative?” In this case, there is no refracted ray and all of the energy is reflected.
This is known as total internal reflection, and it is responsible for much of the
rich appearance of glass objects.

The reflectivity of a dielectric varies with the incident angle according to the
Fresnel Equations. A nice way to implement something close to the Fresnel Equa-
tions is to use the Schlick approximation,

R(θ) = R0 + (1−R0) (1− cos θ)5 ,

where R0 is the reflectance at normal incidence:

R0 =
(

nt − 1
nt + 1

)2

.

Note that the cos θ terms above are always for the angle in air (the larger of the
internal and external angles relative to the normal).

For homogeneous impurities, as is found in typical glass, a light-carrying ray’s
intensity will be attenuated according to Beer’s Law. As the ray travels through
the medium it loses intensity according to dI = −CI dx, where dx is distance.
Thus, dI/dx = −CI . We can solve this equation and get the exponential I =
k exp(−Cx)+k′. The degree of attenuation is described by the RGB attenuation

�

�

�

�

�

�

�

�

9.7. Refraction 167

Figure 9.11. The color of the glass is affected by total internal reflection and Beer’s Law. The amount
of light transmitted and reflected is determined by the Fresnel Equations. The complex lighting on the
ground plane was computed using particle tracing as described in Chapter ??. (See also Plate PLATE.)

constant a, which is the amount of attenuation after one unit of distance. Putting
in boundary conditions, we know that I(0) = I0, and I(1) = aI(0). The former
implies I(x) = I0 exp(−Cx). The latter implies I0a = I0 exp(−C), so −C =
ln(a). Thus, the final formula is

I(s) = I(0)e− ln(a)s,

where I(s) is the intensity of the beam at distance s from the interface. In practice,
we reverse-engineer a by eye, because such data is rarely easy to find. The effect
of Beer’s Law can be seen in Figure 9.11, where the glass takes on a green tint.

To add transparent materials to our code, we need a way to determine when
a ray is going “into” an object. The simplest way to do this is to assume that all
objects are embedded in air with refractive index very close to 1.0, and that surface
normals point “out” (toward the air). The code segment for rays and dielectrics
with these assumptions is:

if (p is on a dielectric) then
r = reflect(d, n)
if (d · n < 0) then

refract(d, n,n, t)

�

�

�

�

�

�

�

�

168 9. Ray Tracing

c = −d · n
kr = kg = kb = 1

else
kr = exp(−art)
kg = exp(−agt)
kb = exp(−abt)
if refract(d, -n,1/n, t) then

c = t · n
else

return k∗color(p + tr)
R0 = (n− 1)2/(n + 1)2

R = R0 + (1−R0)(1− c)5

return k(R color(p + tr) + (1−R) color(p + tt))

The code above assumes that the natural log has been folded into the constants
(ar, ag, ab). The refract function returns false if there is total internal reflection,
and otherwise it fills in the last argument of the argument list.

9.8 Instancing

An elegant property of ray tracing is that it allows very natural instancing. The
basic idea of instancing is to distort all points on an object by a transformation
matrix before the object is displayed. For example, if we transform the unit circle
(in 2D) by a scale factor (2, 1) in x and y, respectively, then rotate it by 45◦, and
move one unit in the x-direction, the result is an ellipse with an eccentricity of 2
and a long axis along the x = −y-direction centered at (0, 1) (Figure 9.12). The
key thing that makes that entity an “instance” is that we store the circle and the
composite transform matrix. Thus, the explicit construction of the ellipse is left
as a future procedure operation at render time.

Figure 9.12. An instance
of a circle with a series of three
transforms is an ellipse.

The advantage of instancing in ray tracing is that we can choose the space
in which to do intersection. If the base object is composed of a set of points,
one of which is p, then the transformed object is composed of that set of points
transformed by matrixM, where the example point is transformed toMp. If we
have a ray a + tb which we want to intersect with the transformed object, we can
instead intersect an inverse-transformed ray with the untransformed object (Fig-
ure 9.13). There are two potential advantages to computing in the untransformed
space (i.e., the right-hand side of Figure 9.13):

1. the untransformed object may have a simpler intersection routine, e.g., a
sphere versus an ellipsoid;

�

�

�

�

�

�

�

�

9.8. Instancing 169

Figure 9.13. The ray intersection problem in the two spaces are just simple transforms of each other.
The object is specified as a sphere plus matrix M. The ray is specified in the transformed (world) space
by location a and direction b.

2. many transformed objects can share the same untransformed object thus
reducing storage, e.g., a traffic jam of cars, where individual cars are just
transforms of a few base (untransformed) models.

As discussed in Section 5.2.2, surface normal vectors transform differently.
With this in mind and using the concepts illustrated in Figure 9.13, we can de-
termine the intersection of a ray and an object transformed by matrix M. If we
create an instance class of type surface, we need to create a hit function:

instance::hit(ray a + tb, real t0, real t1, hit-record rec)
ray r′ = M−1a + tM−1b
if (base-object→hit(r′, t0, t1, rec)) then

rec.n = (M−1)T rec.n
return true

else
return false

An elegant thing about this function is that the parameter rec.t does not need to
be changed, because it is the same in either space. Also note that we need not
compute or store the matrixM .

�

�

�

�

�

�

�

�

170 9. Ray Tracing

This brings up a very important point: the ray direction b must not be re-
stricted to a unit-length vector, or none of the infrastructure above works. For this
reason, it is useful not to restrict ray directions to unit vectors.

For the purpose of solid texturing, you may want to record the local coordi-
nates of the hitpoint and return this in the hit-record. This is just ray r′ advanced
by parameter rec.t.

To implement the bounding-box function of class instance, we can just take
the eight corners of the bounding box of the base object and transform all of
them by M, and then take the bounding box of those eight points. That will not
necessarily yield the tightest bounding box, but it is general and straightforward
to implement.

9.9 Sub-Linear Ray-Object Intersection

In the earlier ray-object intersection pseudocode, all objects are looped over,
checking for intersections. For N objects, this is an O(N) linear search and
is thus slow for large values of N . Like most search problems, the ray-object
intersection can be computed in sub-linear time using “divide and conquer” tech-
niques, provided we can create an ordered data structure as a preprocess. There
are many techniques to do this.

This section discusses three of these techniques in detail: bounding volume
hierarchies (Rubin &Whitted, 1980; Whitted, 1980; Goldsmith & Salmon, 1987),
uniform spatial subdivision (Cleary, Wyvill, Birtwistle, & Vatti, 1983; Fujimoto,
Tanaka, & Iwata, 1986; Amanatides & Woo, 1987), and binary-space partition-

Figure 9.14. Left: a uniform partitioning of space. Right: adaptive bounding-box hierarchy. Image
courtesy David DeMarle.

�

�

�

�

�

�

�

�

9.9. Sub-Linear Ray-Object Intersection 171

ing (Glassner, 1984; Jansen, 1986; Havran, 2000). An example of the first two
strategies is shown in Figure 9.14. References for other popular strategies are
given in the notes at the end of the chapter.

9.9.1 Bounding Boxes

A key operation in most intersection acceleration schemes is computing the inter-
section of a ray with a bounding box (Figure 9.15). This differs from conventional
intersection tests in that we do not need to know where the ray hits the box; we
only need to know whether it hits the box.

To build an algorithm for ray-box intersection, we begin by considering a 2D
ray whose direction vector has positive x and y components. We can generalize
this to arbitrary 3D rays later. The 2D bounding box is defined by two horizontal
and two vertical lines:

Figure 9.15. The ray is only
tested for intersection with the
surfaces if it hits the bounding
box.

x = xmin,

x = xmax,

y = ymin,

y = ymax.

The points bounded by these lines can be described in interval notation:

(x, y) ∈ [xmin, xmax]× [ymin, ymax].

As shown in Figure 9.16, the intersection test can be phrased in terms of these
intervals. First, we compute the ray parameter where the ray hits the line x =
xmin:

txmin =
xmin − xe

xd
.

We then make similar computations for txmax, tymin, and tymax. The ray hits the
box if and only if the intervals [txmin, txmax] and [tymin, tymax] overlap, i.e., their
intersection is non-empty. In pseudocode this algorithm is:

txmin = (xmin − xe)/xd

txmax = (xmax − xe)/xd

tymin = (ymin − ye)/xd

tymax = (ymax − ye)/xd

if (txmin > tymax) or (tymin > txmax) then
return false

else
return true

�

�

�

�

�

�

�

�

172 9. Ray Tracing

Figure 9.16. The ray will be inside the interval x ∈ [xmin, xmax] for some interval in its parameter
space t ∈ [txmin, txmax]. A similar interval exists for the y interval. The ray intersects the box if it is in both
the x interval and y interval at the same time, i.e., the intersection of the two one-dimensional intervals is
not empty.

The if statement may seem non-obvious. To see the logic of it, note that there is
no overlap if the first interval is either entirely to the right or entirely to the left of
the second interval.

The first thing we must address is the case when xd or yd is negative. If xd is
negative, then the ray will hit xmax before it hits xmin. Thus the code for computing
txmin and txmax expands to:

if (xd ≥ 0) then
txmin = (xmin − xe)/xd

txmax = (xmax − xe)/xd

else
txmin = (xmax − xe)/xd

txmax = (xmin − xe)/xd

A similar code expansion must be made for the y cases. A major concern is that
horizontal and vertical rays have a zero value for yd and xd, respectively. This
will cause divide by zero which may be a problem. However, before addressing
this directly, we check whether IEEE floating point computation handles these

�

�

�

�

�

�

�

�

9.9. Sub-Linear Ray-Object Intersection 173

cases gracefully for us. Recall from Section 1.6 the rules for divide by zero: for
any positive real number a,

+a/0 = +∞;

−a/0 = −∞.

Consider the case of a vertical ray where xd = 0 and yd > 0. We can then
calculate

txmin =
xmin − xe

0
;

txmax =
xmax − xe

0
.

There are three possibilities of interest:

1. xe ≤ xmin (no hit);

2. xmin < xe < xmax (hit);

3. xmax ≤ xe (no hit).

For the first case we have

txmin =
positive number

0
;

txmax =
positive number

0
.

This yields the interval (txmin, txmin) = (∞,∞). That interval will not overlap
with any interval, so there will be no hit, as desired. For the second case, we have

txmin =
negative number

0
;

txmax =
positive number

0
.

This yields the interval (txmin, txmin) = (−∞,∞) which will overlap with all
intervals and thus will yield a hit as desired. The third case results in the interval
(−∞,−∞) which yields no hit, as desired. Because these cases work as desired,
we need no special checks for them. As is often the case, IEEE floating point
conventions are our ally. However, there is still a problem with this approach.

�

�

�

�

�

�

�

�

174 9. Ray Tracing

Consider the code segment:

if (xd ≥ 0) then
tmin = (xmin − xe)/xd

tmax = (xmax − xe)/xd

else
tmin = (xmax − xe)/xd

tmax = (xmin − xe)/xd

This code breaks down when xd = −0. This can be overcome by testing on the
reciprocal of xd (A.Williams, Barrus, Morley, & Shirley, 2005):

a = 1/xd

if (a ≥ 0) then
tmin = a(xmin − xe)
tmax = a(xmax − xe)

else
tmin = a(xmax − xe)
tmax = a(xmin − xe)

9.9.2 Hierarchical Bounding Boxes

The basic idea of hierarchical bounding boxes can be seen by the common tactic
of placing an axis-aligned 3D bounding box around all the objects as shown in
Figure 9.17. Rays that hit the bounding box will actually be more expensive to
compute than in a brute force search, because testing for intersection with the
box is not free. However, rays that miss the box are cheaper than the brute force
search. Such bounding boxes can be made hierarchical by partitioning the set of

Figure 9.17. A 2D ray e + td
is tested against a 2D bounding
box.

Figure 9.18. The bounding
boxes can be nested by creat-
ing boxes around subsets of the
model.

objects in a box and placing a box around each partition as shown in Figure 9.18.
The data structure for the hierarchy shown in Figure 9.19 might be a tree with
the large bounding box at the root and the two smaller bounding boxes as left and
right subtrees. These would in turn each point to a list of three triangles. The
intersection of a ray with this particular hard-coded tree would be:

if (ray hits root box) then
if (ray hits left subtree box) then

check three triangles for intersection
if (ray intersects right subtree box) then

check other three triangles for intersection
if (an intersections returned from each subtree) then

return the closest of the two hits

�

�

�

�

�

�

�

�

9.9. Sub-Linear Ray-Object Intersection 175

else if (a intersection is returned from exactly one subtree) then
return that intersection

else
return false

else
return false

Some observations related to this algorithm are that there is no geometric ordering
between the two subtrees, and there is no reason a ray might not hit both subtrees.
Indeed, there is no reason that the two subtrees might not overlap.

A key point of such data hierarchies is that a box is guaranteed to bound all
objects that are below it in the hierarchy, but they are not guaranteed to contain
all objects that overlap it spatially, as shown in Figure 9.19. This makes this
geometric search somewhat more complicated than a traditional binary search on
strictly ordered one-dimensional data. The reader may note that several possible
optimizations present themselves. We defer optimizations until we have a full
hierarchical algorithm.

Figure 9.19. The grey
box is a tree node that points
to the three grey spheres, and
the thick black box points to
the three black spheres. Note
that not all spheres enclosed by
the box are guaranteed to be
pointed to by the corresponding
tree node.

If we restrict the tree to be binary and require that each node in the tree have a
bounding box, then this traversal code extends naturally. Further, assume that all
nodes are either leaves in the tree and contain a primitive, or that they contain one
or two subtrees.

The bvh-node class should be of type surface, so it should implement sur-
face::hit. The data it contains should be simple:

class bvh-node subclass of surface
virtual bool hit(ray e + td, real t0, real t1, hit-record rec)
virtual box bounding-box()
surface-pointer left
surface-pointer right
box bbox

The traversal code can then be called recursively in an object-oriented style:

bool bvh-node::hit(ray a + tb, real t0, real t1, hit-record rec)
if (bbox.hitbox(a + tb, t0, t1)) then

hit-record lrec, rrec
left-hit = (left
= NULL) and (left→ hit(a + tb, t0, t1, lrec))
right-hit = (right
= NULL) and (right→ hit(a + tb, t0, t1, rrec))
if (left-hit and right-hit) then

if (lrec.t < rrec.t) then
rec = lrec

�

�

�

�

�

�

�

�

176 9. Ray Tracing

else
rec = rrec

return true
else if (left-hit) then

rec = lrec
return true

else if (right-hit) then
rec = rrec
return true

else
return false

else
return false

Note that because left and right point to surfaces rather than bvh-nodes specifi-
cally, we can let the virtual functions take care of distinguishing between internal
and leaf nodes; the appropriate hit function will be called. Note, that if the tree
is built properly, we can eliminate the check for left being NULL. If we want to
eliminate the check for right being NULL, we can replace NULL right pointers
with a redundant pointer to left. This will end up checking left twice, but will
eliminate the check throughout the tree. Whether that is worth it will depend on
the details of tree construction.

There are many ways to build a tree for a bounding volume hierarchy. It is
convenient to make the tree binary, roughly balanced, and to have the boxes of
sibling subtrees not overlap too much. A heuristic to accomplish this is to sort
the surfaces along an axis before dividing them into two sublists. If the axes are
defined by an integer with x = 0, y = 1, and z = 2 we have:

bvh-node::bvh-node(object-array A, int AXIS)
N = A.length
if (N= 1) then

left = A[0]
right = NULL
bbox = bounding-box(A[0])

else if (N= 2) then
left-node = A[0]
right-node = A[1]
bbox = combine(bounding-box(A[0]), bounding-box(A[1]))

else
sort A by the object center along AXIS

�

�

�

�

�

�

�

�

9.9. Sub-Linear Ray-Object Intersection 177

left= new bvh-node(A[0..N/2− 1], (AXIS +1) mod 3)
right = new bvh-node(A[N/2..N−1], (AXIS +1) mod 3)
bbox = combine(left-node→ bbox, right-node→ bbox)

The quality of the tree can be improved by carefully choosing AXIS each time.
One way to do this is to choose the axis such that the sum of the volumes of the
bounding boxes of the two subtrees is minimized. This change compared to ro-
tating through the axes will make little difference for scenes composed of isotopi-
cally distributed small objects, but it may help significantly in less well-behaved
scenes. This code can also be made more efficient by doing just a partition rather
than a full sort.

Another, and probably better, way to build the tree is to have the subtrees
contain about the same amount of space rather than the same number of objects.
To do this we partition the list based on space:

bvh-node::bvh-node(object-array A, int AXIS)
N = A.length
if (N = 1) then

left = A[0]
right = NULL
bbox = bounding-box(A[0])

else if (N = 2) then
left = A[0]
right = A[1]
bbox = combine(bounding-box(A[0]), bounding-box(A[1]))

else
find the midpoint m of the bounding box of A along AXIS
partition A into lists with lengths k and (N-k) surrounding m

left = new node(A[0..k], (AXIS +1) mod 3)
right = new node(A[k+1..N−1], (AXIS +1) mod 3)
bbox = combine(left-node→ bbox, right-node→ bbox)

Although this results in an unbalanced tree, it allows for easy traversal of empty
space and is cheaper to build because partitioning is cheaper than sorting.

9.9.3 Uniform Spatial Subdivision

Another strategy to reduce intersection tests is to divide space. This is funda-
mentally different from dividing objects as was done with hierarchical bounding
volumes:

�

�

�

�

�

�

�

�

178 9. Ray Tracing

Figure 9.20. In uniform spatial subdivision, the ray is tracked forward through cells until an object in
one of those cells is hit. In this example, only objects in the shaded cells are checked.

• In hierarchical bounding volumes, each object belongs to one of two sibling
nodes, whereas a point in space may be inside both sibling nodes.

• In spatial subdivision, each point in space belongs to exactly one node,
whereas objects may belong to many nodes.

The scene is partitioned into axis-aligned boxes. These boxes are all the same
size, although they are not necessarily cubes. The ray traverses these boxes as
shown in Figure 9.20. When an object is hit, the traversal ends.

Figure 9.21. Although the pattern of cell hits seems irregular (left), the hits on sets of parallel planes
are very even.

�

�

�

�

�

�

�

�

9.9. Sub-Linear Ray-Object Intersection 179

The grid itself should be a subclass of surface and should be implemented as
a 3D array of pointers to surface. For empty cells these pointers are NULL. For
cells with one object, the pointer points to that object. For cells with more than
one object, the pointer can point to a list, another grid, or another data structure,
such as a bounding volume hierarchy.

Figure 9.22. To decide
whether we advance right or
upwards, we keep track of the
intersections with the next ver-
tical and horizontal boundary of
the cell.

This traversal is done in an incremental fashion. The regularity comes from
the way that a ray hits each set of parallel planes, as shown in Figure 9.21. To
see how this traversal works, first consider the 2D case where the ray direction
has positive x and y components and starts outside the grid. Assume the grid is
bounded by points (xmin, ymin) and (xmax, ymax). The grid has nx by ny cells.

Our first order of business is to find the index (i, j) of the first cell hit by the
ray e + td. Then, we need to traverse the cells in an appropriate order. The key
parts to this algorithm are finding the initial cell (i, j) and deciding whether to
increment i or j (Figure 9.22). Note that when we check for an intersection with
objects in a cell, we restrict the range of t to be within the cell (Figure 9.23). Most
implementations make the 3D array of type “pointer to surface.” To improve the
locality of the traversal, the array can be tiled as discussed in Section 12.4.

9.9.4 Binary-Space Partitioning

Figure 9.23. Only hits
within the cell should be re-
ported. Otherwise the case
above would cause us to report
hitting object b rather than ob-
ject a.

We can also partition space in a hierarchical data structure such as a binary-space-
partioning tree (BSP tree). This is similar to the BSP tree used for a painter’s
algorithm in Chapter 7, but it usually uses axis-aligned cutting planes for easier
ray intersection. A node in this structure might contain a single cutting plane and
a left and right subtree. These subtrees would contain all objects on either side of
the cutting plane. Objects that pass through the plane would be in each subtree.
If we assume the cutting plane is parallel to the yz plane at x = D, then the node
class is:

class bsp-node subclass of surface
virtual bool hit(ray e + td, real t0, real t1, hit-record rec)
virtual box bounding-box()
surface-pointer left
surface-pointer right
real D

Figure 9.24. The
four cases of how a ray re-
lates to the BSP cutting plane
x = D.

We generalize this to y and z cutting planes later. The intersection code can then
be called recursively in an object-oriented style. The code considers the four
cases shown in Figure 9.24. For our purposes, the origin of these rays is a point
at parameter t0:

p = a + t0b.

�

�

�

�

�

�

�

�

180 9. Ray Tracing

The four cases are:

1. The ray only interacts with the left subtree, and we need not test it for
intersection with the cutting plane. It occurs for xp < D and xb < 0.

2. The ray is tested against the left subtree, and if there are no hits, it is then
tested against the right subtree. We need to find the ray parameter at x = D,
so we can make sure we only test for intersections within the subtree. This
case occurs for xp < D and xb > 0.

3. This case is analogous to case 1 and occurs for xp > D and xb > 0.

4. This case is analogous to case 2 and occurs for xp > D and xb < 0.

The resulting traversal code handling these cases in order is:

bool bsp-node::hit(ray a + tb, real t0, real t1, hit-record rec)
xp = xa + t0xb

if (xp < D) then
if (xb < 0) then

return (left
= NULL) and (left→hit(a + tb, t0, t1, rec))
t = (D − xa)/xb

if (t > t1) then
return (left
= NULL) and (left→hit(a + tb, t0, t1, rec))

if (left
= NULL) and (left→hit(a + tb, t0, t, rec)) then
return true

return (right
= NULL) and (right→hit(a + tb, t, t1, rec))
else

analogous code for cases 3 and 4

This is very clean code. However, to get it started, we need to hit some root object
that includes a bounding box so we can initialize the traversal, t0 and t1. An issue
we have to address is that the cutting plane may be along any axis. We can add
an interger index axis to the bsp-node class. If we allow an indexing operator
for points, this will result in some simple modifications to the code above, for
example,

xp = xa + t0xb

would become

up = a[axis] + t0b[axis]

which will result in some additional array indexing, but will not generate more
branches.

�

�

�

�

�

�

�

�

9.10. Constructive Solid Geometry 181

While the processing of a single bsp-node is faster than processing a bvh-node,
the fact that a single surface may exist in more than one subtree means there are
more nodes and, potentially, a higher memory use. How “well” the trees are built
determines which is faster. Building the tree is similar to building the BVH tree.
We can pick axes to split in a cycle, and we can split in half each time, or we can
try to be more sophisticated in how we divide.

9.10 Constructive Solid Geometry

Figure 9.25. The ba-
sic CSG operations on a 2D
circle and square.

One nice thing about ray tracing is that any geometric primitive whose intersection
with a 3D line can be computed can be seamlessly added to a ray tracer. It turns
out to also be straightforward to add constructive solid geometry (CSG) to a ray
tracer (Roth, 1982). The basic idea of CSG is to use set operations to combine
solid shapes. These basic operations are shown in Figure 9.25. The operations
can be viewed as set operations. For example, we can consider C the set of all
points in the circle, and S the set of all points in the square. The intersection
operation C ∩ S is the set of all points that are both members of C and S. The
other operations are analogous.

Although one can do CSG directly on the model, if all that is desired is an
image, we do not need to explicitly change the model. Instead, we perform the set
operations directly on the rays as they interact with a model. To make this natural,
we find all the intersections of a ray with a model rather than just the closest. For
example, a ray a + tb might hit a sphere at t = 1 and t = 2. In the context
of CSG, we think of this as the ray being inside the sphere for t ∈ [1, 2]. We
can compute these “inside intervals” for all of the surfaces and do set operations
on those intervals (recall Section 2.1.2). This is illustrated in Figure 9.26, where
the hit intervals are processed to indicate that there are two intervals inside the
difference object. The first hit for t > 0 is what the ray actually intersects.

In practice, the CSG intersection routine must maintain a list of intervals.
When the first hitpoint is determined, the material property and surface normal is
that associated with the hitpoint. In addition, you must pay attention to precision
issues because there is nothing to prevent the user from taking two objects that
abut and taking an intersection. This can be made robust by eliminating any
interval whose thickness is below a certain tolerance.

Figure 9.26. Intervals are
processed to indicate how the
ray hits the composite object.9.11 Distribution Ray Tracing

For some applications, ray-traced images are just too “clean.” This effect can be
mitigated using distribution ray tracing (Cook et al., 1984) . The conventionally

�

�

�

�

�

�

�

�

182 9. Ray Tracing

ray-traced images look clean, because everything is crisp; the shadows are per-
fectly sharp, the reflections have no fuzziness, and everything is in perfect focus.
Sometimes we would like to have the shadows be soft (as they are in real life), the
reflections be fuzzy as with brushed metal, and the image have variable degrees of
focus as in a photograph with a large aperture. While accomplishing these things
from first principles is somewhat involved (as is developed in Chapter ??), we
can get most of the visual impact with some fairly simple changes to the basic ray
tracing algorithm. In addition, the framework gives us a relatively simple way to
antialias (recall Section 3.7) the image.

9.11.1 Antialiasing

Recall that a simple way to antialias an image is to compute the average color
for the area of the pixel rather than the color at the center point. In ray tracing,
our computational primitive is to compute the color at a point on the screen. If
we average many of these points across the pixel, we are approximating the true
average. If the screen coordinates bounding the pixel are [i, i + 1] × [j, j + 1],
then we can replace the loop:

Figure 9.27. Sixteen regular
samples for a single pixel. for each pixel (i, j) do

cij = ray-color(i + 0.5, j + 0.5)

with code that samples on a regular n× n grid of samples within each pixel:

for each pixel (i, j) do
c = 0
for p = 0 to n− 1 do

for q = 0 to n− 1 do
c = c + ray-color(i + (p + 0.5)/n, j + (q + 0.5)/n)

cij = c/n2

This is usually called regular sampling. The 16 sample locations in a pixel for
n = 4 are shown in Figure 9.27. Note that this produces the same answer as
rendering a traditional ray-traced image with one sample per pixel at nxn by nyn

resolution and then averaging blocks of n by n pixels to get a nx by ny image.
Figure 9.28. Sixteen ran-
dom samples for a single pixel.

One potential problem with taking samples in a regular pattern within a pixel
is that regular artifacts such as Moire patterns can arise. These artifacts can be
turned into noise by taking samples in a random pattern within each pixel as
shown in Figure 9.28. This is usually called random sampling and involves just
a small change to the code:

�

�

�

�

�

�

�

�

9.11. Distribution Ray Tracing 183

for each pixel (i, j) do
c = 0
for p = 1 to n2 do

c = c + ray-color(i + ξ, j + ξ)
cij = c/n2

Here ξ is a call that returns a uniform random number in the range [0, 1). Unfor-
tunately, the noise can be quite objectionable unless many samples are taken. A
compromise is to make a hybrid strategy that randomly perturbs a regular grid:

Figure 9.29. Sixteen strati-
fied (jittered) samples for a sin-
gle pixel shown with and with-
out the bins highlighted. There
is exactly one random sample
taken within each bin.

for each pixel (i, j) do
c = 0
for p = 0 to n− 1 do

for q = 0 to n− 1 do
c = c + ray-color(i + (p + ξ)/n, j + (q + ξ)/n)

cij = c/n2

That method is usually called jittering or stratified sampling (Figure 9.29).

9.11.2 Soft Shadows

The reason shadows are hard to handle in standard ray tracing is that lights are
infinitesimal points or directions and are thus either visible or invisible. In real
life, lights have non-zero area and can thus be partially visible. This idea is shown
in 2D in Figure 9.30. The region where the light is entirely invisible is called
the umbra. The partially visible region is called the penumbra. There is not a
commonly used term for the region not in shadow, but it is sometimes called the
anti-umbra.

The key to implementing soft shadows is to somehow account for the light
being an area rather than a point. An easy way to do this is to approximate the
light with a distributed set of N point lights each with one N th of the intensity
of the base light. This concept is illustrated at the left of Figure 9.31 where nine

Figure 9.30. A soft shadow
has a gradual transition from
the unshadowed to shadowed
region. The transition zone is
the “penumbra” denoted by p in
the figure.

lights are used. You can do this in a standard ray tracer, and it is a common trick
to get soft shadows in an off-the-shelf renderer. There are two potential problems
with this technique. First, typically dozens of point lights are needed to achieve
visually smooth results, which slows down the program a great deal. The second
problem is that the shadows have sharp transitions inside the penumbra.

Distribution ray tracing introduces a small change in the shadowing code.
Instead of representing the area light at a discrete number of point sources, we
represent it as an infinite number and choose one at random for each viewing ray.

�

�

�

�

�

�

�

�

184 9. Ray Tracing

Figure 9.31. Left: an area light can be approximated by some number of point lights; four of the nine
points are visible to p so it is in the penumbra. Right: a random point on the light is chosen for the shadow
ray, and it has some chance of hitting the light or not.

This amounts to choosing a random point on the light for any surface point being
lit as is shown at the right of Figure 9.31.

If the light is a parallelogram specified by a corner point c and two edge
vectors a and b (Figure 9.32), then choosing a random point r is straightforward:

r = c + ξ1a + ξ2b,

where ξ1 and ξ2 are uniform random numbers in the range [0, 1).
We then send a shadow ray to this point as shown at the right in Figure 9.31.

Note that the direction of this ray is not unit length, which may require some
modification to your basic ray tracer depending upon its assumptions.

Figure 9.32. The geometry
of a parallelogram light speci-
fied by a corner point and two
edge vectors.

We would really like to jitter points on the light. However, it can be dangerous
to implement this without some thought. We would not want to always have the
ray in the upper left-hand corner of the pixel generate a shadow ray to the upper
left-hand corner of the light. Instead we would like to scramble the samples, such
that the pixel samples and the light samples are each themselves jittered, but so
that there is no correlation between pixel samples and light samples. A good way
to accomplish this is to generate two distinct sets of n2 jittered samples and pass
samples into the light source routine:

for each pixel (i, j) do
c = 0
generate N = n2 jittered 2D points and store in array r[]
generate N = n2 jittered 2D points and store in array s[]
shuffle the points in array s[]
for p = 0 to N − 1 do

c = c + ray-color(i + r[p].x(), j + r[p].y(), s[p])
cij = c/N

�

�

�

�

�

�

�

�

9.11. Distribution Ray Tracing 185

This shuffle routine eliminates any coherence between arrays r and s. The shadow
routine will just use the 2D random point stored in s[p] rather than calling the
random number generator. A shuffle routine for an array indexed from 0 toN −1
is:

for i = N − 1 downto 1 do
choose random integer j between 0 and i inclusive
swap array elements i and j

9.11.3 Depth of Field

The soft focus effects seen in most photos can be simulated by collecting light at
a non-zero size “lens” rather than at a point. This is called depth of field. The
lens collects light from a cone of directions that has its apex at a distance where
everything is in focus (Figure 9.33). We can place the “window” we are sampling
on the plane where everything is in focus (rather than at the z = n plane as we did
previously), and the lens at the eye. The distance to the plane where everything is
in focus we call the focus plane, and the distance to it is set by the user, just as the
distance to the focus plane in a real camera is set by the user or range finder.

Figure 9.33. The lens
averages over a cone of
directions that hit the pixel
location being sampled.

Figure 9.34. An example of depth of field. The caustic in the shadow of the wine glass is computed
using particle tracing (Chapter ??). (See also Plate PLATE.)

�

�

�

�

�

�

�

�

186 9. Ray Tracing

To be most faithful to a real camera, we should make the lens a disk. However,
we will get very similar effects with a square lens (Figure 9.35). So we choose the
side-length of the lens and take random samples on it. The origin of the view rays
will be these perturbed positions rather than the eye position. Again, a shuffling
routine is used to prevent correlation with the pixel sample positions. An example
using 25 samples per pixel and a large disk lens is shown in Figure 9.34.

Figure 9.35. To cre-
ate depth-of-field effects, the
eye is randomly selected from a
square region. 9.11.4 Glossy Reflection

Some surfaces, such as brushed metal, are somewhere between an ideal mirror
and a diffuse surface. Some discernible image is visible in the reflection but it
is blurred. We can simulate this by randomly perturbing ideal specular reflection
rays as shown in Figure 9.36.

Only two details need to be worked out: how to choose the vector r′, and what
to do when the resulting perturbed ray is below the surface from which the ray is
reflected. The latter detail is usually settled by returning a zero color when the
ray is below the surface.

Figure 9.36. The reflec-
tion ray is perturbed to a ran-
dom vector r ’.

To choose r′, we again sample a random square. This square is perpendicular
to r and has width a which controls the degree of blur. We can set up the square’s
orientation by creating an orthonormal basis with w = r using the techniques in
Section 2.4.6. Then, we create a random point in the 2D square with side length
a centered at the origin. If we have 2D sample points (ξ, ξ′) ∈ [0, 1]2, then the
analogous point on the desired square is

u = −a

2
+ ξa,

v = −a

2
+ ξ′a.

Because the square over which we will perturb is parallel to both the u and v
vectors, the ray r′ is just

r′ = r + uu + vv.

Note that r′ is not necessarily a unit vector and should be normalized if your code
requires that for ray directions.

9.11.5 Motion Blur

We can add a blurred appearance to objects as shown in Figure 9.37. This is
called motion blur and is the result of the image being formed over a non-zero

�

�

�

�

�

�

�

�

9.11. Distribution Ray Tracing 187

Figure 9.37. The bottom right sphere is in motion and a blurred appearance results. Image courtesy
Chad Barb.

span of time. In a real camera, the aperture is open for some time interval during
which objects move. We can simulate the open aperture by setting a time variable
ranging from T0 to T1. For each viewing ray we choose a random time,

T = T0 + ξ(T1 − T0).

We may also need to create some objects to move with time. For example, we
might have a moving sphere whose center travels from c0 to c1 during the interval.
Given T , we could compute the actual center and do a ray–intersection with that
sphere. Because each ray is sent at a different time, each will encounter the sphere
at a different position, and the final appearance will be blurred. Note that the
bounding box for the moving sphere should bound its entire path so an efficiency
structure can be built for the whole time interval (Glassner, 1988).

�

�

�

�

�

�

�

�

188 9. Ray Tracing

Frequently Asked Questions

•Why is there no perspective matrix in ray tracing?

The perspective matrix in a z-buffer exists so that we can turn the perspective pro-
jection into a parallel projection. This is not needed in ray tracing, because it is
easy to do the perspective projection implicitly by fanning the rays out from the
eye.

•What is the best ray-intersection efficiency structure?

The most popular structures are binary space partitioning trees (BSP trees), uni-
form subdivision grids, and bounding volume hierarchies. There is no clear-cut
answer for which is best, but all are much, much better than brute-force search
in practice. If I were to implement only one, it would be the bounding volume
hierarchy because of its simplicity and robustness.

•Why do people use bounding boxes rather than spheres or ellipsoids?

Sometimes spheres or ellipsoids are better. However, many models have polyg-
onal elements that are tightly bounded by boxes, but they would be difficult to
tightly bind with an ellipsoid.

• Can ray tracing be made interactive?

For sufficiently small models and images, any modern PC is sufficiently pow-
erful for ray tracing to be interactive. In practice, multiple CPUs with a shared
frame buffer are required for a full-screen implementation. Computer power is in-
creasing much faster than screen resolution, and it is just a matter of time before
conventional PCs can ray trace complex scenes at screen resolution.

• Is ray tracing useful in a hardware graphics program?

Ray tracing is frequently used for picking. When the user clicks the mouse on a
pixel in a 3D graphics program, the program needs to determine which object is
visible within that pixel. Ray tracing is an ideal way to determine that.

�

�

�

�

�

�

�

�

9.11. Distribution Ray Tracing 189

Exercises

1. What are the ray parameters of the intersection points between ray (1, 1, 1)+
t(−1,−1,−1) and the sphere centered at the origin with radius 1? Note:
this is a good debugging case.

2. What are the barycentric coordinates and ray parameter where the ray
(1, 1, 1) + t(−1,−1,−1) hits the triangle with vertices (1, 0, 0), (0, 1, 0),
and (0, 0, 1)? Note: this is a good debugging case.

3. Do a back of the envelope computation of the approximate time complexity
of ray tracing on “nice” (non-adversarial) models. Split your analysis into
the cases of preprocessing and computing the image, so that you can predict
the behavior of ray tracing multiple frames for a static model.

�

�

�

�

�

�

�

�

13�

Data Structures for Graphics

There are a variety of data structures that seem to pop up repeatedly in graphics
applications. This chapter talks about three basic and unrelated data structures
that are among the most common and useful. There are many variants of these
data structures, but the basic ideas behind them can be conveyed using an example
of each.

First the winged-edge data structure for storing tessellated geometric mod-
els is discussed (Baumgart, 1974). The winged-edge data structure is useful for
managing models where the tessellation changes, such as in subdivision or sim-
plification routines.

Next, the scene-graph data structure is presented. These are rapidly becoming
well supported features of all new graphics APIs because they are so useful in
managing objects and transformations.

Finally, the tiled multidimensional array is presented. Originally developed to
help paging performance, such structures are now crucial for memory locality on
machines regardless of whether the array fits in main memory.

12.1 Triangle Meshes

One of the most common model representations is a polygonal mesh as discussed
in Section 10.3. When such meshes are unchanging in the program, the simple
structure described in that section is usually sufficient. However, when the meshes
are to be modified, more complicated data representations are needed to efficiently

221

�

�

�

�

�

�

�

�

222 12. Data Structures for Graphics

answer queries such as:

• given a triangle, what are the three adjacent triangles?
• given an edge, which two triangles share it?
• given a vertex, which faces share it?
• given a vertex, which edges share it?

There are many data structures for triangle meshes, polygonal meshes, and polyg-
onal meshes with holes (see the notes at the end of the chapter for references). In
many applications the meshes are very large, so an efficient representation can be
crucial.

The most straightforward, though bloated, implementation is to have three
types: vertex, edge, and triangle. There are a variety of ways to divide the data
among these types. While one might be tempted to just store all the relationships,
this makes for variable-length data structures that really are not needed. For ex-
ample, a vertex can have an arbitrarily large number of edges incident to it.

It is best, therefore, to hide the implementation behind a class interface.

12.2 Winged-Edge Data Structure

We can use the class winged-edge data structure. This data structure makes edges
the first-class citizen of the data structure. This data structure, a more efficient
implementation, is illustrated in Figures 12.1 and 12.2.

Figure 12.1. An edge in a winged-edge data structure. Stored with each edge are the face (polygon)
to the left of the edge, the face to the right of the edge, and the previous and successor edges in the
traversal of each of those faces.

�

�

�

�

�

�

�

�

12.2. Winged-Edge Data Structure 223

�

�

Figure 12.2. A tetrahedron and the associated elements for a winged-edge data structure. The two
small tables are not unique; each vertex and face stores any one of the edges with which it is associated.

Note that the winged-edge data structure makes the desired queries in constant
time. For example, a face can access one of its edges and follow the traversal
pointers to find all of its edges. Those edges store the adjoining face.

As with any data structure, the winged-edge data structure makes a variety
of time/space trade-offs. For example, we could eliminate the prev references.
When we need to know the previous edge, we could follow the successor edges
in a circle until we get back to the original edge. This would save space, but it
would make the computation of the previous edge take longer. This type of issue
has led to a proliferation of mesh data structures (see the chapter notes for more
information on those structures).

�

�

�

�

�

�

�

�

224 12. Data Structures for Graphics

Figure 12.3. A hinged pendulum. On the left are the two pieces in their “local” coordinate systems.
The hinge of the top piece is at point b and the attachment for the bottom piece is at its local origin. The
degrees of freedom for the assembled object are the angles (θ,φ) and the location p of the top hinge.

12.3 Scene Graphs

To motivate the scene-graph data structure, we will use the hinged pendulum
shown in Figure 12.3. Consider how we would draw the top part of the pen-
dulum:

M1 = rotate(θ)
M2 = translate(p)
M3 = M2M1

Apply M3 to all points in upper pendulum

The bottom is more complicated, but we can take advantage of the fact that it is
attached to the bottom of the upper pendulum at point b in the local coordinate
system. First, we rotate the lower pendulum so that it is at an angle φ relative to
its initial position. Then, we move it so that its top hinge is at point b. Now it is
at the appropriate position in the local coordinates of the upper pendulum, and it
can then be moved along with that coordinate system. The composite transform
for the lower pendulum is:

Ma = rotate(φ)
Mb = translate(b)
Mc = MbMa

Md = M3Mc

Apply Md to all points in lower pendulum

Thus, we see that the lower pendulum not only lives in its own local coordinate
system, but also that coordinate system itself is moved along with that of the upper
pendulum.

�

�

�

�

�

�

�

�

12.3. Scene Graphs 225

We can encode the pendulum in a data structure that makes management of
these coordinate system issues easier, as shown in Figure 12.4. The appropriate
matrix to apply to an object is just the product of all the matrices in the chain from
the object to the root of the data structure. For example, consider the model of a
ferry that has a car that can move freely on the deck of the ferry, and wheels that
each move relative to the car as shown in Figure 12.5.

Figure 12.4. The scene
graph for the hinged pendulum
of Figure 12.3.

Figure 12.5. A ferry car-
ries a car which has wheels
attached (only two shown) are
stored in a scene-graph.

As with the pendulum, each object should be transformed by the product of
the matrices in the path from the root to the object:

ferry transform usingM0

car body transform usingM0M1

left wheel transform usingM0M1M2

left wheel transform usingM0M1M3

An efficient implementation can be achieved using a matrix stack, a data structure
supported by many APIs. A matrix stack is manipulated using push and pop op-
erations that add and delete matrices from the right-hand side of a matrix product.
For example, calling:

push(M0)
push(M1)
push(M2)

creates the active matrixM = M0M1M2. A subsequent call to pop() strips the
last matrix added so that the active matrix becomes: M = M0M1. Combining
the matrix stack with a recursive traversal of a scene graph gives us:

function traverse(node)
push(Mlocal)
draw object using composite matrix from stack
traverse(left child)
traverse(right child)
pop()

There are many variations on scene graphs but all follow the basic idea above.

�

�

�

�

�

�

�

�

226 12. Data Structures for Graphics

12.4 Tiling Multidimensional Arrays

Effectively utilizing the cache hierarchy is a crucial task in designing algorithms
for modern architectures. Making sure that multidimensional arrays have data in a
“nice” arrangement is accomplished by tiling, sometimes also called bricking. A
traditional 2D array is stored as a 1D array together with an indexing mechanism;
for example, an Nx by Ny array is stored in a 1D array of length NxNy and the
2D index (x, y) (which runs from (0, 0) to (Nx − 1, Ny − 1)) and maps it to the
1D index (running from 0 to NxNy − 1 using the formula

Figure 12.6. The memory
layout for an untiled 2D array
with Nx = 4 and Ny = 3.

index = x + Nxy.

An example of how that memory lays out is shown in Figure 12.6. A problem with
this layout is that although two adjacent array elements that are in the same row
are next to each other in memory, two adjacent elements in the same column will
be separated by Nx elements in memory. This can cause poor memory locality
for largeNx. The standard solution to this is to use tiles to make memory locality
for rows and columns more equal. An example is shown in Figure 12.7 where
two by two tiles are used. The details of indexing such an array are discussed in
the next section. A more complicated example with two levels of tiling on a 3D
array are covered after that.

Figure 12.7. The mem-
ory layout for a tiled 2D array
with Nx = 4 and Ny = 3
and two by two tiles. Note that
padding on the top of the array
is needed because Ny is not a
multiple of the tile size two.

A key question is what size to make the tiles. In practice, they should be
similar to the memory-unit size on the machine. For example, on a machine
with 128-byte cache lines, and using 16-bit data values, n is exactly 8. However,
using float (32-bit) datasets, n is closer to 5. Because there are also coarser-sized
memory units such as pages, hierarchical tiling with similar logic can be useful.

12.4.1 One-Level Tiling for 2D Arrays

If we assume an Nx by Ny array decomposed into square n by n tiles (Fig-
ure 12.8), then the number of tiles required is

Bx = Nx/n,

By = Ny/n.

Here, we assume that n divides Nx and Ny exactly. When this is not true, the
array should be padded. For example, if Nx = 15 and n = 4, then Nx should
be changed to 16. To work out a formula for indexing such an array, we first find
the tile indices (bx, by) that give the row/column for the tiles (the tiles themselves
form a 2D array):

bx = x÷ n,

by = y ÷ n,

�

�

�

�

�

�

�

�

12.4. Tiling Multidimensional Arrays 227

Figure 12.8. A tiled 2D array composed of Bx by By tiles each of size n by n.

where ÷ is integer division, e.g., 12 ÷ 5 = 2. If we order the tiles along rows as
shown in Figure 12.6, then the index of the first element of the tile (bx, by) is

index = n2(Bxby + bx).

The memory in that tile is arranged like a traditional 2D array as shown in Fig-
ure 12.7. The partial offsets (x′, y′) inside the tile are

x′ = x mod n,

y′ = y mod n,

where mod is the remainder operator, e.g., 12 mod 5 = 2. Therefore, the offset
inside the tile is

offset = y′n + x′.

Thus the full formula for finding the 1D index element (x, y) in an Nx by Ny

array with n by n tiles is

index = n2(Bxby + bx) + y′n + x′,

= n2((Nx ÷ n)(y ÷ n) + x÷ n) + (y mod n)n + (x mod n).

This expression contains many integer multiplication, divide and modulus oper-
ations. On modern processors, these operations are extremely costly. For n that
are powers of two, these operations can be converted to bitshifts and bitwise log-
ical operations. However, as noted above, the ideal size is not always a power

�

�

�

�

�

�

�

�

228 12. Data Structures for Graphics

of two. Some of the multiplications can be converted to shift/add operations, but
the divide and modulus operations are more problematic. The indices could be
computed incrementally, but this would require tracking counters, with numerous
comparisons and poor branch prediction performance.

However, there is a simple solution; note that the index expression can be
written as

index = Fx(x) + Fy(y),

where

Fx(x) = n2(x÷ n) + (x mod n),

Fy(y) = n2(Nx ÷ n)(y ÷ n) + (y mod n)n.

We tabulate Fx and Fy , and use x and y to find the index into the data array.
These tables will consist of Nx and Ny elements, respectively. The total size of
the tables will fit in the primary data cache of the processor, even for very large
data set sizes.

12.4.2 Example: Two-Level Tiling for 3D Arrays

Effective TLB utilization is also becoming a crucial factor in algorithm perfor-
mance. The same technique can be used to improve TLB hit rates in a 3D array
by creatingm×m×m bricks of n× n× n cells. For example, a 40× 20× 19
volume could be decomposed into 4 × 2 × 2 macrobricks of 2 × 2 × 2 bricks of
5 × 5 × 5 cells. This corresponds to m = 2 and n = 5. Because 19 cannot be
factored by mn = 10, one level of padding is needed. Empirically useful sizes
arem = 5 for 16 bit datasets andm = 6 for float datasets.

The resulting index into the data array can be computed for any (x, y, z) triple
with the expression

index = ((x÷ n)÷m)n3m3((Nz ÷ n)÷m)((Ny ÷ n)÷m)

+((y ÷ n)÷m)n3m3((Nz ÷ n)÷m)

+((z ÷ n)÷m)n3m3

+((x÷ n) mod m)n3m2

+((y ÷ n) mod m)n3m

+((z ÷ n) mod m)n3

+(x mod (n2))n2

+(y mod n)n

+(z mod n),

where Nx, Ny and Nz are the respective sizes of the dataset.

�

�

�

�

�

�

�

�

12.4. Tiling Multidimensional Arrays 229

Note that, as in the simpler 2D one-level case, this expression can be written as

index = Fx(x) + Fy(y) + Fz(z),

where

Fx(x) = ((x÷ n)÷m)n3m3((Nz ÷ n)÷m)((Ny ÷ n)÷m)

+((x÷ n) mod m)n3m2

+(x mod n)n2,

Fy(y) = ((y ÷ n)÷m)n3m3((Nz ÷ n)÷m)

+((y ÷ n) mod m)n3m +

+(y mod n)n,

Fz(z) = ((z ÷ n)÷m)n3m3

+((z ÷ n) mod m)n3

+(z mod n).

Frequently Asked Questions

• Does tiling really make that much difference in performance?

On some volume rendering applications, a two-level tiling strategy made as much
as a factor-of-ten performance difference. When the array does not fit in main
memory, it can effectively prevent thrashing in some applications such as image
editing.

• How do I store the lists in a winged-edge structure?

For most applications it is feasible to use arrays and indices for the references.
However, if many delete operations are to be performed, then it is wise to use
linked lists and pointers.

Notes

The discussion of the winged-edge data structure is based on the course notes
of Ching-Kuang Shene. There are smaller mesh data structures than winged-
edge. The trade-offs in using such structures is discussed in Directed Edges—
A Scalable Representation for Triangle Meshes (Campagna, Kobbelt, & Seidel,

�

�

�

�

�

�

�

�

230 12. Data Structures for Graphics

1998) The tiled-array discussion is based on Interactive Ray Tracing for Volume
Visualization (Parker et al., 1999).

Exercises

1. What is the memory difference for a simple tetrahedron stored as four in-
dependent triangles and one stored in a winged-edge data structure?

2. Diagram a scene graph for a bicycle.

3. How many look-up tables are needed for a single-level tiling of an n-
dimensional array?

�

�

�

�

�

�

�

�

References 253

References

Amanatides, J., & Woo, A. (1987). A fast voxel traversal algorithm for ray
tracing. In Proceedings of Eurographics (pp. 1–10).

Appel, A. (1968). Some techniques for shading machine renderings of solids. In
Proceedings of the AFIPS spring joint computing conference (p. 37-49).

Association, I. S. (1985). IEEE standard for binary floating-point arithmetic.
IEEE Report (New York). (ANSI/IEEE Std 754-1985)

Baumgart, B. (1974, October). Geometric modeling for computer vision (Tech.
Rep. No. AIM-249). Seattle, WA: Stanford University AI Laboratory.

Bayer, B. E. (1976). Color imaging array. (U.S. Patent 3,971,065)
Beck, K., & Andres, C. (2004). Extreme programming explained : Embrace

change (Second ed.). Reading, MA: Addison-Wesley.
Blinn, J. (1978). Simulation of wrinkled surfaces. In Proceedings of SIGGRAPH

(pp. 286–292).
Blinn, J. (1996). Jim blinn’s corner. San Francisco, CA: Morgan Kaufmann.
Blinn, J., & Newell, M. (1978). Clipping using homogeneous coordinates. In

Proceedings of SIGGRAPH (pp. 245–251).
Blinn, J. F. (1976). Texture and reflection in computer generated images. Com-

munications of the ACM, 19(10), 542-547.
Bresenham, J. E. (1965). Algorithm for computer control of a digital plotter. IBM

Systems Journal, 4(1), 25–30.
Campagna, S., Kobbelt, L., & Seidel, H.-P. (1998). Directed edges–a scalable

representation for triangle meshes. Journal of Graphics Tools, 3(4), 1–12.
Catmull, E. (1975). Computer display of curved surfaces. In IEEE conference on

computer graphics, pattern recognition and data structures (pp. 11–17).
Cleary, J., Wyvill, B., Birtwistle, G., & Vatti, R. (1983). A Parallel Ray Tracing

Computer. In Proceedings of the association of simula users conference (p.
77-80).

Cook, R. L., Carpenter, L., & Catmull, E. (1987). The reyes image rendering
architecture. In Proceedings of SIGGRAPH (pp. 95–102).

Cook, R. L., Porter, T., & Carpenter, L. (1984). Distributed ray tracing. In
Proceedings of SIGGRAPH (p. 165-174).

Crow, F. C. (1978). The use of grey scale for improved raster display of vectors
and characters. In Proceedings of SIGGRAPH (pp. 1–5).

Crowe, M. J. (1994). A history of vector analysis. Mineola, NY: Dover.
Cyrus, M., & Beck, J. (1978). Generalized two- and three-dimensional clipping.

Computers and Graphics, 3(1), 23–28.
DeRose, T. (1989, September). A coordinate-free approach to geometric pro-

gramming (Tech. Rep. No. 89-09-16). Seattle, WA: Universit of Washing-
ton.

�

�

�

�

�

�

�

�

254 13. Sampling

Dobkin, D. P., & Mitchell, D. P. (1993). Random–edge discrepancy of supersam-
pling patterns. In Proceedings of Graphics Interface (pp. 62–69).

Dooley, D., & Cohen, M. (1990). Automatic illustration of 3d geometric models:
Lines. In Symposium on interactive 3D graphics (pp. 77–82).

Doran, C., & Lasenby, A. (2003). Geometric algebra for physicists. Cambridge:
Cambridge University Press.

Eberly, D. (2000). Game engine design. San Francisco, CA: Morgan Kaufmann.
Farin, G., & Hansford, D. (2004). Practical linear algebra: A geometry toolbox.

Wellesley, MA: AK Peters.
Fuchs, H., Kedem, Z. M., & Naylor, B. F. (1980). On visible surface generation

by a priori tree structures. In Proceedings of SIGGRAPH (pp. 124–133).
Fujimoto, A., Tanaka, T., & Iwata, K. (1986, April). Arts: Accelerated ray-tracing

system. IEEE Computer Graphics & Applications, 16–26.
Glassner, A. (1984). Space subdivision for fast ray tracing. IEEE Computer

Graphics and Applications, 4(10), 15–22.
Glassner, A. (1988). Spacetime ray tracing for animation. IEEE Computer Graph-

ics & Applications, 8(2), 60–70.
Glassner, A. (Ed.). (1989). An introduction to ray tracing. London: Academic

Press.
Goldman, R. (1985). Illicit expressions in vector algebra. ACM Transactions on

Graphics, 4(3), 223–243.
Goldsmith, J., & Salmon, J. (1987, May). Automatic creation of object hierar-

chies for ray tracing. IEEE Computer Graphics & Applications, 14–20.
Gooch, A., Gooch, B., Shirley, P., & Cohen, E. (1998). A non-photorealistic

lighting model for automatic technical illustration. In Proceedings of SIG-
GRAPH (pp. 447–452).

Gouraud, H. (1971). Continuous shading of curved surfaces. Communications of
the ACM, 18(6), 623-629.

Hammersley, J., & Handscomb, D. (1964). Monte-carlo methods. Methuen,
London.

Hanson, A. J. (2005). Visualizing quaternions. San Francisco, CA: Morgan
Kaufmann.

Hausner, M. (1998). A vector space approach to geometry. Mineola, NY: Dover.
Havran, V. (2000). Heuristic ray shooting algorithms. Unpublished doctoral

dissertation, Czech Technical University in Prague.
Hearn, D., & Baker, M. P. (1986). Computer graphics. Englewood Cliffs, N.J.:

Prentice-Hall.
Heidrich, W., & Seidel, H.-P. (1998). Ray-tracing procedural displacement

shaders. In Graphics interface (pp. 8–16).
Hoffmann, B. (1975). About vectors. Mineola, NY: Dover.
Hughes, J. F., & Möller, T. (1999). Building an orthonormal basis from a unit

vector. Journal of Graphics Tools, 4(4), 33–35.

�

�

�

�

�

�

�

�

References 255

Jansen, F. W. (1986). Data structures for ray tracing. In Proceedings of the
workshop on data structures for raster graphics (p. 57-73).

Kalos, M., & Whitlock, P. (1986). Monte carlo methods, basics. Wiley-
Interscience.

Kay, D. S., & Greenberg, D. P. (1979). Transparency for computer synthesized
images. In Proceedings of SIGGRAPH (pp. 158–164).

Kernighan, B. W., & Pike, R. (1999). The practice of programming. Reading,
MA: Addison-Wesley.

Kindlmann, G., Reinhard, E., & Creem, S. (2002). Face-based luminance match-
ing for perceptual colormap generation. In Proceedings of Visualization
(pp. 299–306).

Kirk, D., & Arvo, J. (1988). The ray tracing kernel. In Proceedings of Ausgraph.
Kollig, T., & Keller, A. (2002). Efficient multidimensional sampling. Computer

Graphics Forum, 21(3), 557–564.
Lakos, J. (1996). Large-scale C++ software design. Reading, MA: Addison-

Wesley.
Liang, Y.-D., & Barsky, B. A. (1984). A new concept and method for line clip-

ping. ACM Transactions on Graphics, 3(1), 1–22.
Meyers, S. (1995). More effective C++: 35 new ways to improve your programs

and designs. Reading, MA: Addison-Wesley.
Meyers, S. (1997). Effective C++: 50 specific ways to improve your programs

and designs (Second ed.). Reading, MA: Addison-Wesley.
Mitchell, D. P. (1996). Consequences of stratified sampling in graphics. In

Proceedings of SIGGRAPH (pp. 277–280).
Möller, T., & Haines, E. (1999). Real-time rendering. Wellesley, MA: AK Peters.
Möller, T., & Haines, E. (2002). Real-time rendering (Second ed.). Wellesley,

MA: AK Peters.
Möller, T., & Hughes, J. (1999). Efficiently building a matrix to rotate one vector

to another. Journal of Graphics Tools, 4(4), 1–4.
Muuss, M. J. (1995). Towards real-time ray-tracing of combinatorial solid geo-

metric models. In Proceedings of BRL-CAD symposium.
Paeth, A. W. (1990). A fast algorithm for general raster rotation. In Graphics

gems (pp. 179–195).
Parker, S., Martin, W., Sloan, P., Shirley, P., Smits, B., & Hansen, C. (1999).

Interactive ray tracing. In ACM symposium on interactive 3D graphics (pp.
119–126).

Patterson, J., Hoggar, S., & Logie, J. (1991). Inverse displacement mapping.
Computer Graphics Forum, 10(2), 129–139.

Peachey, D. (1985). Solid texturing of complex surfaces. In Proceedings of
SIGGRAPH (pp. 279–286).

Penna, M., & Patterson, R. (1986). Projective geometry and its applications to
computer graphics. Englewood Cliffs, NJ: Prentice Hall.

�

�

�

�

�

�

�

�

256 13. Sampling

Perlin, K. (1985). An image synthesizer. In Proceedings of SIGGRAPH (pp.
287–296).

Pharr, M., & Hanrahan, P. (1996). Geometry caching for ray-tracing displacement
maps. In Eurographics rendering workshop (pp. 31–40).

Pharr, M., Kolb, C., Gershbein, R., & Hanrahan, P. (1997). Rendering complex
scenes with memory-coherent ray tracing. In Proceedings of SIGGRAPH
(pp. 101–108).

Phong, B.-T. (1975). Illumination for computer generated images. Communica-
tions of the ACM, 18(6), 311-317.

Pineda, J. (1988). A parallel algorithm for polygon rasterization. In Proceedings
of SIGGRAPH (pp. 17–20).

Pitteway, M. L. V. (1967). Algorithm for drawing ellipses or hyperbolae with a
digital plotter. Computer Journal, 10(3), 282–289.

Plauger, P. J. (1991). The standard C library. Englewood Cliffs, NJ: Prentice
Hall.

Porter, T., & Duff, T. (1984). Compositing digital images. In Proceddings of
SIGGRAPH (p. 253-259).

Riesenfeld, R. F. (1981, January). Homogeneous coordinates and projective
planes in computer graphics. IEEE Computer Graphics & Applications,
1, 50–55.

Roberts, L. (1965, May). Homogenous matrix representation and manipulation
of n-dimensional constructs (Tech. Rep. No. MS-1505). Lexington, MA:
MIT Lincoln Laboratory.

Roth, S. (1982). Ray casting for modelling solids. Computer Graphics and Image
Processing, 18(2), 109–144.

Rubin, S., & Whitted, J. T. (1980). A 3-dimensional representation for fast
rendering of complex scenes. In Proceedings of SIGGRAPH (pp. 110–
116).

Saito, T., & Takahashi, T. (1990). Comprehensible rendering of 3-d shapes. In
Proceedings of SIGGRAPH (pp. 197–206).

Salomon, D. (1999). Computer graphics and geometric modeling. New York,
NY: Springer Verlag.

Segal, M., Korobkin, C., Widenfelt, R. van, Foran, J., & Haeberli, P. E. (1992).
Fast shadows and lighting effects using texture mapping. In Proceedings of
SIGGRAPH (pp. 249–252).

Smits, B., Shirley, P., & Stark, M. M. (2000). Direct ray tracing of displacement
mapped triangles. In Eurographics workshop on rendering (pp. 307–318).

Snyder, J., & Barr, A. (1987). Ray tracing complex models containing surface
tessellations. In Proceedings of SIGGRAPH (pp. 119–128).

Sobel, I., Stone, J., & Messer, R. (1975). The monte carlo method. Chicago, IL:
University of Chicago Press.

Solomon, H. (1978). Geometric probability. Philadelphia, PA: SIAM Press.

�

�

�

�

�

�

�

�

References 257

Strang, G. (1988). Linear algebra and its applications (third ed.). Florence, KY:
Brooks Cole.

Sutherland, I. E., Sproull, R. F., & Schumacker, R. A. (1974). A characterization
of ten hidden-surface algorithms. ACM Computing Surveys, 6(1), 1–55.

Turkowski, K. (1990). Properties of surface-normal transformations. In Graphics
gems (pp. 539–547).

Van Aken, J., & Novak, M. (1985). Curve-drawing algorithms for raster displays.
ACM Transactions on Graphics, 4(2), 147–169.

Veach, E., & Guibas, L. J. (1997). Metropolis light transport. In Proceedings of
SIGGRAPH (pp. 65–76).

Wald, I., Slusallek, P., & Benthin, C. (2001). Interactive distributed ray tracing of
highly complex models. In Proceedings of the Eurographics workshop on
rendering (pp. 277–288).

Warn, D. R. (1983). Lighting controls for synthetic images. In Proceedings of
SIGGRAPH (pp. 13–21).

Whitted, T. (1980). An improved illumination model for shaded display. Com-
munications of the ACM, 23(6), 343–349.

Williams, A., Barrus, S., Morley, R. K., & Shirley, P. (2005). An efficient and
robust ray-box intersection algorithm. Journal of Graphics Tools, 10(1).

Williams, L. (1983). Pyramidal parametrics. In Proceedings of SIGGRAPH (pp.
1–11).

Williams, L. (1991). Shading in two dimensions. In Proceedings of Graphics
Interface (pp. 143–151).

Woo, M., Neider, J., Davis, T., & Shreiner, D. (1999). OpenGL programming
guide (Third ed.). Reading, MA: Addison-Wesley.

Yessios, C. I. (1979). Computer drafting of stones, wood, plant and ground
materials. In Proceedings of SIGGRAPH) (pp. 190–198).

Graphics and J.D. Foley
Image Processing Editor

An Improved
Illumination Model for
Shaded Display
Turner Whitted
Bell Laboratories
Holmdel, New Jersey

To accurately render a two-dimensional image of a
three-dimensional scene, global illumination information
that affects the intensity of each pixel of the image
must be known at the time the intensity is calculated.
In a simplified form, this information is stored in a tree
of "rays" extending from the viewer to the first surface
encountered and from there to other surfaces and to
the light sources. A visible surface algorithm creates
this tree for each pixel of the display and passes it to
the shader. The shader then traverses the tree to
determine the intensity of the light received by the
viewer. Consideration of all of these factors allows the
shader to accurately simulate true reflection, shadows,
and refraction, as well as the effects simulated by
conventional shaders. Anti-aliasing is included as an
integral part of the visibility calculations. Surfaces
displayed include curved as well as polygonal surfaces.

Key Words and Phrases: computer graphics,
computer animation, visible surface algorithms, shading,
raster displays

CR Category: 8.2

Introduction

Since its beginnings, shaded computer graphics has
progressed toward greater realism. Even the earliest vis-
ible surface algorithms included shaders that simulated
such effects as specular reflection [19], shadows [1, 7],
and transparency [18]. The importance of illumination
models is most vividly demonstrated by the realism
produced with newly developed techniques [2, 4, 5, 16,
20].

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Comput ing Machinery. To copy
otherwise, or to republish, requires a fee and /o r specific permission.

Author 's address: Bell Laboratories, Holmdel, NJ 07733.
O 1980 ACM 0001-0782/80/0600-0343 $00.75.

343

The role of the illumination model is to determine
how much light is reflected to the viewer from a visible
point on a surface as a function of light source direction
and strength, viewer position, surface orientation, and
surface properties. The shading calculations can be per-
formed on three scales: microscopic, local, and global.
Although the exact nature of reflection from surfaces is
best explained in terms of microscopic interactions be-
tween light rays and the surface [3], most shaders produce
excellent results using aggregate local surface data. Un-
fortunately, these models are usually limited in scope,
i.e., they look only at light source and surface orienta-
tions, while ignoring the overall setting in which the
surface is placed. The reason that shaders tend to operate
on local data is that traditional visible surface algorithms
cannot provide the necessary global data.

A shading model is presented here that uses global
information to calculate intensities. Then, to support this
shader, extensions to a ray tracing visible surface algo-
r i thmare presented.

1. Conventional Models
\

The simplest visible surface algorithms use shaders
based on Lambert's cosine law. The intensity of the
reflected light is proportional to the dot product of the
surface normal and the light source direction, simulating
a perfect diffuser and yielding a reasonable looking
approximation to a dull, matte surface. A more sophis-
ticated model is the one devised by Bui-Tuong Phong
[8]. Intensity from Phong's model is given by

j=ls j=ls

I = Ia + kd Z (N.Lj) + ks ~ (N'L)) n, (1)
j=l j=l

where

I =
L =
kd =

ks

n ~--

the reflected intensity,
reflection due to ambient light,
diffuse reflection constant,
unit surface normal,
the vector in the direction of the j th light source,
the specular reflection coefficient,
the vector in the direction halfway between the
viewer and the j th light source,
an exponent that depends on the glossiness of the
surface.

Phong's model assumes that each light source is located
at a point infinitely distant from the objects in the scene.
The model does not account for objects within a scene
acting as light sources or for light reflected from object
to object. As noted in [6], this drawback does not affect
the realism of diffuse reflection components very much,
but it seriously hurts the quality of specular reflections.
A method developed by Blinn and Newell [5] partially
solves the problem by modeling an object's environment
and mapping it onto a sphere of infinite radius. The
technique yields some of the most realistic computer

Communicat ions June 1980
of Volume 23
the ACM Number 6

generated pictures ever made, but its limitations preclude
its use in the general case.

In addition to the specular reflection, the simulation
of shadows is one of the more desirable features of an
illumination model. A point on a surface lies in shadow
if it is visible to the viewer but not visible to the light
source. Some methods [2, 20] invoke the visible surface
algorithm twice, once for the light source and once for
the viewer. Others [1, 7, 12] use a simplified calculation
to determine whether the point is visible to the light
source.

Transmission of light through transparent objects has
been simulated in algorithms that paint surfaces in re-
verse depth order [18]. When painting a transparent
surface, the background is partially overwritten, allowing
previously painted portions of the image to show
through. While the technique has produced some im-
pressive pictures, it does not simulate refraction. Kay
[171 has improved on this approach with a technique
that yields a very realistic approximation to the effects
of refraction.

Fig. 1.

S

\

I
I

Ir

!
T

SURFACE

2. Improved Model

A simple model for reflection of light from perfectly
smooth surfaces is provided by classical ray optics. As
shown in Figure 1, the light intensity, I, passed to the
viewer from a point on the surface consists primarily of
the specular reflection, S, and transmission, T, compo-
nents. These intensities represent light propagated along
the V, R, and /5 directions, respectively. Since surfaces
displayed are not always perfectly glossy, a term must be
added to model the diffuse component as well. Ideally
the diffuse reflection should contain components due to
reflection of nearby objects as well as predefined light
sources, but the computation required to model a distrib-
uted light source is overwhelming. Instead, the diffuse
term from (1) is retained in the new model. Then the
new model is

j=ls
I = la + ka • (N .L j) + ksS + k t T , (2)

j=l

where

S = the intensity of light incident from the/~ direction,
kt = the transmission coefficient,
T = the intensity of light from the/5 direction.

The coefficients ks and kt a r e held constant for the model
used to make pictures in this report, but for the best
accuracy they should be functions that incorporate an
approximation of the Fresnel reflection law (i.e., the
coefficients should vary as a function of incidence angle
in a manner that depends on the material's surface
properties). In addition, these coefficients must be care-
fully chosen to correspond to physically reasonable val-
ues if realistic pictures are to be generated. The /~
direction is determined by the simple rule that the angle

344

of reflection must equal the angle of incidence. Similarly,
the /5 direction of transmitted light must obey Snell's
law. Then,/~ and/5 are functions of N and P" given by

I7

I V ' N I '
~q= ~ ' + 22q,
/5 = kr(2q + Y') - ~7,

where

kr = (k~l g ' 12 - I V' + ~712)-1<

and

kn = the index of refraction.

Since these equations assume that V- N is less than zero,
the intersection processor must adjust the sign of N so
that it points to the side of the surface from which the
intersecting ray is incident. It must likewise adjust the
index of refraction to account for the sign change. If the
denominator of the expression for k r is imaginary, T is
assumed to be zero because of total internal reflection.

By making ks smaller and ka larger, the surface can
be made to look less glossy. However, the simple model
will not spread the specular term as Phong's model does
by reducing the specular exponent n. As pointed out in
[3], the specular reflection from a roughened surface is
produced by microscopic mirrorlike facets. The intensity
of the specular reflection is proportional to the number
of these microscopic facets whose normal vector is
aligned with the mean surface normal value at the region
being sampled. To generate the proper looking specular
reflection, a random perturbation is added to the surface
normal to simulate the randomly oriented microfacets.

C o m m u n i c a t i o n s J u n e 1980
o f V o l u m e 23
the A C M N u m b e r 6

Fig. 2.
T 2

T/~SURFACE 1

Fig. 3. I

S 2

s

S

(A similar normal perturbation technique is used by
Blinn [4] to model texture on curved surfaces.) For a
glossy surface, this perturbation has a small variance;
with greater variances the surface will begin to look less
glossy. This same perturbation will cause a transparent
object to look progressively more frosted as the variance
is increased. While providing a good model for micro-
scopic surface roughness, this scheme relies on sampled
surface normals and will show the effects of aliasing for
larger variances. Since this scheme also requires entirely
too much additional computing, it is avoided whenever
possible. For instance, in the case of specular reflections
caused directly by a point light source, Phong's model is
used at the point of reflection instead of the perturbation
scheme.

The simple model approximates the reflection from
a single surface. In a scene of even moderate complexity
light will often be reflected from several surfaces before
reaching the viewer. For one such case, shown in Figure
2, the components of the light reaching the viewer from
point A are represented by the tree in Figure 3. Creating
this tree requires calculating the point of intersection of
each component ray with the surfaces in the scene. The
calculations require that the visible surface algorithm
(described in the next section) be called recursively until
all branches of the tree are terminated. For the case of
surfaces aligned in such a way that a branch of the tree
has infinite depth, the branch is truncated at the point
where it exceeds the allotted storage. Degradation of the
image from this truncation is not noticeable.

In addition to rays in the /~ and /5 direction, rays
corresponding to the £j terms in (2) are associated with
each node. If one of these rays intersects some surface in

345

the scene before it reaches the light source, the point of
intersection represented by the node lies in shadow with
respect to that light source. That light source's contri-
bution to the diffuse reflection from the point is then
attenuated.

After the tree is created, the shader traverses the tree,
applying eq. (2) at each node to calculate intensity. The
intensity at each node is then attenuated by a linear
function of the distance between intersection points on
the ray represented by the node's parent before it is used
as an input to the intensity calculation of the parent.
(Since one cannot always assume that all the surfaces are
planar and all the light sources are point sources, square-
law attenuation is not always appropriate. Instead of
modeling each unique situation, linear attenuation with
distance is used as an approximation.)

3. Visible Surface Processor

Since illumination returned to the viewer is deter-
mined by a tree of "rays," a ray tracing algorithm is
ideally suited to this model. In an obvious approach to
ray tracing, light rays emanating from a source are traced
through their paths until they strike the viewer. Since
only a few will reach the viewer, this approach is waste-
ful. In a second approach suggested by Appel [1] and
used successfully by MAGI [14], rays are traced in the
opposite direct ion--from the viewer to the objects in the
scene, as illustrated in Figure 4.

Unlike previous ray tracing algorithms, the visibility
calculations do not end when the nearest intersection of
a ray with objects in the scene is found. Instead, each
visible intersection of a ray with a surface produces more
rays in the /~ direction, the /5 direction, and in the
direction of each light source. The intersection process is
repeated for each ray until none of the new rays intersects
any object.

Because of the nature of the illumination model,
some traditional notions must be discarded. Since objects
may be visible to the viewer through reflections in other
objects, even though some other object lies between it
and the viewer, the measure of visible complexity in an
image is larger than for a conventionally generated image
of the same scene. For the same reason, clipping and
eliminating backfacing surface elements are not appli-
cable with this algorithm. Because these normal prepro-
cessor stages that simplify most visible surface algorithms
cannot be used, a different approach is taken. Using a
technique similar to one described by Clark
[11], the object description includes a bounding volume
for each item in the scene. If a ray does not intersect the
bounding volume of an object, then the object can be
eliminated from further processing for that ray. For
simplicity of representation and ease of performing the
intersection calculation, spheres are used as the bounding
volumes.

Communicat ions June 1980
of Volume 23
the ACM Number 6

• Since a sphere can serve as its own bounding volume,
initial experiments with the shading processor used
spheres as test objects. For nonspherical objects, addi-
tional intersection processors must be specified whenever
a ray does intersect the bounding sphere for that object.
For polygonal surfaces the algorithm solves for the point
of intersection of the ray and the plane of the polygon
and then checks to see if the point is on the interior of
the polygon. If the surface consists of bicubic patches,
bounding spheres are generated for each patch. If the
bounding sphere is pierced by the ray, then the patch is
subdivided using a method described by Catmull and
Clark [10], and bounding spheres are produced for each
subpatch. The subdivision process is repeated until either
no bounding spheres are intersected (i.e., the patch is not
intersected by the ray) or the intersected bounding sphere
is smaller than a predetermined minimum. This scheme
was selected for simplicity rather than efficiency.

The visible surface algorithm also contains the mech-
anism to perform anti-aliasing. Since aliasing is the result
of undersampling during the display process, the most
straightforward cure is to low-pass filter the entire image
before sampling for display [13]. A considerable amount
of computing can be saved, however, if a more econom-
ical approach is taken. Aliasing in computer generated
images is most apparent to the viewer in three cases: (1)
at regions of abrupt change in intensity such as the
silhouette of a surface, (2) at locations where small
objects fall between sampling points and disappear, and
(3) whenever a sampled function (such as texture) is
mapped onto the surface. The visible surface algorithm
looks for these cases and performs the filtering function
only in these regions.

For this visible surface algorithm a pixel is defined in
the manner described in [9] as the rectangular region
whose corners are four sample points as shown in Figure
5(a). If the intensities calculated at the four points
have nearly equal values and no small object lies in the
region between them, the algorithm assumes that the
average of the four values is a good approximation of
the intensity over the entire region. If the intensity values
are not nearly equal (Figure 5(b)), the algorithm subdi-
vides the sample square and starts over again. This
process runs recursively until the computer runs out of
resolution or until an adequate amount of information
about the detail within the sample square is recovered.
The contribution of each single subregion is weighted by
its area, and all such weighted intensities are summed to
determine the intensity of the pixel. This approach
amounts to performing a Warnock-type visibility process
for each pixel [19]. In the limit it is equivalent to area
sampling, yet it remains a point sampling technique. A
better method, currently being investigated, considers
volumes defined by each set of four corner rays and
applies a containment test for each volume.

To ensure that small objects are not lost, a minimum
radius (based on distance from the viewer) is allowed for
bounding spheres of objects. This minimum is chosen so

3 4 6

Fig. 4. Fig. 4.

OBJECT _

FOCAL POINT

Fig. 5.

SAMPLE

0

(a)

, f

0

(b)

that no matter how small the object, its bounding sphere
will always be intersected by at least one ray. If a ray
passes within a minimum radius of a bounding sphere
but does not intersect the object, the algorithm will know
to subdivide each of the four sample squares that share
the ray until the missing object is found. Although

Communications June 1980
of Volume 23
the ACM Number 6

Fig. 6.

Fig. 7.

347 Communicat ions
of
the ACM

June 1980
Volume 23
Number 6

Fig. 8.

~ ~

ii

Fig. 9.

348 C o m m u n i c a t i o n s
of
the A C M

June 1980
V o l u m e 23
N u m b e r 6

adequate for rays that reach the viewer directly, this
scheme will not always work for rays being reflected
from curved surfaces.

4. Results

A version of this algorithm has been programmed in
C, running under UNIX ~ on both a PDP-11/45 and a
VAX-11/780. To simplify the programming, all calcu-
lations are performed in floating point (at a considerable
speed penalty). The pictures are displayed at a resolution
of 480 by 640 pixels with 9 bits per pixel. Originally color
pictures were photographed from the screen of a color
CRT so that only three bits were available for each of
the three primary colors. Ordered dither [15] was applied
to the image data to produce 111 effective intensity levels
per primary. For this report pictures are produced by a
high-quality color hardcopy camera that exposes each
color separately to provide eight bits of intensity per
color.

For the scenes shown in this paper, the image gen-
eration times are

Figure 6: 44 minutes,
Figure 7: 74 minutes,
Figure 8:122 minutes.

All times given are for the VAX, which is nearly three
times faster than the PDP-11/45 for this application. The
image of Figure 6 shows three glossy objects with
shadows and object-to-object reflections. The texturing
is added using Blinn's wrinkling technique. Figure 7
illustrates the effect of refraction through a transparent
object. The algorithm has also been used to produce a
short animated sequence. The enhancements provided
by this illumination model are more readily apparent in
the animated sequence than in the still photographs.

A breakdown of where the program spends its time
for simple scenes is:

Overhead-- 13 percent,
Intersection--75 percent,
Shading-- 12 percent.

For more complex scenes the percentage of time required
to compute the intersections of rays and surfaces in-
creases to over 95 percent. Since the program makes
almost no use of image coherence, these figures are
actually quite promising. They indicate that a more
efficient intersection processor will greatly improve the
algorithm's performance. This distribution of processing
times also suggests that a reasonable division of tasks
between processors in a multiprocessor system is to have
one or more processors dedicated to intersection calcu-
lations with ray generation and shading operations per-
formed by the host.

J UNIX is a trademark of Bell Laboratories.

349

5. Summary

This illumination model draws heavily on techniques
derived previously by Phong [8] and Blinn [3-5], but it
operates recursively to allow the use of global illumina-
tion information. The approach used and the results
achieved are similar to those presented by Kay [16].

While in many cases the model generates very real-
istic effects, it leaves considerable room for improvement.
Specifically, it does not provide for diffuse reflection
from distributed light sources, nor does it gracefully
handle specular reflections from less glossy surfaces. It
is implemented through a visible surface algorithm that
is very slow but which shows some promise of becoming
more efficient. When better ways of using picture coher-
ence to speed the display process are found, this algo-
rithm may find use in the generation of realistic animated
sequences.

Received 12/78; revised 1/80; accepted 2/80

References
l. Appel, A. Some techniques for shading machine renderings of
solids. AFIPS 1968 Spring Joint Comptr. Conf., pp. 37~15.
2. Atherton, P., Weiler, K., and Greenberg, D. Polygon shadow
generation. Proc. S1GGRAPH 1978, Atlanta, Ga., pp. 275-281.
3. Blinn, J.F. Models of light reflection for computer synthesized
pictures. Proc. SIGGRAPH 1977, San Jose, Calif., pp. 192-198.
4. Blinn, J.F. Simulation of wrinkled surfaces. Proc. SIGGRAPH
1978, Atlanta, Ga., pp. 286-292.
5. Blinn, J.F., and Newell, M.E. Texture and reflection in computer
generated images. Comm. ACM 19, 10 (Oct. 1976), 542-547.
6. Blinn, J.F., and Newell, M.E. The progression of realism in
computer generated images. Proc. of the ACM Ann. Conf., 1977, pp.
444~.48.
7. Bouknight, W.K., and Kelley, K.C. An algorithm for producing
half-tone computer graphics presentations with shadows and movable
light sources. AFIPS 1970 Spring Joint Comptr. Conf., pp. 1-10.
8. Bui-Tuong Phong. Illumination for computer generated images.
Comm. ACM 18, 6 (June 1975), 311-317.
9. Catmull, E. A subdivision algorithm for computer display of
curved surfaces. UTEC CSc-74-133, Comptr. Sci. Dept., Univ. of
Utah, 1974.
10. Catmull, E., and Clark, J. Recursively generated B-spline
surfaces on arbitrary topological meshes. Comptr. Aided Design 10, 6
(Nov. 1978), 350-355.
11. Clark, J.H. Hierarchical geometric models for visible surface
algorithms. Comm. ACM 19, 10 (Oct. 1976), 547-554.
12. Crow, F.C. Shadow algorithms for computer graphics. Proc.
SIGGRAPH 1977, San Jose, Calif., pp. 242-248.
13. Crow, F.C. The aliasing problem in computer-generated shaded
images. Comm. ACM 20, 11 (Nov. 1977), 799-805.
14. Goldstein, R.A. and Nagel, R. 3-D visual simulation. Simulation
(Jan. 1971), 25-31.
15. Jarvis, J.F., Judice, C.N., and Ninke, W.H. A survey of
techniques for the display of continuous tone pictures on bilevel
displays. Comptr. Graphics and Image Proc. 5 (1976), 13M0.
16. Kay, D.S. Transparency, refraction, and ray tracing for computer
synthesized images. Masters thesis, Cornell Univ., Ithaca, N.Y.,
January 1979.
17. Kay, D.S., and Greenberg, D. Transparency for computer
synthesized images. Proc. SIGGRAPH 1979, Chicago, Ill., pp. 158-
164.
18. Newell, M.E., Newell, R.G., and Sancha, T.L. A solution to the
hidden surface problem. Proc. ACM Ann. Conf., 1972, pp. 443M50.
19. Warnock, J.E. A hidden line algorithm for halftone picture
representation. Tech. Rep. TR 4-15, Comptr. Sci. Dept., Univ. of
Utah, 1969.
20. Williams, L. Casting curved shadows on curved surfaces. Proc.
SIGGRAPH 1978, Atlanta, Ga., pp. 270-274.

Communications June 1980
of Volume 23
the ACM Number 6

Computer Graphics Volume 18, Number 3 July 1984

Dis tr ibuted R a y T r a c i n g

Robert L. Cook
Thomas Porter

Loren Carpenter

Computer Division
Lucasfilm Ltd.

Abstract
Ray tracing is one of the most elegant techniques in com-
puter graphics. Many phenomena that are difficult or
impossible with other techniques are simple with ray trac-
ing, including shadows, reflections, and refracted light.
Ray directions, however, have been determined precisely,
and this has limited the capabilities of ray tracing. By
distributing the directions of the rays according to the
analytic function they sample, ray tracing can incorporate
fuzzy phenomena. This provides correct and easy solu-
tions to some previously unsolved or partially solved prob-
lems, including motion blur, depth of field, penumbras,
translucency, and fuzzy reflections. Motion blur and
depth of field calculations can be integrated with the visi-
ble surface calculations, avoiding the problems found in
previous methods.

CR CATEGORIES AND SUBJECT DESCRIPTORS:
1.3.7 [Compu te r Graphics]: Three-Dimensional
Graphics and Realism;

ADDITIONAL KEY WORDS AND PHRASES: camera,
constructive solid geometry, depth of field, focus,
gloss, motion blur, penumbras, ray tracing, shadows,
translucency, transparency

1. Introduction

Ray tracing algorithms are elegant, simple, and powerful.
They can render shadows, reflections, and refracted light,
phenomena that are difficult or impossible with other
techniques[Ill. But ray tracing is currently limited to
sharp shadows, sharp reflections, and sharp refraction.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 ACM 0-89791-138-5/84/007/0137 $00.75

Ray traced images are sharp because ray directions are
determined precisely from geometry. Fuzzy phenomenon
would seem to require large numbers of additional sam-
ples per ray. By distributing the rays rather than adding
more of them, however, fuzzy phenomena can be ren-
dered with no additional rays beyond those required for
spatially oversampled ray tracing. This approach pro-
vides correct and easy solutions to some previously
unsolved problems.

This approach has not been possible before because of
aliasing. Ray tracing is a form of point sampling and, as
such, has been subject to aliasing artifacts. This aliasing
is not inherent, however, and ray tracing can be filtered
as effectively as any analytic method[4]. The filtering
does incur the expense of additional rays, but it is not
merely oversampling or adaptive oversampling, which in
themselves cannot solve the aliasing problem. This
antialiasing is based on an approach proposed by Rodney
Stock. It is the subject of a forthcoming paper.

Antialiasing opens up new possibilities for ray tracing.
Ray tracing need not be restricted to spatial sampling. If
done with proper antialiasing, the rays can sample
motion, the camera lens, and the entire shading function.
This is called distributed ray tracing.

Distributed ray tracing is a new approach to image syn-
thesis. The key is that no extra rays are needed beyond
those used for oversampling in space. For example,
rather than taking multiple time samples at every spatial
location, the rays are distributed in time so that rays at
different spatial locations are traced at different instants
of time. Once we accept the expense of oversampling in
space, distributing the rays offers substantial benefits at
little additional cost.

• Sampling the reflected ray according to the spec-
ular distribution function produces gloss (blurred
reflection).

• Sampling the transmitted ray produces translu-
cency (blurred transparency).

• Sampling the solid angle of the light sources pro-
duces penumbras.

137

@SIGGRAPH'84

* Sampling the camera lens area produces depth of
field.

• Sampling in time produces motion blur.

2. S h a d i n g

The intensity I of the reflected light at a point on a sur-
face is an integral over the hemisphere above the surface
of an illumination function L and a reflection function
R[1].

/(¢,,0,) = f f L(¢i, Oi)R(~i, Oi,~r, Or)d4bidOi

where

(¢~.,0;) is the angle of incidence, and

(¢~,0,) is the angle of reflection.

The complexity of performing this integration has been
avoided by making some simplifying assumptions. The
following are some of these simplifications:

• Assume that L is a 6 function, i.e., that L is zero
except for light source directions and that the light
sources can be treated as points. The integral is now
replaced by a sum over certain discrete directions.
This assumption causes sharp shadows.

• Assume that all of the directions that are not light
source directions can be grouped together into an
ambient light source. This ambient light is the same
in all directions, so that L is independent of ¢i and 0 i
and may be removed from the integral. The integral
of R may then be replaced by an average, or
ambient, reflectance.

• Assume that the reflectance function R is a 6 func-
tion, i.e., that the surface is a mirror and reflects
light only from the mirror direction. This assump-
tion causes sharp reflections. A corresponding
assumption for transmitted light causes sharp refrac-
tion.

The shading function may be too complex to compute
analytically, but we can point sample its value by distri-
buting the rays, thus avoiding these simplifying assump-
tions. Illumination rays are not traced toward a single
light direction, but are distributed according to the
illumination function L. Reflected rays are not traced in
a single mirror direction but are distributed according to
the reflectance function R.

2.1. Gloss

Reflections are mirror-like in computer graphics, but in
real life reflections are often blurred or hazy. The dis-
tinctness with which a surface reflects its environment is
called gloss[5]. Blurred reflections have been discussed by
Whi t ted[l l] and by Cook[2]. Any analytic simulation of
these reflections must be based on the integral of the
reflectance over some solid angle.

Mirror reflections are determined by tracing rays from the
surface in the mirror direction. Gloss can be calculated
by distributing these secondary rays about the mirror
direction. The distribution is weighted according to the
same distribution function that determines the highlights.

This method was originally suggested by Whitted[11],
and it replaces the usual specular component. Rays that
reflect light sources produce highlights.

2.2. T r a n s l u c e n c y

Light transmitted through an object is described by an
equation similar to that for reflected light, except that
the reflectance function R is replaced by a transmittance
function T and the integral is performed over the hemi-
sphere behind the surface. The transmitted light can
have ambient, diffuse, and specular components[5].

Computer graphics has included transparency, in which T
is assumed to be a 6 function and the images seen
through transparent objects are sharp. Translucency
differs from transparency in that the images seen through
translucent objects are not distinct. The problem of
translucency is analogous to the problem of gloss. Gloss
requires an integral of the reflected light, and translu-
cency requires a corresponding integral of the transmitted
light.

Translucency is calculated by distributing the secondary
rays about the main direction of the transmitted light.
Just as the distribution of the reflected rays is defined by
the specular reflectance function, the distribution of the
transmitted rays is defined by a specular transmittance
function.

2.3. P e n u m b r a s

Penumbras occur where a light source is partially
obscured. The reflected intensity due to such a light is
proportional to the solid angle of the visible portion of
the light. The solid angle has been explicitly included in
a shading model[3], but no algorithms have been sug-
gested for determining this solid angle because of the
complexity of the computation involved. The only
at tempt at penumbras known to the authors seems to
solve only a very special case[7].

Shadows can be calculated by tracing rays from the sur-
face to the light sources, and penumbras can be calcu-
lated by distributing these secondary rays. The shadow
ray can be traced to any point on the light source, not
just not to a single light source location. The distribu-
tion of the shadow rays must be weighted according the
projected area and brightness of different parts of the
light source. The number of rays traced to each region
should be proportional to the amount of the light's
energy that would come from that region if the light was

138

Computer Graphics Volume 18, Number 3 July 1984

V D D
: < - - - a . - . . < - .

!::i C

image)lane lens focal plane

Figure 1. Circle of Confusion.

completely unobscured. The proportion of lighted sample
points in a region of the surface is then equal to the pro-
portion of that light's intensity that is visible in that
region.

3. Depth of Field

Cameras and the eye have a finite lens aperture, and
hence their images have a finite depth of field. Each
point in the scene appears as a circle on the image plane.
This circle is called the circle of confusion, and its size
depends on the distance to the point and on the lens
optics. Depth of field can be an unwanted artifact, but it
can also be a desirable effect.

Most computer graphics has been based on a pinhole
camera model with every object in sharp focus. Potmesil
simulated depth of field with a postprocessing technique.
Each object is first rendered in sharp focus (i.e., with a
pinhole camera model), and later each sharply rendered
object is convolved with a filter the size of the circle of
confusion[8]. The program spends most of its time in the
focus postprocessor, and this time increases dramatically
as the aperture decreases.

Such a postprocessing approach can never be completely
correct. This is because visibility is calculated from a sin-
gle point, the center of tile lens. The view of the environ-
ment is different from different parts of the lens, and the
differences include changes in visibility and shading that
cannot be accounted for by a postprocessing approach.

For example, consider an object that is extremely out of
focus in front of an object that is in focus. Visible sur-
face calculations done with the pinhole model determine
the visibility from the center of the lens. Because the
front object is not in focus, parts of the focused object
that are not visible from the center of the lens will be
visible from other parts of the lens. Information about
those parts will not available for the postprocessor, so the
postprocessor cannot possibly get the correct result.

There is another way to approach the depth of field prob-
lem. Depth of field occurs because the lens is a finite size.
Each point on the lens "looks" at the same point on the
focal plane. The visible surfaces and the shading may be
different as seen from different parts of the lens. The
depth of field calculations should account for this and be
an integral part of the visible surface and shading calcu-
lations.

Depth of field can be calculated by starting with the
traditional ray from the center of the lens through point
p on the focal plane. A point on the surface of the lens is
selected and the ray from that point to p is traced. The
camera specifications required for this calculation are the

focal distance and the diameter of the lens F where F is
n

the focal length of the lens and n is the aperture number.

This gives exactly the same circle of confusion as
presented by Potmesil[8]. Because it integrates the depth
of field calculations with the shading and visible surface
calculations, this method gives a more accurate solution
to the depth of field problem, with the exception that it
does not account for diffraction effects.

Figure 1 shows why this method gives the correct circle

of confusion. The lens has a diameter of F and is
n

focused at a distance P so that the image plane is at a
distance Vp, where

F P
Vp = ~ for P > F .

Points on the plane that is a distance D from the lens will
focus at

FD
V D -~ ~ for D > F

and have a circle of confusion with diameter C of[8]

F
C = IVD-V~I . v D

For a point I on the image plane, the rays we trace lie
inside the cone whose radius at D is

139

@SIGGRAPH'84

1 F ID-P I
2 n P

The image plane distance from a point on this cone to a
point on the axis of the cone is r multiplied by the
magnification of the lens.

R = r - - - - ~ .

It is easily shown that

R = c ' "
2

Hence any points on the cone have a circle of confusion
that just touches the image point /. Points outside the
cone do not affect the image point and points inside the
cone do.

4. M o t i o n B lur

Distributing the rays or sample points in time solves the
motion blur problem. Before we discuss this method and
how it works, let us first look in more detail at the
motion blur problem and at previous at tempts to solve it.

The motion blur method described by Potmesil[9] is not
only expensive, it also separates the visible surface calcu-
lation from the motion blur calculation. This is accept-
able in some situations, but in most cases we cannot just
calculate a still frame and blur the result. Some object
entirely hidden in the still frame might be uncovered for
part of the the time sampled by the blur. If we are to
blur an object across a background, we have to know
what the background is.

Even if we know what the background is, there are prob-
lems. For example, consider a biplane viewed from
above, so that the lower wing is completely obscured by
the upper wing. Because the upper wing is moving, the
scenery below it would be seen through its blur, but
unfortunately the lower wing would show through too.
The lower wing should be hidden completely because it
moves with the the upper wing and is obscured by it over
the entire time interval.

This particular problem can be solved by rendering the
plane and background as separate elements, but not all
pictures can easily be separated into elements. This solu-
tion also does not allow for changes in visibility within a
single object. This is particularly important for rotating
objects.

The situation is further complicated by the change in
shading within a frame time. Consider a textured top
spinning on a table. If we calculate only one shade per
frame, the texture would be blurred properly, but
unfortunately the highlights and shadows would be
blurred too. On a real top, the highlights and shadows

are not blurred at all by the spinning. They are blurred,
of course, by any lateral motion of the top along the
table or by the motion of a light source or the camera.
The highlights should be blurred by the motion of the
light and the camera, by the travel of the top along the
table, and by the precession of the top, but not by the
rotation of the top.

Motion blurred shadows are also important and are not
rendered correctly if we calculate only one shade per
frame. Otherwise, for example, the blades of a fan could
be motion blurred, but the shadows of those blades would
strobe.

All of this is simply to emphasize the tremendous com-
plexity of the motion blur problem. The prospects for an
analytic solution are dim. Such a solution would require
solving the visible surface problem as a function of time
as well as space. It would also involve integrating the
texture and shading function of the visible surfaces over
time. Point sampling seems to be the only approach that
offers any promise of solving the motion blur problem.

One point sampling solution was proposed by Korein and
Badler[6]. Their method, however, point samples only in
space, not in time. Changes in shading are not motion
blurred. The method involves keeping a list of all objects
that cross each sample point during the frame time, a list
that could be quite long for a fast moving complex scene.
They also impose the unfortunate restriction that both
vertices of an edge must move at the same velocity. This
creates holes in objects that change perspective severely
during one frame, because the vertices move at drasti-
cally different rates. Polygons with edges that share
these vertices cannot remain adjoining. The algorithm is
also limited to linear motion. If the motion is curved or
if the vertices are allowed to move independently, the
linear intersection equation becomes a higher order equa-
tion. The resulting equation is expensive to solve and has
multiple roots.

Distributing the sample points in time solves the motion
blur problem. The path of motion can be arbitrarily
complex. The only requirement is the ability to calculate
the position of the object at a specific time. Changes in
visibility and shading are correctly accounted for. Sha-
dows (umbras and penumbras), depth of field, reflections
and intersections are all correctly motion blurred. By
using different distributions of rays, the motion can be
blurred with a box filter or a weighted filter or can be
strobed.

This distribution of the sample points in time does not
involve adding any more sample points. Updating the
object positions for each time is the only extra calculation
needed for motion blur. Proper antialiasing is required or
the picture will look strobed or have holes[4].

140

Computer Graphics Volume 18, Number 3 July 1984

5. Other Implications of the Algorithm

Visible surface calculation is straightforward. Since each
ray occurs at a single instant of time, the first step is to
update the positions of the objects for that instant of
time. The next is to construct a ray from the lens to the
sample point and find the closest object that the ray
intersects. Care must be taken in bounding moving"
objects. The bound should depend on time so that the
number of potentially visible objects does not grow unac-
ceptably with their speed.

Intersecting surfaces are handled trivially because we
never have to calculate the line of intersection; we merely
have to determine which is in front at a given location
and time. At each sample point only one of the surfaces
is visible. The intersections can even be motion blurred,
a problem that would be terrifying with an analytic
method.

The union, intersection, difference problem is easily
solved with ray tracing or point sampling[10]. These cal-
culations are also correctly motion blurred.

Transparency is easy even if the transparency is textured
or varies with time. Let r be the transparency of a sur-
face at the time and location it is pierced by the ray, and
let R be the reflectance. R and r are wavelength depen-
dent, and the color of the transparency is not necessarily
the same as the color of the reflected light; for example,
a red transparent plastic object may have a white
highlight. If there are n- I transparent surfaces in front
of the opaque surface, the light reaching the viewer is

n-1 n-2 ~ i-1
R n n r i + R n - l l - I r l + " " " + R2rl + RI = ~] Ri H ri.

i=l i=l i ~ l i= l

If the surfaces form solid volumes, then each object has a
r, and that r is scaled by the distance that the transmit-
ted ray travels through that object. The motion blur and
depth of field calculations work correctly for these tran-
sparency calculations.

The distributed approach can be adapted to a scanline
algorithm as well as to ray tracing. The general motion
blur and depth of field calculations have been incor-
porated into a scanline algorithm using distributed sam-
pling for the visible surface calculations. Special cases of
penumbras, fuzzy reflections, and translucency have been
successfully incorporated for fiat surfaces.

6. Summary of the Algorithm

The intensity of a pixel on the screen is an analytic func-
tion that involves several nested integrals: integrals over
time, over the pixet region, and over the lens area, as well
as an integral of reflectance times illumination over the
reflected hemisphere and an integral of transmittance
times illumination over the transmitted hemisphere. This
integral can be tremendously complicated, but we can
point sample the function regardless of how complicated
it is. If the function depends on n parameters, the func-
tion is sampled in the n dimensions defined by those
parameters. Rather than adding more rays for each
dimension, the existing rays are distributed in each
dimension according to the values of the corresponding
parameter.

This summary of the distributed ray tracing algorithm is
illustrated in Figure 2 for a single ray.

• Choose a time for the ray and move the objects
accordingly. The number of rays at a certain time is
proportional to the value of the desired temporal
filter at that time.

Reflected 7 Light

Sp~Plte~ A Surface

Film Lens Transmitted
Plane Ray

Figure 2. Typical Distributed Ray Path

141

@SIGGRAPH'84

* Construct a ray from the eye point (center of the
lens) to a point on the screen. Choose a location on
the lens, and trace a ray from that location to the
focal point of the original ray. Determine which
object is visible.

• Calculate the shadows. For each light source, choose
a location on the light and trace a ray from the visi-
ble point to that location. The number of rays
traced to a location on the light should be propor-
tional to the intensity and projected area of that
location as seen from the surface.

• For reflections, choose a direction around the mirror
direction and trace a ray in that direction from the
visible point. The number of rays traced in a
specific direction should be proportional to the
amount of light from that direction that is reflected
toward the viewer. This can replace the specular
component.

• For transmitted light, choose a direction around the
direction of the transmitted light and trace a ray in
that direction from the visible point. The number of
rays traced in a specific direction should be propor-
tional to the amount of light from that direction
that is transmitted toward the viewer.

7. Examples

Figure 3 illustrates motion blurred intersections. The
blue beveled cube is stationary, and the green beveled
cube is moving in a straight line, perpendicular to one of
its faces. Notice that the intersection of the faces is
blurred except in in the plane of motion, where it is
sharp.

Figures 4 and 5 illustrate depth of field. In figure 4, the
camera has a 35 mm lens at f2.8. Notice that the rear
sphere, which is out of focus, does not blur over the
spheres in front. In figure 5, the camera is focused on the
center of the three wooden spheres.

Figure 6 shows a number of moving spheres, with motion
blurred shadows and reflections.

Figure 7 illustrates fuzzy shadows and reflections. The
paper clip is illuminated by two local light sources which
cast shadows with penumbras on the table. Each light is
an extended light source (i.e., not a point light source)
with a finite solid angle, and the intensity of its shadow
at any point on the table is proportional to the amount
of light obscured by the paper clip. The table reflects the
paper clip, and the reflection blurs according to the spec-
ular distribution function of the table top. Note that
both the shadows and the reflection blur with distance
and are sharper close to the paper clip.

142

Figure 3. Motion Blurred Intersection.

Figure 4. Depth of Field.

Figure 5. Depth of Field.

Figure 6. Balls in Motion.

Computer Graphics Volume 18, Number 3 July 1984

f

J

j

Figure 7. Paper Clip.

143

@SIGGRAPH'84

Figure 8 shows 5 billiard balls with motion blur and
penumbras. Notice that the motion is not linear: the 9
ball changes direction abruptly in the middle of the
frame, the 8 ball moves only during the middle of the
frame, and the ,l ball only starts to move near the end of
the frame. The shadows on the table are sharper where
the balls are closer to the table; this most apparent in the
stationary 1 ball. The reflections of the billiard balls and
the room are motion blurred, as are the penumbras.

Figures 3, 5, and 7 were rendered with a scanline adapta-
tion of this algorithm. Figures 4, 6, and 8 were rendered
with ray tracing.

8. C o n c l u s i o n s

Distributed ray tracing a new paradigm for computer
graphics which solves a number of hitherto unsolved or
partially solved problems. The approach has also been
successfully adapted to a scanline algorithm. It incor-
porates depth of field calculations into the visible surface
calculations, eliminating problems in previous methods.
It makes possible blurred phenomena such as penumbras,
gloss, and translucency. All of the above can be motion
blurred by distributing the rays in time.

These are not isolated solutions to isolated problems.
This approach to image synthesis is practically no more
expensive than standard ray tracing and solves all of
these problems at once. The problems could not really be
solved separately because they are all interrelated.
Differences in shading, in penumbras, and in visibility are
accounted for in the depth of field calculations. Changes
in the depth of field and in visibility are motion blurred.
The penumbra and shading calculations are motion
blurred. All of these phenomena are related, and the new
approach solves them all together by sampling the mul-
tidimensional space they define. The key to this is the
ability to antialias point sampling.

References

1. COOK, ROBERT L., TURNER WHITTED, AND
DONALD P. GREENBERG, A Comprehensive Model
for Image Synthesis. unpublished report

2. COOK, ROBERT L., "A Reflection Model for Realistic
Image Synthesis," Master 's thesis, Cornell Univer-
sity, Ithaca, NY, December 1981.

3. COOK, ROBERT L. AND KENNETH E. TORRANCE,
"A Reflection Model for Computer Graphics," ACM
Transactions on Graphics, vol. 1, no. 1, pp. 7-24,
January 1982.

4. COOK, ROBERT L., "Antialiased Point Sampling,"
Technical Memo #94, Lucasfilm Ltd, San Rafael,
CA, October 3, 1983.

5. HUNTER, RICHARD S., The Measurement of Appear-
ance, John Wiley & Sons, New York, 1975.

6. KOREIN, JONATHAN AND NORMAN BADLER, "Tem-
poral Anti-Aliasing in Computer Generated Anima-
tion," Computer Graphics, vol. 17, no. 3, pp. 377-
388, July 1983.

7. NISHITA, TOMOYUKI, ISAO OKAMURA, AND
EIHACHIRO NAKAMAE, Siggraph Art Show, 1982.

8. POTMESIL, MICHAEL AND INDRANIL CHAKRAVARTY,
"Synthetic Image Generation with a Lens and Aper-
ture Camera Model," ACM Transactions on Graph-
ics, vol. 1, no. 2, pp. 85-108, April 1982.

9. POTMESIL, MICHAEL AND INDRANIL CtlAKRAVARTY,
"Modeling Motion Blur in Computer-Generated
Images," Computer Graphics, vol. 17, no. 3, pp.
389-399, July 1983.

10. ROTH, S. D., "Ray Casting for Modeling Solids,"
Computer Graphics and Image Processing, no. 18,
pp. 109-144, 1982.

11. WHITTED, TURNER, "An Improved Illumination
Model for Shaded Display," Communications of the
ACM, vol. 23, pp. 343-349, 1980.

9. A c k n o w l e d g e m e n t s

Rodney Stock proposed the approach to antialiased point
sampling that formed the basis of the paradigm explored
in this paper. John Lasseter drew the environment map
of the pool hall for "1984". Ed Catmull worked with us
in th~ image synthesis working group and helped develop
and refine these ideas. He and Alvy Ray Smith provided
invaluable suggestions along the way. Tom Duff wrote
the ray tracing program that we adapted to distributed
ray tracing.

144

Computer Graphics Volume 18, Number 3 July 1984

Figure 8. 1984.

145

Stochastic Sampling in Computer Graphics

ROBERT L. COOK
Pixar

Ray tracing, ray casting, and other forms of point sampling are important techniques in computer
graphics, but their usefulness has been undermined by aliasing artifacts. In this paper it is shown
that these artifacts are not an inherent part of point sampling, but a consequence of using regularly
spaced samples. If the samples occur at appropriate nonuniformly spaced locations, frequencies above
the Nyquist limit do not alias, but instead appear as noise of the correct average intensity. This noise
is much less objectionable to our visual system than aliasing. In ray tracing, the rays can be
stochastically distributed to perform a Monte Carlo evaluation of integrals in the rendering equation.
This is called distributed ray tracing and can be used to simulate motion blur, depth of field,
penumbrae, gloss, and translucency.

Categories and Subject Descriptors: 1.3.3 [Computer Graphics]: Picture/Image Generation; 1.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism

General Terms: Algorithms

Additional Key Words and Phrases: Antialiasing, filtering, image synthesis, Monte Carlo integration,
motion blur, raster graphics, ray tracing, sampling, stochastic sampling

1. INTRODUCTION

Because pixels are discrete, computer graphics is inherently a sampling process.
The pixel size determines an upper limit to the frequencies that can be displayed.
This limit, one cycle every two pixels, is called the Nyquist limit. An attempt to
display frequencies greater than the Nyquist limit can produce aliasing artifacts,
such as “jaggies” on the edges of objects [6], jagged highlights [26], strobing and
other forms of temporal aliasing [19], and Moire patterns in textures [6]. These
artifacts are tolerated in some real-time applications in which speed is more vital
than beauty, but they are unacceptable in realistic image synthesis.

Rendering algorithms can be classified as analytic or discrete according to how
they approach the aliasing problem. Analytic algorithms can filter out the high
frequencies that cause aliasing before sampling the pixel values. This filtering
tends to be complicated and time consuming, but it can eliminate certain types
of aliasing very effectively [3,6,8,9,X5]. Discrete algorithms, such as ray tracing,

This research was done when Pixar was the computer division of Lucasfilm Ltd. An earlier version
of this paper was prepared as an unpublished Lucasfilm Technical Memo #94, “Antialiased Point
Sampling,” 1983.
Author’s address: Pixar, P.O. Box 13719, San Rafael, CA 94913-3719.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
@1986ACM0730-0301/86/0100-0051$00.75

ACM Transactions on Graphics, Vol. 5, No. 1, January 1986, Pages 51-72.

52 l Robert L. Cook

only consider the image at regularly spaced sample points. Since they ignore
everything not at these points, they appear by their nature to preclude filtering
the image. Thus they are plagued by seemingly inherent aliasing artifacts. This
is unfortunate, for these algorithms are much simpler, more elegant, and more
amenable to hardware implementation than the analytic methods. They are also
capable of many features that are difficult to do analytically, such as shadows,
reflection, refraction [13, 241, constructive solid geometry [21], motion blur, and
depth of field [5].

There are two existing discrete approaches to alleviating the aliasing problem:
supersampling and adaptive sampling. Supersampling involves using more than
one regularly spaced sample per pixel. It reduces aliasing by raising the Nyquist
limit, but it does not eliminate aliasing. No matter how many samples are used,
there are still frequencies that will alias. In adaptive sampling, additional rays
are traced near edges [24]; the additional rays are traced midway between
previously traced rays. Unlike supersampling, this approach can antialias edges
reliably, but it may require a large number of rays, and it complicates an otherwise
simple algorithm.

In this paper a new discrete approach to antialiasing called stochastic sampling
is presented. Stochastic sampling is a Monte Carlo technique [ll] in which the
image is sampled at appropriate nonuniformly spaced locations rather than at
regularly spaced locations. This approach is inherently different from either
supersampling or adaptive sampling, though it can be combined with either of
them. Stochastic sampling can eliminate all forms of aliasing, including unruly
forms such as highlight aliasing.

With stochastic sampling, aliasing is replaced by noise of the correct average
intensity. Frequencies above the Nyquist limit are still inadequately sampled,
and they still appear as artifacts in the image. But a highly objectionable artifact
(aliasing) is replaced with an artifact that our visual systems tolerate very well
(noise).

In addition to providing a solution to the aliasing problem, stochastic sampling
also provides new capabilities for discrete algorithms such as ray tracing. The
physical equations simulated in the rendering process involve integrals over time,
lens area, specular reflection angle, etc. Image-synthesis algorithms have usually
avoided performing these integrals by resorting to crude approximations that
assume instantaneous shutters, pinhole cameras, mirror or diffuse reflections,
etc. But these integrals can be easily evaluated by stochastically sampling them,
a process called Monte Carlo integration. In a ray-tracing algorithm, this involves
stochastically distributing the rays in time, lens area, reflection angle, etc. This
is called probabilistic or distributed ray tracing [5]. Distributed ray tracing
allows the simulation of fuzzy phenomena, such as motion blur, depth of field,
penumbrae, gloss, and translucency.

2. UNIFORM POINT SAMPLING

Before discussing stochastic sampling, we first review uniform sampling and the
source of aliasing. In a point-sampled picture, frequencies greater than the
Nyquist limit are inadequately sampled. If the samples are uniformly spaced,
ACM Transactions on Graphics, Vol. 5, No. 1, January 1986.

Stochastic Sampling in Computer Graphics l 53

these frequencies can appear as aliases, that is, they can appear falsely as low
frequencies [4, 17, 201.

To see how this happens, consider for the moment one-dimensional sampling;
we refer to the dimension as time. Let a signal f(t) be sampled at regular intervals
of time, that is, at times nT for integer n, where T is the time period between
samples, so that l/T is the sampling frequency. The Nyquist limit is half the
sampling frequency, or 0.5/T. This sampling is equivalent to multiplication by
the shah function III(t/T), where

III(x) = i 6(x - n),
n=-‘76

where 6 is the Kronecker delta function. After sampling, information about the
original signal f(t) is preserved only at the sample points. The sampling theorem
states that, if f (t) contains no frequencies above the Nyquist limit, then sampling
followed by an ideal reconstruction filter reproduces the original signal f(t)
exactly.

This situation is shown in Figure 1 for a sine wave. In Figure la, the frequency
of the sine wave is below the Nyquist limit of the samples, and the sampled
values accurately represent the function. But, in Figure lb, the frequency of the
sine wave is above the Nyquist limit of the samples. The sampled values do not
accurately represent the sampled sine wave; instead they look as if they came
from a low-frequency sine wave. The high-frequency sine wave appears incor-
rectly under the alias of this low-frequency sine wave.

Figure 2 shows this situation in the frequency domain. The Fourier transform
of f is denoted by F; the Fourier transform of the shah function III(t/T) ‘is
another shah function (l/T)III(tT). Figure 2a shows the Fourier transform
of the signal in Figure la, a single sine wave whose frequency is below the
Nyquist limit. Sampling involves convolving the signal with the sampling grid
of Figure 2b to produce the spectrum shown in Figure 2c. An ideal reconstruc-
tion filter, shown in Figure 2d, would extract the original signal, as in Figure 2e.
In Figures 2f-2j, the same process is repeated for the signal in Figure lb, a single
sine wave whose frequency is above the Nyquist limit. In this case, the sampling
process can fold the high-frequency sine wave into low frequencies, as shown in
Figure 2h. These false frequencies, or aliases, cannot be separated from frequen-
cies that are a part of the original signal. The part of the spectrum extracted by
the reconstruction filter contains these aliases, as shown in Figure 2j.

Sampling theory thus predicts that, with a regular sampling grid, frequencies
greater than the Nyquist limit can alias. The inability to reproduce those
frequencies is inherent in the sampling process, but their appearance as aliases
is a consequence of the regularity of the sampling grid. If the sample points are
not regularly spaced, the energy in those frequencies can appear as noise, an
artifact that is much less objectionable than aliasing. In the case of uniform
sampling, aliasing is precisely defined, in the case of nonuniform sampling, we
use the term aliasing to mean artifacts with distinct frequency components, as
opposed to noise.

ACM Transactions on Graphics, Vol. 5, No. 1, January 1986.

54 l Robert L. Cook

(a) Point sampling within the Nyquist limit

(h) Point sampling beyond the Nyquist limit

Fig. 1. Point sampling shown in the spatial domain. The arrows indicate the sample
locations, and the circles indicate the sampled values. In (a), the sine wave frequency is
within the Nyquist limit, so the sampled values accurately represent the signal. In (b), the
sine wave frequency is above the Nyquist limit, and the sampled values incorrectly represent
a low-frequency sine wave that is not present in the signal.

3. POISSON DISK SAMPLING

An excellent example of a nonuniform distribution of sample locations is found
in the human eye. The eye has a limited number of photoreceptors, and, like any
other sampling process, it has a Nyquist limit. Yet our eyes are not normally
prone to aliasing [25]. In the fovea, the cells are tightly packed in a hexagonal
pattern, and aliasing is avoided because the lens acts as a low-pass filter. Outside
of the fovea, however, the cells are further apart and thus the sampling rate is
lower, so we might expect to see aliasing artifacts. In this region, aliasing is
avoided by a nonuniform distribution of the cells.

The distribution of cones in the eye has been studied by Yellott [27]. Figure
3a is a picture of the distribution of cones in an extrafoveal region of the eye of
a rhesus monkey, which has a photoreceptor distribution similar to that in the
human eye. Yellott took the optical Fourier transform of this distribution, with
the result shown in Figure 3b. This distribution is called a Poisson disk distri-
bution, and it is shown schematically in the frequency domain in Figure 4b. There
is a spike at the origin (the dc component) and a sea of noise beyond the Nyquist
ACM Transactions on Graphics, Vol. 5, No. 1, January 1986.

Stochastic Sampling in Computer Graphics 55

1 ; 1 /!I
(a) Original signal F(x) (f) Original signal F(r)

(c) Sampled signal F(r) * III(x) (h) Sampled signal F(x) * III(r)

(e) Final result (j) Final result

Fig. 2. Point sampling shown in the frequency domain. The original signal F(x) is
convolved with the sampling grid III(x), and the result is multiplied by an ideal recon-
struction filter II(x). The process is shown for a sine wave with a frequency below the
Nyquist limit in (a)-(e) and above the Nyquist limit in (f)-(j).

limit. In effect, the samples are randomly placed with the restriction that no two
samples are closer together than a certain distance.

Now let us analyze point sampling using a Poisson disk sampling distribution
instead of a regular grid. Figure 4a shows a signal that is a single sine wave whose
frequency is below the Nyquist limit. Convolution with the Poisson sampling
grid of Figure 4b produces the spectrum in Figure 4c. The ideal reconstruction
filter of Figure 4d would extract the original signal, Figure 4e. Figure 4f shows a
sine wave whose frequency is above the Nyquist limit. Convolution with the
Poisson sampling grid produces the spectrum in Figure 4h. An ideal reconstruc-

ACM Transactions on Graphics, Vol. 5, No. 1, January 1986.

Stochastic Sampling in Computer Graphics l 57

tion filter would extract noise, as shown in Figure 4j. This noise replaces the
aliasing of Figure 2j.

The minimum distance restriction decreases the magnitude of the noise. For
example, film grain appears to have a random distribution [23], but without the
minimum distance restriction of a Poisson disk distribution. With a purely
random distribution, the samples tend to bunch up in some places and leave
large gaps in other places. Film does not alias, but it is more prone to noise than
the eye.

One possible implementation of Poisson disk sampling to image rendering is
straightforward, though expensive. A lookup table is created by generating
random sample locations and discarding any locations that are closer than a
certain distance to any of the locations already chosen. Locations are generated
until the sampling region is full. Filter values that describe how each sample
affects the neighboring pixels are calculated, and these filter values must be
normalized. The locations and filter values are stored in a table. This method
would produce good pictures, but it would also require a large lookup table. An
alternative method, jittering a regular grid, is discussed in the next section.

4. JITTERING A REGULAR GRID

4.1 Theory

Jittering, or adding noise to sample locations, is a form of stochastic sampling
that can be used to approximate a Poisson disk distribution. There are many
types of jitter; among these is additive random jitter, which can eliminate aliasing
completely [22]. But the discussion in this paper is limited to one particular type
of jitter: the jittering of a regular grid. This type of jitter produces good results
and is particularly well suited to image-rendering algorithms.

The Fourier transform of a jittered grid (shown later in Figure llb) is similar
to the Fourier transform of a Poisson disk distribution (shown in Figure 4b). An
analysis like that in Figures 2 and 4 shows that the results are not quite so good
as those obtained with Poisson disk sampling. The images are somewhat noisier
and some very small amount of aliasing can remain. We now look at this noise
and aliasing quantitatively.

Jitter was analyzed in one dimension (time) by Balakrishnan [2], who calcu-
lated the effect of time jitter, in which the nth sample is jittered by an amount
3;, so that it occurs at time nT + ln, where T is the sampling period (see Figure
5a). If the rE are uncorrelated, Balakrishnan reports that jittering has the
following effects:

-High frequencies are attenuated.
-The energy lost to the attenuation appears as uniform noise. The intensity of

the noise equals the intensity of the attenuated part of the signal.
-The basic composition of the spectrum otherwise does not change.

Sampling by itself cannot be regarded as a filter, because sampling is not a
linearly shift-invariant process. Balakrishnan showed, however, that the combi-
nation of jittered sampling plus an ideal reconstruction filter is a linearly shift-
invariant process, even though the sampling by itself is not [2], so it is in this
context-that we can talk about frequency attenuation.

ACM Transactions on Graphics, Vol. 5, No. 1, January 1986.

58 l Robert L. Cook

time

Fig. 5a. Time jitter. Regularly spaced sample times are shown as dashed lines, and
the corresponding jittered times are shown as solid lines. Each sample time is jittered
by an amount {so that the nth sample occurs at time nT + (” instead of at time 0,
where 2’ is the sample period.

time

Fig. 5b. White noise jitter for y = 0.5. Regularly spaced samples, shown as dashed
lines, are jittered so that every time has an equal chance of being sampled.

Fig. 6. Attenuation due to jitter. The broken line shows the filter for white noise jitter,
the solid line for Gaussian jitter. The shaded area is inside the Nyquist limit.

Uncorrelated jitter is jitter in which any two jitter amounts {,, and {,,, are
uncorrelated. Balakrishnan analyzed two types of uncorrelated jitter: Gaussian
jitter and white noise jitter. For Gaussian jitter, the values of { are chosen
according to a Gaussian distribution with a variance of 2. The gain as a function
of frequency v is then

e-(2*.a)2 (1)

This function is plotted with a solid line in Figure 6 for u = T/6.5. With white
noise jitter, the values of (are uniformly distributed between --yT and yT (see
ACM Transactions on Graphics, Vol. 5, No. 1, January 1986.

Stochastic Sampling in Computer Graphics l 59

\

\ I : :::::::: ::: ::,::: ::.: :::, :. :::: .:: GY ..: .::: :::: ..: ::: : :.:: ::::
I
n+

f

1

\

\

M
Fig. 7a. The effect of white noise jitter on a sine wave with a frequency below the Nyquist
limit. Sample n occurs at a random location in the dotted region. The jitter indicated by
the horizontal arrow results in a sampled value that can vary by the amount indicated by
the vertical arrow.

Fig. 7b. The effect of white noise jitter on a sine wave with a frequency above the Nyquist
limit. The jitter indicated by the horizontal arrow results in a sampled value that is almost
pure noise.

Figure 5b). The gain in this case is

(2)

as shown with a dashed line in Figure 6 for y = $.
From this we can see that jittering a regular grid does not eliminate aliasing

completely, but it does reduce it substantially. The Nyquist limit of 0.5/T is
indicated in the figure by the shaded area. Notice that the width of the filter can
be scaled by adjusting y or u. This gives control of the trade-off between decreased
aliasing and increased noise.

For an intuitive explanation of these equations, consider the sine wave shown
in Figure 7a, with samples at regularly spaced intervals X as shown. These
samples are inside the Nyquist limit and therefore sample the sine wave properly.
Jittering the location of each sample n by some (” in the range -h/2 < {,, < X/2
is similar to adding some noise to the amplitude; note that the basic sine wave

ACM Transactions on Graphics, Vol. 5, No. 1, January 1986.

60 l Robert L. Cook

frequency is not lost. This noise is less for sine waves with a lower frequency
relative to the sampling frequency.

Now consider the sine wave shown in Figure 7b. Here the sampling rate is not
sufficient for the frequency of the sine wave, so regularly spaced samples can
alias. The jittered sample, however, ‘can occur at any amplitude. If there are
exactly a whole number of cycles in the range -X/2 < {n < X/2, then the amplitude
that we sample is random, since there is an equal probability of sampling each
part of the sine wave. In this case none of the energy from the sine wave produces
aliasing; it all becomes noise. This corresponds to the zero points of the dashed
line in Figure 6. If the sine wave frequency is not an exact multiple of A, then
some parts of the wave will be more likely to be sampled than others. In this case
there is some attenuated aliasing and some noise because there is some chance
of hitting each part of the wave. This attenuation is greater for higher frequencies
because with more cycles of the wave there is less preference for one part of the
wave over another. Note also that the average signal level of the noise (the dc
component or gray level) is equal to the average signal level of the sine wave.
The gray level of the signal is preserved.

4.2 Implementation

The extension of jittering to two dimensions is straightforward. Consider a pixel
as a regular grid of one or more rectangular subpixels, each with one sample
point. Each sample point is placed in the middle of a subpixel, and then noise is
added to the x and y locations independently so that each sample point occurs at
some random location within its subpixel.

Once the visibility at the sample points is known, the sample values are filtered
with a reconstruction filter and resampled on a regular grid of pixel locations to
obtain the pixel values. How to do this reconstruction properly is an open
problem. The easiest reconstruction filter to compute is a box filter. Each pixel
value is obtained by simply averaging the sample values in that pixel. Weighted
reconstruction filters with wider filter kernels give better variance reduction. In
this case the filter values are a function of the position of each sample point
relative to the surrounding pixels. The value of each pixel is the sum of the values
of the nearby sample points multiplied by their respective filter values; this total
is normalized by dividing by the total of the filter values.

If the random components of the sample locations are small compared with
the width of the filter, the effect of the random components on the filter values
can usually be ignored. The filter values can then be calculated in advance for
the regularly spaced grid locations. These filter values can be prenormalized and
stored in a lookup table. Changing filters is simply a matter of changing the
lookup table.

5. DISTRIBUTED RAY TRACING

In the previous section, we applied stochastic sampling to the two-dimensional
distribution of the sample points used for determining visibility in a z buffer or
ray-casting algorithm. But the intensity of a pixel on the screen is an analytic
function that may involve several nested integrals: integrals over time, over the
pixel region, and over the lens area, as well as an integral of reflectance times
ACM Transactions on Graphics, Vol. 5, No. 1, January 1986.

Stochastic Sampling in Computer Graphics l 61

illumination over the reflected hemisphere and an integral of transmittance times
illumination over the transmitted hemisphere. These integrals can be tremen-
dously complicated.

Image-rendering algorithms have made certain simplifying assumptions in
order to avoid the evaluation of these integrals. But the evaluation of these
integrals is essential for rendering a whole range of fuzzy phenomena, such as
penumbrae, blurry reflections, translucency, depth of field, and motion blur.
Thus image rendering has usually been limited to sharp shadows, sharp reflec-
tions, sharp refractions, pinhole cameras, and instantaneous shutters. Recent
exceptions to this are the radiosity method [lo] and cone tracing [11.

The rendering integrals can be evaluated with stochastic sampling. If we regard
the variables of integration as additional dimensions, we can perform a Monte
Carlo evaluation of the integrals by stochastically distributing the sample points
(rays) in those additional dimensions. This is called probabilistic or distributed
ray tracing.

-Distributing reflected rays according to the specular distribution function
produces gloss (blurry reflection).

-Distributing transmitted rays produces translucency (blurry transparency).
-Distributing shadow rays through the solid angle of each light source produces

penumbrae.
-Distributing ray origins over the camera lens area produces depth of field.
-Distributing rays in time produces motion blur.

Distributed ray tracing is discussed in detail in a previous paper [5], and others
have extended the results found there [7, 12, 141 (also personal communications
from D. Mitchell and from T. Whitted). This section summarizes the distributed
ray-tracing algorithm from the viewpoint of stochastic sampling.

5.1 Nonspatial Jittering

One way to distribute the rays in the additional dimensions is with uncorrelated
random values. For example, one could pick a random time for each ray or a
random point on a light source for each shadow ray. This approach produces
pictures that are exceedingly noisy, owing to the bunching up of samples (as
illustrated later in Figure lid). We can reduce the noise level by using a Poisson
disk distribution, ensuring that the samples do not bunch up or leave large gaps
that are unsampled. As before, we use jittering to approximate a Poisson disk
distribution.

To jitter in a nonspatial dimension, we use randomly created prototype patterns
in screen space to associate the sample points with a range of that dimension to
sample, then jitter to pick the exact location within each range. In the case of
sampling in time to produce motion blur, we divide the frame time into slices
and randomly assign a slice of time to each sample point. The exact time within
each slice is then determined by jittering.

For example, to assign times in a pixel with a 4-by-4 grid of sample points, one
could use a random distribution of the numbers 1-16, such as the one shown in

ACM Transactions on Graphics, Vol. 5, No. 1, January 1986.

62 - Robert L. Cook

Fig. 8. Example of a prototype time pattern.

7 11 3 14

4 15 13 0

16 1 8 12

B 10 5 2

Figure 8. The sample in the xth column and the yth row would have a prototype
time

tzy =
Pxy - 0.5

16 ’

where P, is the value shown in the xth column and the yth row of the prototype
pattern in Figure 8. A random jitter of a$ is then added to this prototype time
to obtain the actual time for a sample. For example, the sample in the upper left
subpixel would have a time 2 5 t 5 2.

Note that correlation between the spatial locations and the locations in other
dimensions can cause aliasing. For example, if the samples on the left side of the
pixel are consistently at an earlier time than those on the right side of the pixel,
an object moving from right to left might be missed by every sample, whereas an
object moving from left to right might be hit by every sample.

5.2 Weighted Distributions

Sometimes we need to weight the samples. For example, we may want to weight
the reflected samples according to the specular reflection function, or we may
want to use a weighted temporal filter. One approach would be to distribute the
samples evenly and then later weight each ray according to the filter. A better
approach is importance sampling [111, in which the sample points are distributed
so that the chance of a location being sampled is proportional to the value of the
filter at that location. This avoids the multiplications necessary for the weighting
and also puts the samples where they will do the most good.

In order to use jitter to do importance sampling, we divide the filter into
regions of equal area, as shown in Figure 9. Each region is sampled by one sample
point, with the samples spaced further apart for smaller filter values and closer
together for larger filter values. Each sample point is positioned at the center
of its region and then jittered to a random location in the region. Note that the
size of the jitter varies from sample to sample. If the filter shape is known
ahead of time, a list of the centers and jitter magnitudes for each region can be
precomputed and stored in a lookup table.

For example, for the reflection ray, we create a lookup table based on the
specular reflection function. Given the angle between the surface normal and the
incident ray, this lookup table gives a range of reflection angles plus a jitter
magnitude for determining an exact reflection angle within that range. For any
given reflection ray, the index into this table is determined using its ancestral
ACM Transactions on Graphics, Vol. 5, No. 1, January 1986.

Stochastic Sampling in Computer Graphics 63

Fig. 9. Importance sampling. The samples are distributed so that
they sample regions of equal area under the weighting function. The
prototype sample location and jitter range is shown for two of the
sampling regions.

primary ray in screen space to associate it with a randomly generated prototype
pattern of table indices.

5.3 Summary of Distributed Ray Tracing

The distributed ray-tracing algorithm is illustrated in Figure 10. For each primary
ray:

-Determine the spatial location of the ray by jittering.
-Determine the time for the ray from jittered prototype patterns.
-Move the camera and the objects to their location at that time.
-Determine the focal point by constructing a ray from the eye point (center of

the lens) through the screen location of the ray. The focal point is located on
this ray so that its distance from the eye point is equal to the focal distance.

-Determine the lens location for the ray by jittering a location selected from a
prototype pattern of lens locations.

-The primary ray starts at the lens location and goes through the focal point.
Determine the visible point for this ray using standard ray-casting or ray-
tracing techniques.

-Trace a reflection ray. The direction of the reflection ray is determined by
jittering a set of directions that are distributed according to the specular
reflection function. This is done with a lookup table; the lookup table index is
based on a screen space prototype pattern that assigns indices to primary rays
and their descendants. The reflection direction is obtained from the lookup
table and then jittered. The range of the jitter is also stored in the table.

-Trace a transparency ray if the visible object is transparent. The direction of
the transparency ray is determined by jittering a set of directions that are
distributed according to the specular transmission function.

-Trace the shadow rays. For each light source, determine the location on the
light for the shadow ray, and trace a ray from the visible point to that location
on the light. The chance of tracing the ray to a location on the light should be
proportional to the intensity and projected area of that location as seen from
the visible point on the surface.

ACM Transactions on Graphics, Vol. 5, No. 1, January 1986.

64 l Robert L. Cook

Sampk
Point -

Film Trammitted

PhW R4

Fig. 10. Distributed ray tracing.

6. EXAMPLES

The jitter used in these examples is white noise jitter with y = 0.5. An example
of this distribution is shown in Figure lla, and the Fourier transform of Figure
lla is shown in Figure lib. Notice how Figure lib resembles the Fourier
transform of a Poisson disk distribution (shown in Figure 4b). By contrast, a
pure Poisson distribution of samples with no minimum distance restriction is
shown in Figure lld, and the Fourier transform of Figure lld is shown in Fig-
ure lle. The C code in Figure llc was used to generate Figure lla, and the C
code in Figure llf was used to generate Figure lid.

In Figures 12 and 13, a box filter was used for a reconstruction filter to
accentuate the noise problems. In all of the other examples, the following
Gaussian filter was used:

e-d2 _ PE=,

where d is the distance from the center of the sampling region to the center of
the pixel, and w = 1.5 is the filter width distance, beyond which the filter was
set to zero. The effect of jitter on the filter values was ignored.

Consider the comb of triangular slivers illustrated in Figure 12a. Each triangle
is 1.01 pixels wide at the base and 50 pixels high. The triangles are placed in a
horizontal row 1.01 pixels apart. If the comb is sampled with a regular grid,
aliasing can result as depicted in Figure 12b. A comb containing 200 such
triangular slivers is rendered in Figures 12c-f.

In Figure 12~ the comb is rendered with a single sample at the center of each
pixel. Figure 12d also has one sample per pixel, but the sample location is jittered
by { = +a pixel in x and y. Figure 12c is grossly aliased: there are just a few large
triangles spaced 100 pixels apart. This aliasing is replaced by noise in Figure 12d.
Because there is only one sample per pixel, each pixel can only be white or black,
but in any given region, the percentage of white pixels equals the percentage of
that region that is covered by the triangles. Note that the white pixels are denser
at the bottom, where the triangles are wider.

In Figure 12e the same comb is rendered with a regular 4-by-4 grid of samples.
In Figure 12f the regular 4-by-4 grid is jittered by { = ki pixel in x and y. Again
the regularly spaced samples alias; this time there are a few large overlapping
triangles spaced y = 25 pixels apart. This aliasing is replaced by noise in the
ACM Transactions on Graphics, Vol. 5, No. 1, January 1986.

Fig. 12a. Schematic diagram of the comb of triangles example. The
triangles are 50 pixels high and 1.01 pixels apart.

Fig. 12b. The comb of triangles aliases when rendered with a regular
grid of sample points in the manner shown here. Samples are shown
as circles, and pixels are shown as rectangles. Pixels with samples

Stochastic Sampling in Computer Graphics 67

jittered version, Figure 12f. Notice, though, that the noise is greatly reduced
compared with Figure 12d.

Figure 13 shows a small white square moving across the screen. Figure 13a was
rendered with no jitter and one sample per pixel, so the image is still. Figure 13b
was rendered with jitter and one sample per pixel; the image is now blurred but
is extremely noisy because, with only one sample, each pixel can be only one of
two colors-the color of the square or the color of the background. Notice,
though, that in any given region the number of pixels that are white is propor-
tional to the amount of time the square covered that region; thus the percentage
of white pixels is constant in the middle and ramps off at the ends. Figure 13c
was rendered with no jitter and 16 samples per pixel, and Figure 13d with jitter
and 16 samples per pixel. Notice the reduction in the noise level with the
additional samples.

Figure 14a is the ray-traced picture 1984, with a closeup of the 4-ball shown in
Figure 14b. The 4-ball remains stationary for most of the time the shutter is
open and moves quickly to the upper right just before the shutter closes. The
blur is quite extreme, and yet the image looks noisy instead of aliased. This
picture was made with 16 samples per pixel.

Figures 15a and 15b are two frames from the short film The Adventures of
André & Wally B. [18]. These extreme examples of motion blur were rendered

ACM Transactions on Graphics, Vol. 5, No. 1, January 1986.

7 0 l R o b e r t L . C o o k

This cuts down considerably on the noise level and helps avoid needless compu-
tation. Others have since found ways to add more samples adaptively based on
an estimate of the variance of the image in each pixel [12, 14].

Figure 16 shows a frame of a computer-synthesized stained-glass man from
Young Sherlock Holmes [16]. The camera is focused on the sword, with the body
ACM Transactions on Graphics, Vol. 5, NO. 1, January 1986.

Stochastic Sampling in Computer Graphics - 71

out of focus. This was also rendered with a scan-line algorithm, but in this case,
no adaptive method was used to change the number of samples per pixel; instead,
there were always 16 samples per pixel. The sequence is also motion blurred.

The paper clip in Figure 17 shows penumbrae and blurry reflection, rendered
with 16 samples per pixel. Other examples of distributed ray tracing have
appeared in a previous paper [5]. In all cases, areas of extreme blur become noisy
instead of aliasing.

7. DISCUSSION AND CONCLUSIONS

With correctly chosen nonuniform sample locations, high frequencies appear as
noise instead of aliasing. The magnitude of this noise is determined by the
sampling frequency. We have found that using 16 samples per pixel produces an
acceptable noise level in most situations, with more needed only for high-
frequency situations, such as frames that are extremely motion blurred or out of
focus. Stochastic sampling should also work well when integrated with adaptive
sampling. This has been the subject of some recent research [12, 141.

The human eye uses a Poisson disk distribution of photoreceptors. A simple
and effective approximation to a Poisson disk distribution can be obtained by
jittering a regular grid. When this technique is extended to distributed ray tracing,
the locations in the nonspatial dimensions can be chosen by jittering randomly
generated prototype patterns. Weighted functions can be evaluated using impor-
tance sampling.

Stochastic sampling involves some additional computation. Because the sam-
ples are not regularly spaced, forward differencing cannot be used to exploit
pixel-to-pixel coherence. Compared with standard ray tracing, distributed ray
tracing requires additional calculations to move objects to their correct location
for each ray. Moving and out-of-focus objects also require a more sophisticated
bounding calculation, and these objects must often be intersected with a larger
number of rays.

Aliasing has been a major problem for ray-tracing and ray-casting algorithms,
and this problem is solved by stochastic sampling. The shading calculations,
which have traditionally been point sampled, are automatically antialiased with
stochastic sampling, eliminating problems such as highlight aliasing. Another
potential application is texture map sampling. Extended to distributed ray
tracing, stochastic sampling also provides a solution to motion blur, depth of
field, penumbrae, blurry reflections, and translucency.

ACKNOWLEDGMENTS

I would especially like to thank Tom Porter, who made the 1984 picture, suggested
the extension of the two-dimensional technique to motion blur, and helped test
many of the ideas. Alvy Ray Smith found the article on the distribution of cells
in the eye. Andy Moorer and Jim Kajiya helped with the theory, and a number
of discussions with Loren Carpenter were invaluable. The idea of dithering
sample locations originally came from Rodney Stock, who provided inspiration
and motivation for this work. Jack Yellott provided the pictures in Figure 3.
Thanks also to the many people at Lucasfilm who made The Adventures of Andre?
& Wally B. and the stained-glass man sequence from Young Sherlock Holmes.

ACM Transactions on Graphics, Vol. 5, No. 1, January 1986.

72 l Robert L. Cook

REFERENCES

1. AMANATIDES, J. Ray tracing with cones. Comput. Graph. 18,3 (July 1984), 129-145.

2. BALAKRISHNAN, A. V. On the problem of time jitter in sampling. IRE Trans. Inf. Theory (Apr.
1962), 226-236.

3. BI,INN, J. F. Computer display of curved surfaces. Ph.D. dissertation, Computer Science Dept.,
Univ. of Utah, Salt Lake City, 1978.

4. BRACEWELL, R. N. The Fourier Transform and Its Applications. McGraw-Hill, New York, 1978.
5. COOK, R. L., PORTER, T., AND CARPENTER, L. Distributed ray tracing. Comput. Graph. 18, 3

(July 1984), 137-145.
6. CROW, F. The use of greyscale for improved raster display of vectors and characters. Comput.

Graph. 12, 3 (Aug. 1978), l-5.
7. DIPPE, M. A. Z., AND WOLD, E. H. Antialiasing through stochastic sampling. Comput. Graph,.

29,3 (July 1985), 69-78.
8. FEIBUSH, E., LEVOY, M., AND COOK, R. L. Synthetic texturing using digital filtering. Comput.

Graph. 24, 3 (July 1980), 294-301.
9. GARDNER, G. Y. Simulation of natural scenes using textured quadric surfaces. Comput. Graph.

18,3 (July 1984), 11-20.
10. GORAL, C. M., TORRANCE, K. E., GREENBERG, D. P., AND BATTAILE, B. Modeling the inter-

action of light between diffuse surfaces. Comput. Graph. 18,3 (July 1984), 213-222.
11. HALTON, J. H. A retrospective and prospective survey of the Monte Carlo method. SIAM Reu.

12, 1 (Jan. 1970), l-63.
12. KAJIYA, J. T. The rendering equation. Comput. Graph. 20,4 (Aug. 1986), 143-150.
13. KAY, D. S., AND GREENBERG, D. P. Transparency for computer synthesized images. Comput.

Graph. 13, 2 (Aug. 1979), 158-164.
14. LEE, M. E., REDNER, R. A., AND USELTON, S. P. Statistically optimized sampling for distributed

ray tracing. Comput. Graph. 29, 3 (July 1985), 61-67.
15. NORTON, A., ROCKWOOD, A. P., AND SKOLMOSKI, P. T. Clamping: A method of antialiasing

textured surfaces by bandwidth limiting in object space. Comput. Graph. 16, 3 (July 1982), l-8.
16. PARAMOUNT PICTURES CORP. Young Sherlock Holmes. Stained glass man sequence by

D. Carson, E. Christiansen, D. Conway, R. Cook, D. DiFrancesco, J. Ellis, L. Ellis, C. Good,
J. Lasseter, S. Leffler, D. Muren, T. Noggle, E. Ostby, W. Reeves, D. Salesin, and K. Smith. Pixar
and Lucasfilm Ltd., 1985.

17. PEARSON, D. E. Transmission and Display of Pictorial Information. Pentech Press, London,
1975.

18. PIXAR. The Adventures of Andre & Wally B. By L. Carpenter, E. Catmull, R. Cook, T. Duff,
C. Good, J. Lasseter, S. Leffler, E. Ostby, T. Porter, W. Reeves, D. Salesin, and A. Smith. July
1984.

19. POTMESIL, M., AND CHAKRAVARTY, I. Modeling motion blur in computer-generated images.
Comput. Graph. 17,3 (July 1983), 389-399.

20. PRATT, W. K. Digital Image Processing. Wiley, New York, 1978.
21. ROTH, S. D. Ray casting for modeling solids. Comput. Graph. Image Process. 18 (1982),

109-144.
22. SHAPIRO, H. S., AND SILVERMAN, R. A. Alias-free sampling of random noise. SIAM J. 8, 2

(June 1960), 225-248.
23. SOCIETY OF PHOTOGRAPHIC SCIENTISTS AND ENGINEERS. SPSE Handbook of Photographic

Science and Engineering. Wiley, New York, 1973.
24. WHITTED, T. An improved illumination model for shaded display. Commun. ACM 23, 6 (June

1980), 343-349.
25. WILLIAMS, D. R., AND COLLIER, R. Consequences of spatial sampling by a human photoreceptor

mosaic. Science 221 (July 22, 1983), 385-387.
26. WILLIAMS, L. Pyramidal parametrics. Comput. Graph. 17, 3 (July 1983), l-11.
27. YELLOTT, J. I., JR. Spectral consequences of photoreceptor sampling in the rhesus retina.

Science 221 (July 22, 1983), 382-385.

Received March 1985; accepted June 1986

ACM Transactions on Graphics, Vol. 5, No. 1, January 1986.

Siggraph 2005 Course on Interactive Ray Tracing

The RTRT Core

Ingo Wald

This is an excerpt from
“Realtime Ray Tracing and Interactive Global Illumination”,

PhD Thesis, Ingo Wald,
Computer Graphics Group, Saarland University.

Full Version available at http://www.mpi-sb.mpg.de/∼wald/PhD

“Some argue that in the very long term, rendering may
best be solved by some variant of ray tracing, in which
huge numbers of rays sample the environment for the

eye’s view of each frame. And there will also be
colonies on Mars, underwater cities, and personal jet

packs.”

Tomas Möller and Eric Haines,
“Real-Time Rendering”, 1st edition (page 391)

The overall design decisions of the RTRT/OpenRT framework are described
in detail in [Wald04]. To summarize the most important points, we have chosen
to only support triangles, to exploit SIMD extensions in a data-parallel way,
to optimize for memory and caches, and to use BSP trees as an acceleration
structure. In this chapter, we are now going to discuss the actual algorithms
and implementation of these topics in more detail.

1 Fast Triangle Intersection in RTRT

Fast ray triangle intersection code has long been an active field of research in
computer graphics and has lead to a large variety of algorithms, e.g. Moeller-
Trumbore [Möller97, Möller], Glassner [Glassner89], Badouel [Badouel92], Pluecker [Erickson97,
Shoemake98], and many others. The RTRT core uses a modified version of the
projection method (see below), which has been specially designed to run as fast
as possible with single-ray C code, while still being well suited for SSE code.

Essentially, the task of computing a ray-triangle intersection can be described
as follows: Given a ray R(t) = O + tD; t ∈ (0, tmax)1 (going from its origin O
into direction D), and a triangle with vertices A, B and C, determine whether

1In practice, rays usually start at tmin = ε in order to avoid “self-intersection”.

1

the ray has a valid hit-point H = R(thit) with the triangle, i.e. whether there
exists a thit with tmin ≤ thit ≤ tmax and R(thit) is inside the triangle.

In case of having found a valid hit point, many ray tracers require that
the ray-triangle intersection routine also returns the barycentric coordinates
(or local surface coordinates) of the hit-point for shading purposes. As these
coordinates are often computed anyway in the process of determining the hit-
point, we follow this pattern. Note, however, that this is not the case for shadow
rays, for which only the boolean yes/no decision is important, and which can
be slightly optimized by not storing these coordinates.

1.1 Barycentric Coordinate Tests

While there are many different methods for computing ray-triangle intersections,
many of them are based on computing the barycentric coordinates of the hitpoint
and using those for determining whether there is a valid intersection or not2

(e.g. [Badouel92, Shirley03, Glassner89]). In fact, most ray-triangle intersection
algorithms (including the one proposed here) follow this general pattern, and
are often only variants and different implementations of the same idea.

In order to use barycentric coordinates for computing ray triangle intersec-
tions, one fist computes the signed distance tplane along the ray to the plane
embedding the triangle. Given the geometric normal N = (B − A) × (C − A)
and a triangle vertex A, this can be computed as tplane = − (O−A).N

D.N . The cal-
culated distance tplane is then tested for whether it lies in the interval in which
the ray is actually looking for intersections. If not, no valid intersection can
occur, and the triangle test returns “no intersection”. The triangle normal N is
often computed “on the fly”. This minimizes storage requirements, but requires
a costly vector product.

If this so-called distance test has been passed, one has to check whether the
ray actually pierces the triangle. To do this, the actual intersection point with
the plane is computed as H = R(tplane) = O + tplaneD, and is then tested
whether it actually lies inside the triangle. The barycentric coordinates of H
can then be computed in several ways, e.g. by solving the system of equations
H = αA+βB+γC, or geometrically by considering the relative signed (!) areas
of the triangles ABC, HBC, AHC and ABH.

Once the barycentric coordinates α, β and γ of H are known, one can deter-
mine whether H is inside the triangle by and checking whether the conditions

0 ≤ α ≤ 1, 0 ≤ β ≤ 1, 0 ≤ γ ≤ 1

are fulfilled. Note that it is sufficient to check whether β ≥ 0, γ ≥ 0 and β+γ ≤
1, which follows from the properties of barycentric coordinates (α + β + γ = 1).

2The barycentric coordinates of H are the values α, β and γ for which αA + βB + γC =
H, α + β + γ = 1. If H is inside the triangle, both α,β and γ are positive.

2

1.2 Projection Method

The projection method is an optimization of the barycentric coordinate test. It
exploits the fact that projecting both triangle ABC and hit-point H into any
other plane (except for the planes that are orthogonal to the plane ABC) does
not change the barycentric coordinates of H. The computations for calculating
the barycentric coordinates can then be optimized by projecting both triangle
and hit-point H into one of the 2D coordinate planes (XY-, XZ- or YZ-plane),
in which all further computations can be performed in 2D. For reasons of nu-
merical stability, one should project into the plane in which the triangle has
maximum projected area. This so-called “projection dimension” corresponds to
the dimension in which the normal N has its maximum absolute component.

After projection, all computations can be performed more efficiently in 2D.
For example, projecting into the XY plane (i.e. projection dimension is ’Z’)
yields

H ′ = αA′ + βB′ + γC ′,

where A′, B′, C ′ and H ′ are the projected points of A,B,C, and H, respectively.
Substituting α = 1− β − γ and rearranging the terms yields

β(B′ −A′) + γ(C ′ −A′) = H ′ −A′.

This can be solved (e.g. using the Horner scheme), yielding β = det |bh|
det |bc| , γ =

det |hc|
det |bc| , (where b = C ′ − A′, c = B′ − A′ and h = H ′ − A′). In 2D, this can be
expressed quite efficiently as

β =
bxhy − byhx

bxcy − bycx
, γ =

hxcy − hycx

bxcy − bycx
. (1)

In pseudo-code, the projection method usually looks like the following:

// calc edges and normal

b = C-A; c = B-A; N = Cross(c,b);

// distance test

t_plane = - Dot((O-A),N) / Dot(D,N);

if (t_plane < Epsilon || t_plane > t_max) return NO_HIT;

// determine projection dimensiondimensions

if (|N.x| > |N.y|)

if (|N.x| > |N.z|) k = 0; /* X */ else k=2; /* Z */

else

if (|N.y| > |N.z|) k = 1; /* Y */ else k=2; /* Z */

u = (k+1) mod 3; v = (k+2) mod 3;

// calc hitpoint

H[u] = O[u] + t_plane * D[u];

H[v] = O[v] + t_plane * D[v];

3

beta = (b[u] * H[v] - b[v] * H[u]) / (b[u] * c[v] - b[v] * c[u]);

if (beta < 0) return NO_HIT;

gamma = (c[v] * H[u] - c[u] * H[v]) / (b[u] * c[v] - b[v] * c[u]);

if (gamma < 0) return NO_HIT;

if (beta+gamma > 1) return NO_HIT;

return HIT(t_plane,beta,gamma);

1.3 Optimizing the Projection Method

Taking a closer look at the execution pattern of the above mentioned projection
method, it becomes obvious that for different executions on the same triangle
many values will be recomputed every time: For example, the edges and normal
of a triangle will be recomputed for every intersection test with this triangle,
and also the result of determining the projection case will always remain the
same. These - and other - computations are thus redundant, and can be saved
by precomputing and storing them. This saves the costly computations for
the normal, and enables to avoid the branches for determining the projection
case. Once the normal is known, the two secondary dimensions (u = (k +
1)mod 3 and v = (k+2)mod 3) can then be determined by a simple table lookup
(intmodulo[5] = {0, 1, 2, 0, 1}), without having to perform the two expensive
modulo operations.

Note that we do not have to store the full normal: If k is the projection
dimension, N.k can never be zero. As such, we can divide the normal N by N.k,
yielding N ′ = N

N.k . Then t = (A−O).N ′

D.N ′ = A.N ′−Ou.N ′
u−Ov.N ′

v−Ok.N ′
k

Du.N ′
u+Dv.N ′

v−Dk.N ′
k

. Obviously

the values d = A.N ′, N ′
u = Nu

Nk
and N ′

v = Nv

Nk
are constant for each triangle and

thus can be precomputed. By definition, N ′
k is equal to one, and thus doesn’t

have to be stored. Furthermore, knowing that N ′
k = 1 saves two additional

multiplications.

The same idea – simplifying the computations and precomputing as many of
the terms as possible – can also be applied to the edges: Rearranging the terms
for computing β and γ yields

β =
1

bxcy − bycx
(bxHy − bxAy − byHx + byAx)

=
bx

bxcy − bycx
Hy +

−by

bxcy − bycx
Hx +

byAx − bxAy

bxcy − bycx

= KβyHy + KβxHx + Kβd.

This equation now depends only on the projected coordinates Hx and Hy of
the hit-point H (which can be calculated entirely from N ′, O and D). After
precomputing and storing the constants Kβy, Kβx, and Kβ,d, β = Kb,nuHx +

4

Kb,nvHy + Kb,d
3 can be computed quite efficiently. Note that no other values

have to be stored for computing β. Obviously, the same procedure works for
the second barycentric coordinate, γ. The last one, α then does not require any
further storage space, as α = 1− β − γ.

With these simplifications and precomputations, only very few operations
have to be performed during runtime. In the worst case4, only 10 multiplies, 1
division, and 11 additions are needed for an intersection. If the ray fails already
at the distance test, only 4 muls, 5 adds, and 1 division are needed. Neither
geometric normal nor the edge vectors have to be stored or computed during
intersection.

1.4 Cache-optimized Data Layout

Obviously, preprocessing can save quite some amount of computations. How-
ever, as mentioned above this has to be done quite carefully: Due to the high cost
of a cache miss, using additional memory for storing precomputed values carries
the chance of actually costing more than the operation itself. On the other
hand, careful data layout can even simplify the memory access patterns, and
can help in prefetching and in reducing cache misses. Using the just mentioned
simplifications, all data needed for a triangle intersection can be expressed in
only 10 values: 3 floats (d,N ′

u, N ′
v) for the scaled plane equation, 3 floats each

for the two 2D line equations in the u/v plane, and one int (actually only 2 bits)
for storing the projection case k.

Note that these 10 values comprise all the data required for the triangle
test. In fact, with these precomputed values it is not even necessary any more
to know the actual vertex positions of the triangle. Though these are still
stored somewhere for potential shading purposes (resulting in an actual increase
in total memory consumption), they do not have to be accessed at all during
traversal and intersection.

Since we know the access pattern of the intersection algorithm, we can even
store the 10 values in the order in which they are accessed by the CPU to enable
even better data access for the CPU. This leads to a very simple data layout
for our triangle acceleration structure:

struct TriAccel

{

// first 16 byte half cache line

// plane:

float n_u; //!< == normal.u / normal.k

float n_v; //!< == normal.v / normal.k

3It is interesting to note that the same three values can also be derived and explained
geometrically. In that case, Kb,nu, Kb,nv and Kb,d correspond to the line equation Lb(u, v) =
Kb,nu.u+Kb,nv .v +Kb,d = 1 of side b = C′−A′ (hence the name of the constants), properly
scaled such that inserting the third vertex B′ into the line equation yields Lb(B

′
x, B′

y) = 0.
4Note that with a good BSP tree, this worst-case cost (a valid intersection) happens quite

frequently, as a good BSP tree already avoids most unsuccessful intersection operations, see
Table 5.

5

...

Px, Py, Pz Tx, Ty, Tz

accN−1

acc1

acc0

pos[Nvtx]triDesc[Ntri]accel[Ntri] nor[Nvtx]

shd.v2v1v9 Nx, Ny, Nz

texcoord[Nvtx]

Figure 1: The RTRT core organizes its geometry in the typical “Vertex Array” or-

ganization (also called “Indexed Face Sets” in VRML97 terms [Carey97]): Vertices

are stored in arrays from where they are referenced by triangles. Each triangle is de-

scribed by pointers (or IDs in our case) to its three vertices, plus an ID for specifying

its shader. The different vertex attributes (e.g. position, normal, texture coordinates

etc) are stored in separate lists, thereby allowing to store only those data that have

actually be specified by the application. Additionally to this typical data layout, the

RTRT core keeps a separate acceleration record for each triangle that stores all data

required for an intersection in a preprocessed form. Thus, neither ID record nor vertex

data is ever touched during traversal and intersection. Whereas typical intersection

algorithm require to fetch data from four different, non-cache-aligned memory loca-

tions (thereby having to chase the pointers in the ID record), RTRT fetches only this

single acceleration data, which lends well to caching and prefetching.

float n_d; //!< constant of plane equation

int k; // projection dimension

// second 16 byte half cache line

// line equation for line ac

float b_nu;

float b_nv;

float b_d;

int pad; // pad to next cache line

// third 16 byte half cache line

// line equation for line ab

float c_nu;

float c_nv;

float c_d;

int pad; // pad to 48 bytes for cache alignment purposes

};

Though this data layout actually uses more memory than other intersection
algorithms operating directly on the vertices (like e.g. Moeller-Trumbore [Möller97]),
it is likely to use the cache better (see Figure 1): Operating directly on the ver-
tices requires to first access a record that contains the vertex IDs, which require
to access at least one cache line. Then accessing the vertices themselves again

6

requires to touch three cache lines, except if the vertices are incidentally stored
next to each other. If the index record and/or the vertices straddle cache line
boundaries, another four cache lines might be required. In contrast to these up
to 8 cache lines, the above structure can be guaranteed to use exactly two cache
lines on 32 byte caches, and often only one cache access for 64 byte or 128 byte
caches5.

Furthermore, having all data for the intersection test in one contiguous block
also allows for efficient prefetching. Having reached a leaf, prefetching the next
triangle before intersecting the current one can guarantee that the next triangle
is already in the cache until needed. Finally, having all required data values
stored sequentially one after another ideally lends to a streaming-like SIMD
implementation.

However, the additional memory overhead can be problematic for extremely
complex scenes for which both main memory and address space become quite
a limiting factor. For these special cases, the RTRT kernel also contains an
efficient implementation of the Moeller-Trumbore algorithm [Möller97] (in both
a single-ray C-code as well as in an SSE implementation), which can be used
for these cases.

1.5 C Code Implementation for Single-Ray/Triangle In-
tersection

Writing the code for the just derived intersection algorithm is straightforward,
and can be expressed in only a few lines of code:

// lookup table for the modulo operation

ALIGN(ALIGN_CACHELINE) static const

unsigned int modulo[] = {0,1,2,0,1};

inline void Intersect(TriAccel &acc,Ray &ray, Hit &hit)

{

#define ku modulo[acc.k+1]

#define ku modulo[acc.k+2]

// don’t prefetch here, assume data has already been prefetched

// start high-latency division as early as possible

const float nd = 1./(ray.dir[acc.k]

+ acc.n_u * ray.dir[ku] + acc.n_v * ray.dir[kv]);

const float f = (acc.n_d - ray.org[acc.k]

- acc.n_u * ray.org[ku] - acc.n_v * ray.org[kv]) * nd;

// check for valid distance.

if (!(hit.dist > f && f > EPSILON)) return;

// compute hitpoint positions on uv plane

const float hu = (ray.org[ku] + f * ray.dir[ku]);

5Intel Pentium-III processors have 32 byte cache lines, whereas AMD Athlon-MPs have 64
bytes, and Intel Pentium IV Xeons have 128 bytes per cache line.

7

const float hv = (ray.org[kv] + f * ray.dir[kv]);

// check first barycentric coordinate

const float lambda = (hu * acc.b_nu + hv * acc.b_nv + acc.b_d);

if (lambda < 0.0f) return;

// check second barycentric coordinate

const float mue = (hu * acc.c_nu + hv * acc.c_nv + acc.c_d);

if (mue < 0.0f) return;

// check third barycentric coordinate

if (lambda+mue > 1.0f) return;

// have a valid hitpoint here. store it.

hit.dist = f;

hit.tri = triNum;

hit.u = lambda;

hit.v = mue;

}

Note that the costly “modulo 3” operation has been replaced with a pre-
computed lookup table. The most costly operation in this triangle test is the
division at the beginning, which in SSE code can be replaced by a faster recip-
rocal operation with Newton-Raphson iteration (see e.g. [Intel, AMD]).

Also note that the actual implementation uses a C code “macro” for the
intersection code, which (surprisingly) is even faster than an “inline” function
as shown above. Instead of the many memory indirections into the origin and
direction vectors it is also possible to do a switch-case statement based on acc.k
at the beginning, and then use hard-coded offset values. The speed difference
between these two implementations is small. Depending on the actual CPU
used (i.e. Athlon vs. Pentium-III vs. Pentium-IV), sometimes one versions is
faster, and sometimes the other.

1.5.1 Single-Ray Intersection Performance

The performance of this optimized implementation is given in Table 1, in which
the single-ray C Code version of this triangle test is compared to a fairly opti-
mized implementation of the standard Moeller-Trumbore triangle test [Möller97].
As can be seen, our proposed triangle test in practice is roughly twice as fast as
the Moeller-Trumbore code.

1.6 SSE Implementation

By design, the chosen algorithm and data layout naturally lend to SSE imple-
mentation. In fact, for our SSE triangle intersection we use exactly the same
code and data structures as described above in the previous Section. The only
major change is that instead of a single ray, we use a structure that stores four
rays together in a SIMD-friendly way (see Figure 2): Opposed to the standard

8

CPU Cycles MT OP speedup
primary rays 144–172 69–74 2.1–2.3
shadow rays 127–144 68–73 1.9–2.0

Table 1: Performance for the RTRT optimized projection (OP) triangle test
algorithm as compared to the Moeller-Trumbore algorithm (MT) [Möller97],
measured in CPU cycles on a single 2.5 GHz Pentium-IV notebook. The RTRT
code is measured with the single ray C code implementation, not with the fast
SIMD code described in Section 1.6. Note that these measurements have not
been taken with synthetical ray distributions, but correspond to average case
performance in typical scenes. The actual cost depends on the probability with
which a ray exits at a certain test (e.g. distance test, any of the barycentric
coordinate tests, or successful intersection) and as such varies from one scene
to another, and also differs for shadow and ’standard’ rays (i.e. primary and
secondary rays). For the RTRT OP triangle test, these numbers correspond
to more than 35 million ray-triangle intersections. Also note that a 2.5GHz
notebook CPU is not state of the art any more.

way of storing such four rays as an array of four ray structures (the “AoS”
organization), accessing such values efficiently with SSE requires to reorganize
such data into a “SoA” (structure of arrays) organization, i.e. first storing the
four origin.x values, then the four origin.y values, etc.

Using SSE intrinsics, implementing the above algorithm in SSE is almost
straightforward. For example, the line

const float hu = (ray.org[ku] + f * ray.dir[ku]);

can easily be expressed as

const sse_t hu = _mm_add_ps(ray4.org[ku],
_mm_mul_ps(f,ray4.dir[ku])).

Though converting the whole algorithm in that way is quite simple, the actual
code is quite lengthy due to the low-level nature of the SSE operations, and as
such is omitted here.

1.6.1 Overhead

A potential source of overhead is that even though some rays may have termi-
nated early, all four rays have to be intersected with a triangle. For coherent
rays however this is unlikely. However, not all rays may have found a valid
hit, so the hit information may only be updated for rays that actually found an
intersection. To achieve this, information on which of the four rays is still active
is kept in a bit-field, which can be used to mask out invalid rays in a conditional
move instruction when storing the hit point information.

Though this is simple to implement, it results in a considerable overhead,
see Table 2: Whereas both shadow rays and ’standard’ rays undergo exactly the

9

Ray 0
Array of Structures (AoS)

Ray 1 Ray 2 ...

... ...

... ... t2 t3

D0yD0xR0z

R0x R1x R2x R3x R0y R1y D0x D1x t0 t1

t[0..3]Dx[0..3]Ry[0..3]Rx[0..3]

Structure of Arrays (SoA)

R0x R0y D0z t0 R1x R1y R2x R2y

Figure 2: Array-of-structures (AoS) vs. structure-of-arrays (SoA) layout for
our ray packets. Each ray consists of origin (R) and direction (D) vectors, as
well as its maximum length (t). The same data layout has to be used for the
hit point information. While the AoS layout is more natural, efficient SIMD
code requires the reorganization to the SIMD-friendly SoA layout. In order to
achieve sufficient performance, this layout has to be used during all computa-
tions, i.e. already during ray generation.

same floating point computations until the hit/no hit information has been de-
termined, standard rays require several masking operations in order to update
the hit information only for those rays that have actually had a valid intersec-
tion. Shadow rays have to perform significantly less of these masking operations,
as only a single flag has to be stored per ray, in contrast to triangle and instance
ID, distance, and barycentric coordinates for normal rays.

CPU Cycles C Code SSE 4:1 SSE 4:1 speedup rays per
single ray per packet per ray second

primary rays 69–74 101–107 25–27 2.70–2.76 92M–100M
shadow rays 68–73 80–93 20–23 3.17–3.4 108M–125M

Table 2: Cost (in CPU cycles) for our optimized ray-triangle test in a single
ray C code implementation and in its data parallel 4:1 SSE implementation. As
in Table 1, these numbers correspond to average-case performance in typical
scenes. On a 2.5 GHz Pentium IV CPU, 20–27 cycles correspond to 108–125
million ray-triangle intersections per second. Note that the “speedup” is only
calculated with respect to the single-ray C code implementation. Comparison to
a C code Moeller-Trumbore implementation (see Table 1 would yield a speedup
of more than 6.

1.6.2 Performance Results

The overall results of our fast ray-triangle intersection code can be seen in Ta-
ble 2: Whereas the C Code is already much faster than the Moeller-Trumbore
Test (see Table 1), the SSE code achieves an additional, significant speedup:
On a 2.5 GHz Pentium-IV CPU, the SSE code for intersecting four rays with a
single triangle requires 101–107 CPU cycles, depending on where the code exits.

10

Amortizing this cost over all four rays results in only 25–27 cycles per intersec-
tion. Compared to the C code implementation of the RTRT OP algorithm, this
results in a speedup of 2.7–2.8. Compared to the C code Moeller-Trumbore
implementation in Table 1, a speedup of more than six can be observed.

As discussed above, shadow rays have significantly less overhead for storing
the hit information, and as such are much faster: A shadow ray intersection
costs only 80–93 cycles per packet, respectively 20–23 per ray. This once again
shows that SSE is extremely efficient for speeding up computations (the actual
computations for shadow rays and primary rays are the same), but quickly
suffers from any non-computation overhead.

All these measurements have been performed on a 2.5GHz Pentium-IV note-
book CPU, on which these numbers correspond to 92–100 million ray triangle
intersections for standard rays, and even 108–125 million intersections per sec-
ond for shadow rays. The overall speedup compared to the single ray C code
implementation is around 2.7 for primary and secondary rays, and 3.1–3.4 for
shadow rays. This difference clearly shows the impact of the above-discussed
overhead for updating the hit information for non shadow rays.

Note that this masking overhead for storing the results might be partially
hidden if more than four rays would be intersected in parallel. Generally, oper-
ating on larger packet sizes would allow for a more streaming-like approach, in
which the latencies of certain operations could be hidden much better. Also note
that the application of this data-parallel intersection algorithm is not limited
to the RTRT core, but could also be used to accelerate other ray tracing-based
rendering algorithms such as memory coherent ray tracing [Pharr97].

2 Fast kd-Tree Traversal

Even before accelerating the triangle test, traversal of the acceleration structure
was typically 2-3 times as costly as ray-triangle intersection, as a ray tracer
typically performs many more traversal steps than triangle intersections (see
Table 5 for statistical traversal data in different scenes6). Once the SSE triangle
intersection code reduces the intersection cost by more than a factor of three,
traversal is the limiting factor in our ray tracing engine. Furthermore, the SSE
intersection procedure requires us to always have four rays available anyway.
Therefore, we need an algorithm for efficiently traversing four rays through an
acceleration structure in parallel.

As already discussed earlier on in this course, a wide variety of ray tracing
acceleration schemes have been developed over the last two decades. For ex-
ample, there are octrees, general BSP-trees, axis-aligned BSP-trees, uniform,
non-uniform and hierarchical grids, ray classification, bounding volume hierar-
chies, and several hybrids of several of these methods. As already discussed
in [Wald04], we have chosen to use axis-aligned BSP trees (kd-trees) for the
RTRT core. Their traversal code is quite simple, and can very well be imple-
mented in a highly optimized form. Furthermore, BSP trees usually perform at

6Similar data hold for different acceleration structures, see [Havran01].

11

least comparable to other techniques [Havran00, Havran01], and are well-known
for their robustness and applicability for a wide range of scenes. However, our
main reason for using a BSP tree in the RTRT core is the simplicity of the
traversal code, which allows for efficiently traversing packets of rays in parallel:
Traversing a node is based on only two binary decisions, one for each child,
which can efficiently be done for several rays in parallel using SSE. If any ray
needs traversal of a child, all rays will traverse it in parallel.

This is in contrast to algorithms like octrees or hierarchical grids, where each
of the rays might take a different decision of which voxel to traverse next. Keep-
ing track of these states is non-trivial and was judged to be too complicated to
be implemented efficiently. Bounding Volume Hierarchies have a traversal algo-
rithm that comes close in simplicity to BSP trees, and could also be adapted to
a SIMD-traversal method. However, BVHs do not partition space, but rather
organize the hierarchy. This leads to different parts of the hierarchy overlapping
themselves, does not allow for efficiently traversing the voxels in front-to-back
order7, and thus in practice makes BVHs inefficient for complex scenes (for
extensive statistical experiments, see [Havran00, Havran01]). Furthermore, al-
gorithms for building BVHs that are well-suited for fast traversal are less well
investigated than similar algorithms for BSP trees.

2.1 Data Layout of a kd-Tree Node

As mentioned above, the ratio of computation to the amount of accessed memory
is very low for scene traversal. This requires us to carefully design the data
structure for efficient caching and prefetching.

For a typical BSP node, one has to store

• A flag specifying whether it is a leaf node or an inner node.

• For leaf nodes, an “item list”, i.e. a list of integer IDs that specify the
triangles in this leaf; consists of a pointer (or index) to the first item in
the list, and of the number of items in the list.

• For inner nodes, the addresses of the two children, the dimension of the
splitting axis (i.e. x, y, or z), and the location of the split plane.

All these values can be stored in a very compact, unified node layout of only
8 bytes: Obviously, a node can either be a leaf node or an inner node, so they
can be stored in the same memory location (a union in C code) as long as there
is at least one bit reserved for determining the kind of the node.

For inner nodes, we need half the node for storing the float value that specifies
the split plane. Addressing the two children can be performed with a single
pointer if children of a node are always stored next to each other. Furthermore,
if all BSP nodes are stored in one contiguous array (with child nodes always

7It is possible to traverse BVHs in front-to-back order by keeping the yet-to-be-traversed
parts of the hierarchy organized in a priority queue [Haines91]. This however makes each
traversal step considerably more costly than a BSP traversal step

12

stored after their parent nodes), this single pointer can be expressed as an offset
relative to the current node. As this offset is positive, we can use its sign bit for
storing the flag that specifies the type of node. Finally, having the nodes stored
in an array guarantees that the offset is a multiple of 8 (the node size), so its
lower two bits can be safely used for storing the splitting axis.

Leaf nodes can be expressed in quite the same way: The flag that specifies
the node type has to remain in place, and the pointer to the start of the item
list is stored just like the children pointer, as a relative offset stored in bits 2..30.

This leads to the following simple, compact structure:

struct BSPLeaf {
unsigned int flagDimAndOffset;
// bits 0..1 : splitting dimension
// bits 2..30 : offset bits
// bit 31 (sign) : flag whether node is a leaf
float splitCoordinate;

};
struct BSPInner {
unsigned int flagAndOffset;
// bits 0..30 : offset to first son
// bit 31 (sign) : flat whether node is a leaf

}
typedef union {
BSPLeaf leaf;
BSPInner inner;

} BSPNode;

Note that the exact order and arrangement of the bits has been very carefully
designed: Each value can be extracted by exactly one “bitwise and” operation
to mask out the other bits, and does not require any costly shift operations for
shifting bits to their correct positions.

#define ABSP_ISLEAF(n) (n->flag_k_ofs & (unsigned int)(1<<31))

#define ABSP_DIMENSION(n) (n->flag_k_ofs & 0x3)

#define ABSP_OFFSET(n) (n->flag_k_ofs & (0x7FFFFFFC))

As traversing a BSP node is by far the most common operation in a ray
tracer, it has to be implemented with extreme care. For example, an older
version of the RTRT kernel originally stored the dimension bits in the upper bits
of the flag word, from where they could be retrieved by a single shift operation.
While this seems comparably cheap, due to this single shift operation (which is
quite more costly than a “bitwise and”) the old version was roughly 5 percent
slower than the current version.

The presented data layout allows for squeezing the whole BSP node descrip-
tion into 8 bytes per node, or 4–16 nodes per cache line8. As we always store

8Assuming 32 bytes per cache line on a PentiumPro Architecture (Pentium-III), 64 bytes
on an AMD Athlon MP, and 128 bytes on an Intel Pentium-IV Xeon. Note that the larger
cache sizes on a Xeon CPU might benefit from an improved node packing inside a cache line
as discussed in [Havran97, Havran99, Havran01]

13

both children of a node next to each other, both nodes are stored in the same
cache line9, and are thus always and automatically fetched together.

base+32 base+64base+0

x A B C E F ID K LG H

A

E

B C

F D I

LKHG

Figure 3: All BSP nodes (inner nodes as well as leaf nodes) in RTRT are stored
in one contiguous, cache-aligned array. Depending on cache line size, either
4, 8, or 16 nodes form one cache line. Both children of the same node are
always stored next to each other, and thus land in the same cache line. As
cache line size is a multiple of node size, node pairs will never overlap a cache
line boundary. Both children can be addressed by the same pointer, which is
stored as an offset. As this offset is always positive and divisible by four, we
can squeeze both node type flag (leaf or inner node) and split dimension (X,Y,
or Z) in the sign bit and in the lower two bits, respectively. For leaves, pointers
to the item lists (not shown) are stored exactly like pointers to nodes.

Using the same pointer for both node types allows for reducing memory
latencies and pipeline stalls by prefetching, as the next data (either a node or the
list of triangles) can be prefetched before even processing the current node. Note
that though prefetching requires SSE cache control operations, prefetching is
also possible for the single-ray, non-SIMD traversal code. Similarly, the benefits
of using this optimized node layout, i.e. reduced bandwidth and improved cache
utilization, positively affect both the C-code as well as the SSE implementation.

2.2 Fast Single-Ray kd-Tree Traversal

Before describing our algorithm for traversal of four rays in parallel, we first
take a look at the traversal of a single ray: In each traversal step, we maintain
the current ray segment [tnear, tfar], which is the parameter interval of the ray
that actually intersects the current voxel. This ray segment is first initialized
to [0,∞)10, then clipped to the bounding box of the scene, and is updated
incrementally during traversal11. For each traversed node, we calculate the
distance d to the splitting plane defined by that node, and compare that distance
to the current ray segment.

9In RTRT, all BSP node pairs are aligned to cache line boundaries: All nodes are stored
in one consecutive, cache-aligned array, and the cache line size is a multiple of the node size.

10In practice, rather to [ε, tmax]
11Instead of clipping to the scene bounding box, it is also possible to not clip at all and

rather use six additional BSP planes that represent the bounding box sides. This is typically
slower in a software implementation, but can be useful for hardware implementations such as
in the SaarCOR architecture

14

+ + +

a.) cull "far" side b.) cull "near" side c.) traverse both sides

Figure 4: The three traversal cases in a BSP tree: A ray segment is completely
in front of the splitting plane (a), completely behind it (b), or intersects both
sides (c).

If the ray segment lies completely on one side of the splitting plane (i.e. d >=
tfar or d <= tnear), we can “cull” the subtree on the other side and immediately
proceed to the corresponding child voxel12. If neither side can be culled, one
computes the ray parameter at which the plane intersects, and traverses both
sides in turn – the first side with ray segment [tnear, d], and the second one with
[d, tfar]. This actually leads to three different traversal cases, as depicted in
Figure 4.

Basing the traversal entirely on the current ray segments allows for perform-
ing all computations in 1D: Only the actual ray parameters for start and end of
the segment, as well as distance to the split plane have to be known. Neither
the 3D coordinates of the actual entry, exit, or intersection points are required,
nor is it necessary to track the current voxel’s actual extent13.

Early ray termination: In the just described implementation, voxels are
traversed in front-to-back order, which allows for “early ray termination”: If
a valid hit point is found inside one voxel (i.e. thit <= tfar), traversal can be
immediately terminated, as all further potential primitive intersections can only
be be behind the already found hit point. This early ray termination is actually
responsible for the “occlusion culling” feature of ray tracing, and can greatly

12Note that using “<=” and “>=” instead of “<” and “>” requires careful programming
to correctly handle triangles that lie on the splitting plane. Also not that the exact imple-
mentation is quite sensitive to issues such as having rays parallel to the split plane, or rays
actually lying inside the split plane. These special cases generate “Infinity”s and “NaN”s
during traversal, which need special attention to handle correctly.

13This implies that the actual size of the voxel is not known at any time during traversal.
Only the current ray segment – i.e. the overlap between the ray and the voxel – is known.

15

enhance performance. Combined with a high-quality BSP tree (see Section 3),
early ray termination can in many scenes lead to an average of less than two
ray-triangle intersections per ray (see Table 5).

2.2.1 Recursive kd-Tree Traversal

In its most common recursive form, the whole traversal algorithm can be ex-
pressed quite simply:

void Traverse()
{
(t_near,t_far) = (Epsilon, ray.t_max);
(t_near,t_far) = Clip(t_near,t_far);
if (t_near > t_far)

// ray misses bounding box of object
return;

RecTraverse(bspRoot, t_near, t_far);
}

float RecTraverse(node,t_near,t_far)
// returns distance to closest hit point
{
if (IsLeaf(node)) {
IntersectAllTrianglesInLeaf(node);
return ray.t_closest_hit;
// t_closest_hit initialized to t_max before traversal

}
d = (node.split - ray.org[node.dim] / ray.dir[node.dim];
if (d <= t_near) {
// case one, d <= t_near <= t_far -> cull front side
return RecTraverse(BackSideSon(node),t_near,t_far);

} else if (d >= t_far) {
// case two, t_near <= t_far <= d -> cull back side
return RecTraverse(FrontSideSon(node),t_near,t_far);

} else {
// case three: traverse both sides in turn
t_hit = RecTraverse(FrontSideSon(node),t_near,d);
if (t_hit <= d) return t_hit; // early ray termination
return RecTraverse(BackSideSon(node),d,t_far);

}
}

2.2.2 Iterative kd-Tree Traversal

Due to the reasons discussed in the previous chapter, a recursive solution is
not the best choice for high performance. However, the algorithm can be easily

16

reformulated in an iterative way (see e.g. [Keller98, Havran01]), which in pseudo-
code can be written up in only a few lines of code:

void Traverse() {

(t_near, t_far) = (Epsilon, ray.t_max);

(t_near, t_far)

= scene.boundingBox.ClipRaySegment(t_near, t_far);

node = rootNode;

if (t_near > t_far)

// ray misses bounding box of object

return;

while (1) {

while (!node.IsLeaf()) {

// traverse ’til next leaf

d = (node.split - ray.org[node.dim]) / ray.dir[node.dim];

if (d <= t_near) {

// case one, d <= t_near <= t_far -> cull front side

node = BackSideSon(node);

} else if (d >= t_far) {

// case two, t_near <= t_far <= d -> cull back side

node = FrontSideSon(node);

} else {

// case three: traverse both sides in turn

stack.push(BackSideSon(node),d,t_far);

(node, t_far) = (FrontSideSon(node), d);

}

}

// have a leaf now

IntersectAllTrianglesInLeaf(node);

if (t_far <= ray.t_closesthit)

return; // early ray termination

if (stack is empty)

return; // noting else to traverse any more...

(node, t_near, t_far) = stack.pop();

}

}

Obviously, a realtime kernel requires a very high-performance implementa-
tion of this traversal code with many low-level optimizations. For example,
this includes precomputation of the “1/ray.dir[dim]” terms, an efficient stack
handling, efficient calculation of “FrontSideSon” and “NearSideSon”, careful
data layout, and especially efficient handling, organization and ordering of the
conditionals. Special emphasis has to be paid on handling all “special cases”
– like for example division by zero ray direction (leading to +/- Infinity and
NaN values), numerical issues (especially during the comparisons), triangles ly-
ing in the splitting plane, “flat voxels” leading to zero-length ray segments, etc
– in an efficient though nevertheless correct manner. As the discussion of all
these implementation details is quite involved, the actual low-level source code
is omitted here.

17

2.3 SIMD Packet Traversal for kd-Trees

As discussed before, efficient use of the SSE instruction set during ray tracing
requires to trace packets of several rays in parallel. The algorithm for tracing
four different rays is essentially the same as traversing a single one: All four rays
are first initialized to (0, tmax) and clipped to the scene bounding box using fast
SSE code. In each traversal step then, SSE operations are used to compute the
four distances to the splitting plane and to compare these to the four respective
ray segments, all in parallel. If all rays require traversal of the same child,
traversal immediately proceeds with this child, without having to change any of
the ray segments. Otherwise, we traverse both children, with the ray segments
updated accordingly.

As discussed in the previous section, efficient ray tracing requires to traverse
the voxel visited by a ray in front-to-back order. However, when tracing several
rays at the same time in parallel, the correct traversal order for the packet
might be ambiguous, as different rays might demand a different traversal order.
In order to get a consistent traversal order for the whole packet, we only allow
such rays into the same packet for which the traversal order can be guaranteed
to match. This however is easy to guarantee for two common cases, as discussed
in more detail below: First, rays starting at the same origin can be shown to
never disagree on traversal order, whatever their direction is. Second, rays with
the same direction signs in all dimensions will also have the same traversal order
at any splitting plane.

2.3.1 Resolving Traversal Order Ambiguities: Same Origin vs. Same
Principle Direction

The first case already supports most of the rays in ray tracing, as all primary rays
from a pinhole camera, as well as all shadow rays from point light sources fall
under this category. However, the computations for determining the traversal
order depend on the relation between actual origins of the rays and position of
the splitting plane. As such, they have to be performed during each traversal
step in the inner loop of the packet traversal code, and as such are quite costly.
Furthermore, the operations for computing the respective updated ray segments
get relatively complex for this alternative.

The second alternative of only combining rays with matching direction signs
on first sight appears more costly: First, each packet of rays has to be checked
for matching signs, and rays with non-matching signs either have to split up or
require special handling. However, these special cases happen only rarely for
coherent rays, which typically have similar directions. Once it is clear that the
rays have matching direction signs, the computations in the inner loop get very
simple, and can be expressed quite efficiently. In fact, all that is required in the
inner loop of the traversal code is a simple XOR with the respective direction
sign bit of the first ray. Similar arguments hold for the code computing the
respective tnear/tfar values, which can be expressed quite a bit more efficiently
than for the case with common ray origin. As such, the RTRT kernel only

18

supports packets with matching directions signs. Packets are automatically and
quickly tested for complying to this rule, and non-complying rays are traced
with the fast single-ray traversal code.

2.3.2 Implementation Issues

After restricting the traversal code to packets with matching direction signs, the
respective computations get quite simple. The plane distances for all four rays
are computed with only one SSE “mult” and one SSE “add”, and compared to
the four respective tnear and tfar values with SSE compare instructions14. If
either all ray segments lie in front of the plane, or are all behind the splitting
plane (corresponding to cases ’a’ and ’b’ in Figure 4), the other side is culled,
and no special operations have to be performed for the near/far values, nor for
the traversal stack. In the case that both sides have to be traversed 15, the
respective ray segments get updated to [tmin,min(d, tfar)] for the near side,
respectively [max(d, tnear), tfar] for the far side. The min and max operations
are required as not all ray segments may actually have overlapped the splitting
plane. These ray segments may obviously not get longer than they have been
before.

Note that the “near” and “far” sides of a voxel (with respect to a given ray
R) are determined by the order in which a directed infinite line with the same
direction as R would cross this line16. As such, near and far side are independent
of both ray origin and actual BSP plane position, and can be determined once
at the start of traversal by the direction signs alone.

Deactivating invalid rays: Rays that get “forced” to traverse a subtree
that they would not have traversed had they been traversed alone should obvi-
ously not influence any decisions in that subtree. This however can be achieved
quite efficiently: Using the SSE min/max for updating the respective ray seg-
ments operations as just described, it can be shown easily that rays entering
an “invalid” subtree automatically get their ray segments updated to negative
length (i.e. tnear > tfar), which can be used to determine which of the rays are
still “active” in a subtree. In SSE, this generates hardly any overhead at all: A
single SSE compare of tnear and tfar automatically generates a bit-mask that
can be used to mask out any of the latter decision flags in a single operation.

This leads to the following pseudocode for SIMD packet-traversal:

void IterativePacketTraverse(ray[4],hit[4]) {

(t_near[i], t_far[i]) = (Epsilon, ray.t_max);

// i=0..3 in parallel

14Note that SSE comparisons are actually not conditionals, but rather generate bit masks
that can be used for dependent moves

15Note that this case can also happen if neither ray wants to traverse both sides, as one ray
might want to only traverse the left side, while an other one demands traversal of only the
right side.

16The “near” side may not be confused with the “first” voxel visited by a ray, as the origin
may actually lie on the “far” side.

19

// t_near[i], t_far[i] are the near/far values for the i’th ray

(t_near[i], t_far[i])

= scene.boundingBox.ClipRaySegment(t_near[i], t_far[i]);

node = rootNode;

while (1) {

while (!node.IsLeaf()) {

// traverse ’til next leaf

d[i] = (node.split - ray[i].org[node.dim])

/ ray[i].dir[node.dim];

active[i] = (t_near[i] < t_far[i]);

if for all i=0..3 (d[i] <= t_near[i] || !active[i]) {

// case one, d <= t_near <= t_far for all active rays

// -> cull front side

node = BackSideSon(node);

} else if for all i=0..3 (d[i] >= t_far[i] || !active[i]) {

// case two, t_near <= t_far <= d for all active rays

// -> cull back side

node = FrontSideSon(node);

} else {

// case three: traverse both sides in turn

// correctly update all near/far values

// push all near/far values for entire packet

stack.push(BackSideSon(node),

max(d[i],t_near[i]),t_far[i]);

(node, t_far[i])

= (FrontSideSon(node), min(d[i],t_near[i]));

}

}

// have a leaf now

IntersectAllTrianglesInLeaf(node);

if for all i=0..3 (t_far[i] <= ray[i].t_closesthit)

return; // early ray termination

if (stack is empty)

return; // noting else to traverse any more...

// restore all near/far values for entire packet

(node, t_near[i], t_far[i]) = stack.pop();

}

}

Note that all “x[i]” statements are always executed for all four rays in parallel
using a SIMD instruction. While this algorithm only operates on packets of 4
rays, the extension to larger packet sizes is straightforward.

Note that the respective computations for properly computing the near/far
values (including marking invalid ray segments) get quite a bit more involved
for the alternative case in which the origin coincides but the directions differ.

The actual SSE implementation of this algorithm can be performed quite
efficiently. Obviously, the same iterative algorithm as in the single ray code
can be used, and many of the single-ray optimizations (such as changing the
divisions to multiplies with the precomputed inverse) can be performed as well.

20

All mathematical computations in the inner loop consist of only one SSE mul-
tiply and one SSE add. As SSE does not easily work together with non-SSE
conditionals, many of the conditionals can be expressed more efficiently by SSE
“conditional moves” (realized via SSE bit operations). Furthermore, all of the
min/max operations for traversal case 3 can be expressed with a single SEE
instruction each.

2.4 Traversal Overhead

Obviously, traversing packets of rays through the acceleration structure gener-
ates some overhead: Even if only a single ray requires traversal of a subtree
or intersection with a triangle, the operation is always performed on all four
rays. Our experiments have shown that this overhead is relatively small as long
as the rays are coherent. Table 3 shows the overhead in additional BSP node
traversals for different packet sizes.

As can be seen from this experiment, overhead is in the order of a few percent
for 2 × 2 packets of rays, but goes up for larger packets. On the other hand,
increasing screen resolution also increases coherence between primary rays.

Most important is the fact that the effective memory bandwidth has been
reduced essentially by a factor of four through the new SIMD traversal and
intersection algorithms as triangles and BSP nodes need not be loaded sepa-
rately for each ray. This effect is particularly important for ray traversal as the
computation to bandwidth ratio in relatively low.

Of course one could operate on even larger packets of rays to enhance the
effect. However, our results show that we are running almost completely within
the processor caches even with only four rays. We have therefore chosen not
to use more rays per ray packet, as it would additionally increase the overhead
due to redundant traversal and intersection computations, and would make the
basic algorithm more complicated again17. For the SaarCOR architecture how-
ever [Woop05], the same packet traversal principle is used with a significantly
larger number of rays per packet.

2× 2 4× 4 8× 8 2562 10242

ERW6 1.4% 4.4% 11.8% 5.8% 1.4%
Office 2.6% 8.2% 21.6% 10.4% 2.6%

Conference. 3.2% 10.6% 28.2% 12.2% 3.2%

Table 3: Overhead (measured in number of additional node traversals) of tracing
entire packets of rays at an image resolution of 10242 in the first three columns:
As expected, overhead increases with scene complexity (800, 34k, and 280k
triangles, respectively) and packet size, but is tolerable for small packet sizes.
The two columns on the right show the overhead for 2 × 2 packets at different
screen resolutions.

17Larger packets especially suffer from the limited number of registers in the ia32 architec-
tures. Whereas most values for the single ray code can be kept in registers, larger packets
require frequent load/store operations to save and restore certain values into the registers

21

Figure 5: Naive kd-tree vs. high-quality kd-tree in a simple scene consisting of a
room with one chair and one light source. Center: The scene with a BSP tree as
it would result from a typical naive BSP construction code that always splits the
biggest dimension in the middle, until a maximum depth or a minimum number
of triangles is reached. Right: The same scene with a high-quality BSP as it
results if the planes are placed based a good cost prediction function. Obviously,
the BSP with the cost function would be significantly faster to traverse than
the BSP with the naive plane placement. The effect of a good BSP tree can be
even more pronounced in practical, more complex scenes.

3 High-Quality BSP Construction

Except for efficient traversal and intersection code as just described in Sections 1
and 2, the performance of a ray tracer using a kd-tree to a large degree depends
on the algorithms with which the BSP tree has been built. Therefore, it is
important to briefly discuss how good BSP trees can be built (for a more in-
depth discussion of this topic, see e.g. [Havran01]).

Once the kd-tree has been built – i.e. the location and orientation of the BSP
planes, and the decision when to stop subdivision have been fixed – the number
of traversal steps and triangle intersections for a given ray and traversal algo-
rithm is predetermined. As such, building a BSP tree that better adapts to the
scene complexity directly influences these two critical performance parameters.
This can have a significant impact on overall performance: For example, since
its original publication in [Wald01], the RTRT core has been enhanced with a
better BSP construction code which has roughly doubled its performance – on
top of the already very high performance as originally published. This speedup
of two is entirely due to the improved BSP tree, and did not require any other
changes to the core18.

When building BSP trees, the most common approach is to always split each
voxel in the middle. In the most naive approach, the splitting dimension is cho-

18Note that similar speedups apply for the SaarCOR architecture [Woop05]: As the Saar-
COR architecture uses exactly the same data structures as the RTRT kernel (and in fact uses
RTRT to generate the binary scene dumps it runs on), any speedups due to better BSPs
translate similarly to better SaarCOR performance!

22

sen in a round-robin fashion, and subdivision proceeds until either a maximum
depth has been reached, or voxel contains less than a specified number of trian-
gles19. However, it is common knowledge that the BSP tree for non-cube-like
scenes can be improved by always splitting the box in the dimension where it has
maximum extent20. This can be explained by the fact that this approach pro-
duces the most cube-like voxels21. However, it is also long known that putting
the plane into the middle might not be a perfect position, either [Havran01].

Scene #triangles absolute performance speedup
RR ME PS SAH PS ME/RR

ERW6 804 4.33 4.16 4.53 8.18 80 % 89 %
ERW10 83,600 1.30 2.74 3.03 5.51 81 % 101 %
Office 34,000 2.50 2.32 2.85 4.31 51 % 72 %
Theater 112,306 1.30 1.12 1.47 2.43 65 % 87 %
Conference (sta) 282,801 2.18 1.89 2.47 4.17 69 % 91 %
SodaHall (in) 2,247,879 2.50 2.13 2.87 3.46 20 % 38 %
SodaHall (out) 2,247,879 2.62 2.78 3.63 4.08 12 % 47 %
Cruiser 3,637,101 1.67 1.56 2.03 3.01 48 % 80 %
PowerPlant (in) 12,748,510 0.51 0.50 0.81 1.26 56 % 147 %
PowerPlant (out) 12,748,510 0.72 0.78 0.97 1.44 48 % 84 %

Table 4: Relative performance of rendering with BSPs built by different con-
struction algorithms: Kaplan-BSP with round-robin subdivision (RR), Splitting
the voxel in the dimension of maximum extent (ME), “PlaneShifter”, i.e. ME
with shifting the plane to maximize empty voxels (PS), and a surface area
heuristic (SAH). Numbers correspond to million primary rays per second with
SSE code on a 2.2GHz Pentium-IV Xeon. Right two columns show the relative
SAH speedup as compared to PS, ME and RR. As expected the SAH performs
best. Except for Soda Hall, SAH usually performs 50–80 percent faster than the
best other method. Note that the effect in practice is even more pronounced:
Whereas RR, ME and PS require extensive parameter tuning to achieve the
result given in this table, the SAH performs reasonably well already with its
default parameters.
The respective scenes can be seen in Figure 7, some statistical data on the
generated BSPs is given in Table 5.

Many people assume that placing the split plane towards the object median
(i.e. placing it such that both halves contain an equal number of triangles) would
be a better choice. Though this appeals to intuition, it is actually a very bad

19In practice, 20–25 for maximum depth, and 2–3 for the “triangles per leaf” threshold are
usually close to optimal values.

20Interestingly, though this is “common knowledge”, it is actually a misconception except
for extremely “non-cubic” voxels, as can be seen in Table 4 (columns ’RR’ vs. ’ME’): For most
scenes, splitting in the middle is actually slightly faster.

21For cube-like voxels, the ratio of voxel surface to voxel volume reaches its minimum. As
the voxel surface influences the probability of a voxel to be hit by a ray[MacDonald89], a voxel
of a given volume has the least chance of being traversed.

23

choice. Splitting at the object median aims at building a balanced tree with
equal depth of all leaves. Though this is optimal for binary search trees with
equal access probabilities to each leaf node, it is not optimal for ray tracing
with a kd-tree: First, the probability of accessing different voxels is certainly
not equally distributed, as larger voxels are more likely to be hit than small
ones. Furthermore, traversing a kd-tree is actually not the same as a search in
a binary search tree (in which traversal always proceeds from the root to the
leaf in one straight line), but rather a range searching process in which several
leaves have to be accessed, and in which traversal frequently goes up and down
in the tree. As such, BSP trees should not be optimized towards having an equal
number of traversal steps towards each leaf (i.e. balancing it), but should rather
minimize the number of traversal steps for traversing a ray from one location
to another. For this kind of traversal, BSP trees behave best if they have large
voxels of empty space as close to the root node as possible, as large “empty
space” allows for traversing a ray over a large distance at small cost. Splitting
at the object median results in empty space being pushed far down the tree into
many small voxels, and thus leads to many traversal steps and bad performance.

Some other intuitive improvements to the split plane position lead to more
successful heuristics. For example, if one of the half-voxels produced by a split
is empty, the argument of empty space being beneficial suggests that the split
plane should be “shifted” as far into the non-empty half as possible. This reduces
the probability of the ray having to traverse the non-empty leaf, significantly
improves the BSP quality, and is easy to implement. This heuristic can also be
furtherly refined to yield even more improvements. Though the results of such
intuitive approaches are quite limited – in the range of 30–50 percent over the
naive construction method (see Table 4) – they are relatively easy to implement,
and thus should always be preferred over the naive approach. However, these
“simple” heuristics by far cannot match the BSP quality that can be generated
with a well-designed cost function (see below).

3.1 Surface Area Heuristic (SAH)

A more successful – though unfortunately also quite more complicated – ap-
proach is to optimize the positioning of the splitting plane via cost prediction
functions in the spirit of Goldman and Salmon [Goldsmith87], MacDonald and
Booth [MacDonald89, MacDonald90], and Subramanian [Subramanian90]. Such
a cost prediction function uses certain assumptions for estimating how costly a
split would be. This estimate can then be used to place the plane at the position
of minimal cost. Furthermore, the cost function provides a much more effective
termination criteria for the subdivision than the above-mentioned “maximum
depth and triangle threshold”: Using a cost-estimate function, subdivision is
simply terminated as soon as the estimated traversal cost for a leaf node is less
than the cost for the split with minimum estimated cost.

The most famous of these cost prediction functions is the “surface area
heuristic” (SAH) as introduced by MacDonald and Booth [MacDonald89, MacDonald90]:
The surface area heuristic assumes that rays are equally distributed in space,

24

and are not blocked by objects. Under these (somewhat unrealistic) assump-
tions, it is possible to calculate the probability with which a ray hitting a voxel
also hits any of its sub-voxels. More specifically, having a voxel V that is parti-
tioned into two voxels VL and VR, the probability of a ray traversing these two
sub-voxels can be calculated as

P (VL|V) =
SA(VL)
SA(V)

and P (VR|V) =
SA(VR)
SA(V)

where SA(V) = 2(VwVd + VwVh + VdVh) is the surface area of voxel V (with
Vw,Vh, and Vd being width, depth and height of the voxel, respectively).

Once these respective probabilities are know, one can estimate the cost of
a split: Assuming that a traversal step and a ray triangle intersection have an
average cost of Ctrav and Cisec respectively, the average cost of splitting voxel
V into VL and VR can be estimated as

Costsplit(VL, NL, VR, NR) = Ctrav + Cisec(P (VL|V)NL + P (VR|V)NR)

where NL and NR are the number of triangles in VL and VR, respectively.

3.1.1 Finding the best split positions

This function is continuous except for the split plane positions at which the
numbers NL and NR change (also see [Havran01]). These are exactly the po-
sitions where either a triangle side ends (i.e. at a vertex), or where a triangle
side pierces the side of a voxel [Havran01, Hurley02]). These locations form the
“potential split positions”, from which the position with the minimum cost is
chosen. Unfortunately, checking all potential splits can be quite expensive, and
requires a carefully designed algorithm to avoid quadratic complexity during
each splitting step. Furthermore, finding all potential splits can be quite costly
and numerically unstable, especially for those potential splits that are computed
by intersecting a triangle side with the voxel surface.

Instead of performing these side-voxel intersections it is also possible to only
consider each triangle’s bounding box sides as potential split planes. This is
much easier to implement, and still performs better than not using the SAH
at all. However, “perfect” split positions usually achieve superior performance
than only considering the bounding box sides. As such, the RTRT core uses
perfect split positions, and uses a carefully designed implementation to avoid
all potential numerical inaccuracies without sacrificing performance.

3.1.2 Automatic termination criterion

Using the above assumptions, one can estimate the minimum cost of traversing
the split object. Similarly, one can estimate the cost of not splitting a voxel at
all, as Costleaf (V) = NV × Cisec. Simply comparing these two values provides
a very simple and efficient termination criterion. Of course, it is still possible to
combine the surface area heuristic with other heuristics. For example, it may

25

make sense to still specify a maximum tree depth22, or to add heuristics for
encouraging splits that produce empty space (see e.g. [Havran01]).

3.2 Post-Process Memory Optimizations

The BSP construction process in the RTRT core actually is a two-stage process.
While the optimized data layout described in the previous section is quite easy
to use during traversal, it would be quite awkward to use while building the
BSP. As such, we first build the BSP tree with a more easy-to-use node layout
that uses twice as much memory and lots of pointers. Once the build-tree
process is finished, RTRT performs several optimizations on the BSP tree (see
Figure 6): First, for some build-tree algorithms RTRT first iterates over the
whole tree a second time, thereby undoing any splits that have not produced
useful results (e.g. a node with two leaves containing the same item lists)23.
Then, this memory-unfriendly data layout is re-arranged to the more cache-
friendly form as described above. Though this data reorganization is quite
costly, it is much more convenient than having to program the whole BSP
construction code directly on the optimized data layout.

33 0 1 2 1 3

A

B C

E F IM

K L

D I

A

B

E F

G H K L

C

 2 1 2 1 0 1 2 3 1 3

Figure 6: Post-process memory optimizations: After construction, splits that
did not produce sensible results get collapsed (e.g. nodes G and H), and the
item lists are stored in a compressed form by checking whether the same node
list can already be found in the list array. Different item lists can overlap the
same memory regions without any problems, as the length of the list is stored in
the BSP node anyway. After these collapse operations, the BSP is reformatted
to the memory-compressed form as shown in Figure 3.

Finally, it is possible to perform some minor optimizations during the data
rearrangement, such as having similar item lists use the same memory space.
For example, the item lists “12,13,17” and “13,17” can be stored in the same
memory region if the pointer for the second lists points “into” the first list (see
Figure 6). Though this can save some memory especially for deeply subdivided
BSPs, the performance impact of these final optimizations is quite limited.

22Compared to Kaplan-BSPs, a maximum tree depth with the surface area heuristic is more
likely to be in the range of 50 or more

23Obviously, this could also be done already during BSP construction.

26

ERW6 ERW10 Office
(804 triangles) (83,600 triangles) 34,000 triangles)

Theater Conference Soda Hall (inside)
(112,306 triangles) (282,801 triangles) (2,247,879 triangles)

Soda Hall (outside) Cruiser Power Plant (outside)
(2,247,879 triangles) (3,637,101 triangles) (12,748,510 triangles)

Figure 7: The scenes used for the RTRT benchmarks in Table 6. Including
simple SSE shading, these scenes run at 1.3–5.4 frames per second at full-screen
(1024× 1024) resolutions on a single 2.5GHz Pentium-IV notebook CPU.

3.3 Results of different BSP Construction Strategies

In its current implementation, the surface area heuristic in typical scenes is
roughly 50–100 percent faster than a typical Kaplan-type BSP (see Table 4), and
is still up to 50 percent faster than the best non-SAH as implemented in RTRT
by 2001 (as used in the original 2001 “Coherent Ray Tracing” paper [Wald01]).

Though these results are impressive, the surface area heuristic also has sev-
eral problems. First of all, it can be quite costly to generate, especially for
complex scenes. Second, the SAH – though being already very good – is still
not optimal24. Following a greedy strategy for picking the split plane can lead
to getting stuck in local minima. The same is actually true for the termination

24Computing the best BSP tree is known to be NP-complete [Havran01].

27

criterion: Very easily, it may happen that no split can be found with a cost
less than the cost of making a leaf – in which case a leaf will be generated
– even though a better configuration might be found if another level of splits
were considered (see e.g. Figure 8). This could be fixed by using a global opti-
mization method, which however would probably be far too costly to generate.
More importantly, the SAH is quite complicated to implement correctly, and is
error-prone both to programming bugs as well as to numerical inaccuracies.

Figure 8: With a greedy method for choosing the split plane, the surface area
heuristic can get stuck in local minima. For example, no single split plane can
be found that subdivides the left voxel in a way that would have a better cost
function than creating a leaf (as each side would have as many triangles as the
node itself). If however a “non-optimal” split were allowed in the center, the
following split would find a configuration that has less cost than the left one
(center image). Right: The same argument can be repeated infinitely, making
automatic termination problematic if such splits are allowed. Note that this is
a very common configuration for practical scenes, as for example all walls of a
room match this setting.

Finally, the SAH requires the ray tracer to work exactly: For example,
working on perfect split positions often leads to the generation of “flat” cells
with zero width: All triangles that are orthogonal to a coordinate axis (such as
walls) will eventually end up in a cell that exactly encloses them, and which thus
will be flat25. This can easily lead to numerical problems during traversal, as a
ray traversing an empty cell actually has a zero-length overlap with this voxel,
which may easily be “over-seen” by the traverser. Though this is not exactly
a problem of the SAH, it may still lead to problems when using it. Obviously,
the RTRT traversal code correctly handles this case.

25This case also has to be handled correctly during BSP construction: For example, when
further subdividing a flat cell, the construction code has to take care when computing the
side-voxel intersections.

28

Scene BSP num. number of Triangle-Isecs
(view) generation trav. traversed leaves mailboxing

strategy steps (total) (empty) (full) yes no

ERW6 Kaplan 32.22 8.05 1.60 6.46 15.51 6.35
PS 33.45 7.76 4.31 3.45 9.78 5.83
SAH 20.97 4.32 3.25 1.07 1.46 1.45

ERW10 Kaplan 51.14 9.88 1.66 8.22 17.31 8.39
PS 54.15 9.70 6.65 3.05 7.50 6.41
SAH 32.35 5.35 4.27 1.07 2.65 2.65

Office Kaplan 58.80 12.76 7.47 5.29 11.63 6.03
PS 60.04 12.10 10.64 1.46 3.39 2.73
SAH 35.09 6.53 5.37 1.15 3.46 3.36

Theater Kaplan 98.22 18.21 15.03 3.19 12.52 7.96
PS 88.48 15.19 13.44 1.74 5.21 4.07
SAH 64.86 10.40 9.13 1.28 3.79 3.68

Conference Kaplan 68.10 14.25 9.48 4.78 9.91 5.63
PS 68.91 13.61 12.31 1.29 2.82 2.38
SAH 38.32 6.87 5.63 1.24 2.53 2.30

Soda Hall Kaplan 61.96 8.70 5.45 3.25 9.58 6.20
(inside) PS 60.06 8.24 6.81 1.43 3.73 2.98

SAH 50.12 5.34 4.22 1.12 2.64 2.62
Soda Hall Kaplan 99.92 17.10 14.29 2.81 8.04 5.52
(outside) PS 73.16 11.56 10.38 1.17 2.89 2.67

SAH 62.70 9.136 8.09 1.04 1.78 1.78
Cruiser Kaplan 74.95 11.05 6.77 4.28 14.84 11.15

PS 78.40 11.2 9.52 1.68 5.31 4.08
SAH 52.34 7.019 5.74 1.28 2.73 2.57

PowerPlant Kaplan 108.7 15.62 11.30 4.33 105.22 81.73
(inside) PS 90.65 12.52 10.73 1.79 41.25 35.12

SAH 72.79 9.18 7.93 1.25 5.82 5.69
PowerPlant Kaplan 189.1 32.45 28.52 3.93 40.06 28.26
(outside 2) PS 132.7 22.02 19.82 2.20 15.75 12.13
(“overview”) SAH 109.7 19.61 17.99 1.62 10.12 9.79

Table 5: Impact of the different BSP generation strategies on traversal parameters:

This table shows (for different scenes and views) the average number of BSP traversal

steps per ray, average number of leaves encountered during traversal (empty vs. non-

empty leaves), and number of ray-triangle intersections with and without mailboxing,

respectively27. Generation strategies measured include “Kaplan”, “PlaneShifting”,

and Surface Area Heuristic see Table 4). For both Kaplan and PS, several parameter

sets have been tested, the number given here corresponds to the parameter set that

achieved best performance. Note that the exceptionally high number of triangles

visited for the Kaplan BSP in the PowerPlant model results from the high memory

consumption of the Kaplan BSP, which did not allow for “deeper” BSP trees in a

32-bit address space.

29

4 Current RTRT Performance

As described in the previous section, the RTRT software ray tracing kernel
builds the combination of highly optimized traversal and intersection routines,
tracing packets of rays for efficient SIMD support, and a special emphasis on
caching and memory optimizations. Though the newest version of the RTRT
core still uses the same ideas as discussed in its original publication [Wald01],
the RTRT kernel since then has been significantly improved and completely re-
implemented to achieve significantly higher performance [Wald03]. This increase
in performance is due to a combination of several factors:

Faster CPUs: Obviously, CPUs have become significantly faster since 2001
(from around 800MHz Pentium-III’s to 3GHz Pentium-IV’s today). While
many other applications cannot fully benefit from this increase in clock
rate, the RTRT core has been designed to fully exploit the available CPU
performance (e.g. by minimizing cache misses, pipeline stalls and branch
mis-predictions), and as such benefits linearly from improved CPU per-
formance. Though the performance increase of modern CPUs is obviously
not an achievement of the RTRT core itself, it is due to its special design
– especially its emphasis on SIMD support and caching optimizations –
that have enabled the RTRT kernel to benefit linearly from any increase
in CPU performance.

Better BSP Trees: The “Coherent Ray Tracing” paper cared mostly about
the fast traversal of an existing BSP tree, and neglected the algorithms for
building these BSPs. The new RTRT core uses an improved “surface area
heuristic” (SAH) cost prediction function for generating optimized BSP
tree (see Section 3), which result in up to twice the performance than with
the BSP construction code as used in the original Coherent Ray Tracing
system.

Better Compilers: Modern compilers offer increasingly powerful tools for writ-
ing better and faster code. For example, RTRT achieves roughly twice the
performance when compiling its single-ray code (which is written in plain
“C/C++”) with Intel’s ICC (Version 7.1) compiler as compared to com-
piling it with the 2001 version of the GNU gcc compiler as used in the
original system28. Comparing to most up-to-date code written in ICC
intrinsics with the performance of the original 2001 SSE code written in
hand-coded assembler yields similar speedups.

Better Implementations: The RTRT core algorithms cover only a few hun-
dred lines of code, and are continuously being optimized. Since its original
publication in 2001 [Wald01], the core code has been re-implemented sev-
eral times, having resulted in a significant increase in performance.

28The new gcc versions 3 and higher are supposed to offer similarly increased performance
over pre-3.0 gcc’s. Preliminary tests with gcc 3.3.1 have been positive, but a thorough evalu-
ation has not yet been performed.

30

CPU / scene #tris absolute performance
(fps@1024x1024, 1CPU)

ray tracing SSE SSE SSE C
shading none SSE C C
ERW6 (static) 804 8.95 5.38 3.80 2.09
ERW6 (dynamic) 804 4.00 3.05 2.57 1.33
Office (static) 34,000 4.68 3.45 2.86 1.39
Office (dynamic) 34,000 2.61 2.17 1.87 0.88
ERW10 83,600 5.82 3.88 3.27 1.65
Theater 112,306 2.68 2.18 1.95 1.05
Conference (dynamic) 282,801 3.17 2.50 1.98 1.01
Conference (static) 282,801 4.40 3.26 2.61 1.44
Soda Hall (in) 2,247,870 3.68 2.85 2.46 1.19
Soda Hall (out) 2,247,870 4.47 3.28 3.19 1.78
Cruiser 3,637510 3.38 2.65 2.31 1.17
Power Plant (in) 12,748,510 1.43 1.27 1.19 0.53
Power Plant (out) 12,748,510 1.59 1.39 1.40 1.17

Table 6: RTRT core performance in million rays per second on a single 2.5GHz
Pentium-IV notebook CPU at a resolution of 1024 × 1024 pixels, in different
shading configurations: SSE/none corresponds to pure ray traversal and inter-
section performance without shading at all; SSE/SSE means SSE packet tracing
with a hard-coded simple SSE shading model; SSE/C means SSE ray tracing
with C-code shading (including SoA-to-AoS data re-packing overhead); and
C/C means pure C-code single ray traversal and shading. Though ray tracing
scales nicely with scene complexity, even simple shading can already cost more
than a factor of two given current ray tracing performance! The above numbers
directly correspond to the achievable frame rate on a single 2.5GHz Pentium-IV
notebook CPU at full-screen resolution (1024 × 1024 pixels). The respective
benchmarking scenes can be found in Figure 7.

Taken together, these methods allow the current core to significantly out-
perform the old system even when running the old code on an up-to-date CPU.
Even when traversing single, incoherent rays (i.e. without using the SSE instruc-
tion set) the new kernel is slightly faster than the originally published SSE code
tracing packets of rays.

Exploiting the full performance of the newest SIMD code then achieves an
additional performance improvement of 2–3 when shooting coherent rays (see
Table 6). It is important to note that the RTRT kernel does not use any
approximations to achieve this speedup. It still performs at least the operations
of a traditional ray tracer. Considering only the pure traversal and intersection
cost – i.e. without shading and without support for dynamic scenes – the RTRT
kernel achieves up to ∼ 9 million rays per second on simple scenes, and still
1.4–4.4 million rays per second on as complex scenes as the soda hall and power

31

plant scenes (with 1.5 and 12.5 million triangles, respectively).
Casting only primary rays with relatively simple shading, this performance

allows for computing several (1.3–5.4) full screen frames per second even on
a single notebook with a typical 2.5GHz Pentium-IV CPU (see Table 6 and
Figure 7). Using a state of the art dual-CPU PC, this level of ray tracing
performance allows generate impressive frame-rates even on a single desktop
machine.

5 Future Work

As can be seen by the results mentioned in Table 6, it is clear that the biggest
individual bottleneck – and thus the biggest remaining problem to be solved –
is the cost for shading. As the cost for shading has traditionally been cheap
compared to the cost for tracing a ray, this problem so far has not received
much attention. With the current increase in ray tracing performance however
even simple shading incurs a severe performance impact. As such, the biggest
potential for future performance gains lies in finding ways for faster shading.
However, it is still unclear how this can be achieved.

Apart from faster shading, we expect that even higher ray tracing perfor-
mance can be achieved by exploiting even more coherence by using larger pack-
ets. Larger packets should allow for optimizations in which not all individual
rays in a packet have to be considered in each traversal step. For example, two
out of the three traversal cases could be accelerated by only looking at the “cor-
ner rays” of a packet29. Similarly, the efficiency of the SSE code could probably
be increased by larger packets, as any setup cost (such as fetching triangle data)
could be amortized over more rays. Though larger packets obviously suffer from
decreased coherence, this may be offset by the continuing trend towards higher
image resolutions.

Furthermore, it has to be investigated how the ideas that have proven so
successful in accelerating ray tracing for polygonal scenes could also be employed
for other kind of ray tracing primitives, such as volumetric objects, isosurfaces,
or parameteric patches.

Finally, it has to be investigated how much it is possible to further improve
the quality of the BSP trees. While the average number of triangles hit by a ray
is close to the optimum (see Table 5), it may still be possible to further reduce
the number of traversal steps.

References

[AMD] Advanced Micro Devices. Software Optimization Guide
for AMD Athlon(tm) 64 and AMD Opteron(tm)

29For primary rays, it is obvious to define the corner rays for a packet. For secondary rays,
the “corner” rays could be defined by the corners of an imaginary shaft bounding the rays.

32

Processors. Available from http://www.amd.com/us-
en/Processors/TechnicalResources/.

[Badouel92] Didier Badouel. An Efficient Ray Polygon Intersection. In
David Kirk, editor, Graphics Gems III, pages 390–393. Aca-
demic Press, 1992. ISBN: 0124096735.

[Carey97] Rikk Carey, Gavin Bell, and Chris Marrin. ISO/IEC 14772-
1:1997 Virtual Reality Modelling Language (VRML97), April
1997. http://www.vrml.org/Specifications/VRML97.

[Erickson97] Jeff Erickson. Pluecker Coordinates. Ray Tracing News,
1997. http://www.acm.org/tog/resources/RTNews/html/-
rtnv10n3.html#art11.

[Glassner89] Andrew Glassner. An Introduction to Ray Tracing. Morgan
Kaufmann, 1989. ISBN 0-12286-160-4.

[Goldsmith87] Jeffrey Goldsmith and John Salmon. Automatic Creation of
Object Hierarchies for Ray Tracing. IEEE Computer Graphics
and Applications, 7(5):14–20, May 1987.

[Haines91] Eric Haines. Efficiency Improvements for Hierarchy Traversal
in Ray Tracing. In James Arvo, editor, Graphics Gems II,
pages 267–272. Academic Press, 1991.

[Havran97] Vlastimil Havran. Cache Sensitive Representation for the BSP
Tree. In Compugraphics’97, pages 369–376. GRASP – Graph-
ics Science Promotions & Publications, December 1997.

[Havran99] Vlastimil Havran. Analysis of Cache Sensitive Representation
for Binary Space Partitioning Trees. Informatica, 23(3):203–
210, May 1999. ISSN: 0350-5596.

[Havran00] Vlastimil Havran, Jan Prikryl, and Werner Purgathofer.
Statistical Comparison of Ray-Shooting Efficiency Schemes.
Technical Report TR-186-2-00-14, Department of Computer
Science, Czech Technical University; Vienna University of
Technology, July 2000.

[Havran01] Vlastimil Havran. Heuristic Ray Shooting Algorithms. PhD
thesis, Faculty of Electrical Engineering, Czech Technical Uni-
versity in Prague, 2001.

[Hurley02] James T. Hurley, Alexander Kapustin, Alexander Reshetov,
and Alexei Soupikov. Fast Ray Tracing for Modern General
Purpose CPU. In Proceedings of Graphicon, 2002. Available
from http://www.graphicon.ru/2002/papers.html.

33

[Intel] Intel Corp. Intel Computer Based Tutorial. http://developer.-
intel.com/vtune/cbts/cbts.htm.

[Keller98] Alexander Keller. Quasi-Monte Carlo Methods for Realistic
Image Synthesis. PhD thesis, University of Kaiserslautern,
1998.

[MacDonald89] J. David MacDonald and Kellogg S. Booth. Heuristics for Ray
Tracing using Space Subdivision. In Proceedings of Graph-
ics Interface ’89, pages 152–63, Toronto, Ontario, June 1989.
Canadian Information Processing Society.

[MacDonald90] J. David MacDonald and Kellogg S. Booth. Heuristics for Ray
Tracing using Space Subdivision. Visual Computer, 6(6):153–
65, 1990.

[Möller] Tomas Möller. Practical Analysis of Optimized Ray-
Triangle Intersection. http://www.ce.chalmers.se/staff/-
tomasm/raytri/.

[Möller97] Tomas Möller and Ben Trumbore. Fast, minimum storage ray
triangle intersection. Journal of Graphics Tools, 2(1):21–28,
1997.

[Pharr97] Matt Pharr, Craig Kolb, Reid Gershbein, and Pat Hanrahan.
Rendering Complex Scenes with Memory-Coherent Ray Trac-
ing. Computer Graphics, 31(Annual Conference Series):101–
108, August 1997.

[Shirley03] Peter Shirley and R. Keith Morley. Realistic Ray Tracing. A
K Peters, Second edition, 2003. ISBN 1-56881-198-5.

[Shoemake98] Ken Shoemake. Pluecker Coordinate Tutorial. Ray Tracing
News, 1998. http://www.acm.org/tog/resources/RTNews/-
html/rtnv11n1.html#art3.

[Subramanian90] K. R. Subramanian. A Search Structure based on K-d Trees
for Efficient Ray Tracing. PhD thesis, The University of Texas
at Austin, December 1990.

[Wald01] Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus
Wagner. Interactive Rendering with Coherent Ray Tracing.
Computer Graphics Forum, 20(3):153–164, 2001. (Proceed-
ings of Eurographics).

[Wald03] Ingo Wald, Timothy J. Purcell, Jörg Schmittler, Carsten Ben-
thin, and Philipp Slusallek. Realtime Ray Tracing and its use
for Interactive Global Illumination. In Eurographics State of
the Art Reports, 2003.

34

[Wald04] Ingo Wald. Realtime Ray Tracing and Interactive Global
Illumination. PhD thesis, Computer Graphics Group,
Saarland University, 2004. Available at http://www.mpi-
sb.mpg.de/∼wald/PhD/.

[Woop05] Sven Woop, Joerg Schmittler, and Philipp Slusallek. RPU: A
Programmable Ray Processing Unit for Realtime Ray Trac-
ing. Proceedings of ACM SIGGRAPH, (to appear), 2005.

35

Efficiency Issues for Ray Tracing

Brian Smits
�

University of Utah

February 19, 1999

Abstract

Ray casting is the bottleneck of many rendering algorithms. Although much
work has been done on making ray casting more efficient, most published work
is high level. This paper discusses efficiency at a slightly lower level, presenting
optimizations for bounding volume hierarchies that many people use but are rarely
described in the literature. A set of guidelines for optimization are presented that
avoid some of the common pitfalls. Finally, the effects of the optimizations are
shown for a set of models.

1 Introduction

Many realistic rendering systems rely on ray casting algorithms for some part of their
computation. Often, the ray casting takes most of the time in the system, and signifi-
cant effort is usually spent on making it more efficient. Much work has been done and
published on acceleration strategies and efficient algorithms for ray casting, the main
ideas of which are summarized in Glassner [5]. In addition, many people have devel-
oped optimizations for making these algorithms even faster. Much of this work remains
unpublished and part of oral history. This paper is an attempt to write down some of
these techniques and some higher level guidelines to follow when trying to speed up
ray casting algorithms. I learned most of the lessons in here the hard way, either by
making the mistakes myself, or by tracking them down in other systems. Many of the
observations in here were confirmed by others.

This paper will discuss some mid-level optimization issues for bounding volume
hierarchies. The ray casting algorithm uses the hierarchy to determine if the ray in-
tersects an object. An intersection involves computing the distance to the intersection
and the intersection point as well as which object was hit. Sometimes it includes com-
puting surface normal and texture coordinates. The information computed during an
intersection is sometimes called the hit information. In ray tracing based renderers,
rays from the eye are called primary rays. Reflected and transmitted rays are known
as secondary rays. Together, these rays are called intersection rays. Rays from hits to
lights to determine shadowing are called shadow rays.

�

bes@cs.utah.edu

1

2 Principles of Optimization

Optimization can be a seductive activity leading to endless tweaks and changes of code.
The most important part of optimization is knowing when not to do it. Two common
cases are:

� Code or system is not run frequently.

� Code is a small fraction of overall time.

In other words, code should only be optimized if it will make a significant effect on
the final system and the final system will be used frequently enough to justify the
programmer’s time and the chance of breaking something.

It helps to have a set of principles to follow in order to guide the process of opti-
mization. The set I use is:

� Make it work before you make it fast.

� Profile everything you do.

� Complexity is bad.

� Preprocessing is good.

� Compute only what you need.

2.1 Make it Work Before You Make it Fast

Code should be made correct before it is made fast [2]. As stated repeatedly by Knuth
[9] “Premature optimization is the root of all evil”. Obviously, slow correct code is
more useful than fast broken code. There is an additional reason for the rule, though.
If you create a working, unoptimized version first, you can use that as a benchmark
to check your optimizations against. This is very important. Putting the optimizations
in early means you can never be completely sure if they are actually speeding up the
code. You don’t want to find out months or years later that your code could be sped up
by removing all those clever optimizations.

2.2 Profile Everything You Do

It is important to find out what the bottleneck is before trying to remove it. This is
best done by profiling the code before making changes [3]. The best profilers give time
per line of code as well as per function. They also tell you how many times different
routines are called. Typically what this will tell you is that most of the time is spent
intersecting bounding boxes, something that seems to be universally true. It also can
tell you how many bounding boxes and primitives are checked.

Like many algorithms, the speed will vary based on the input. Obviously large data
sets tend to take more time than small ones, but the structure of the models you use for
benchmarking is also important. Ideally you use a set of models that are characteristic
of the types of models you expect to use.

2

Profiling is especially critical for low-level optimizations. Intuition is often very
wrong about what changes will make the code faster and which ones the compiler was
already doing for you. Compilers are good at rearranging nearby instructions. They
are bad at knowing that the value you are continually reading through three levels of
indirection is constant. Keeping things clean and local makes a big difference. This
paper makes almost no attempt to deal with this level of optimization.

2.3 Complexity is Bad

Complexity in the intersection algorithm causes problems in many ways. The more
complex your code becomes, the more likely it is to behave unexpectedly on new data
sets. Additionally, complexity usually means branching, which is significantly slower
than similar code with few branches. If you are checking the state of something in
order to get out of doing work, it is important that the amount of work is significant
and that you actually get out of doing the work often enough to justify the checks. This
is the argument against the caches used in Section 4.4.

2.4 Preprocessing is Good

In many of the situations where ray casting is used, it is very common to cast hundreds
of millions of rays. This usually takes a much longer time than it took to build the
ray tracing data structures. A large percentage increase in the time it takes to build
the data structures may provide a significant win even if the percentage decrease in
the ray casting time of each ray is much smaller. Ideally you increase the complexity
and sophistication of the hierarchy building stage in order to reduce the complexity
and number of intersections computed during the ray traversal stage. This principle
motivates Section 4.3.

2.5 Compute Only What You Need

There are many different algorithms for many of the components of ray casting. Of-
ten there are different algorithms because different information is needed out of them.
Much of the following discussion will be based on the principle of determining the
minimum amount of information needed and then computing or using that and noth-
ing more. Often this results in a faster algorithm. Examples of this will be shown in
Sections 4.1 and 4.2.

3 Overview of Bounding Volume Hierarchies

A bounding volume hierarchy is simply a tree of bounding volumes. The bounding
volume at a given node encloses the bounding volumes of its children. The bounding
volume of a leaf encloses a primitive. If a ray misses the bounding volume of a par-
ticular node, then the ray will miss all of its children, and the children can be skipped.
The ray casting algorithm traverses this hierarchy, usually in depth first order, and de-
termines if the ray intersects an object.

3

BoundingVolume BuildHierarchy(bvList, start, end, axis)
if(end - start == 0) // only a single bv in list so return it.

return bvList[start]
BoundingVolume parent
foreach bv in bvList

expand parent to enclose bv
sort bvList along axis
axis = next axis
parent.AddChild(BuildHierarchy(bvList, start, (start + end) / 2, axis)
parent.AddChild(BuildHierarchy(bvList, 1 + (start + end) / 2, end, axis)
return parent

Figure 1: Building a bounding volume hierarchy recursively.

There are several ways of building bounding volume hierarchies [6, 10]. The sim-
plest way to build them is to take a list of bounding volumes containing the primitives
and sort along an axis[8]. Split the list in half, put a bounding box around each half, and
then recurse, cycling through the axes as you recurse. This is expressed in pseudocode
in Figure 1. This method can be modified in many ways to produce better hierarchies.
A better way to build the hierarchy is to try to minimize the cost functions described
by Goldsmith and Salmon [6].

4 Optimizations for Bounding Volume Hierarchies

4.1 Bounding Box Intersections

Intersecting rays with bounding volumes usually accounts for most of the time spent
casting rays. This makes bounding volume intersection tests an ideal candidate for
optimization. The first issue is what sort of bounding volumes to use. Most of the
environments I work with are architectural and have many axis-aligned planar surfaces.
This makes axis-aligned bounding boxes ideal. Spheres tend not to work very well for
this type of environment.

There are many ways to represent and intersect an axis-aligned bounding box. I
have seen bounding box code that computed the intersection point of the ray with the
box. If there was an intersection point, the ray hits the box, and if not, the ray misses.
There are optimizations that can be made to this approach, such as making sure you
only check faces that are oriented towards the ray, and taking advantage of the fact that
the planes are axis aligned [11]. Still, the approach is too slow. The first hint of this
is that the algorithm computes an intersection point. We don’t care about that, we just
want a yes or no answer. Kay [8] represented bounding volumes as the intersection
of a set of slabs (parallel planes). A slab is stored as a direction,

���
, and an interval,� �

, representing the minimum and maximum value in that direction, effectively as two
plane equations. The set of slab directions is fixed in advance. In my experience, this
approach is most effective when there are three, axis aligned, slab directions. This is
just another way of storing a bounding box, we store minimum and maximum values

4

bool RaySlabsIntersection(ray, bbox)
Interval inside = ray.Range()
for i in (0,1,2)

inside = Intersection(inside,(slab[i].Range()-ray.Origin[i])/ray.Direction[i])
if(inside.IsEmpty())

return false
return true

Figure 2: Pseudocode for intersecting a ray with a box represented as axis aligned
slabs.

along each axis.
Given this representation, we can intersect a bounding box fairly efficiently. We

show this in pseudocode in Figure 2. This code isn’t as simple as it looks due to the
comparisons of the IsEmpty and Intersection functions and the need to reverse the min
and max values of the interval when dividing by a negative number, but it is still much
faster than computing the intersection point with the box.

One important thing to notice about this representation and this intersection code
is that it gives the right answer when the ray direction is 0 for a particular component.
In this case the ray is parallel to the planes of the slab. The divide by zero gives either�����������	�

or
��
����

��	�

when the ray is outside the slab and
�������

��	�

when the
ray is inside. This saves additional checks on the ray direction.

4.2 Intersection Rays versus Shadow Rays

It is important to know what kind of information you need from the ray casting algo-
rithm in order to keep from doing more work than necessary. There are three com-
monly used ray casting queries: closest hit, any hit, and all hits. Closest hit is used to
determine the first object in a given direction. This query is usually used for primary,
reflected, and transmitted rays. Any hit is used for visibility tests between two points.
This is done when checking to see if a point is lit directly by a light and for visibility
estimation in radiosity algorithms. The object hit is not needed, only the existence of
a hit. All hits is used for evaluating CSG models directly. The CSG operations are
performed on the list of intervals returned from the all hits intersection routine.

For efficiency reasons it is important to keep these queries separate. This can be
seen by looking at what happens when using the most general query, all hits, to im-
plement the others. Any hit will simply check to see if the list of intersections is
empty. Clearly we computed more than we needed in this case. Closest hit will sort
the list and return the closest intersection. It may seem as if the same or more work
is needed for this query, however this is usually not the case. With most ray tracing
efficiency schemes, once an intersection is found, parts of the environment beyond the
intersection point can be ignored. Finding intersections usually speeds up the rest of
the traversal. Also, the list of hit data does not need to be maintained.

Shadow (any hit) rays are usually the most common type of rays cast, often ac-
counting for more than 90 percent of all rays. Because of this, it is worth considering
how to make them faster than other types of rays. Shadow rays need not compute any

5

A

B
C

D E F

A

B

D

E

F

C

A

B
C

D E F

Figure 3: Three different representations for a tree. (a) Children pointers. (b) Left
child, right sibling, parent pointers. (c) Array in depth-first order with skip pointers.

of the commonly needed intersection information, such as intersection point, surface
normal, uv coordinates, or exact object hit. Additionally, the traversal of the efficiency
structure can be terminated immediately once an intersection is guaranteed. A special
shadow routine taking these factors into account can make a significant difference in
efficiency.

The difference between shadow rays and intersection rays determined which accel-
eration scheme I use. I have tried both grids [4] and bounding volume hierarchies. In
my experience (based on models I typically render) grids are a little faster on intersec-
tion rays (closest hit) and slower for shadow rays (any hit). Grids sort the environment
spatially, which is good for finding the closest intersection. The bounding volume hi-
erarchies built by trying to minimize Goldsmith and Salmon’s cost function [6] tend to
keep larger primitives near the root, which is good for shadow rays. It is still unknown
as to which acceleration scheme is better, and it is almost certainly based on the model.

4.3 Traversal Code

Casting a ray against a bounding volume hierarchy requires traversing the hierarchy. If
a ray hits a bounding volume, then the ray is checked against the children of the bound-
ing volume. If the bounding volume is a leaf, then it has an object inside it, and the
object is checked. This is done in depth-first order. Once bounding volume intersection
tests are as fast as they can be, the next place for improvement is the traversal of the
hierarchy. Traversal code for shadow rays will be used in the following discussion.

In 1991, Haines[7] published some techniques for better traversals. Several of these
techniques used extra knowledge to mark bounding boxes as automatically hit and to
change the order of traversal. In my experience these methods do not speed up the ray
tracer and greatly increase the complexity of the code. This difference in experience
may be due to changes in architecture over the last 8 years that make branches and
memory accesses instead of floating point the bottleneck. It may also be due to faster
bounding box tests. I have found that the best way to make the traversal fast is to make
it as minimal as possible.

The simplest traversal code is to use recursion to traverse the tree in depth-first or-
der. Figure 3(a) shows a hierarchy of bounding boxes. Depth first traversal means that
bounding box A is tested, then box B, then the boxes with primitives D, E, and F. The
idea is to find an intersection as soon as possible by traveling down into the tree. The

6

TreeShadowTraversal(ray, bvNode)
while(true) // termination occurs when bvNode � GetParent() is NULL

if(bvNode � Intersect(ray))
if(bvNode � HasPrimitive())

if(bvNode � Primitive().Intersect(ray))
return true

else
bvNode = bvNode � GetLeftChild()
continue

while(true)
if(bvNode � GetRightSibling() != NULL)

bvNode = bvNode � GetRightSibling()
break

bvNode = bvNode � GetParent()
if(bvNode == NULL)

return false

Figure 4: Traversal of bounding volume tree using left child, right sibling, parent struc-
ture.

biggest problem with this is the function call overhead. The compiler maintains much
more state information than we need here. We can eliminate much of this overhead by
changing our representation of the tree. A representation that works well is to store the
left-most child, the right sibling, and the parent for each node, as in Figure 3. Using
this representation we can get rid of the recursion by following the appropriate pointers.
If the ray intersects the bounding box, we get to its children by following the left-most
child link. If the ray misses, we get to the next node by following the right sibling link.
If the right sibling is empty, we move up until either there is a right sibling, or we get
back up to the root, as shown in pseudocode in Figure 4.

This tree traversal also does too much work. Notice that when the traversal is at
a leaf or when the ray misses a bounding volume, we compute the next node. The
next node is always the same, there is no reason to be computing it for each traversal.
We can pre-compute the node we go to when we skip this subtree and store this skip
node in each node. This step eliminates all computation of traversal related data from
the traversal. There are still intersection computations, but no extra computation for
determining where to go. This is expressed in pseudocode in Figure 5

The final optimization is the recognition that we only need to do depth-first traver-
sals on the tree once it is built. This observation lets us store the tree in an array in
depth-first order as in Figure 3. If the bounding volume is intersected, the next node to
try is the next node in the array. If the bounding volume is missed, the next node can be
found through the skip mechanism. We have effectively thrown out all the information
we don’t need out of the tree, although it is still possible to reconstruct it. The traversal
code can be seen in Figure 6.

The array traversal approach works significantly better than the previous one, and
has a couple subtle advantages. The first is better memory usage. In addition to the

7

SkipTreeShadowTraversal(ray, bvNode)
while(bvNode != NULL)

if(bvNode � Intersect(ray))
if(bvNode � HasPrimitive())

if(bvNode � Primitive().Intersect(ray))
return true

bvNode = bvNode � SkipNode()
else

bvNode = bvNode � GetLeftChild()
else

bvNode = bvNode � SkipNode()
return false

Figure 5: Traversal of bounding volume tree using left child, and skip pointers.

ArrayShadowTraversal(ray, bvNode)
stopNode = bvNode � GetSkipNode()
while(bvNode � stopNode)

if(bvNode � Intersect(ray))
if(bvNode � HasPrimitive())

if(bvNode � Primitive().Intersect(ray))
return true

bvNode++
else

bvNode = bvNode � GetSkipNode()
return false

Figure 6: Traversal of bounding volume tree stored as an array in depth-first order.

bounding volume, this method requires only a pointer to a primitive and a pointer to
the skip node. This is very minimal. Since the nodes are arranged in the order they
will be accessed in, there is more memory coherency for large environments. The
second advantage is that this method requires copying data from the original tree into
an array. Since the original tree is going to be thrown out, it can be augmented with
extra information. Depending upon how the tree is created, this extra information can
more than double the cost of each node. Now there is no penalty for this information.
Storing the extra information can reduce the time to build the tree and more importantly
can result in better trees. The fastest bounding volume test is the one you don’t have to
do.

4.4 Caching Objects

One common optimization is the use of caches for the object most recently hit. This
optimization and variations on it were discussed by Haines[7]. The idea is that the next
ray cast will be similar to the current ray, so keep the intersected object around and
check it first the next time. To the extent that this is true, caches can provide a benefit,

8

however rays often differ wildly. Also, cache effectiveness decreases as the size of the
primitives get smaller. The realism of many types of models is increased by replacing
single surfaces with many surfaces. Now caches will remain valid for a shorter amount
of time.

There are two different types of caches, those for intersection (closest hit) rays and
those for shadow (any hit) rays. If caches are used for intersection rays, the ray will still
need to be checked against the environment to see if another object is closer. Usually
the ray will again be checked against whatever object is in the cache. Mailboxes [1]
can eliminate this second check (by marking each tested object with a unique ray id
and then checking the id before testing the primitive). Mailboxes, however, create
problems when making a parallel version of the code. Depending on the environment
and the average number of possible hits per ray, the cache may reduce the amount of the
environment that must be checked by shortening the ray length. In my experience, the
cost of maintaining the cache and the double intersection against an object in it more
than outweighs the benefit of having a cache. If your primitives are very expensive and
your environments are dense, the benefit of reducing the length of the ray early may
outweigh the costs, but it is worth checking carefully.

Evaluating the benefit of caches for shadow rays is more complicated. In cases
where there is a single light, there tends to be a speedup as long as the cache remains
full much of the time and the objects in it stay there for a long enough time. In cases
where there are multiple lights we often lose shadow ray coherence because the lights
are in different regions of the environment. Now each shadow ray is significantly
different from the previous one. A solution for this is to have a different cache for
each light.

For both types of caches, we have ignored what happens for reflected and transmit-
ted rays. These rays are spatially very different from primary rays and from each other.
Each additional bounce makes the problem much worse. If rays are allowed to bounce�

times, there are �������
�	�

different nodes in the ray tree. In order for caching to be
useful, a separate cache needs to be associated with each node. For shadow rays, that
means a separate cache for each light at each node This can increase the complexity
of the code significantly. Another option is to store a cache for each light on each ob-
ject (or collection of objects) in the environment as discussed by Haines[7]. Note that
caching only helps when there is an object in the cache. If most shadow rays won’t hit
anything (due to the model or the type of algorithm using the shadow tests) then the
cache is less likely to be beneficial. In my experience, shadow caching wasn’t a sig-
nificant enough gain, so I opted for simplicity of code and removed it, although after
generating the data for the result section I am considering putting it back in for certain
situations. Others have found that caches are still beneficial.

5 Results

Now we look at the cumulative effects for shadow rays of the three main optimizations
described in the paper. First we speed up bounding box tests. Next we speed up the
traversal using the different methods from Section 4.3. We then treat shadow rays
differently from intersection rays and lastly we add a shadow cache. In all of the

9

1 2 3 4 5 6 7 8
theater 64 36 30 21 22 11 10 6
lab 79 41 32 22 20 12 12 7
10,000 small 415 223 191 142 110 48 50 27
10,000 mid 392 185 154 103 81 77 79 65
10,000 big 381 179 152 104 82 79 77 69
100,000 small 995 620 550 449 351 62 63 33
100,000 mid 932 473 424 324 230 146 148 89
100,000 big 1024 508 442 332 240 210 212 156
300,000 mid 1093 597 536 421 312 120 121 64

Table 1: Results of the different experiments described in the text on different environ-
ments. Times rounded to the nearest second.

experiments 1,000,000 rays are generated by choosing random pairs of points from
within a bounding box 20% larger than the bounding box of the environment. In the
last experiment, 500,000 rays are generated, each generated ray is cast twice, resulting
in 1,000,000 rays being cast overall. The first two test cases are real environments, the
rest are composed of randomly oriented and positioned unit right triangles. The number
gives the number of triangles. Small, mid, and big refer to the space the triangles fill.
Small environments are 20 units cubed, mid are 100 units cubed, and big are 200 units
cubed. The theater model has 46502 polygons. The science center model has 4045
polygons. The code was run on an SGI O2 with a 180 MHz R5000 using the SGI
compiler with full optimization turned on1. No shading or other computation was done
and time to build the hierarchies was not included.

The experiments reported in Table 1 are explained in more detail below:

1. Bounding box test computes intersection point, traversal uses recursion, and
shadow rays are treated as intersection rays.

2. Bounding box test replaced by slab version from Section 4.1.

3. Recursive traversal replaced by iterative traversal using left child, right sibling,
and parent pointers as in Section 4.3.

4. Skip pointer used to speed up traversal as in Section 4.3.

5. Tree traversal replaced by array traversal as in Section 4.3.

6. Intersection rays replaced by shadow rays as in Section 4.2.

7. Shadow caching used as in Section 4.4.

8. Shadow caching used, but each ray checked twice before generating a new ray.
The same number of checks were performed.

1-Ofast=ip32 5k

10

The first thing to notice is that real models require much less work than random
polygons. This is because the polygons are distributed very unevenly and vary greatly
in size. The theater has a lot more open space and even more variation in polygon size
than the lab, resulting in many inexpensive rays and a faster average time. In spite
of this, the results show very similar trends for all models. In the first 5 experiments
we haven’t used any model-specific knowledge, we have just reduced the amount of
work done. Special shadow rays and caching are more model specific. Shadow rays
are more effective when there are many intersections along the ray and are almost the
same when there is zero or one intersection. Shadow caching is based on ray coherence
and the likelihood of having an intersection. In experiment 7 there is an unrealistically
low amount of coherence (none). In experiment 8 we guaranteed that there would be
significant coherence by casting each ray twice.

6 Conclusions

The optimization of ray casting code is a double-edged sword. With careful profiling
it can result in significant speedups. It can also lead to code that is slower and more
complicated. The optimizations presented here are probably fairly independent of the
computer architecture. There are plenty of significant lower level optimizations that
can be made which may be completely dependent upon the specific platform. If you
plan on porting your code to other architectures, or even keeping your code for long
enough that the architecture changes under you, these sorts of optimizations should be
made with care.

Eventually you get to a point where further optimization makes no significant dif-
ference. At this point you have no choice but to go back and try to create better trees
requiring fewer primitive and bounding box tests, or to look at entirely different accel-
eration strategies. Over time, the biggest wins come from better algorithms, not better
code tuning.

The results presented here should be viewed as a case study. They describe some
of what has worked for me on the types of models I use. They may not be appropriate
for the types of models you use.

7 Acknowledgments

Thanks to Peter Shirley, Jim Arvo, and Eric Haines for many long discussions on ray
tracing. Thanks to Peter and Eric for encouraging me to write up these experiences,
and to both of them and Bill Martin for helpful comments on the paper. This work was
partially funded by Honda and NSF grant ACI-97-20192.

References

[1] ARNALDI, B., PRIOL, T., AND BOUATOUCH, K. A new space subdivision
method for ray tracing CSG modelled scenes. The Visual Computer 3, 2 (Aug.
1987), 98–108.

11

[2] BENTLEY, J. L. Writing Efficient Programs. Prentice-Hall, Englewood Cliffs,
NJ, 1982.

[3] BENTLEY, J. L. Programming Pearls (reprinted with corrections). Addison-
Wesley, Reading, MA, USA, 1989.

[4] FUJIMOTO, A., TANAKA, T., AND IWATA, K. Arts: Accelerated ray-tracing
system. IEEE Computer Graphics and Applications (Apr. 1986), 16–26.

[5] GLASSNER, A., Ed. An Introduction to Ray Tracing. Academic Press, 1989.

[6] GOLDSMITH, J., AND SALMON, J. Automatic creation of object hierarchies for
ray tracing. IEEE Computer Graphics and Applications 7, 5 (May 1987), 14–20.

[7] HAINES, E. Efficiency improvements for hierarchy traversal. In Graphics Gems
II, J. Arvo, Ed. Academic Press, San Diego, 1991, pp. 267–273.

[8] KAY, T. L., AND KAJIYA, J. T. Ray tracing complex scenes. In Computer
Graphics (SIGGRAPH ’86 Proceedings) (Aug. 1986), D. C. Evans and R. J.
Athay, Eds., vol. 20, pp. 269–278.

[9] KNUTH, D. E. Literate Programming. CSLI Lecture Notes Number 27. Stan-
ford University Center for the Study of Language and Information, Stanford, CA,
USA, 1992.

[10] RUBIN, S. M., AND WHITTED, T. A 3-dimensional representation for fast ren-
dering of complex scenes. Computer Graphics 14, 3 (July 1980), 110–116.

[11] WOO, A. Fast ray-box intersection. In Graphics Gems, A. S. Glassner, Ed.
Academic Press, San Diego, 1990, pp. 395–396.

12

M

V0

V1

V2

V2 0

V1 0

1

1

u

v

O

0

translation

M 0]D

Fast 3D Triangle-Box Overlap Testing

Tomas Akenine-Möller∗

Department of Computer Engineering,

Chalmers University of Technology

March 2001, updated June 2001

Abstract

A fast routine for testing whether a triangle and a box are overlapping
in three dimensions is presented. The test is derived using the separating
axis theorem, whereafter the test is simplified and the code is optimized
for speed. We show that this approach is 2.3 vs. 3.8 (PC vs. Sun) times
faster than previous routines for this. It can be used for faster collision
detection and faster voxelization in interactive ray tracers. The code is
available online.

1 Introduction

Testing whether a triangle overlaps a box is an important routine to have in a
graphics programmer’s toolbox. For example, the test can be used to voxelize
triangle meshes in ray tracers, and it can be used in collision detection algorithms
that are based on boxes [3]. Gottschalk et al’s collision detection framework only
used OBB/OBB tests and triangle-triangle tests. However, it has been noted
that both memory and speed can be gained [7] by not having an OBB around
each triangle, and instead test a triangle against an OBB.

Previously, Voorhies has presented code for testing a triangle against a unit
cube centered at the origin [8]. His test tries to eliminate work by doing some
simple acceptance/rejection tests early on, and then testing each triangle edge
for intersection with the cube faces. Finally, he checks whether the interior of
the triangle is penetrated by the cube. Green and Hatch [4] improve on the
efficiency of Voorhies’ work and generalize it to handle arbitrary polygons as
well. They also use fast acceptance/rejectance tests, but recast the testing of
an edge against the cube into testing a point against a skewed rhombic dodec-
ahedron, which is more robust. Finally, they test whether one diagonal of the
cube intersect the polygon, which further improves the efficiency.

∗Previously known as Tomas Möller.

1

2 Derivation and Optimization

Our test is derived from the separating axis theorem (SAT) [1, 3, 6]. The theorem
states that two convex polyhedra, A and B, are disjoint if they can be separated
along either an axis parallel to a normal of a face of either A or B, or along an
axis formed from the cross product of an edge from A with and edge from B.

We focus on testing an axis-aligned bounding box (AABB), defined by a
center c, and a vector of half lengths, h, against a triangle ∆u0u1u2. To
simplify the tests, we first move the triangle so that the box is centered around
the origin, i.e., vi = ui − c, i ∈ {0, 1, 2}. To test against an oriented box, we
would first rotate the triangle vertices by the inverse box transform, then use
the presented test. Based on SAT, we test the following 13 axes:

u0 u1

u2

zh

yh

hx
0f v1

1f

2v
2f

v0

n

0

e1

2e
e

z

x

y

c

Figure 1: Notation used for the triangle-box overlap test. To the left the inital
position of the box and the triangle is shown, while at the right, the box and
the triangle has been translated so that the box center coincides with the origin.

1. [3 tests] e0 = (1, 0, 0), e1 = (0, 1, 0), e2 = (0, 0, 1) (the normals of the
AABB). Test the AABB against the minimal AABB around the triangle.

2. [1 test] n, the normal of ∆. We use a fast plane/AABB overlap test [5, 6],
which only tests the two diagonal vertices, whose direction is most closely
aligned to the normal of the triangle.

3. [9 tests] aij = ei × fj , i, j ∈ {0, 1, 2}, where f0 = v1 − v0, f1 = v2 − v1,
and f2 = v0 − v2. These tests are very similar and we will only show the
derivation of the case where i = 0 and j = 0 (see below).

If all tests pass, i.e., there is no separating axis, then the triangle overlaps the
box. Also, as soon as a separating axis is found the the algorithm terminates
and returns “no overlap”.

Next, we derive one of the nine tests, where i = 0 and j = 0, in bullet 3
above. This means that a00 = e0 × f0 = (0,−f0z, f0y). So, now we need to

2

project the triangle vertices onto a00 (hereafter called a):

p0 = a · v0 = (0,−f0z, f0y) · v0 = v0zv1y − v0yv1z

p1 = a · v1 = (0,−f0z, f0y) · v1 = v0zv1y − v0yv1z = p0

p2 = a · v2 = (0,−f0z, f0y) · v2 = (v1y − v0y)v2z − (v1z − v0z)v2y

(1)

Normally, we would have had to find min(p0, p1, p2) and max(p0, p1, p2), but
fortunately p0 = p1, which simplify the computations a lot. Now we only
need to find min(p0, p2) and max(p0, p2), which is significantly faster because
conditional statements are expensive on modern CPUs.

After the projection of the triangle onto a, we need to project the box onto
a as well. We compute a “radius”, called r, of the box projected on a as

r = hx|ax|+ hy|ay|+ hz|az| = hy|ay|+ hz|az| (2)

where the last step comes from that ax = 0 for this particular axis. Then this
axis test becomes:

if(min(p0, p2) > r or max(p0, p2) < −r) return false; (3)

Now, if all these 13 tests pass, then the triangle overlaps the box.

3 Performance Evaluation

To evaluate performance, we used the same test as Voorhies [8], i.e., we randomly
select the triangle vertices inside a 4 × 4 × 4 cube centered around the origin
and the AABB is the unit cube: from (−0.5,−0.5,−0.5) to (0.5, 0.5, 0.5). To
get accurate timings we randomly selected 100, 000 triangles and tested these
in a sequence 100 times. We verified that our code generated the same result as
Green and Hatch [4], and compared runtimes (we did not test against Voorhies
code since that was found to be incorrect [2]).

On a Sun Sparc Ultra 10 at 333 MHz, the presented code was 3.8 times
faster on average in this test1. On a Linux PC with a 1333 MHz AMD Athlon,
the speed up was found to be 2.32. Also, the best order to perform the tests on
the Sun was found to be: 3, 1, and finally 2 (the most expensive). On the PC,
the order did not matter significantly.

Note that Green and Hatch’s code handles the more general case of testing
a general polygon against a cube, while we only test a triangle against a cube,
and hence we can expect some degradation in performance due to this.

The only place, where there is a robustness issue, is when the normal of the
triangle is computed; n = f0 × f1. If the triangle has an area close to zero, then
the normal calculation is not robust, and our code does not solve that problem.
However, in most applications thin long triangles are best avoided.

We have used the code for fast voxelization in a ray tracer, and it has been
used in a 3D engine [7].

1Our code was compiled using gcc, and Green and Hatch’s code was compiled using Sun’s

cc, because the runtimes were best for the different routines like that.
2Compiled with gcc -O9 -fomit-frame-pointer -funroll-loops -march=athlon.

3

4 Acknowledgement

Thanks to Pierre Terdiman for suggesting different ways to optimize the code,
and for trying the code in his game engine. Thanks to Peter Rundberg for let-
ting me use his PC for timings.

Code is available at: http://www.acm.org/jgt/AkenineMoller01/

References

[1] Eberly, David, 3D Game Engine Design: A Practical Approach to Real-
Time Computer Graphics, Morgan Kaufmann Publishers Inc., San Fran-
cisco, 2000. http://www.magic-software.com/

[2] Graphics Gems III Errata Listing, http://www.graphicsgems.org/

[3] Gottschalk, S., M.C. Lin, and D. Manocha, “OBBTree: A Hierarchical
Structure for Rapid Interference Detection,” Computer Graphics (SIG-
GRAPH ’96 Proceedings), pp. 171–180, August, 1996. http://www.cs.unc.
edu/~geom/OBB/OBBT.html

[4] Green, D. and D. Hatch, “Fast Polygon-Cube Intersection Testing,” in Alan
Paeth, ed., Graphics Gems V, AP Professional, Boston, pp. 375–379, 1995.
http://www.graphicsgems.org/

[5] Haines, Eric, and John Wallace, “Shaft Culling for Efficient Ray-Traced
Radiosity,” in P. Brunet and F.W. Jansen, eds., Photorealistic Rendering in
Computer Graphics (Proceedings of the Second Eurographics Workshop on
Rendering), Springer-Verlag, New York, pp. 122–138, 1994. http://www.
acm.org/tog/editors/erich/

[6] Möller, Tomas, and Eric Haines, Real-Time Rendering, AK Peters Ltd.,
Natick, MA, 1999. http://www.realtimerendering.com/

[7] Terdiman, Pierre, Personal communication, 2001.

[8] Voorhies, Douglas, “Triangle-Cube Intersection,” in David Kirk, ed., Graph-
ics Gems III, AP Professional, Boston, pp. 236–239, 1992. http://www.
graphicsgems.org/

4

Vol. 10, No. 1: 55–60

An Efficient and Robust
Ray-Box Intersection Algorithm

Amy Williams, Steve Barrus, R. Keith Morley, and Peter Shirley
University of Utah

Abstract. The computational bottleneck in a ray tracer using bounding volume

hierarchies is often the ray intersection routine with axis-aligned bounding boxes.

We describe a version of this routine that uses IEEE numerical properties to ensure

that those tests are both robust and efficient. Sample source code is available online.

1. Introduction

Naive implementations of ray-box intersection algorithms can have numerical
problems for rays that have slopes near zero along any axis. Smits [Smits 98]
pointed out that properties given in the IEEE floating point standard [IEEE
85] can be used to avoid explicit tests for these values, but did not provide
the implementation details. The following is an implementation of Smits’
algorithm. It expects a box with ordered corners min and max, a ray r,
and a valid intersection interval of (t0, t1) to be given. We assume that
the Vector3 and Ray classes are implemented; their usages below should be
obvious.

class Box {

public:

Box(const Vector3 &min, const Vector3 &max) {

assert(min < max);

bounds[0] = min;

bounds[1] = max;

}

© A K Peters, Ltd.

55 1086-7651/04 $0.50 per page

56 journal of grpahics tools

bool intersect(const Ray &, float t0, float t1) const;

Vector3 bounds[2];

};

// Smits’ method

bool Box::intersect(const Ray &r, float t0, float t1) const {

float tmin, tmax, tymin, tymax, tzmin, tzmax;

if (r.direction.x() >= 0) {

tmin = (bounds[0].x() - r.origin.x()) / r.direction.x();

tmax = (bounds[1].x() - r.origin.x()) / r.direction.x();

}

else {

tmin = (bounds[1].x() - r.origin.x()) / r.direction.x();

tmax = (bounds[0].x() - r.origin.x()) / r.direction.x();

}

if (r.direction.y() >= 0) {

tymin = (bounds[0].y() - r.origin.y()) / r.direction.y();

tymax = (bounds[1].y() - r.origin.y()) / r.direction.y();

}

else {

tymin = (bounds[1].y() - r.origin.y()) / r.direction.y();

tymax = (bounds[0].y() - r.origin.y()) / r.direction.y();

}

if ((tmin > tymax) || (tymin > tmax))

return false;

if (tymin > tmin)

tmin = tymin;

if (tymax < tmax)

tmax = tymax;

if (r.direction.z() >= 0) {

tzmin = (bounds[0].z() - r.origin.z()) / r.direction.z();

tzmax = (bounds[1].z() - r.origin.z()) / r.direction.z();

}

else {

tzmin = (bounds[1].z() - r.origin.z()) / r.direction.z();

tzmax = (bounds[0].z() - r.origin.z()) / r.direction.z();

}

if ((tmin > tzmax) || (tzmin > tmax))

return false;

if (tzmin > tmin)

tmin = tzmin;

if (tzmax < tmax)

tmax = tzmax;

return ((tmin < t1) && (tmax > t0));

}

Williams et al.: An Efficient and Robust Ray-Box Intersection Algorithm 57

Note that the reason we check the sign of each component direction is to
ensure that the intervals produced are ordered (i.e., so that tmin <= tmax
is true). This property is assumed throughout the code, and allows us to
reason about whether the computed intervals overlap. Note also that since
IEEE arithmetic guarantees that a positive number divided by zero is +∞
and a negative number divided by zero is −∞, the code works for vertical and
horizontal lines (see [Shirley 02] for a detailed discussion).

2. Improved Code

The code from the previous section works correctly for almost all values, but
there is a problem if r.direction.x() == -0.0 In this case, the first if state-
ment will be true (-0 == 0 is true in IEEE floating point), and instead of the
resulting interval being (−∞,+∞), it will be the degenerate (+∞,−∞). The
same problem appears when either r.direction.y() or r.direction.z()
are -0.0. When such a degenerate interval is obtained, the function will re-
turn false. The algorithm therefore fails to detect a valid intersection in this
situation. While this scenario may seem unlikely, negative zeroes can arise in
practice, and indeed have in our applications, which is how we discovered this
problem. Note how easy it is to generate a negative zero:

float u = -2.0;

float v = 0.0;

float w = u*v; // w is now negative zero

Many implementations of ray-box intersection replace the two divides in each
if clause with a single divide and two multiplies:

divx = 1 / r.direction.x();

tmin = (bounds[0].x() - r.origin.x()) * divx;

tmax = (bounds[1].x() - r.origin.x()) * divx;

This is done because the two multiplies are usually faster than the single
divide they replace, but it also allows a way out of the negative zero problem.
divx captures the sign of r.direction.x() even when it is zero: 1 / 0.0 =
+∞ and 1 / -0.0 = −∞. The updated algorithm for the x component (y
and z are analogous) is:

// Improved method for x component

divx = 1 / r.direction.x();

if (divx >= 0) {

tmin = (bounds[0].x() - r.origin.x()) * divx;

tmax = (bounds[1].x() - r.origin.x()) * divx;

}

58 journal of grpahics tools

else {

tmin = (bounds[1].x() - r.origin.x()) * divx;

tmax = (bounds[0].x() - r.origin.x()) * divx;

}

Note that it is important to test the sign of divx rather than r.direction.x()
in order for -0.0 to be properly detected. This does result in an efficiency
penalty on some systems because the evaluation of the if statement must
wait for the result of the divide. Nonetheless, to ensure the correctness of the
ray-box test in all cases, this penalty must be accepted. The code with a test
on divx was first presented by Smits [Smits 02]; although he did not explicitly
state its advantage for handling zeroes, he was probably aware of it because
the associated efficiency penalty makes it otherwise unattractive.

3. Optimizing for Multiple Box Tests

Rays are often tested against numerous boxes in a ray tracer, e.g., when
traversing a bounding volume hierarchy. The above algorithm can be opti-
mized by precomputing values that remain constant in each test. Rather than
computing divx = 1 / r.direction.x() each time a ray is intersected with
a box, the ray data structure can compute and store this and other pertinent
values. Storing the inverse of each component of the ray direction as well
as the boolean value associated with the tests (such as divx >= 0) provides
significant speed improvements. The new code is fairly simple:

class Ray {

public:

Ray(Vector3 &o, Vector3 &d) {

origin = o;

direction = d;

inv_direction = Vector3(1/d.x(), 1/d.y(), 1/d.z());

sign[0] = (inv_direction.x() < 0);

sign[1] = (inv_direction.y() < 0);

sign[2] = (inv_direction.z() < 0);

}

Vector3 origin;

Vector3 direction;

Vector3 inv_direction;

int sign[3];

};

// Optimized method

bool Box::intersect(const Ray &r, float t0, float t1) const {

float tmin, tmax, tymin, tymax, tzmin, tzmax;

Williams et al.: An Efficient and Robust Ray-Box Intersection Algorithm 59

tmin = (bounds[r.sign[0]].x() - r.origin.x())

* r.inv_direction.x();

tmax = (bounds[1-r.sign[0]].x() - r.origin.x())

* r.inv_direction.x();

tymin = (bounds[r.sign[1]].y() - r.origin.y())

* r.inv_direction.y();

tymax = (bounds[1-r.sign[1]].y() - r.origin.y())

* r.inv_direction.y();

if ((tmin > tymax) || (tymin > tmax))

return false;

if (tymin > tmin)

tmin = tymin;

if (tymax < tmax)

tmax = tymax;

tzmin = (bounds[r.sign[2]].z() - r.origin.z())

* r.inv_direction.z();

tzmax = (bounds[1-r.sign[2]].z() - r.origin.z())

* r.inv_direction.z();

if ((tmin > tzmax) || (tzmin > tmax))

return false;

if (tzmin > tmin)

tmin = tzmin;

if (tzmax < tmax)

tmax = tzmax;

return ((tmin < t1) && (tmax > t0));

}

We ran tests to ensure that the multibox optimization did not incur a decrease
in efficiency for the case in which a single box or shallow bounding volume
hierarchy is intersected. Our results show that the optimized method is indeed
faster for both cases. While the runtimes are dependent on processor type and
scene content, we found these timings to be typical for most scene complexities
and architectures.

Scene Smits’ Improved Optimized

method method method

Single box - 1e8 rays 77.78s 71.39s 66.82s

1e6 triangles in BVH - 1e8 rays 1027.43s 961.23 739.21s

Table 1.

60 journal of grpahics tools

In both the single-box and BVH tests approximately half of the rays fired
hit the test object while the other half were near misses. The tests were
performed on a Pentium4 1800 MHz processor.

Acknowledgments. We would like to acknowledge Brandon Mansfield, Steve
Parker, and Erik Reinhard for providing test code. John McCorquodale also pro-
vided some useful information about the speed of float-point multiplies and divides.
Brian Smits’ advocacy for BVH intersection methods and care with IEEE properties
gave us the initial impetus for this work. The anonymous reviewer of the article pro-
vided very helpful comments, and pointed out that the divides could be performed
once for a full hierarchy. This work was partially supported by NSF grant 03-06151.

Web Information:

Sample C++ source code for the optimized method described above is available
online at http://www.acm.org/jgt/WilliamsEtAl05.

References

[IEEE 85] IEEE Standards Association. “IEEE Standard for Binary Floating-Point
Arithmetic.” IEEE Report (New York), ANSI/IEEE Std 754-1985, 1985.

[Shirley 02] Peter Shirley. Fundamentals of Computer Graphics. Wellesley, MA:
A K Peters, Ltd., 2002.

[Smits 98] Brian Smits. “Efficiency Issues for Ray Tracing.” journal of graphics
tools 3:2 (1998), 1–14.

[Smits 02] Brian Smits. “Efficient Bounding Box Intersection.” Ray Tracing News
15:1 (2002).

Amy Williams, University of Utah, Computer Science Department, 50 Central
Campus Drive, Salt Lake City, UT 84112 (amy@mit.edu)

Steve Barrus, University of Utah, Computer Science Department, 50 Central
Campus Drive, Salt Lake City, UT 84112 (email address)

R. Keith Morley, University of Utah, Computer Science Department, 50 Central
Campus Drive, Salt Lake City, UT 84112 (email address)

Peter Shirley, University of Utah, Computer Science Department, 50 Central
Campus Drive, Salt Lake City, UT 84112 (shirley@cs.utah.edu)

Received October 29, 2002; accepted November 6, 2002.

Notes on efficient ray tracing

Solomon Boulos
University of Utah

There are many ways to make your ray tracer faster. If you’re writing an interactive ray tracer, you’ve got
to turn to your bottlenecks in your code and make them scream. You’re probably spending the majority
of your time computing ray-scene intersections (in some applications, ray-scene intersection may not be
the bottleneck, for example Perlin noise is commonly a performance bottleneck for applications that use it
heavily). To speed up ray-scene intersections, you use acceleration structures, but how do you get that extra
factor of two in performance? This document is some informal notes on experience we’ve had at Utah on
this topic. I do not include citations here. For the sources of these techniques see the bibliography for the
chapters from the second edition of Fundamentals of Computer Graphics included in these notes. Several
papers discussing these techniques are also included in these notes.

I cover two different classes of acceleration structures and what you can do to make them even faster:
bounding volume hierarchies (BVHs) and uniform grids (UGs). We do not have as much experience with
BSP trees and interested readers should see the work from the University of Saarland group for BSP tree
implementation techniques. I’ll show code, and discuss the trade-offs involved between each choice. The
code examples from the BVH section are slightly modified versions of code from Realistic Ray Tracing, 2nd
Edition. That original code is available at http://www.cs.utah.edu/˜shirley/galileo/.

Bounding volume hierarchies

A BVH is conceptually simple. It’s a tree of bounding volumes, where a bounding volume is usually an axis
aligned bounding box that encloses all the surfaces you’ve got underneath it in the tree. An example of a
simple BVH class in C++ looks like this:

class BVH : public Surface
{
public:

// Constructors and such here
BBox bbox;
Surface* left;
Surface* right;

};

As you can see, we have a bounding box for our node and pointers to our two children. To build a BVH, you
choose some way to split up a list of primitives into two separate lists and put them into the left and right
children as you see fit while making sure that your bounding box surrounds all the primitives. In C++ you
get something like this:

1

BVH::BVH(Surface** surfaces, int num_surfaces, int axis)
{

if (num_surfaces == 1) { *this = BVH(surfaces[0], surfaces[0], axis); return; }
if (num_surfaces == 2) { *this = BVH(surfaces[0], surfaces[1], axis); return; }

// surround all the objects in the list
bbox = surround(surfaces, num_surfaces);
Vector3 pivot = (bbox.max() + bbox.min()) / 2.0;

// split up the primitives and tell me where the end of the left node is
int mid_point = qsplit(surfaces, num_surfaces, pivot[axis], axis);

// create a new bounding volume
int next_axis = (axis + 1) % 3;
left = buildBranch(surfaces, mid_point, next_axis);
right = buildBranch(&surfaces[mid_point], num_surfaces - mid_point, next_axis);

}

This constructor takes a list of Surface pointers and an axis, and produces a BVH. You include the axis
parameter so you can switch which axis you split the primitives along. The qsplit function called here is
similar to the way a standard qsort works, except that we only have to move objects to one side of a splitting
plane (the pivot point). Again, the choice of construction algorithm is entirely up to you and the performance
of your BVH depends strongly upon it, but it is an open question as to how you might build an optimal BVH
(or at least something that performs really well for a variety of situations). buildBranch is essentially a
copy-and-paste from this default constructor except you can return something other than a BVH pointer for
those first cases (e.g. return surfaces[0] if there is only one object).

One of the nicest things about the BVH is how simple it is to intersect with a ray:

bool BVH::hit(Ray &r, HitRecord& rec, Context& context)
{

if (!(bbox.rayIntersect(r, r.tmin, r.tmax))) return false;

bool isahit1 = left->hit(r, rec, context);
bool isahit2 = right->hit(r, rec, context);
return (isahit1 || isahit2);

}

From this code we can see that we first test a ray against our bounding volume. If we don’t hit the bounding
volume, we immediately return false. If we do hit the bounding volume we recurse. You may have just
realized we’re about to do a lot of bounding box intersection tests. Currently, the best method I know of
asks for a little bit of extra storage in your Ray class but gives a substantial improvement in performance
(Williams et al. 2005). There is also a recent JGT submission discussing a Ray-box test using Plücker
coordinates, but we have not implemented this algorithm ourselves.

So those are the basics of BVH. How do we make it better? Assuming you think your construction is
rock solid, but you just wish the traversal were faster, the first question is probably “why left before right,
why not right before left?” This is a very good question. In fact, if you switch between left and right you’ll
even notice a difference for some scenes. What if we could choose the side based on something we know
about the ray? Since we were already using the Williams bounding box test, which required us to store

2

bitwise values that determined whether or not we are going in the positive or negative x,y and z directions,
we use this to our advantage. The BVH node changes slightly:

class BVH : public Surface
{
public:

// Constructors and such here
BBox bbox;
Surface* child[2];
int split_axis;

};

and the hit function changes similarly:

bool BVH::hit(Ray &r, HitRecord& rec, Context& context)
{

if (!(bbox.rayIntersect(r, r.tmin, r.tmax))) return false;

bool isahit1 = child[r.posneg[(split_axis*2)]]->hit(r, rec, context);
bool isahit2 = child[r.posneg[(split_axis*2)+1]]->hit(r, rec, context);
return (isahit1 || isahit2);

}

Here r.posneg stores a 0 if the ray is moving to the right in that axis and a 1 otherwise. In our experience this
modification gives a non-trivial performance benefit over either static choice (left then right or right then
left). Alternatively, if we switch the order of traversal, we perform worse than either of the static choices.
It should be noted that this modification is essentially an algorithmic change in traversal. You’re trying to
find the earliest intersection in a scene, so this algorithm chooses the node that would be “in your way”. If
you’re going to the right, it first checks the left node, and if you’re going left it first checks the right node.

Other researchers have tried other things like reordering the nodes in depth first search order to ob-
tain higher memory coherence (Smits 1998). There have been other discussions of how to choose a split-
ting axis, but the most commonly used scheme is that shown here: to start with some axis and cycle
through the axes in order. More discussion about these issues can be found in the Ray Tracing News
(http://www.acm.org/tog/resources/RTNews/html/rtn index.html#spatial).

Uniform grids

The UG is also conceptually simple. Take your list of objects, build a big box around them then cut it up
into smaller boxes. When a ray hits your grid, you iteratively traverse your grid using a 3D-DDA algorithm
(Woo 87). Grid traversal has been covered in great detail, and the basic thing to remember to do is to
avoid recomputing anything you don’t need to during the inner most loop. Grid construction has also been
discussed by many researchers and the best resource for any of this is the ray tracing news. Once you’ve got
a basic grid implementation, the question is how to make it faster. First, if you’re adding adding geometry
to grid cells because their bounding boxes overlap, you’re paying a high price without a good reason. Most
likely, your large scene has at least some number of triangles in it. An excellent code for box-triangle overlap
is on Tomas Akenine-Möller’s web site. It is faster and more stable than previous methods and very simple

3

to add to your code library. I strongly recommend that any object you are inserting into your grid is tested to
make sure it actually overlaps your grid cell. This simple change gave a 15-17% boost in performance for a
simple scene with the Stanford bunny. Other Box-object tests also exist, and a list of them can be found on
the Real-Time Rendering website (http://www.realtimerendering.com/int).

Most grid implementations have some sort of way they store their grid data, for example a 3D array
of lists of pointers. In a similar manner to the common Matrix-Matrix multiply optimization, you get very
different results based on how you traverse this data due to the memory layout. If for example, you had a
3D array such as this:

Surface* data[nx][ny][nz];

you would pay very little cost in memory penalties for traversing in the z direction, but a very large cost
for traversing in the x direction (and this only gets worse as your memory requirements increase). In ray
tracing, and more so in path tracing, rays are bouncing in all sorts of directions. You could definitely layout
your memory for a particular view if you wanted to, but doing this for each view is incredibly costly (and
could almost certainly never be done interactively). Instead, it is better to arrange your data in a bricked
fashion so that you never pay a huge cost in stride for any direction you travel. You won’t necessarily do
as well for the rays that would have been at ideal cost, but you won’t do nearly as poorly for the rays that
would have had the worst cost possible.

Again, a lot of improvement can also be gained at the algorithmic level. If we instead use a hierarchy
of uniform grids (unfortunately there is no standard term for this in the literature) we can reduce the size of
the object lists in each cell. Automatically generating a grid to perform well is essentially black magic, but
without any explanation of how to do it, you can achieve up to 40% improvements in run time from simply
building a new uniform grid whenever a cell is too densely populated. For example, if you build a grid by
having a 3D array of lists of object pointers, you could do a pass over the grid after you’ve built it and check
for lists that are say longer than 16 elements. In any such cell, you could take that list of objects and turn
it into a new grid. This would be a particularly simple implementation, and seems to work pretty well in
practice.

Another improvement involves maximizing cache coherence. For example, if you allocate a pointer
for each object as you insert it into the grid, you will cause a large amount of fragmentation within your
grid. If instead in a first pass you created a “grid” holding the number of objects that overlap a cell (instead
of pointers to the objects that will eventually go there) and then allocated a big chunk of memory you can
remove the penalty of fragmentation (you then loop over your grid again plugging in values for the pointers).
This technique may also reduce your construction time despite the two passes due to the reduction in memory
allocation calls (system calls always cost a fortune).

Grids vs BVHs

So the question now is which one to use? Or should you use a BSP? The short answer is that it depends.
The long answer involves explaining what it depends on. The correct answer is that nobody really knows.
But I’ll give the long answer.

There are a few different issues that warrant some (mostly high-level) discussion, including very large
scenes, object distribution and material properties. We’ll talk about each of these issues in turn, and remem-
ber that for the most part this discussion assumes that each of your acceleration structures is implemented
equally well (which may or may not be true in practice as people have very different mileage for each data
structure).

4

Large scenes

Large scenes are those which are simply not possible in a 32-bit address space. A scene including the David
model from Stanford (the model file alone is 1.1GB) would be a good example. In the 64-bit address space
pointers are now 8 bytes long to allow you to address all that memory. The impact for you is that your data
structures may now suddenly require twice as much storage.

Instead of using pointers we can store a list of objects that we wish to access and index into them using
an appropriately sized integer value. For example, as long as you have less than 232 objects in your scene,
you can get away with a simple 4 byte unsigned integer. In the general case, you only need n-bit indices,
where n is such that 2n is greater than the number of objects you need to index. Unless memory was really
tight, I’d recommend sticking with the simple integer.

This brings up a common technique whenever you have lots and lots of instances of a data structure:
make it smaller. For example, a common representation for a KD-Tree node would contain two pointers to
child nodes, an integer for the split axis and a floating point position of the splitting plane. This leads to at
least a 24 byte structure on a 64-bit machine. Ingo Wald has demonstrated a more efficient representation
requiring only 8 bytes of storage. This improves cache line reuse and greatly reduces memory requirements,
and his representation does so without a loss in accuracy.

Object distribution

So let’s say you have a big list of primitives (spheres, polygons, etc), what kind of an acceleration structure
should you put them into? I find this question is best answered by looking at each data structure separately
and then comparing them afterwards.

A BVH is ideal for sparse scenes. When you build a BVH, you have the ability to group the objects into
two separate clusters that may be separated by large portions of space. Also, if the bounding boxes of your
node’s children (the left and right children’s bounding boxes) don’t overlap you can get an instant stopping
criteria. For example, assume that you have a ray entering from the right and some objects clustered as
shown in Figure 1. If you were to test the right box first, you’d find the first intersection and produce a
shorter ray, which would no longer hit the left box. This exit early condition is not possible if the boxes
overlap a lot because even the clipped ray will still hit the other box. So one of the biggest weaknesses of
the BVH is when you have geometry with strong overlap.

What does this mean to you? For a dense mesh, such as the Stanford Buddha, your BVH may not
perform as well as it would for a scene composed with the same number of non-overlapping primitives.
This doesn’t mean it won’t perform pretty well, but there’s definitely room for improvement. The take home
message: BVHs are very natural for sparse scenes, since you can take advantage of early exits but maybe
you should use something else for dense regions of your scene.

In contrast to the BVH, the Uniform Grid is meant for dense data. When you build a uniform grid, you
usually dice up the overall bounding box into equally sized cells, which means that for a sparse scene, you
have a lot of empty cells, which you’ll still end up checking when you go along intersecting (although you
still move pretty quickly through them). Wasting time moving through empty cells, and worse yet spending
any amount of storage on empty cells is a problem for uniform grids. To avoid this problem, you can make
cells bigger so that you jump over more empty space more quickly, but then you have some cells with lots
of primitives inside of them. This problem is commonly referred to as the “teapot in the stadium problem”,
where you have a high resolution version of the Utah teapot in the center of a large low resolution stadium.
This scene would have a very large bounding box, but to obtain a suitable grid resolution for the teapot you
might have to use very small cells.

5

Figure 1: A ray coming from the right should test the right subtree first.

The common solution for this is not to put things into any acceleration structure blindly. Most likely,
you have a high level understanding that your teapot is an object on its own and could make a uniform grid
out of this object and then place the teapot-grid into a BVH in combination with the stadium (thus taking
advantage of the sparse structure of the stadium). How do you do this automatically? There have been lots
of papers, but this is largely an unanswered question. One of the largest barriers to answering the question
is that there isn’t a suitable set of test scenes to test the performance of acceleration structures. The SPD
scenes have been useful as a a ray tracing benchmark, but are no longer representative of the types of scenes
you would want to render in a modern rendering system.

The take home message: grids work very well for dense data such as meshes and volumes, but you pay
a price for traversing and storing the empty cells. There has not been much work in adaptive resolution grid
structures in ray tracing (although there were a handful between 1987 and 1997), but the basic idea involves
automatically isolating dense regions of space and putting them into a structure and then placing the result
into a coarser representation (or a different structure entirely, such as a BVH).

Ray casting versus ray tracing

This is not a commonly discussed problem with these different acceleration structures, but in practice is
incredibly important. For example, some acceleration structure papers have only considered ray casting
(sending primary rays from the observer towards the scene) which involves no secondary bounces. This
usually means that all rays are starting well outside the acceleration structure and are very coherent (traveling
in the same direction and likely to touch adjacent memory). A more interesting situation occurs when we
consider rays that start on or inside the acceleration structure.

The two data structures we’ve discussed above perform quite differently for what I’ll call a “starting
cost.” For example, for a uniform grid, you can determine in constant time the grid cell you are in when
you start a ray inside the grid. For a BVH, you usually provide a ray to the top level node and traverse
down the hierarchy, despite the fact that you might know you’re inside the acceleration structure already. As
you consider larger and larger scenes, the height of the hierarchy continues to grow and suddenly the log n
traversal starting cost becomes larger and larger. This applies to all hierarchical data structures.

This basic problem leads to an optimization present in some interactive ray tracers: if you don’t allow

6

objects to be placed inside your dielectrics, you can avoid a scene intersection test for transmitted rays and
only perform a test against the dielectric object. This is an interesting optimization because it offers a huge
performance benefit for large scenes containing dielectrics (imagine a glass coffee table in a complex scene).
An open question would be how to take advantage of this property automatically, without requiring the user
to tell you that nothing is inside the space you’re interested in testing. This problem comes up any time you
have rays entering the model, but again as I mentioned the same issue is true when you’re sending secondary
rays from off of the model as well. It would be interesting to see more research on data structures that might
be able to take advantage of these situations. For the most part the uniform grid already achieves this due
to its negligible (constant time) startup cost, so the simplest solution might be to investigate how to create
adaptive resolution hierarchical grids, so that you can avoid the empty cells.

Summary

We’ve discussed two of the most common data structures for accelerating ray-scene queries. Hopefully
some of the basic optimizations such as memory layout (data bricking, compact data structures) and
algorithmic optimizations (early exits, precomputed results) came across clearly as they can greatly improve
the performance of your renderer.

There are a lot of other solutions out there, but at Utah we’ve found the advice given here to be fairly
useful in practice. All of the techniques apply to parallel code as well, and we haven’t spent any time
considering optimizations that only work on a single processor (e.g. mailboxing). For the most part, the
basic rules of optimization always hold: optimize the portions of the code that show up in profiling, always
consider improving your algorithm and getting it right is more important than making it fast.

7

Interactive Ray Tracing
Steven Parker William Martin Peter-Pike J. Sloan Peter Shirley Brian Smits Charles Hansen

University of Utah,

Abstract

We examine a rendering system that interactively ray traces an im-
age on a conventional multiprocessor. The implementation is “brute
force” in that it explicitly traces rays through every screen pixel, yet
pays careful attention to system resources for acceleration. The de-
sign of the system is described, along with issues related to material
models, lighting and shadows, and frameless rendering. The system
is demonstrated for several different types of input scenes.

CR Categories: 1.3.0 [Computer Graphics]: General; 1.3.6 [Com-
puter Graphics]: Methodology and Techniques.

Keywords: Ray tracing, parallel systems, shading models

1 INTRODUCTION

Interactive rendering systems provide a powerful way to convey in-
formation, especially for complex environments. Until recently the
only interactive rendering algorithms were hardware-accelerated
polygonal renderers. This approach has limitations due to both the
algorithms used and the tight coupling to the hardware. Software-
only implementations are more easily modified and extended which
enables experimentation with various rendering and interaction op-
tions.

This paper describes our explorations of an interactive ray trac-
ing system designed for current multiprocessor machines. This sys-
tem was initially developed to examine ray tracing’s performance
on a modem architecture. We were surprised at just how respon-
sive the resulting system turned out to be. Although the system
takes careful advantage of system resources, it is essentially a brute
force implementation (Figure 1). We intentionally take the simple
path wherever feasible at each step believing that neither limiting
assumptions nor complex algorithms are needed for performance.

The ray tracing system is interactive in part because it runs on a
high-end machine (SGI Origin 2000) with fast frame buffer, CPU
set, and interconnect. The key advantages of ray tracing are:

l ray tracing scales well on tens to hundreds of processors;

l ray tracing’s frame rendering time is sub-linear in the number
of primitives for static scenes;

l ray tracing allows a wide range of primitives and user pro-
grammable shading effects.

Figure 1: The ray tracing system discussed in this paper explicitly
traces all rays on a pool of processors for a viewpoint interactively
selected by the viewer:

Figure 2: A portion of a 600 by 400 pixel image from our system
running at approximately fifteen frames per second.

The first item allows our implementation to be interactive, the sec-
ond allows this interactivity to extend to relatively large (e.g. giga-
byte) scenes, and the third allows the familiar ray traced look with
shadows and specular reflection (Figure 2).

In the paper we stress the issues in ray tracing that change when
we move from the static to the interactive case. These include
achieving performance in synchronous or asynchronous (frameless)
fashions (Section 2), and modifications to traditional Whitted-style
lighting/shadowing model to improve appearance and performance
(Section 3). We also discuss a few areas that might benefit from
interactive ray tracing and show some of the environments we used
in Section 4. We compare our work to the other work in paral-
lel ray tracing in Section 5. We do not compare our work to the
many object space methods available for simulating shadows and
non-diffuse effects (e.g. Ofek and Rappoport [22]) which we be-
lieve comprise a different family of techniques. Our interactive
implementation of ray tracing isosurfaces in trilinear volumes is
described elsewhere [23].

119

Figure 3: Operation of ray tracer in synchronous mode. Numbers
in boxes represent number of pixels in a block being processed. All
pixels are traced before the screen swaps buffers.

2 SYSTEM ARCHITECTURE

It is well understood that ray tracing can be accelerated through two
main techniques [26]: accelerating or eliminating ray/object inter-
section tests and parallelization. We employ both techniques in our
system. We use a hybrid spatial subdivision which combines a grid
based subdivision of the scene [lo] with bounding volumes [17].
For a given scene, we can empirically test both methods to arrive at
the ‘best’ combination where ‘best’ is dependent upon the scene ge-
ometry and the particular application. The beauty of the interactive
system is the ability to rapidly explore tradeoffs such as different
spatial subdivision techniques.

Ray tracing naturally lends itself towards parallel implementa-
tions. The computation for each pixel is independent of all other
pixels, and the data structures used for casting rays are usually read-
only. These properties have resulted in many parallel ray tracers, as
discussed in Section 5. The simplest parallel shared memory imple-
mentation with reasonable performance uses Master/Slave demand
driven scheduling as follows:

Master Task
initialize model
initialize ray tracing slaves on each free CPU
loop

update viewing information
lock queue
place all primary rays in queue
unlock queue
when the queue is empty redraw screen and handle user input

end loop

The ray tracing slaves are simple programs that grab primary rays
from the queue and compute pixel RGB values:

Slave Task
initialize memory
loop

if queue is not empty then
lock queue
pop ray request
unlock queue
compute RGB for pixel
write RGB into frame buffer pixel

end if
end loop

This implementation would work, but it would have excessive syn-
chronization overhead because each pixel is an independent task.
The actual implementation uses a larger basic task size and runs in
conventional or frameless mode as discussed in the next two sec-
tions.

Parallel Speedup
Rcan scene

80,“. ,

Figure 4: Performunce results .for varying numbers of processors
fo;a single view of the scene shown in-Figure 16.

Parallel Speedup
“i*ible Female

i”“’

Q

Figure 5: Per$ormance results for the visible female dataset, shown
in Figure 9.

2.1 Conventional Operation

To reduce synchronization overhead we can assign groups of rays
to each processor. The larger these groups are, the less synchro-
nization is required. However, as they become larger, more time is
potentially lost due to poor load balancing because all processors
must wait for the last job of the frame to finish before starting the
next frame. We address this through a load balancing scheme that
uses a static set of variable size jobs that are dispatched in a queue
where jobs linearly decrease in size. This is shown in Figure 3.

Figure 3 has several exaggerations in scale to make it more ob-
vious. First, the time between job runs for a processor is smaller
than is shown in the form of gaps between boxes. Second, the ac-
tual jobs are multiples of the finest tile granularity which is a 128
pixel tile (32 by 4). We chose this size for two reasons: cache co-
herency for the pixels and data cache coherency for the scene. The
first reason is dictated by the machine architecture which uses 128
byte cache lines (32 4-byte pixels). With a minimum task granular-
ity of a cache line, false sharing between image tiles is eliminated.
A further advantage of using a tile is data cache reuse for the scene
geometry. Since primary rays exhibit good spatial coherence, our
system takes advantage of this with the 32 by 4 pixel tile.

The implementation of the work queue assignment uses the hard-
ware fetch and op counters on the Origin architecture. This allows
efficient access to the central work queue resource. This approach
to dividing the work between processors seems to scale very well.
In Figure 4 we show the scalability for the room scene shown in
Figure 16. We used up to 64 processor (all that are available lo-

120

Figure 6: Operation of ray tracer in asynchronous (frameless)
mode. Screen is constantly updating and each processor is repeat-
edly tracing its set of pixels.

tally) and found that up through about 48 we achieved almost ideal
performance. Above 48 there is a slight drop off. We also show
performance data for interactively ray tracing the iso-surfaces of
the visible female dataset in Figure 5. For this data we had access
to a 128 processor machine and found nearly ideal speed ups for up
to 128 processors.

Since most scenes fit within the secondary cache of the processor
(4 Mb), the memory bandwidth used is very small. The room scene,
shown in Figure 4 uses an average of 9.4 Mb/s of main memory
bandwidth per processor. Ironically, rendering a scene with a much
larger memory footprint (rendering of isosurfaces from the visible
female dataset [23]) uses only 2.1 to 8.4 Mb/s of main memory
bandwidth. These statistics were gathered using the SGI perfex
utility, benchmarked with 60 processors.

Since ray tracing is an inherently parallel algorithm, efficient
scaling is limited by only two factors: Load balance and synchro-
nization. The dynamic work assignment scheme described earlier is
used to limit the effect of load imbalance. Synchronization for each
frame can limit scaling due to the overhead of the barrier. The stan-
dard barrier provided in Irix requires an average of 5 milliseconds
to synchronize 64 processors, which limits the scaling at high fram-
erates. An efficient barrier was implemented using the “fetchop”
atomic fetch-and-op facilities in the Origin. A barrier operation
consumes 61 microseconds on average, which is an insignificant
percentage of the frame time.

2.2 Frameless Rendering

For frameless rendering [3,7, 361 the viewpoint and screen are up-
dated synchronously, but the pixels are updated according to an
asynchronous quasi-random pattern. Our implementation for this
is summarized in Figure 6.

The implementation assigns a static pixel distribution to the ren-
dering threads - every processor has a list of pixels that it will up-
date, requiring minimal synchronization between threads. The ren-
dering thread handles user input and draws the buffer to the screen
at regular intervals. This is done asynchronously to the rendering
threads. The rendering threads periodically update their camera -
this is done at a specified rate expressed as a percentage of the
pixels that thread owns. The display thread is modified so that it
updates the screen at some user defined frame rate.

When creating a “static” pixel distribution (partitioning the
screen between processors), there are two conflicting goals: 1)
maintain coherent memory access; 2) have a more random distri-
bution (incoherent memory) of pixels. The first is important for
raw system efficiency, and the second is important to avoid visually
distracting structure during updates.

In the current system we partition the image plane using a Hilbert
curve (this maps the image to a 1D line), and then break this line
into “chunks”, these chunks are distributed to the processors in a
round robin fashion (processors interleaved with chunk granularity

along the 1D domain of the Hilbert curve). Each thread then ran-
domly permutes its chunks so that the update doesn’t always exactly
track the Hilbert curve.

When updating the image, pixels can be blended into the frame
buffer. This causes samples to have an exponential decay and cre-
ates a smoother image in space and time. We can use jittered sam-
pling where there are four potential sample locations per pixel and
two of them are updated when the pixel is updates, so the pixel is
only fully updated after two passes. This implements the “frameless
anti-aliasing” concept of Scher Zagier [35].

One nice property of a static pixel distribution is the ease of keep-
ing extra information around (each thread just stores it - and no
other threads will access this memory.) This can be used for com-
puting a running average, sub pixel offsets for jittered sampling, a
running variance computation or other information about the scene
associated with that pixel (velocity, object ids, etc.).

3 IMPLEMENTATION DETAILS

Users of traditional ray tracers feel free to change the lighting and
material parameters when the viewpoint is changed, and to add
multiple lights to achieve a desired lighting effect. These are not
practical in an interactive ray tracer where the lighting and material
parameters are static as the viewpoint changes, and where even one
light is expensive in terms of framerate. To help reduce the need
for such traditional hacks, our implementation modifies the tradi-
tional key components of a ray tracer: lighting, material models,
shadows, and ray-object intersection routines. In Section 3.1 we
discuss how we handle and modify material models and lighting in
a dynamic context. In Section 3.2 we discuss how we approximate
soft shadows efficiently. In Section 3.3 we discuss how we compute
ray-object intersections for spline surfaces.

3.1 Lighting and Materials

The traditional “Whitted-style” illumination model has many vari-
ations, but for one light the following formula is representative:

L=kd(l.+sl.~.i)+Sl,kh(~.i)N+k,L,+ktLt, (1)

where the vector quantities are shown in Figure 7, and L is the ra-
diance (color) being computed, s is a shadow term that is either
zero or one depending on whether the point luminaire is visible,
kd is the diffuse reflectance, 1, is the ambient illumination, 1, is
the luminaire color, kh is the Phong highlight reflectance, k, is the
specular reflectance, L, is the radiance coming from the specular
direction, lit is the specular transmittance, and Lt is the radiance
coming from the transmitted direction. Although this basic for-
mula serves us well, we believe some alterations can improve per-
formance and appearance. In particular, we are careful in allowing
Ic, and kt to change with incident angle, we modify the ambient
component I, to be a very crude approximation to global ilhuni-
nation (Section 3.1.1), and we allow soft shadowing by making s
vary continuously between zero and one (Section 3.2). Finally, we
break the materials into several classes to compute only non-zero
coefficients for efficiency.

One well-known problem with Equation 1 is that the specular
terms do not change with incident angle. This is different from
the behavior of materials in the real world [14]. In a conventional
ray tracer the values of kd, k, and kt can be hand-tuned to de-
pend on viewpoint but in an interactive setting this does not work
well. Instead, we first break down materials into a few distinct sub-
jective categories suggested in [31]: d$bse, dielectric, metal, and
polished. The modifications for these materials is described below:

Diffuse. For diffuse surfaces we use Equation 1 with kh = k, =
kt = 0. This is the same as a conventional ray tracer.

121

Figure 7: The directional quantities associated with Equation 1.

Metal. Metal has a reflectance that varies with incident angle [6].
We are currently ignoring this effect, and other effects of real metal,
and using traditional Whitted-style lighting. We use Equation 1

Dielectric. Dielectrics, such as glass and water, have re-
flectances that depend on viewing angle. These reflectances are
modeled by the Fresnel Equations, which for the unpolarized case
can be approximated by a polynomial developed by Schlick [28]:

and let is determined by conservation of energy:

The internal attenuation of intensity I is the standard exponential
decay with distance t according to extinction coefficient IE: I(t) =
I(O)ezp(-&). To approximate the specular reflection of an area
light source we add a Phong term to dielectrics as well.

Polished. We use the coupled model presented in [30]. This
model allows the k, to vary with incident angle, and allows the
diffuse appearance to decrease with angle. As originally presented,
it is a BRDF, but it is modified here to be appropriate for a clamped
RGB lighting model with an ambient component:

where the first term assumes the ambient component arises from
directionally uniform illumination.

3.1.1 Ambient Lighting

The ambient term 1, in Equation 1 is a crude approximation used
in conventional ray tracers to avoid computing an indirect light-
ing term. It is not meant to be physically accurate, but instead to
illuminate those areas that are not directly lit by the luminaires.
Given this, its main failing is that the uniform intensity causes dif-
fuse objects to appear flat when the surface faces away from the
light source. One way to avoid this is to put a fill-light at the eye
point, but we feel this is distracting for a moving viewpoint. An al-
ternative is to allow the ambient coefficient to vary with position p’
and orientation: I, (p’, ii). This can be a simple heuristic, or based
on radiosity solutions [13]. Our motivation for using a more sophis-
ticated ambient term is to allow shading variation on surfaces that
are not directly lit without the computational cost of adding addi-
tional lights. This can be accomplished by assuming the ambient
term arises due to illumination from a background divided evenly
between two intensities A and B (Figure 8). The angle .9 will vary
from zero to rr radians. For 0 = 0 the surface will only “see” A so
the ambient term will be A. As 0 increases the ambient term will

Figure 8: A surface is illuminated by a hemisphere with colors A
and B.

gradually change to (A + B)/2 at 0 = r/2, and finally change
to B as the surface fully faces the bottom hemisphere. Nusselt’s
analog [4] allows us to derive the full relationship:

Either the user can set A and B algorithmically or by hand. We set
ours by hand, but some heuristics can aid in selection. If we en-
vision the hemisphere-pair as approximating indirect lighting of an
object in a room, then the “walls” opposite the light are well illumi-
nated and bright. So the hemisphere can be roughly aligned to the
light source, with the hemisphere in the direction of the light source
darker than the one pointing away from the light source. As advo-
cated by Gooch et al. [12], we can accent the shape using a cool-to-
warm color shift by making sure the light source is yellow (warm)
and the hemisphere facing away from the light is blue (cool). Our
ambient approximation is shown in Figure 9 and is not measurably
slower than a constant ambient component for non-trivial mmodels.

Figure 9: Left: simple ambient approximation. Right: directionally
varying ambient approximation.

3.2 Shadows

One of the limitations of ray tracing is the hard edges computed
for shadows. In addition to aesthetic reasons, there is evidence that
soft edged shadows aid in accurate spatial perception [19]. Ray
tracing methods that produce accurate soft shadows such as ray
tracing with cones [l] or probabilistic ray tracing [5] stress accu-
rate soft shadows, but dramatically increase computation time rela-
tive to hard shadow computation. In this section we examine how
to compute soft-edged shadows approximately so that interactivity
can be maintained.

122

Figure 10: A beam traced shadow with five samples. Note that there
are discontinuities within the shadow.

One option to improve performance is to do explicit multi-
sampling of the light with a “beam” made up of a small number of
rays [15]. Since the number of rays is small, there will be visual ar-
tifacts but interactive performance will be possible (Figure 10). To
speed up this computation we can precompute the rays in the beam
if we assume the luminaire is far away, and we can vectorize the
intersection computation against each geometric primitive. This is
similar to traversing efficiency structures using bundles rather than
single rays [9]. Although this optimization gives us a factor of two
performance over the unvectorized version, it is still too slow for
many shadow rays.

An alternative to computing accurate soft shadows is to soften
the edges of hard shadows. This is essentially the technique used
in depth buffer algorithms [25] where the binary shadow raster can
be filtered. However we want to simulate the change in penumbra
width we see in real shadows. Such an effect requires more so-
phisticated filtering. This means shadow penumbra width should
behave in a believable way, starting at zero at the occluder and in-
creasing linearly with distance from the occluder.

It is hard for observers to tell the difference between shadows
cast by differently shaped lights. For this reason we assume spher-
ical lights. We do a rough calculation at each illuminated point of
what fraction s of the light is visible, and attenuate the unshadowed
illumination by s. Thus our goal is to estimate s in efficiently and
to visually plausible results.

Rather than creating a correct shadow created by an area source,
the algorithm creates a shadow of a soft-edged object from a point
source (Figure 11). The penumbra is the shadow of the semi-
opaque (outer) object that is not also shadowed by the opaque (in-
ner) object. The transparency of the outer object increases from no
transparency at the inner object to full transparency at the bound-
ary of the outer object. For an isolated object, we can use inner and
outer offsets of the real object to achieve believable results. We also
need to make the intensity gradient in the penumbra natural. This
can be achieved by computing the shadowing variable s beginning
at s = 0 on the penumbra/umbra boundary (the surface of the inner
object) and increasing non-linearly with distance to s = 1 on the
outer boundary of the penumbra (the surface of the outer object).

The above approach will give an approximate soft shadow. The
size of the penumbra is based on the size of the offsets used to
create the inner and outer objects. In order to have the penumbra
width change plausibly, the offsets need to change based on the dis-
tance along the shadow ray and the size of the light source, as illus-
trated in Figure 12. This requires modifying the intersection tests

Figure 11: The inner object is opaque and the outer object’s opac-
ity falls off toward its outer boundary.

for shadow rays. The details of this approach, including solutions
to light leaking between two objects and the intersection tests and
bounding box construction for polygons and spheres with varying
offsets are discussed in more depth by Parker et al. [24]. The results
are shown in Figure 13.

Figure 12: Choosing the size of the outer objectfor a given config-
uration.

3.3 Spline Surfaces

In most traditional rendering systems NURBS are tessellated, often
outside the graphics API in order to have more control over the
accuracy. This can lead to an explosion in the amount of data that
needs to be stored and then sent down the rendering pipeline. Ray
tracing does not have this limitation.

Intersection tests with NURBS have been done in several ways
(e.g., [16, 29, 33]. Our approach computes an estimate to the in-
tersection point and then uses a brute force approach to compute

Figure 13: Left: one sample per pixel with hard shadows. Right:
one sample per pixel with soft shadows. Note that the method cap-
tures the singularity near the box edge.

123

Figure 14: Two images rendered directly from the spline model.

the actual intersection point. Surface parameter spaces are subdi-
vided to a user-specified depth, and the quadtree that results is used
to construct an inn-a-surface bounding volume hierarchy. Axis-
aligned bounding volumes are used to preserve consistency with
the overall infrastructure. Bounding volume hierarchies are built
bottom up. It is important to note that this will result in tighter
volumes than top down construction (since the subdivided control
meshes converge to the surface).

Intersections with the leaf nodes of the bounding volume tree
are computed using Broyden’s method. This is a pseudo-Newton
solver which approximates the value of the Jacobian. It converges
more slowly than Newton, but requires fewer function evaluations.
The initial guess is given by the average of the boundary parameter
values of the patch in question. Patches are allowed to overlap by
a small percentage of their parametric domains, thereby lessening
the chance of cracks.

Usually fewer than three iterations of the root finder are required
to converge to a suitably refined surface. The cost of storage is
one copy of the original control mesh, and for each leaf node in the
intra-surface bounding volume hierarchy, four doubles denoting the
parametric interval it covers. In addition, we require each processor
to reserve a scratch area so that the spline basis functions can be
computed without needing to lock the data. The cost of this storage
is m+n where m and n are the maximum control mesh dimensions
over all surfaces in the scene.

4 RESULTS

The final rendering system is interactive on relatively few (8) pro-
cessors, and approaches real time for complex environments on 64
or more processors. It runs well on a variety of models from differ-
ent application areas. Its flexibility allows several different display
modes, all of which are applicable to ‘the various models.

Ray tracing is ideal for showing dynamic effects such as spec-
ular highlights and shadows. Dynamic objects are more difficult
to incorporate into a ray tracer than into a z-buffer algorithm as
current acceleration schemes are not dynamic [11]. Our current
workaround is to keep dynamic objects outside the acceleration
scheme and check them individually for each ray. Obviously this
only works for limited numbers of dynamic objects. In Figure 2
we show a static image from a set of bouncing balls using the soft
shadow approximation.

Computer-aided design usually uses both curved surfaces and
non-diffuse objects, such as a windshield made from glass. Ray
tracing can render curved surfaces directly, making it ideal for
spline models. The ability to calculate accurate reflections across
the surface make is possible to evaluate the smoothness and curva-
ture of the models for aesthetic purposes. A sample of a directly
ray traced spline primitives is shown in Figure 14. We have run
on several models containing 20-2000 individual patches with run-
times ranging from 1-20 fps at 512 by 512 pixels on 60 processors.

Ray tracing time is sub-linear with respect to model size. This
allows us to interact with very large models. One area that cre-

ates large models is scientific visualization. In Figure 15 we show
a visualization of a stress simulation. Each node in the simula-
tion is represented by a sphere. There are 35 million spheres in this
model. Unlike conventional rendering systems, the high depth com-
plexity has very little effect on the rendering times. Another area
that can create complex models is architectural design. The model
in Figure 16 contains roughly 75,000 polygons and a spline teapot.
An area we would like to explore is the use of interactive ray trac-
ing for walk throughs of globally illuminated static environments,
where the illumination information has been computed in advance
by such techniques as radiosity or density estimation. Usually spec-
ular and transparent effects are missing from such walk throughs.
In addition, we should be able to easily allow higher order recon-
struction of the solution. Also, we could greatly reduce polygon
count if radiance lookup evaluates the mesh instead of representing
each mesh element as a separate polygon.

Figure 15: Simulation of crack propagation visualized using 35M
spheres. This image at 512 by 512 pixels runs approximately 15
frames per second on 60 CPUs.

5 RELATED WORK

Ray tracing has long been a focus for acceleration through parallel
techniques. There are two general parallel methods which are used
for such acceleration: demand scheduling and data parallel. De-
mand driven scheduling refers to distributing tasks upon demand.
Data parallel methods partition the data and assign tasks to the pro-
cessors which contain the required data. Hybrid methods combine
these two paradigms generally by partitioning the tasks into those
requiring a small amount of data and those requiring a large amount.
Since shared memory processors with large amounts of memory
have only recently been commercially available, most parallel ray
tracing research has focused on distributed memory architectures.
For shared memory parallel computers, demand driven scheduling
methods tend to lead to the best performance [26]. Our implemen-
tation is based on demand driven scheduling where the task granu-
larity is rendering an 32 by 4 pixel tile. In this section, we provide
a comparison with several related parallel ray tracing implementa-
tions. A more thorough general review is provided by Reinhard and
Jansen [26].

Muuss and researchers from ARL have experimented with par-
allel and distributed ray tracing for over a decade [20, 21]. In their
recent work, they describe a parallel and distributed real-time ray

124

Figure 16: A model with splines, glass, image textures, and proce-
dural solid textures. At 512 by 512 pixels this image is generated at
approximately 4 frames per second on 60 CPUs.

tracer running on a cluster of SGI Power Challenge machines [21].
One of the differences between BRL’s effort and ours is the ge-
ometric primitives used. Their geometry is defined by through a
CSG modeler, BRL-CAD. Additionally, we leverage the tight cou-
pling of the graphics hardware on the SGI Origin while their system
uses an image decomposition scheme combined with a network at-
tached framebuffer. Muuss points out that synchronization, partic-
ularly at the frame level, is critical for real-time ray tracing [21].
Our research indicates that synchronization within a frame is also
critical as noted by our dynamic load balancing scheme. Although
not reported in the literature, ARL’s current effort seems to have a
comparable framerate as ours (Muuss, personal communication at
SIGGRAPH98).

Keates and Hubbold use a distributed shared memory architec-
ture, the KSRl, to implement a demand driven ray tracer which
renders a simple scene is slightly over 1.8 seconds for 256 pro-
cessors [18]. Their implementation is similar to ours in that they
use the brute force technique of parallelizing over rays. However,
their work differs in the granularity of work distribution, the method
used for load balancing, and results based upon architecture. Their
implementation split the screen into regions and divided the work
among the CPUs. It is not clear how large the regions were but
one is lead to believe the regions are larger than the 32 pixel re-
gions used in our implementation. They report problems with load
balancing and synchronization. They address these by a two level
hierarchy for screen space subdivision similar to Ellsworth [8]. Our
system uses a different strategy for load balancing of decreasing
granularity of assigned work which empirically yields better results.
This also assists in synchronization which is why this issue has not
been a problem for us.

Singh et al. reported on using the Stanford DASH distributed
shared memory machine for ray tracing [32]. Their implementation
used an image decomposition scheme which subdivided the image
among the available processors. Within a processor, the sub-image
a further subdivided into 8 by 8 pixel tiles. As in our system, their
implementation noted the advantage of data cache reuse for object
intersection test. Their work differed from ours in the load bal-
ancing scheme. They used task stealing rather than demand driven
scheduling. We find that the simpler approach of using a task queue
with good dynamic load balancing provides excellent results with-
out the complexity of performing task stealing. The fetch and op

hardware in the Origin architecture allows the task queue to per-
form well even on a large number of processors.

Yoon et al. use an image partitioning scheme which stati-
cally load balances the tasks by interleaving pixels and distribut-
ing among nodes the scene data while replicating the spatial hier-
archy on each node [34]. Their work attempts to prefetch data for
each ray task. Their work differs from ours in two major respects:
load balancing and machine architecture. Our implementation ef-
fectively exploits dynamic load balancing through the heuristic of
decreasing task size while Yoon et al. employ static load balancing
through pixel assignment. Since their work focuses on a distributed
memory architecture, they need to explicitly address data distribu-
tion while our implementation exploits the CC-NUMA distributed
shared memory.

Reinhard and Jansen use a hybrid scheduling method for paral-
lel ray tracing [27]. Their implementation divides the ray tracing
task into those tasks which require limited amounts of data and
those that require more substantial amounts of data. Since their
spatial subdivision hierarchy, but not the leaf nodes, is replicated
on each processor, tasks using these are demand scheduled whereas
tracing rays through the objects within the leaf nodes is performed
in a data parallel fashion. Their method makes novel use of this
combined scheduling scheme which provides better performance
on distributed memory parallel computers. Since our method ex-
ploits the distributed shared memory architecture, we can achieve
very good performance with only demand scheduling.

Bala et al. describe a bounded error method for ray tracing [2].
For each object surface, their method uses a 4D linetree to store a
collection of interpolants representing the radiance from that sur-
face. If available, these interpolants are reprojected when the user’s
viewpoint changes. If not, the system intersects the ray with the
scene checking for a valid interpolant at the intersection point. If
one is found, the radiance for that pixel is interpolated. Otherwise,
using that linetree cell, an attempt is made to build an interpolant.
If this is within an error predicate, it is used otherwise the line-
tree cell is subdivided and the system falls back to shading using a
standard ray tracing technique. The acceleration is based upon the
utilization of previously shaded samples bounded by an error pred-
icate rather than fully tracing every ray. Our system is brute-force
and traces every ray in parallel. Bala’s method is oriented toward a
more informed and less parallel strategy, and is currently not inter-
active. Moving objects would pose a problem for the linetree based
system whereas they can be handled in our implementation. Using
reprojection techniques might further accelerate our system.

6 CONCLUSION

Interactive ray tracing is a viable approach with high end paral-
lel machines. As parallel architectures become more efficient and
cheaper this approach could have much more widespread applica-
tion. Ray tracing presents a new set of display options and tradeoffs
for interactive display, such as soft shadows, frameless rendering,
more sophisticated lighting, and different shading models. The soft-
ware implementation allows us to easily explore these options and
to evaluate their impact for an interactive display.

We believe the following possibilities are worth investigating:

l How should antialiasing be handled?

l How do we handle complex dynamic environments?

l How do we ensure predictable performance for simulation ap-
plications?

l What should the API be for an interactive ray tracer?

. How could an inexpensive architecture be built to do interac-
tive ray tracing?

125

The first three items above highlight significant limitations of our
current system: antiahasing is brute-force and thus too costly, and
performance can be slow or unpredictable because there is a com-
plex interaction between efficiency stucture build time, traversal
time, and view-dependent performance. How much of these are
due to the batch nature of traditional ray tracing methodology ver-
sus intrinsic limitations is not yet clear.

Additionally, we feel that an interactive ray tracer can help an-
swer more general questions in interactive rendering, such as:

l How important are soft shadows and indirect illumination to
scene comprehension and how accurate do they need to be?

l Are more physically accurate BRDF’s more or less important
in an interactive setting?

l Do accurate reflections give significant information about sur-
face curvature/smoothness?

The ability to have more complete control over these features allows
us to investigate their effects more completely.

Acknowledgments

Thanks to Chris Johnson for providing the open collaborative re-
search environment that allowed this work to happen. Thanks to
Elaine Cohen for many conversations on spline surface intersection
and to Amy Gooch for help with model acquisition and conversion.
Thanks to Dave Beaxley and Peter Lomdahl at Los Alamos Na-
tional Laboratory for the 35 million sphere data set. Special thanks
to Jamie Painter and the Advanced Computing Laboratory at Los
Alamos National Laboratory for access to a 128 processor machine
for final benchmarks. The bunny model appeared courtesy of the
Stanford University Graphics Laboratory. This work was supported
by the SGI Visual Supercomputing Center, the Utah State Centers
of Excellence, the Department of Energy and the National Science
Foundation.

References

[l] J. Amanatides. Ray tracing with cones. Compufer Graphics, pages 129-135,
July 1984. ACM Siggraph ‘84 Conference Proceedings.

[2] Kavita Bala, Julie Dorsey, and Seth Teller. Bounded-error interactive ray tracing.
Technical Report LCS TR-748, MIT Computer Graphics Group, March 1998.

[3] Gary Bishop, Henry Fuchs, Leonard McMillan, and Ellen J. Scher Zagier.
Frameless rendering: Double buffering considered harmful. Compufer Graphics,
28(3):175-176, July 1994. ACM Siggraph ‘94 Conference Proceedings.

[4] Michael E Cohen and John R. Wallace. Radio&y andRealistic Image Synthesis.
Academic Press, Boston, MA, 1993.

[5] Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed ray bating.
Cornpurer Graphics, 18(4):165-174, July 1984. ACM Siggmph ‘84 Conference
Proceedings.

[6] Robert L. Cook and Kemmetb E. Torrance. A reflectance model for computer
graphics. Computer Graphics, 15(3):307-316, August 1981. ACM Siggraph ‘81
Conference Proceedings.

[7] Robert A. Cross. Interactive realism for visualization using ray tracing. In Pm-
ceedings Visuolizotion ‘95, pages 19-25, 1995.

[8] David A. Ellsworth A new algorithm for interactive graphics on multicomputers.
IEEE Computer Graphics and Applications, 14(4), July 1994.

[9] Bemd Frahlich. Ray Tracing mif Strahlenbiindeln (Ray Tracing with Bundles of
Rays). PhD thesis, Technical University of Braunschweig, Germany, 1993.

[lo] Akira Fujimoto, Takayo Tanaka, and Kansei Iwata. Arts: Accelerated ray-tracing
system. IEEE Computer Graphics &Applications, pages 16-26, April 1986.

[l l] Andrew S. Glassner, editor. An Introduction to Roy Tracing. Academic Press,
San Diego, CA, 1989.

1121 Amy Gooch, Brace Gooch, Peter Shirley, and Elaine Cohen. A non-

[I31

u41

u51

[I61

1171

[I81

H91

I201

WI

1221

WI

WI

1261

1271

photorealistic lighting model for automatic technical illustration. In SIGGRAPH
98 Conference Proceedings, pages 447-452, July 1998. ISBN O-89791-999-8.

Gene Greger, Peter Shirley, Philip M. Hubbard, and Donald P. Greenberg. The
irradiance volume. IEEE Computer Graphics & Applications, 18(2):32-43,
March-April 1998.

Roy Hall. Illumination and Color in Computer Generated Imagery. Springer-
Verlag, New York, N.Y., 1988.

Paul S. Heckbert and Pat Han&an. Beam tracing polygonal objects. In Com-
puter Graphics (SIGGRAPH ‘84 Proceedings), volume 18, pages 119-127, July
1984.

James T. Kajiya. Ray tracing parametric patches. In SZGGRAPH ‘82, 1992.

Timothy L. Kay and James T. Kajiya. Ray tracing complex scenes. Computer
Graphics, 20(4):269-278, August 1986. ACM Siggraph ‘86 Conference Pro-
ceedings.

M.J. Keates and R.J. Hubbold. Accelerated ray tracing on the KRSl virtual
shared-memory parallel computer. Technical Report UMCS-94-2-2, Computer
Science Department, University of Manchester, February 1994.

D. Kersten, D. C. Knill, Mamassian P, and I. Biilthoff. Illusory motion from
shadows. Nature, 37931, 1996.

Michael J. Muuss. Rt and remrt - shared memory parllel and network distributed
ray-tracing programs. In USENIX: Proceedings of the Fourth Computer Graph-
ics Wokhop, October 1987.

Michael J. Muuss. Towards real-time ray-tracing of combinatorial solid geomet-
ric models. In Proceedings of BRL-CAD Symposium, June 1995.

Eyal Ofek and Ari Rappoport. Interactive reflections on curved objects. IO SIG-
GRAPH 98 Conference Proceedings, pages 333-342, July 1998.

Steven Parker, Peter Shirley, Yarden Livnaf Charles Hansen, and Peter-Pike
Sloan. Interactive ray tracing for isosurface rendering. In Proceedings Viw-
alizotion ‘98, 1998.

Steven Parker, Peter Shirley, and Brian &nits. Single sample soft shadows. Tech-
nical Report UUCS-98-019, Computer Science Department, University of Utah,
October 1998. http://www.cs.utah.edu/-bes/papers/coneS

William T. Reeves, David H. Salesin, and Robert L. Cook. Rendering antialiased
shadows with depth maps. Computer Graphics, 21(4):283-292, July 1987. ACM
Siggraph ‘87 Conference Proceedings.

E. Reinhard, A.G. Chalmers, and EW. Jansen. Overview of parallel photo-
realistic graphics. In Eumgraphics ‘98, 1998.

Erik Reinhard and Frederik W. Jansen. Rendering large scenes using parallel ray
tracing. Parallel Computing, 23(7), July 1997.

[28] Christophe S&lick. A customizable reflectance model for everyday rendering. In
Proceedings of the Fourth Eurographics Workshop on Rendering, pages 73-84,
June 1993.

[29] Thomas W. Sederberg and Scott R. Parry. Comparison of three curve intersection
algorithms. Computer-aided Design, 18(l), JanuaryIFebroary 1986.

[30] Peter Shirley, Helen Ho, Brian Smits, and Eric Lafortone. A practitioners’ as-
sessment of light reflection models. In Pacific Graphics, pages 40-49, October
1997.

[31] Peter Shirley, Kelvin Sung, and William Brown. A ray tracing framework for
global illumination system?.. In Proceedings of Graphics Interface ‘91, pages
117-128, June 1991.

[32] J.S. Singh, A. Gopta, and M. Levoy. Parallel visualization algorithms: Perfor-
mance and architectural implications. IEEE Computer, 27(7), July 1994.

[33] Wolfgang Stiinlinger. Ray-tracing triangular trimmed free-form surfaces. IEEE
Transactions on Visualization and Computer Graphics, 4(3), July-September
1998.

[34] H.J. Yoon, S. Eun, and J.W. Cho. Image parallel ray tracing using static load
balancing and data prefetchiog. Parallel Computing, 23(7), July 1997.

[35] Ellen Scher Zagier. Frameless antialiasing. Technical Report TR95-026, UNC-
CS, May 1995.

[36] Ellen Scher Zagier. Deli&g and refining frameless rendering. Technical Report
TR97-008,UNC-CS, July 1997.

126

Figure A: A portion of a 600 by 400 pixel image from our system
running at approximately fifteen frames per second.

Figure C: Simulation of crack propagation visualized using 35M
spheres. This image at 512 by 512 pixels runs approximately 15
frames per second on 60 CPUs.

Figure B: Directionally varying ambient approximation.

Figure D: A model with splines, glass, image textures, and procedu-
ral solid textures. At 512 by 512 pixels this image is generated at
approximately 4 frames per second on 60 CPUs.

229

Siggraph 2005 Course on Interactive Ray Tracing

Handling Dynamic Scenes

Ingo Wald

This is an excerpt from
“Realtime Ray Tracing and Interactive Global Illumination”,

PhD Thesis, Ingo Wald,
Computer Graphics Group, Saarland University.

Full Version available at http://www.mpi-sb.mpg.de/∼wald/PhD

“The time spent constructing the hierarchy tree should
more than pay for itself in time saved rendering the

image”

Timothy L. Kay, James T. Kajiya “Ray Tracing
Complex Scenes” [Kay86] (in 1986!)

Even though ray tracing is a relatively old and well-understood technique,
its use for interactive applications is still in its infancy. Several issues of inter-
active applications are all but fully solved. Especially the handling of dynamic
scenes in an interactive context so far has received few attention by ray tracing
researchers. Ray tracing research so far almost exclusively concentrated on ac-
celerating the process of creating a single image, which could take from minutes
to hours. Most of these approaches relied on doing extensive preprocessing by
building up complex data structures to accelerate the process of tracing a ray.

Before realtime ray tracing, the time used for building an index structure
such as kd-trees was insignificant compared to the long rendering times, as
this preprocessing was then amortized over the remainder of a frame. Thus
preprocessing times of several seconds to a few minutes could easily be tolerated
in order to build a high-quality acceleration structure for an offline renderer. As
long as the scene remains static, the same trick also worked for “interactive”
ray tracing systems as described before – the acceleration structure was built
once in an offline preprocessing step, and was then reused for all the remaining
frames1.

In dynamic scenes, however, this trick no longer works, as each new frame
requires a new acceleration structure. Building this data structure for every

1Even though the scene itself has to remain static in this approach, it is still possible to
arbitrarily change camera, material properties, shaders, and light source configurations in a
scene.

1

frame then becomes a bottleneck, as this “preprocessing” alone would often
exceed the total time available per frame in an interactive setting.

Even worse, this preprocessing phase cannot easily be parallelized: Though
tracing the rays can be parallelized trivially once each client has access to scene
and acceleration structure, the operations for building the acceleration structure
have to be performed on each client, thereby incurring a non-parallelizable cost
factor. As a result, any time spent on dynamic updates becomes extremely
costly especially for parallel (distributed) interactive ray tracing systems2. This
poses a major problem for ray tracing dynamic scenes, as virtually all of todays
interactive ray tracing (e.g. [Wald01, Parker99, DeMarle03, Wald03]) systems
have to rely on massive parallelization to achieve interactive frame rates.

Therefore, it is not surprising that all of those systems have in common that
they mainly concentrate on the actual ray tracing phase and do not target dy-
namic scenes. Without methods for interactively modifying the scene, however,
interactive ray tracing will forever be limited to simple walk-throughs of static
environments, and can therefore hardly be termed truly interactive, as long as
real interaction between the user and the environment is not impossible. In
order to be truly interactive, ray tracing must be able to efficiently support dy-
namic environments. As such, efficient handling of dynamic scenes is probably
one of the biggest challenges for realtime ray tracing.

1 Previous Work

Some methods have been proposed for the case where predefined animation
paths are known in advance (e.g. [Glassner88, Gröller91]). These however are
not applicable to our target setting of totally dynamic, unpredictable changes
to the scene in which the motion of objects is not known in advance. Little
research is available for such truly interactive settings. This research will be
reviewed below.

First of all, excellent work on ray tracing in dynamic environments has re-
cently been performed by Lext et al. with the BART project [Lext00], in which
they provide an excellent analysis and classification of the problems arising in
dynamic scenes. Based on this analysis, they proposed a representative set of
test scenes (see Figure 1) that have been designed to stress the different aspects
of ray tracing dynamic scenes. Thus, the BART benchmark provides an excel-
lent tool for evaluating and analyzing a dynamic ray tracing engine. For future
research on dynamic ray tracing, the BART benchmark suite might well play
the same role that Eric Haines’ “SPD Database” [Haines87] played for offline
rendering.

In their analysis, Lext et al. have classified the behavior of dynamic scenes
into two inherently different classes: Hierarchical motion, and unstructured mo-

2As an example, consider a system that spends only 5% of its time on dynamic scene
updates. Parallelizing this system on 19 CPUs (1

5%
− 1) results in each node spending half

its time on scene updates, and in a speedup of only 10 for 19 CPUs (i.e. a utlization of only
10
19
∼ 50%)!

2

Figure 1: Some example screen-shots from the BART benchmark: (a) “robots”,
where 10 robots (each consisting of 16 independently moving body parts) are
walking through a city model; (b) “kitchen”, in which a small toy car is driving
through a highly specular kitchen scene; and (c) “museum”, where a certain
amount of reflective triangles is animated incoherently to form several different
shapes. The number of triangles in the museum scene can be configured from a
few hundred to some hundred thousand triangles.

tion. In hierarchical motion, the animation is described by having the primitives
in a scene organized into several groups that are transformed hierarchically.
While different groups may move independently of all other groups, all prim-
itives in the same group are always subject to the same, usually affine, trans-
formation3. The other class is unstructured motion, where each triangle moves
without relation to all others. For example, the robots scene in Figure 1a is a
good example of hierarchical motion, as there is no dynamic behavior except for
hierarchical translation and rotation of the different robots’ body parts. In con-
trast to this, the museum scene (Figure 1c) features many incoherently moving
triangles, and as such is a good example for unstructured motion. For a closer
explanation of the different kinds of motion, see the BART paper [Lext00].

Though the BART paper provides an excellent analysis of dynamic ray trac-
ing, it did not attempt to propose any practical algorithms or solutions to the
problems. So far, few people have worked on this topic. In a first step, Parker
et al. [Parker99] kept moving primitives out of the acceleration structure and
checked them individually for every ray. This of course is only feasible for a
small number of moving primitives.

Another approach would be to efficiently update the acceleration structure
whenever objects move. Because objects can occupy a large number of cells in
an acceleration structure this may require costly updates to large parts of the
structure for each moving primitive (especially for large primitives, which tend
to overlap many cells). To overcome this problem, Reinhard et al. [Reinhard00]
proposed a dynamic acceleration structure based on a hierarchical grid. In order
to quickly insert and delete objects independently of their size, larger objects are
kept in coarser levels of the hierarchy. With this approach, objects always cover
approximately a constant number of cells, thus updating the acceleration struc-

3Affine transformation are not limited to translation and rotation only, but also include
e.g. shearing or scaling.

3

ture can be performed in constant time. However, their method resulted in a
rather high overhead, and also required their data structure to be rebuilt once in
a while to avoid degeneration. Furthermore, their method mainly concentrated
on unstructured motion, and is not well suited for hierarchical animation.

Recently, Lext et al. [Lext01] proposed a way for quickly reconstructing an
acceleration structure in a hierarchically animated scene by transforming the
rays to the local object coordinate systems instead of transforming the objects
and rebuilding their acceleration structures. Though their basic idea is similar
to the way that our method handles hierarchical animation, to our knowledge
their method so far has never been applied in an interactive context.

2 A Hierarchical Approach to Handling Dynamic
Scenes

Essentially, our approach to handling dynamic scenes is motivated by the same
observations as Lext et al. [Lext01] of how dynamic scenes typically behave:
Usually large parts of a scene remain static over long periods of time. Other
parts of the same scene undergo well-structured transformations such as rigid
body motion or affine transformations. Yet other parts are changed in a totally
unstructured way.

All these kinds of motion are fundamentally different. Even worse, many
scenes actually contain a mix of all these different kinds of motion. It is unlikely
that a single method can handle all these kinds of motion equally well. Because
of this, we prefer an approach in which the different kinds of motion are handled
with different, specialized algorithms that are then combined into a common
architecture. To do this, geometric primitives are organized in separate objects
according to their dynamic properties. Each of the three kinds of objects – static,
hierarchically animated, and those with unstructured motion – is thus treated
differently: Static objects will be handled as before, hierarchically animated
objects are handled by transforming rays rather than the object, and objects
with unstructured motion are handled by specially optimized algorithms for
quickly rebuilding the affected parts of the data structure. Each object has
its own acceleration structure and can be updated independently of the rest
of the scene. These independent objects are then combined in a hierarchical
way by organizing them in an additional top-level acceleration structure that
accelerates ray traversal between the objects in a scene (see Figure 2).

2.1 Building the Hierarchy

To enable this scheme, all triangles that are subject to the same set of trans-
formations (e.g. all the triangles forming the head of the animated robot in
Figure 3) must be grouped by the application into the same object.

Note that we explicitly do not attempt to perform this grouping automati-
cally. Instead, this grouping has to be performed by the application that drives
the ray tracer. Though this somewhat shifts the problem to the application, the

4

Transform ObjID

Transform ObjID

Transform ObjID

ObjIDTransform

Instance List Object List

BSP

BSP

BSPGeometry

Geometry

Geometry

Top−level

(of Instances)

BSP

Figure 2: Two-level hierarchy as used in our approach: A top-level BSP contains
references to instances, which contain a transformation and a reference to an
object. Objects in turn consist of geometry and a local BSP tree. Multiple
instances can refer to the same object with different transformations.

Figure 3: Grouping of triangles into objects for hierarchical animation. Triangles
subject to the same hierarchical transformations are grouped into the same
object. (a) Snapshot from the BART robots scene, (b) Same snapshot, with
color-coded objects. Triangles with the same color belong to the same object.

application itself has the information about the motion of every part of the scene
in its internal scene-graph, and can typically perform this classification without
major effort. In fact, most applications already do this for OpenGL rendering,
as the same grouping of objects is required for efficiently using OpenGL dis-
play lists (also see the discussion of the accompanying document on OpenRT).
However, the actual grouping of objects into objects has a higher influence on
rendering performance than for OpenGL display lists. As such, it is important to
perform this grouping with extreme care in order to achieve good performance.

In the following, we will shortly describe how these different kinds of objects
are treated, and how the top-level index structure is built and traversed.

5

Figure 4: Snapshots of an interactive session in which complex parts of the
12.5 million triangle “UNC power plant” model are being moved interactively
with our method: a) the original powerplant, b) moving the powerplant and
the construction side apart, and c) moving part of the internal structure (the
cool and warm water pipes, totalling a few million triangles!) out of the main
structure).

3 Static and Hierarchical Motion

For static objects, ray traversal works as before by just traversing the ray with
our usual, fast traversal algorithm.

For hierarchically transformed objects, we do not actually transform the ge-
ometry of the object itself, but rather store this transformation with the object,
and inversely transform the rays that require intersection with this object4.

For both static objects and for those with hierarchical motion, the local BSP
tree must only be built once directly after object definition. Thus, the time for
building these objects is not an issue, thereby allowing for the use of sophisti-
cated and slow algorithms for building high-quality acceleration structures for
these objects.

Obviously the transformation slightly increases the per-ray cost. However,
this transformation has to be performed only once for each dynamic object
visited by a ray, and is as such tolerable. This increased per-ray cost then
totally removes the reconstruction cost for hierarchically animated objects, as
all that is required for transforming the object is to update its transformation
matrix. This is especially important as this kind of motion is usually the most
common form in practical scenes. Furthermore, not having to rebuild any BSP
trees make the update-cost for hierarchically transformed objects independent
of object size. As such, this way of handling hierarchical animation can be used
very efficiently even in extremely complex scenes. For example, Figure 4 shows
how a complex part of the 12.5 million triangle “UNC power plant” is being
moved in an interactive session.

3.1 Instantiation

Being able to handle objects that are subject to a transformation, the presented
approach as a side effect also allows for “instantiation”, i.e. using multiple in-

4Note that this way of handling is similar to the approach of Lext et al. [Lext01].

6

stances of the same object: Parts of a scene (e.g. one of the sunflowers in Fig-
ure 5) can re-used several times in the same scene by creating several instances
of this object. An instance then consists only of two properties: a reference
to the original model, and a transformation matrix that the instanced object is
subject to. Thus, even highly complex scenes can be stored with a small memory
footprint, which in turn allows for efficiently rendering even massively complex
scenes at interactive rates. As an example, Figure 5 shows a slight modification
of Oliver Deussen’s “Sunflowers” scene, which consists of several large trees with
millions of triangles each, plus 28,000 instances of 10 different sunflower models
with roughly 36,000 triangles each. While only one kind of tree and 10 kinds of
sunflowers have to actually be stored, in total roughly one billion triangles are
potentially visible. By changing the transformation matrices of the instances,
each object can be manipulated interactively while the scene renders at about
7 fps on 24 dual processor PCs at video resolution (see Table 4). Note that
this performance can be achieved even tough a large number of rays needs to
be cast in this scene: The leaves of both sunflowers and trees are modeled with
transparency textures, which results in many rays for computing transparency
and semi-transparent shadows.

Figure 5: Instantiation: The “Sunflowers” scene consists of roughly 28,000 in-
stances of 10 different kinds of sunflowers with 36,000 triangles each together
with several multi-million-triangle trees. The whole scene consists of roughly
one billion triangles. The center image shows a closeup of the highly detailed
shadows cast by the sun onto the leaves. All leaves contain textures with trans-
parency which increase the number of rays needed for rendering a frame. The
whole scene renders at roughly 7 fps on 24 dual PCs at video resolution. All
objects including the sun can be manipulated interactively.

4 Fast Handling of Unstructured Motion

While this simple trick of transforming rays instead of triangles elegantly avoids
any reconstruction cost for hierarchical motion, it does not work for unstruc-
tured motion, as there the acceleration structure potentially has to be rebuilt
for every frame. Even so, if triangles under unstructured motion are kept in a
separate object, the BSP reconstruction cost can be localized to only those tri-
angles that have actually been transformed. The local acceleration structures of
such objects are discarded and rebuilt from the transformed triangles whenever

7

necessary. Even though this process is costly, it is only required for objects with
unstructured motion and does not affect any of the other objects. Obviously,
only those objects have to be rebuilt whose primitives have actually be modified
in the respective frame. Furthermore, it is possible to perform this reconstruc-
tion of dynamic objects lazily on demand, i.e. only once a ray actually demands
intersection with that updated object. As such, the occlusion-culling feature of
ray tracing also applies to the reconstruction of dynamic objects, as occluded
objects do not have to be rebuilt.

The algorithms for creating highly optimized BSP trees may require several
seconds even for moderately complex objects. Thus, they are not applicable to
unstructured motion, for which the object BSP has to be rebuilt every frame
(and thus in fractions of a second). For these cases we trade traversal perfor-
mance for construction speed by using less expensive, simple heuristics for BSP
plane placement, which allows for a high-performance implementation of the
construction process.

4.1 Using less costly BSP Construction Parameters

Furthermore, we use less expensive quality parameters for the BSP plane place-
ment heuristics. For example, a particularly important cost factor for BSP tree
construction is the subdivision criterion of the BSP. As described in the ac-
companying document on the RTRT core, this criterion typically consist of a
maximum tree depth and a target number of triangles per leaf cell. Subdivi-
sion continues on cells with more than the target number of triangles up to the
maximum depth. Typical criteria specify 2 or 3 triangles per cell and usually
result in fast traversal times – but also in deeper BSPs, which are more costly
to create. Particularly costly are degenerate cases, in which subdivision can
not reduce the number of triangles per cell, for example if too many primitives
occupy the same point in space, e.g. at vertices with a valence higher than the
maximum numbers of triangles.

In order to avoid such excessive subdivisions in degenerate regions, we mod-
ified the subdivision criterion (for unstructured object BSPs): The deeper the
subdivision, the more triangles will be tolerated per cell. We currently increase
the tolerance threshold by a constant factor for each level of subdivision. Thus,
we generally obtain significantly lower BSP trees and larger leaf cells than for
static objects. Though this of course slows down the traversal of rays hitting
such objects, this slowdown is usually more than made up by the significantly
shorter construction time. Furthermore often only few rays hit such objects
with unstructured motion and are affected by this slowdown, so using a slower
BSP tree for those rays is tolerable. With the described compromises on BSP
construction, unstructured motion for moderate-sized objects can be supported
by rebuilding the respective object BSP every frame.

8

5 Fast Top-Level BSP Construction

As mentioned before, all kinds of objects – static, hierarchically animated, and
those with with unstructured motion – are hierarchically combined in an addi-
tional top-level acceleration structure. For this top-level structure, we also use
a kd-tree, and as such can use exactly the same algorithms for traversing this
top-level tree than for the object BSPs, except that visiting a voxel now requires
to intersect objects rather than triangles. While traversing this top-level BSP
thus requires only minor changes to the original implementation, this is not the
case for the construction algorithm. A scene can easily contain hundreds or
thousands of instances (see Figures 6 and 5), and a straight-forward approach
would be too costly for interactive use. On the other hand, the top-level BSP is
traversed by every ray, and thus few compromises on BSP quality can be made
for the top-level BSP.

Fortunately, the task of building the top-level BSP is simpler than for object
BSPs: Object BSPs require costly triangle-in-cell computations, careful place-
ment of the splitting plane, and handling of degenerate cases. The top-level
BSP however only contains instances represented by an axis-aligned bounding
box (AABB) of its transformed object5.

Considering only the AABBs, optimized placement of the splitting plane
becomes much easier, and any degenerate cases can be avoided.

For splitting a cell, we follow several observations:

1. It is usually beneficial to subdivide a cell in the dimension of its maximum
extent, as this usually yields the most well-formed cells [Havran01].

2. Placement of the BSP plane only makes sense at the boundary of objects
contained within the current cell. This is due to the fact that the cost-
function can be maximal only at such boundaries [Havran01].

3. It can been shown that the optimal position for the splitting plane lies
between the cells geometric center and the object median [Havran01]

Following these observations, the BSP tree can be built such that it is both
suited for fast traversal by optimized plane placement, and can still be built
quickly and efficiently: For each subdivision step, we try to find a splitting plane
in the dimension of maximum extent (observation 1). As potential splitting
planes, only the AABB borders will be considered (observation 2). To find a
good splitting plane, we first split the cell in the middle, and decide which side
contains more objects, i.e. which one contains the object median. From this
side, we choose the object boundary closest to the center of the cell. Thus, the
splitting plane lies in-between cell center and object median, which is generally
a good choice (observation 3).

5While the object itself already has an axis-aligned bounding box, this AABB is not nec-
essarily axis-aligned any more when subject to a transformation. As such, we conservatively
build the AABB of the instance by building a new instance AABB out of the transformed
vertices of the objects AABB. While this somewhat overestimates the actual instance bounds,
it is much less costly than computing the correct AABB by transforming all vertices.

9

As each subdivision step removes at least one potential splitting plane, termi-
nation of the subdivision can be guaranteed without further termination criteria.
Degenerate cases for overlapping objects cannot happen, as only AABB bound-
aries are considered, and not the overlapping space itself. Choosing the splitting
plane in the described way also yields relatively small and well-balanced BSP
trees. Thus, we get a top-level BSP that can be traversed reasonable quickly,
while still offering a fast and efficient construction algorithm.

BuildTree(instances,voxel)
for d = x,y,z in order of maximum extent

P = {i.mind, i.maxd|i ∈ instances}
if (‖P‖ = 0) continue;
c = center of voxel
if (more instances on left side of c than on right)

p = max({p ∈ P |p < c})
else

p = min({p ∈ P |p >= c})
Split Cell (instances,cell) in d at p into

(leftvox,leftinst),(rightvox,rightinst)
l = BuildTree(leftinst,leftvox);
r = BuildTree(rightinst,rightvox);
return InnerNode(d,p,l,r);

end for
no valid splitting plane found
return Leaf(instances)

5.1 High-Quality Top-level BSPs

Instead of this simplified BSP construction algorithm, it is also possible to use
a surface area heuristic for the top-level BSP tree. The main problem with
this approach is the question how to best estimate the cost for intersecting the
object. As the respective object BSPs contain only triangles, the cost for each
half voxel created by a split can be safely estimated to be mostly linear in the
number of triangles on each side. For the top-level BSP however, each side
contains objects of different size, for which the cost is hard to estimate.

However, the bigger problem with a surface area heuristic for the top-level
BSP tree is its relatively high construction cost. While this may be neglectable
for a few dozen objects, it currently becomes too expensive for a few hundred
instances. As such, using an SAH would only make sense for a small number
of instances as long as no fast implementations of an SAH tree builder are
available. Though RTRT/OpenRT has an implementation of both SAH and
the above mentioned algorithm, by default we use the simple and fast-to-build
version as described above.

10

6 Fast Traversal

Once both the top-level BSP tree and all the object BSPs are built, each ray
first starts traversing this top level structure. As soon as a voxel is found, the
ray is intersected with the objects in the leaf by simply traversing the respective
objects local acceleration structures. Once all BSPs are built, within both top-
level BSP and within each object traversal is identical to traditional ray tracing
in a static environment. Consequently, we use exactly the same algorithms
and data structures for building and traversing that acceleration structure as
for the static case [Wald04]. For the top-level BSP, the only difference is that
each leaf cell of the top-level BSP tree contains a list of instance IDs instead of
triangle IDs. Only minor changes have been required to implement this modified
traversal code.

As with the original implementation, a ray is first clipped to the scene bound-
ing box and is then traversed iteratively through the top-level BSP tree. As soon
as it encounters a leaf cell, it sequentially intersects the ray with all instances in
this cell: For each instance, the ray is first transformed to the local coordinate
system of the object, then clipped to the correct AABB of the object, and finally
traversed through its acceleration structure.

6.1 Mailboxing

Typically, the bounding volumes of different instances will overlap. In order to
avoid having to intersect a ray with the same object multiple times, mailbox-
ing [Amanatides87, Kirk91, Havran01] is very important to use for the top-level
BSP tree. While the benefit of mailboxing for the triangle for an object BSP is
rather small, the high cost of intersecting the same object several times clearly
justifies the use of mailboxing for the top-level BSP.

6.2 SSE Traversal

As our traversal and intersection algorithms do not require normalized ray di-
rections, transforming a ray is relatively cheap, as no costly re-normalization of
the transformed rays is necessary. The ray-matrix multiplications themselves
can very efficiently be done using SSE [Intel02]. Of course, our method also
works with the fast SSE packet traversal code described in [Wald04].

7 Experiments and Results

The described framework is rather straightforward to implement and use as long
as a shared-memory system (e.g. a dual-CPU PC) is available. However, the
situation of dynamic ray tracing gets much more problematic for non-shared
memory systems, as such systems often contain many non-scalable cost factors,
such as communicating scene updates to the client, or having to rebuild parts
of the hierarchy on every client.

11

As the described framework has been especially designed for performing well
on loosely coupled (i.e. non-shared memory) clusters of workstations, it is of
major importance to investigate the scalability of our method. To allow for rep-
resentative results, we have chosen to use a wide range of experiments and test
scenes. Therefore, we have chosen to use the BART benchmark scenes [Lext00],
which represent a wide variety of stress factors for ray tracing of dynamic scenes.
Additionally, we use several of the scenes that we encountered in practical appli-
cations [Wald02b], and a few custom-made scenes for stress-testing. Snapshots
of these test scenes can be found in Figure 6.

Figure 6: Several example frames from some of our dynamic scenes. a.) “BART
robots” contains roughly 100,000 triangles in 161 moving objects, b.) “BART
kitchen”, c.) “BART museum” with unstructured motion of several thousand
triangles. Note how the entire museum reflects in these triangles. d.) The
“terrain” scene uses up to 661 instances of 2 trees, would contain several million
triangles without instantiation, and also calculates detailed shadows. e.) The
“office” scene in a typical ray tracing configuration, demonstrating that the
method works fully automatically and completely transparently to the shader.
f.) Office with interactive global illumination.

All of the following experiments have been performed on a cluster of dual
AMD AthlonMP 1800+ machines with a FastEthernet (100Mbit) network con-
nection. The network is fully switched with a single GigaBit uplink to a dual
AthlonMP 1700+ server. The application is running on the server and is totally
unaware of the distributed rendering happening inside the rendering engine. It
manages the geometry in a scene graph, and transparently controls rendering via
calls to the OpenRT API [Wald04]. While the application itself may internally
use a scene-graph with multiple nested hierarchy levels, the OpenRT library
internally “flattens” this multi-level scene graph to the two-level organization
as described above (see Figure 2).

In the following experiments, all examples are rendered at video resolution

12

Figure 7: Two snapshots from the BART kitchen. a.) OpenGL-like ray casting
at > 26 fps on 32 CPUs. b.) full-featured ray tracing with shadows and 3 levels
of reflections, at > 7 fps on 32 CPUs.

of 640×480 pixels. Ray tracing is performed with costly programmable shaders
featuring shadows, reflections and texturing.

7.1 BART Kitchen

The kitchen scene contains hierarchical animation of 110.000 triangles organized
in 5 objects. It requires negligible network bandwidth and BSP construction
overhead. Overlap of bounding boxes may results in a certain overhead, which
is hard to measure exactly but is definitely not a major cost factor6.

The main cost of this scene is due to the need for tracing many rays to eval-
uate shadows from 6 point lights. There is also a high degree of reflectivity on
many objects. Due to fast camera motion and highly curved objects (see Fig-
ure 7), these rays are rather incoherent. However, these aspects are completely
independent of the dynamic nature of the scene and are handled efficiently by
our system.

We achieve interactive frame rates even for the large amount of rays to be
shot. A reflection depth of 3 results in a total of 3.867.661 rays/frame. At a
measured rate of 912.000 rays traced per second and CPU in this scene, this
translates to a frame rate of 7.55 fps on 32 CPUs. As can be seen in Table 1,
scalability is almost linear – using twice as many CPUs results in roughly twice
the frame rate.

CPUs 2 4 8 16 32
OpenGL-like 3.2 6.4 12.8 25.6 > 26
Ray Tracing 0.47 0.94 1.88 3.77 7.55

Table 1: Scalability in the kitchen scene in frames/sec.

6Note that the robot, museum, kitchen, and terrain scenes are only available in a dynamic
version, and can thus not be compared to a static version.

13

7.2 BART Robots

The robots scene features a game-like setting with 16 animated robots moving
through a city. The scene consists of 161 objects: 16 robots with 10 animated
body parts each, plus one object for the surrounding city. All dynamic motion
is hierarchical with no unstructured motion at all. Therefore, the BSP trees for
all objects have to be built only once, and only the top-level BSP have to be
rebuilt for every frame.

Using the algorithms described above, rebuilding the top-level BSP is very
efficient and takes less than one millisecond. Furthermore, updating the trans-
formation matrices requires only a small network bandwidth of roughly 20
kb/frame for each client.

CPUs 2 4 8 16 32
OpenGL-like 2.8 5.55 10.8 21 > 26
Ray Tracing 0.54 1.07 2.15 4.3 8.6

Table 2: Scalability in the robots scene in frames/sec.

With such a small transmission and reconstruction overhead, we again achieve
almost-linear scalability (see Table 2) and high rendering performance. Using
32 CPUs, we achieve a frame rate of 8 frames per second. Again, the high cost
of this scene is due to the large number of reflection and shadow rays. Using a
simple OpenGL-like shader (see Figure 8) results in frame rates of more than
26 frames per second.

7.3 BART Museum

The museum has been designed mainly for testing unstructured motion and is
the only BART scene featuring non-hierarchical motion. In the center of the
museum, several triangles are animated on predefined animation paths to form
differently shaped objects. The number of triangles undergoing unstructured
motion can be configured to 64, 256, 1k, 4k, 16k, or 64k. Even though the
complete animation paths are specified in the BART scene graph, we do not
make use of this information. User controlled movement of the triangles –
i.e. without knowledge of future positions – would create the same results.

This scene also requires the computation of shadows from two point lights as
well as large amounts of reflection rays. All of the moving triangles are reflective
and incoherently sample the whole environment (see Figure 9). As the dynamic
behavior of a scene is completely transparent to the shaders, integrating all these
effects does not require any additional effort except for the cost for tracing the
rays.

As expected, unstructured motion gets costly for many triangles. Building
the BSP tree for the complex version of 64k triangles already requires more
than one second (see Table 3). Note, however, that our current algorithms for
building object BSPs still leave plenty of room for further optimizations.

14

Figure 8: BART robots: 16 robots consisting of 161 objects rendered interac-
tively. a.) Ray casting at > 26 fps on 32 CPUs. b.) Full ray tracing at > 8 fps
at 32 CPUs.

Figure 9: Unstructured motion in the BART museum: Up to 64,000 triangles
are moving incoherently through the museum. Note how the triangles reflect
the entire environment.

Furthermore, the reconstruction time is strongly affected by the distribution
of triangles in space: In the beginning of the animation, all triangles are equally
and almost-randomly distributed. This is the worst case for BSPs, which are
best at handling uneven distributions, and construction is consequently costly.
Furthermore, the randomly distributed triangles form many singularities when
intersecting themselves, which is extremely bad for typical BSP trees. During
the animation, the triangles organize themselves to form a single surface. At
this stage, reconstruction time is much faster. Note that the numbers given in
Table 3 are taken at the beginning of the animation, and are thus worst-case
results.

15

num tris 64 256 1k 4k 16k 64k
reconst.time 1ms 2ms 8ms 34ms 0.1s > 1s
bandwidth/client 6.4k 25.6k 102k 409k 1.6M 6.5M

Table 3: Unstructured motion in different configurations of the museum scene.
Rows specify reconstruction time for the top-level BSP, and data sent to each
client for updating the triangle positions.

7.3.1 Network Bottleneck

Apart from raw reconstruction cost, significant network bandwidth is required
for sending all triangles to every client. Since we use reliable unicast (TCP/IP)
for network transport, using 4096 triangles and 16 clients (32 CPUs), requires
to transfer roughly 6.5 Mb (16 clients × 408kb, see Table 3) – for every frame.
Though in theory this does not yet totally saturate the network, the network
load is not equally distributed over time: Network bandwidth is especially high
at the beginning of each frame, when all the scene updates have to be commu-
nicated to the clients. During this time, the network is already completely satu-
rated when sending 16k triangles to the clients, implying that the performance
of the server is already significantly affected during this time. Consequently, we
can no longer scale linearly any more when dynamically updating more than a
few thousand triangles (see Table 4).

7.3.2 “Geometry Shaders”

Note that this problem would be significantly reduced on a shared-memory
platform, or even with the availability of a reliable hardware multicast. On
a cluster configuration, the update problem could probably also be solved by
using “geometry shaders” that can generate the triangles directly on the clients.
Though this can only be used for a limited set of applications, it would already
allow for many important and interesting applications. So far however this
approach has not yet been sufficiently investigated.

Due to the discussed problems – high communication cost for the scene up-
dates and high reconstruction cost for the dynamic object’s BSP – the museum
scene is the most problematic of all the scenes encountered so far. Even so, with
all these effects – unstructured motion, shadows, and highly incoherent reflec-
tions in the animated triangles – the museum can still be rendered interactively:
Using 8 clients, we achieve 4.8 fps for 1024 triangles, and still 4.2 fps for 4096
triangles in video resolution (see Table 4). Again, the frame rate is dominated
by the cost for shadows and reflections. Using an OpenGL-like shader without
these effects allows to render the scene at 19 frames per second on 8 clients.

7.4 Outdoor Terrain

The terrain scene has been specially designed to stress scalability with a large
number of instances and triangles. It contains 661 instances of 2 different trees,

16

with GL-like shading with full ray tracing
num CPUs 1 2 4 8 16 1 2 4 8 16
robots 2.8 5.55 10.8 21 26? 0.54 1.07 2.15 4.3 8.6
kitchen 3.2 6.4 12.8 25.6 26? 0.47 0.94 1.88 3.77 7.55
terrain 1.3 2.5 4.8 8 15 0.9 1.77 3.39 6.5 12
museum:

w/ 1k 2.7 5.4 10.2 19.5 26? 0.6 1.2 2.4 4.8 9.3
w/ 4k 2.5 4.5 7.5 4.5 2.5 0.55 1.1 2.2 4.2 2.5
w/ 16k 1.6 2.4 1.7 1 0.5 0.45 0.9 1.65 0.98 0.53

Table 4: Scalability of our method in the different test scenes (BART robots,
BART kitchen, Outdoor Terrain, and BART museum with 1k, 4k, and 16k
dynamic triangles). “?” means that the servers network connection is completely
saturated in our network configuration, and thus no higher performance can
be achieved. The numbers in the left half of the table correspond to pure
OpenGL like shading, the right half is for full ray tracing including shadows
and reflections. As can clearly be seen, for scenes with hierarchical animation
scalability is almost linear up to the maximum network bandwidth for the final
pixel data. With an increasing amount of unstructured motion (museum 1k–
16k), the required network bandwidth for sending the changed triangles to the
clients soon becomes a bottleneck. In that case, adding more CPUs even reduces
performance, as data has to be sent to even more clients. An overview of these
scenes can be found in Figure 6

which correspond to more than 10 million triangles after instantiation. A point
light source creates highly detailed shadows from the leaves (see Figure 6). All
trees can be moved around interactively, both in groups or individually. The
large number of instances results in construction times for the top-level BSP
of up to 4 ms per frame. This cost — together with the transmission cost for
updating all 661 instance matrices on all clients — limits the scalability for a
large number of instances and clients (see Table 4).

8 Discussion

The above scenes have been chosen to stress different aspects of our dynamic ray
tracing engine. Together with the terrain experiment, our test scenes contain a
strong variation of parameters – from 5 to 661 instances, from a few thousand
to several million triangles, from simple shading to lots of shadows and reflec-
tions, and from hierarchical animation to unstructured motion of thousands of
triangles (for an overview, see Figure 6). Taken together, these experiments
allow for a detailed analysis of our method.

17

Figure 10: Terrain scene with up to 1000 instances of 2 kinds of complex trees
(661 instances in the shown configuration, as some trees have been interactively
moved off the terrain). Without instantiation, the scene would consist of roughly
10 million triangles. a.) Overview of the whole scene, b.) Detailed shadows from
the sun, cast by the leaves onto both floor and other leaves.

8.1 Transformation Cost

For mainly hierarchical animation, the core idea of our method was to trade
the cost for rebuilding the acceleration structure for the cost to transform the
rays to the local coordinate system of each object. This implies that every ray
intersecting an object has to be transformed via matrix-vector multiplications
for both ray origin and direction (for every object encountered), potentially re-
sulting in several matrix operations per ray. With a ray tracing performance
of up to several million rays per second [Wald04], this can amount to many
million matrix-vector multiplications per frame! For example, the terrain and
robots scenes at 640×480 pixels require 1.6 and 1 million matrix operations, re-
spectively (see Figure 5). Furthermore, more transformations are often required
during shading, e.g. by transforming the shading normal or for calculating pro-
cedural noise in the local coordinate system.

office terrain robots
objects 9 661 161

matrix ops 480k 1.6M 1M

Table 5: Number of matrix-vector multiplies for our benchmark scenes (resolu-
tion 640x480). A matrix operation can be performed in only 23 cycles even in
plain C code, which is negligible compared to traversal cost.

However, the cost for these transformations in practice is quite tolerable:
Even for a straight-forward C-code implementation, a matrix-vector operation
costs only 23 cycles on an AMD AthlonMP CPU, which is rather small compared
to the cost for tracing a ray (which is in the order of several hundred to a few
thousand cycles). Note that the matrix-vector multiplies are ideally suited for

18

fast SSE implementation. This reduces this cost even further, and makes the
transformation overhead almost negligible.

8.2 Unstructured Motion

As could be expected, the museum scene has shown that unstructured motion
remains costly for ray tracing. A moderate number of a few thousand indepen-
dently moving triangles can easily be supported, but larger numbers still lead
to high reconstruction times for the respective objects (see Table 3). As such,
our method is still not suitable for scenes with strong unstructured motion.

To support such scenes, algorithms for faster reconstruction of dynamic ob-
jects have to be developed. Note that our method could also be combined with
Reinhard’s approach [Reinhard00] by using his method only for the unstructured
objects. Even then, lots of unstructured motion would still create a performance
problem due to the need to send all triangle updates to the clients. This is not
a limitation of our specific method, but would be similar for any algorithm in a
distributed environment.

8.3 Bounding Volume Overlap

One of the stress cases identified in [Lext00] was Bounding Volume Overlap.
In fact, this does create some overhead, as in the overlap area of two objects,
these two objects have to be intersected sequentially by each ray. As a result, a
successful intersection found during traversal of the first object may later-on be
invalidated by a closer one in the other object. In fact, this partially disables
“early ray termination” and thus negatively affects the occlusion culling feature
of ray tracing7.

Though it is easy to construct scenarios where bounding volume overlap
would lead to excessive overhead, it is rarely significant in practice. In fact,
bounding volume overlap does happen in all our test cases, but has never shown
to pose a major performance problem. In fact, overlapping objects are exactly
what happens all the time in bounding volume hierarchies (BVHs) [Rubin80,
Kay86, Haines91], which have also proven to work rather well in practice.

8.4 Teapot-in-a-Stadium Problem

The teapot-in-a-stadium problem is handled very well by out method: BSPs
automatically adapt to varying object density in a scene [Havran01]. This is
true for both object and top-level BSPs. In fact, our method can even increase
performance for such cases: If the ’teapot’ is contained in a separate object, the
shape of the ’stadium’ BSP is usually much better, as there is no need any more
for several BSP subdivisions to tightly enclose the teapot.

7Note that for shadow rays, finding intersections in the wrong order is not a problem, as
any valid intersection is sufficient to determine occlusion of a ray. Even so, Bounding Volume
Overlap may still lead to the situation that the object containing an occluder will be traversed
rather late during traversal of the toplevel structure.

19

8.5 Over-Estimation of Object Bounds

Building the top-level BSP requires an estimate of the bounding box of each
instance in world coordinates. As transforming each individual vertex would be
too costly, we conservatively estimate these bounds based on the transformed
bounding box of the original object.

This somewhat over-estimates the correct bounds and thus results in some
overhead: During top-level BSP traversal, a ray may be intersected with an
object that it would not have intersected otherwise. However, this overhead is
restricted to only transforming and clipping the ray: After transformation to the
local coordinate system, such a ray is first clipped against the correct bounding
box, and can thus be immediately discarded without further traversal.

8.6 Scalability with the Number of Instances

Apart from unstructured motion, the main cost of our method results from the
need to recompute the top-level BSP tree. As such, a large number of instances
is expensive, as can be seen in the terrain scene. Thus, the number of instances
should be minimized in order to achieve optimal performance. Usually, it is
better to use a small number of large objects instead of many small ones. For
example, all static triangles in a scene should best be stored in a single object,
instead of using multiple objects. This is completely different to approaches
commonly used in OpenGL, in which many, small display lists are used. Thus,
some amount of manual adjustment and optimization may be required when
porting applications from OpenGL to OpenRT.

Even so, even the thousand complex instances can be rendered interactively,
and top-level reconstruction has not yet proven a real limitation in any prac-
tical application. For moderate numbers of objects, top-level reconstruction is
virtually negligible.

On the other hand, supporting instantiation (i.e. using exactly the same ob-
ject multiple times in the same frame) is a valuable feature of our method, as this
allows for rendering complex environments very efficiently: With instantiation,
memory is required for storing only one copy of each object to be instantiated,
plus the top-level BSP, allowing to render even many million triangles with a
small memory footprint (see Figures 5 and 10). For triangle rasterization, all
triangles would still need to be handled individually by the graphics hardware
even when using display lists.

8.7 Scalability in a Distributed Environment

As can be seen by the experiments in Section 7, we achieve rather good scal-
ability even for many clients except for scenes that require to update a lot of
information on all clients, i.e. for a high degree of unstructured motion (where
every moving triangle has to be transmitted), and for a large number of in-
stances.

20

In the terrain scene, using 16 clients would require to send 676 Kb8 per frame
simply for updating the 661 transformation matrices on the clients. Though this
data can be sent in a compressed form, load balancing and client/server commu-
nication further adds to the network bandwidth. Without broadcast/multicast
functionality on the network, the server bandwidth increases linearly with the
number of clients. For many clients and lots of updated data, this creates a
bandwidth bottleneck on the server, and severely limits the scalability (see Ta-
ble 4). In fact, performance could even drop when adding many more CPUs,
as each new client increases the network load. In principle, the same is true for
unstructured motion, where sending several thousand triangles to each client
also creates a bandwidth bottleneck. On the other hand, both problems are not
specific to our method, but will apply similarly to any method running on such
a distributed hardware architecture.

8.8 Total Overhead

In order to estimate the total overhead of our method, we have compared sev-
eral scenes in both a static and dynamic configuration. As there are no static
equivalents for the BART benchmarks, we have taken several of our static test
scenes, and have modified them in a way that they can be rendered in both a
static configuration with all triangles in a single, static BSP tree, as well as in a
dynamic configuration, where triangles are grouped into different objects that
can then be moved dynamically.

For simple scenes, the total overhead is relatively high9, compared to the
small cost of rendering a static version of these scenes, and even reaches up to
a factor of two in total rendering time. For more realistic scene sizes, however,
the relative overhead is significantly less, and in practice is often in the range of
20 to 30 percent, sometimes even less. This is very fortunate, as the overhead
is worst for simple scenes in which absolute performance is highest anyway, and
is relatively small for more costly scenes in which a high overhead would hurt
most. Furthermore, most practical applications use rather complex scenes, and
thus have a small overhead. As such, we believe this overhead to be a reasonable
price for the added flexibility gained through supporting dynamic scenes.

9 Conclusions

The presented method is a simple and practical approach to handling dynamic
scenes in an interactive distributed ray tracing engine. It can handle a large
variety of dynamic scenes, including all the BART benchmark scenes (see Fig-
ure 6). It imposes no limitations on the kind of rays to be shot, and as such

8661 instances×16 clients×(4× 4) floats
9Note that total overhead includes all the previously mentioned sources of overhead, e.g. in-

cluding toplevel reconstruction, bounding volume overlap, traversal cost, multiple traversal
setup cost, etc.

21

allows for all the usual ray-tracing features like shadows, reflections, and even
global illumination [Wald04].

For unstructured motion, the proposed method still incurs a high reconstruc-
tion cost per frame, that makes it infeasible for a large number of incoherently
moving triangles. For a moderate amount of unstructured motion however (in
the order of a few thousand incoherently moving triangles), it is well applica-
ble and results in frame rates of several frames per second at video resolution.
For mostly hierarchical animation our method is highly efficient and achieves
interactive performance even for highly complex models with hundreds of in-
stances, and with millions of triangles per object [Wald02a]. This is especially
furtunate since many of todays scene graph libraries (especially in VR/AR and
other industrial applications) mostly use only this kind of animation.

The proposed technique forms a core part of the RTRT/OpenRT core, and
has been used exclusively in all of the published applications of this system that
all use this technique). Though it is certainly possible to construct cases in which
the proposed method breaks down, so far is has been successfully able to handle
all the dynamic scenes that have been encountered in practical applications of
RTRT/OpenRT.

In conclusion, the proposed method of handling dynamic scenes is still lim-
ited but nonetheless already good enough for a large class of applications. Fur-
thermore, the support for dynamic scenes in ray tracing is likely to improve
significantly in the near future as more researchers start looking at this prob-
lem. Still, there remains a vast potential for future research in this area.

10 Future Work

At the moment, the main remaining scalability bottleneck lies in communicating
all scene updates to all clients, making the total bandwidth linear in the number
of clients. Thus, future work will investigate to use network broadcast/multicast
to communicate the scene updates. As almost all of the updated data is the
same for every client, this should effectively remove the server bottleneck. Fur-
thermore, the above-mentioned concept of “geometry shaders” seems to be an
interesting option for reducing the scene update bandwidth.

On the clients, the main bottleneck is the cost for reconstructing objects
under unstructured motion. This could be improved by designing specialized
algorithms for cases where motion is spatially limited in some form, such as for
skinning, predefined animations, or for key-frame interpolation.

For the top-level BSP, it could be highly beneficial to investigate the use
of cost functions. This especially includes finding ways of building such high-
quality BSPs in a fast and efficient manner.

Apart from these technical issues, it is also important to investigate how
existing applications can be mapped to our method, e.g. by evaluating how a
scene graph library such as OpenInventor [Wernecke94], OpenSG [OpenSG01],
OpenSceneGraph [OSG] or VRML [Carey97] can be efficiently implemented on
top of our system. Preliminary results seem promising [Dietrich04].

22

Finally, it is an obvious next step to integrate this techniques into a hard-
ware ray tracing architecture such as the SaarCOR architecture [Schmittler02].
As such an architecture avoids most of the distribution problems we have in
our PC cluster, such a mapping should be highly successful. First results are
encouraging.

References

[Amanatides87] John Amanatides and Andrew Woo. A Fast Voxel Traversal
Algorithm for Ray Tracing. In Eurographics ’87, pages 3–10.
1987.

[Carey97] Rikk Carey, Gavin Bell, and Chris Marrin. ISO/IEC 14772-
1:1997 Virtual Reality Modelling Language (VRML97), April
1997. http://www.vrml.org/Specifications/VRML97.

[DeMarle03] David E. DeMarle, Steve Parker, Mark Hartner, Christiaan
Gribble, and Charles Hansen. Distributed Interactive Ray
Tracing for Large Volume Visualization. In Proceedings of
the IEEE Symposium on Parallel and Large-Data Visualization
and Graphics (PVG), pages 87–94, 2003.

[Dietrich04] Andreas Dietrich, Ingo Wald, Markus Wagner, and Philipp
Slusallek. VRML Scene Graphs on an Interactive Ray Trac-
ing Engine. In Proceedings of IEEE VR 2004, pages 109–116,
March 2004.

[Glassner88] Andrew Glassner. Spacetime Ray Tracing for Animation. IEEE
Computer Graphics and Applications, 8(2):60–70, 1988.

[Gröller91] Eduard Gröller and Werner Purgathofer. Using temporal and
spatial coherence for accelerating the calculation of animation
sequences. In Proceedings of Eurographics ’91, pages 103–113.
Elsevier Science Publishers, 1991.

[Haines87] Eric A. Haines. A Proposal for Standard Graphics Environ-
ments. IEEE Computer Graphics and Applications, 7(11):3–5,
November 1987. Available from http://www.acm.org/pubs/-
tog/resources/SPD/overview.html.

[Haines91] Eric Haines. Efficiency Improvements for Hierarchy Traversal
in Ray Tracing. In James Arvo, editor, Graphics Gems II,
pages 267–272. Academic Press, 1991.

[Havran01] Vlastimil Havran. Heuristic Ray Shooting Algorithms. PhD
thesis, Faculty of Electrical Engineering, Czech Technical Uni-
versity in Prague, 2001.

23

[Intel02] Intel Corp. Intel Pentium III Streaming SIMD Extensions.
http://developer.intel.com/vtune/cbts/simd.htm, 2002.

[Kay86] Timothy L. Kay and James T. Kajiya. Ray Tracing Complex
Scenes. Computer Graphics (Proceedings of SIGGRAPH 86),
20(4):269–278, June 1986. Held in Dallas, Texas.

[Kirk91] David Kirk and James Arvo. Improved Ray Tagging For Voxel-
Based Ray Tracing. In James Arvo, editor, Graphics Gems II,
pages 264–266. Academic Press, 1991.

[Lext00] Jonas Lext, Ulf Assarsson, and Tomas Möller. BART: A
Benchmark for Animated Ray Tracing. Technical report,
Department of Computer Engineering, Chalmers University
of Technology, Göteborg, Sweden, May 2000. Available at
http://www.ce.chalmers.se/BART/.

[Lext01] Jonas Lext and Tomas Akenine-Möller. Towards Rapid Recon-
struction for Animated Ray Tracing. In Eurographics 2001 –
Short Presentations, pages 311–318, 2001.

[OpenSG01] OpenSG-Forum. http://www.opensg.org, 2001.

[OSG] OpenSceneGraph. http://www.openscenegraph.org.

[Parker99] Steven Parker, Peter Shirley, Yarden Livnat, Charles Hansen,
and Peter-Pike Sloan. Interactive Ray Tracing. In Proceedings
of Interactive 3D Graphics, pages 119–126, 1999.

[Reinhard00] Erik Reinhard, Brian Smits, and Chuck Hansen. Dynamic Ac-
celeration Structures for Interactive Ray Tracing. In Proceed-
ings of the Eurographics Workshop on Rendering, pages 299–
306, Brno, Czech Republic, June 2000.

[Rubin80] Steve M. Rubin and Turner Whitted. A Three-Dimensional
Representation for Fast Rendering of Complex Scenes. Com-
puter Graphics, 14(3):110–116, July 1980.

[Schmittler02] Jörg Schmittler, Ingo Wald, and Philipp Slusallek. SaarCOR
– A Hardware Architecture for Ray Tracing. In Proceedings of
the ACM SIGGRAPH/Eurographics Conference on Graphics
Hardware, pages 27–36, 2002.

[Wald01] Ingo Wald, Philipp Slusallek, and Carsten Benthin. Interac-
tive Distributed Ray Tracing of Highly Complex Models. In
Steven J. Gortler and Karol Myszkowski, editors, Rendering
Techniques, Proceedings of the 12th Eurographics Workshop on
Rendering Techniques, London, UK, June 25-27, 2001, pages
274–285. Springer, 2001.

24

[Wald02a] Ingo Wald, Carsten Benthin, and Philipp Slusallek. OpenRT
- A Flexible and Scalable Rendering Engine for Interactive 3D
Graphics. Technical report, Saarland University, 2002. Avail-
able at http://graphics.cs.uni-sb.de/Publications.

[Wald02b] Ingo Wald, Thomas Kollig, Carsten Benthin, Alexander Keller,
and Philipp Slusallek. Interactive Global Illumination using
Fast Ray Tracing. Rendering Techniques, pages 15–24, 2002.
(Proceedings of the 13th Eurographics Workshop on Render-
ing).

[Wald03] Ingo Wald, Timothy J. Purcell, Jörg Schmittler, Carsten Ben-
thin, and Philipp Slusallek. Realtime Ray Tracing and its use
for Interactive Global Illumination. In Eurographics State of
the Art Reports, 2003.

[Wald04] Ingo Wald. Realtime Ray Tracing and Interactive Global
Illumination. PhD thesis, Computer Graphics Group,
Saarland University, 2004. Available at http://www.mpi-
sb.mpg.de/∼wald/PhD/.

[Wernecke94] Josie Wernecke. The Inventor Mentor. Addison-Wesley, 1994.
ISBN 0-20162-495-8.

25

IEEE TRANSACTIONS ON COMPUTER GRAPHICS AND VISUALIZATION 1

Interactive Ray Tracing for Volume Visualization
Steven Parker, Michael Parker, Yarden Livnat, Peter-Pike Sloan, Charles Hansen, Peter Shirley

Abstract— We present a brute-force ray tracing system for interactive
volume visualization. The system runs on a conventional (distributed)
shared-memory multiprocessor machine. For each pixel we trace a ray
through a volume to compute the color for that pixel. Although this method
has high intrinsic computational cost, its simplicity and scalability make it
ideal for large datasets on current high-end parallel systems. To gain effi-
ciency several optimizations are used including a volume bricking scheme
and a shallow data hierarchy. These optimizations are used in three sep-
arate visualization algorithms: isosurfacing of rectilinear data, isosurfac-
ing of unstructured data, and maximum-intensity projection on rectilinear
data. The system runs interactively (i.e., several frames per second) on an
SGI Reality Monster. The graphics capabilities of the Reality Monster are
used only for display of the final color image.

Keywords— Ray tracing, visualization, isosurface, maximum-intensity
projection.

I. INTRODUCTION

Many applications generate scalar fields�(x; y; z) which can
be visualized by a variety of methods. These fields are often
defined by a set of point samples and an interpolation rule. The
point samples are typically in either a rectilinear grid, a curvilin-
ear grid, or an unstructured grid (simplical complex). The two
main visualization techniques used on such fields are to display
isosurfaceswhere�(x; y; z) = �iso, anddirect volume render-
ing, where there is some type of opacity/emission integration
along the line of sight. The key difference between these tech-
niques is that isosurfacing displays actual surfaces, while direct
volume rendering displays some function of all the values seen
along a ray throughout the pixel. Ideally, the display parameters
for each technique are interactively controlled by the user. In
this paper we present interactive volume visualization schemes
that use ray tracing as their basic computation method.

The basic ray-volume traversal method used in this paper is
shown in Fig. 1. This framework allows us to implement volume
visualization methods that find exactly one value along a ray.
Two such methods described in this paper are isosurfacing and
maximum-intensity projection. Maximum-intensity projection
is a direct volume rendering technique where the opacity is a
function of the maximum intensity seen along a ray. The isosur-
facing of rectilinear grids has appeared previously [1], while the
isosurfacing of unstructured grids and the maximum-intensity
projection are described for the first time in this paper. More
general forms of direct volume rendering are not discussed in
this paper.

The methods are implemented in a parallel ray tracing system
that runs on an SGI Reality Monster, which is a conventional
(distributed) shared-memory multiprocessor machine. The only
graphics hardware that is used is the high-speed framebuffer.
This overall system is described in a previous paper [2]. Con-
ventional wisdom holds that ray tracing is too slow to be com-
petitive with hardware z-buffers. However, when rendering a
sufficiently large dataset, ray tracing should be competitive be-

Computer Science Department, University of Utah, Salt Lake City, UT 84112.
E-mail: [sparkerj mapj ylivnat j ppsloanj hansenj shirley] @cs.utah.edu.

volume

screen

eye

value is searched for
along part of ray that
is inside the volume

Fig. 1. A ray traverses a volume looking for a specific or maximum value. No
explicit surface or volume is computed.

cause its low time complexity ultimately overcomes its large
time constant [3]. This crossover will happen sooner on a mul-
tiple CPU computer because of ray tracing’s high degree of in-
trinsic parallelism. The same arguments apply to the volume
traversal problem.

In Section II we review previous work, describe several vol-
ume visualization techniques, and give an overview of the par-
allel ray tracing code that provides the backbone of our sys-
tem. Section III describes the data organizational optimizations
that allow us to achieve interactivity. In Section IV we de-
scribe our memory optimizations for various types of volume
visualization. In Section V we show our methods applied to
several datasets. We discuss the implications of our results in
Section VI, and point to some future directions in Section VII.
Some material that is not research-oriented but is helpful for im-
plementors is presented in the appendices.

II. BACKGROUND

Ray tracing has been used for volume visualization in many
works (e.g., [4], [5], [6]). Typically, the ray tracing of a pixel is
a kernel operation that could take place within any conventional
ray tracing system. In this section we review how ray tracers are
used in visualization, and how they are implemented efficiently
at a systems level.

A. Efficient Ray Tracing

It is well understood that ray tracing is accelerated through
two main techniques [7]: accelerating or eliminating ray/voxel
intersection tests and parallelization. Acceleration is usually ac-
complished by a combination of spatial subdivision and early
ray termination [4], [8], [9].

Ray tracing for volume visualization naturally lends itself to-
wards parallel implementations [10], [11]. The computation for
each pixel is independent of all other pixels, and the data struc-
tures used for casting rays are usually read-only. These proper-
ties have resulted in many parallel implementations. A variety
of techniques have been used to make such systems parallel, and

IEEE TRANSACTIONS ON COMPUTER GRAPHICS AND VISUALIZATION 2

many successful systems have been built (e.g., [10], [12], [13],
[14]). These techniques are surveyed by Whitman [15].

B. Methods of Volume Visualization

There are several ways that scalar volumes can be made into
images. The most popular simple volume visualization tech-
niques that are not based on cutting planes areisosurfacing,
maximum-intensity projectionanddirect volume rendering.

In isosurfacing, a surface is displayed that is the locus of
points where the scalar field equals a certain value. There are
several methods for computing images of such surfaces includ-
ing constructive approaches such as marching cubes [16], [17]
and ray tracing [18], [19], [20].

In maximum-intensity projection (MIP) each value in the
scalar field is associated with an intensity and the maximum in-
tensity seen through a pixel is projected onto that pixel [21].
This is a “winner-takes-all” algorithm, and thus looks more like
a search algorithm than a traditional volume color/opacity accu-
mulation algorithm.

More traditional direct volume rendering algorithms accumu-
late color and opacity along a line of sight [8], [4], [5], [6], [22].
This requires more intrinsic computation than MIP, and we will
not deal with it in this paper.

C. Traversals of Volume Data

Traversal algorithms for volume data are usually customized
to the details of the volume data characteristics. The three most
common types [23] of volume data used in applications are
shown in Figure 2.

To traverse a line through rectilinear data some type of in-
cremental traversal is used (e.g., [24], [25]). Because there are
many cells, a hierarchy can be used that skips “uninteresting”
parameter intervals, which increases performance [26], [27],
[28], [29].

For curvilinear volumes, the ray can be intersected against
a polygonal approximation to the boundary, and then a more
complex cell-to-cell traversal can be used [30].

For unstructured volumes a similar technique can be
used [31], [32]. Once the ray is intersected with a volume, it
can be tracked from cell-to-cell using the connectivity informa-
tion present in the mesh.

Another possibility for both curvilinear and unstructured
grids is to resample to a rectilinear grid [33], although resam-
pling artifacts and data explosion are both issues.

III. T RAVERSAL OPTIMIZATIONS

Our system organizes the data into a shallow rectilinear hi-
erarchy for ray tracing. For unstructured or curvilinear grids, a
rectilinear hierarchy is imposed over the data domain. Within
a given level of the hierarchy we use the incremental method
described by Amanatides and Woo [24].

A. Memory Bricking

The first optimization is to improve data locality by organiz-
ing the volume into “bricks” that are analogous to the use of
image tiles in image-processing software and other volume ren-
dering programs [21], [34] (Figure 3). Our use of lookup tables
is particularly similar to that of Sakas et al. [21].

rectilinear curvilinear unstructured

Fig. 2. The three most common types of point-sampled volume data.

Effectively utilizing the cache hierarchy is a crucial task in
designing algorithms for modern architectures. Bricking or 3D
tiling has been a popular method for increasing locality for ray
cast volume rendering. The dataset is reordered inton� n� n

cells which then fill the entire volume. On a machine with 128
byte cache lines, and using 16 bit data values,n is exactly 4.
However, using float (32 bit) datasets,n is closer to 3.

Effective translation lookaside buffer (TLB) utilization is also
becoming a crucial factor in algorithm performance. The same
technique can be used to improve TLB hit rates by creatingm�
m�m bricks ofn� n� n cells. For example, a40� 20� 19
volume could be decomposed into4 � 2 � 2 macrobricks of
2� 2� 2 bricks of5� 5� 5 cells. This corresponds tom = 2
andn = 5. Because 19 cannot be factored bymn = 10, one
level of padding is needed. We usem = 5 for 16 bit datasets,
andm = 6 for 32 bit datasets.

The resulting offsetq into the data array can be computed for
anyx; y; z triple with the expression:

q = ((x� n)�m)n3m3((Nz � n)�m)((Ny � n)�m) +

((y � n)�m)n3m3((Nz � n)�m) +

((z � n)�m)n3m3 +

((x� n) modm)n3m2 +

((y � n) modm)n3m+

((z � n) modm)n3 +

(x mod n� n)n2 +

(y mod n)� n+

(z mod n)

whereNx, Ny andNz are the respective sizes of the dataset.
This expression contains many integer multiplication, divide

and modulus operations. On modern processors, these opera-
tions are extremely costly (32+ cycles for the MIPS R10000).
Wheren andm are powers of two, these operations can be con-
verted to bitshifts and bitwise logical operations. However, the
ideal size is rarely a power of two thus, a method that addresses
arbitrary sizes is needed. Some of the multiplications can be
converted to shift/add operations, but the divide and modulus
operations are more problematic. The indices could be com-
puted incrementally, but this would require tracking 9 counters,
with numerous comparisons and poor branch prediction perfor-
mance.

IEEE TRANSACTIONS ON COMPUTER GRAPHICS AND VISUALIZATION 3

Note that this expression can be written as:

q = Fx(x) + Fy(y) + Fz(z)

where

Fx(x) = ((x� n)�m)n3m3((Nz � n)�m)((Ny � n)�m) +

((x� n) modm)n3m2 +

(x mod n� n)n2

Fy(y) = ((y � n)�m)n3m3((Nz � n)�m) +

((y � n) modm)n3m+

(y mod n)� n

Fz(z) = ((z � n)�m)n3m3 +

((z � n) modm)n3 +

(z mod n)

We tabulateFx, Fy, andFz and usex, y, andz respectively
to find three offsets in the array. These three values are summed
to compute the index into the data array. These tables will con-
sist ofNx, Ny, andNz elements respectively. The total sizes
of the tables will fit in the primary data cache of the processor
even for very large data set sizes. Using this technique, we note
that one could produce mappings which are much more complex
than the two level bricking described here, although it is not at
all obvious which of these mappings would achieve the highest
cache utilization.

For many algorithms, each iteration through the loop exam-
ines the eight corners of a cell. In order to find these eight values,
we need to only lookupFx(x), Fx(x + 1), Fy(y), Fy(y + 1),
Fz(z), andFz(z + 1). This consists of six index table lookups
for each eight data value lookups.

B. Multilevel Grid

The other basic optimization we use is a multi-level spatial
hierarchy to accelerate the traversal of empty cells as is shown
in Figure 4. Cells are grouped divided into equal portions, and
then a “macrocell” is created which contains the minimum and
maximum data value for its children cells. This is a common
variant of standard ray-grid techniques [35] and is especially
similar to previous multi-level grids [36], [37]. The use of mini-
mum/maximum caching has been shown to be useful [28], [29],
[38]. The ray-isosurface traversal algorithm examines the min
and max at each macrocell before deciding whether to recur-
sively examine a deeper level or to proceed to the next cell. The
typical complexity of this search will beO(3

p
n) for a three level

hierarchy [36]. While the worst case complexity is stillO(n),
it is difficult to imagine an isosurface occurring in practice ap-
proaching this worst case. Using a deeper hierarchy can theo-
retically reduce the average case complexity slightly, but also
dramatically increases the storage cost of intermediate levels.
We have experimented with modifying the number of levels in
the hierarchy and empirically determined that a tri-level hierar-
chy (one top-level cell, two intermediate macrocell levels, and
the data cells) is highly efficient. This optimum may be data de-
pendent and is modifiable at program startup. Using a tri-level
hierarchy, the storage overhead is negligible (< 0:5% of the data
size). The cell sizes used in the hierarchy are independent of the
brick sizes used for cache locality in the first optimization.

1 3

4 5

10 119

6

0 2

7

8

Fig. 3. Cells can be organized into “tiles” or “bricks” in memory to improve
locality. The numbers in the first brick represent layout in memory. Neither
the number of atomic voxels nor the number of bricks need be a power of
two.

Fig. 4. With a two-level hierarchy, rays can skip empty space by traversing
larger cells. A three-level hierarchy is used for most of the examples in this
paper.

Macrocells can be indexed with the same approach as used for
memory bricking of the data values. However, in this case there
will be three table lookups for each macrocell. This, combined
with the significantly smaller memory footprint of the macro-
cells made the effect of bricking the macrocells negligible.

IV. A LGORITHMS

This section describes three types of volume visualization that
use ray tracing:
� isosurfacing on rectilinear grids
� isosurfacing on unstructured meshes
� maximum-intensity projection on rectilinear grids
The first two require an operation of the form: find a specific
scaler value along a ray. The third asks: what is the maximum
value along a ray. All of these are searches that can benefit from
the hierarchical data representations described in the previous
section.

A. Rectilinear Isosurfacing

Our algorithm has three phases: traversing a ray through cells
which do not contain an isosurface, analytically computing the
isosurface when intersecting a voxel containing the isosurface,
shading the resulting intersection point. This process is repeated
for each pixel on the screen. A benefit is that adding incremental
features to the rendering has only incremental cost. For exam-
ple, if one is visualizing multiple isosurfaces with some of them

IEEE TRANSACTIONS ON COMPUTER GRAPHICS AND VISUALIZATION 4

ρ(x, y, z)=ρiso

x = xa + t xb
y = ya + t yb
z = za + t zb

ray equation:

Fig. 5. The ray traverses each cell (left), and when a cell is encountered that has
an isosurface in it (right), an analytic ray-isosurface intersection computa-
tion is performed.

rendered transparently, the correct compositing order is guaran-
teed since we traverse the volume in a front-to-back order along
the rays. Additional shading techniques, such as shadows and
specular reflection, can easily be incorporated for enhanced vi-
sual cues. Another benefit is the ability to exploit texture maps
which are much larger than physical texture memory which is
currently available up to 64 MBytes. However, newer architec-
tures that use main memory for textures eliminate this issue.

For a regular volume, there is a one-to-one correspondence
with the cells forming bricks and the voxels. This leads to a
large branching factor for the shallow hierarchy which we have
empirically found to yield the best results.

If we assume a regular volume with even grid point spacing
arranged in a rectilinear array, then ray-isosurface intersection
is straightforward. Analogous simple schemes exist for inter-
section of tetrahedral cells as described below.

To find an intersection (Figure 5), the ray~a + t~b traverses
cells in the volume checking each cell to see if its data range
bounds an isovalue. If it does, an analytic computation is per-
formed to solve for the ray parametert at the intersection with
the isosurface:

�(xa + txb; ya + tyb; za + tzb)� �iso = 0:

When approximating� with a trilinear interpolation between
discrete grid points, this equation will expand to a cubic poly-
nomial int. This cubic can then be solved in closed form to find
the intersections of the ray with the isosurface in that cell. We
use the closed form solution for convenience since its stability
and efficiency have not proven to be major issues for the data we
have used in our tests. Only the roots of the polynomial which
are contained in the cell are examined. There may be multiple
roots, corresponding to multiple intersection points. In this case,
the smallestt (closest to the eye) is used. There may also be no
roots of the polynomial, in which case the ray misses the iso-
surface in the cell. The details of this intersection computation
are given in Appendix A. Note that using trilinear interpolation
directly will produce more complex isosurfaces than is possible
with a marching cubes algorithm. An example of this is shown
in Figure 6 which illustrates case 4 from Lorensen and Cline’s
paper [17]. Techniques such as the Asymptotic Decider [39]
could disambiguate such cases but they would still miss the cor-
rect topology due to the isosurface interpolation scheme.

Fig. 6. Left: The isosurface from the marching cubes algorithm. Right: The
isosurface resulting the true cubic behavior inside the cell.

Fig. 7. For a given leaf cell in the rectilinear grid, indices to the shaded elements
of the unstructured mesh are stored.

B. Unstructured Isosurfacing

For unstructured meshes, the same memory hierarchy is used
as is used in the rectilinear case. However, we can control the
resolution of the cell size at the finest level. We chose a reso-
lution which uses approximately the same number of leaf nodes
as there are tetrahedral elements. At the leaf nodes a list of ref-
erences to overlapping tetrahedra is stored (Figure 7). For effi-
ciency, we store these lists as integer indices into an array of all
tetrahedra.

Rays traverse the cell hierarchy in a manner identical to the
rectilinear case. However, when a cell is detected that might
contain an isosurface for the current isovalue, each of the tetra-
hedra in that cell are tested for intersection. No connectivity
information is used for the tetrahedra; instead they are treated
as independent items, just as in a traditional surface-based ray
tracer.

The isosurface for a tetrahedron is computed implicitly us-
ing barycentric coordinates. The intersection of the parameter-
ized ray and the isoplane is computed directly, using the implicit
equations for the plane and the parametric equation for the ray.
The intersection point is checked to see if it is still within the
bounds of the tetrahedron by making sure the barycentric co-
ordinates are all positive. Details of this intersection code are
described in Appendix B.

C. Maximum-Intensity Projection

The maximum-intensity projection (MIP) algorithm seeks the
largest data value that intersects a particular ray. It utilizes the
same shallow spatial hierarchy described above for isosurface
extraction. In addition, a priority queue is used to track the cells

IEEE TRANSACTIONS ON COMPUTER GRAPHICS AND VISUALIZATION 5

or macrocells with the maximal values. For each ray, the pri-
ority queue is first initialized with single top level macrocell.
The maximum data value for the dataset is used as the priority
value for this entry in the priority queue. The algorithm repeat-
edly pulls the largest entry from the priority queue and breaks
it into smaller (lower level) macrocells. Each of these cells are
inserted into the priority queue with the precomputed maximum
data value for that region of space. When the lowest-level cells
are pulled from the priority queue, the algorithm traverses the
segment of the ray which intersects the macrocell. Bilinear in-
terpolation is used at the intersection of the ray with cell faces
since these are the extremal values of the ray-cell intersection in
a linear interpolation scheme. For each data cell face which in-
tersects the ray, a bilinear interpolation of the data values is com-
puted, and the maximum of these values in stored again in the
priority queue. Finally, when one of these data maximums ap-
pears at the head of the priority queue, the algorithm has found
the maximum data value for the entire ray.

To reduce the average length of the priority queue, the al-
gorithm performs a single trilinear interpolation of the data at
one point to establish a lower-bound for the maximum value
of the ray. Macrocells and datacells which do not exceed this
lower-bound are not entered into the priority queue. To obtain
this value, we perform the trilinear interpolation using thet cor-
responding to the maximum value from whatever previous ray
a particular processor has computed. Typically, this will be a
value within the same block of pixels and exploits image-space
coherence. If not, it still provides a bound on the maximum
along the ray. If thist value is unavailable (due to program
startup, or a ray missing the data volume), we choose the mid-
point of the ray segment which intersects the data volume. This
is a simple heuristic which improves the performance for many
datasets.

Similar to the isosurface extraction algorithm, the MIP algo-
rithm uses the 3D bricking memory layout for efficient cache
utilization when traversing the data values. Since each proces-
sor will be using a different priority queue as it processes each
ray, an efficient implementation of a priority queue which does
not perform dynamic memory allocation is essential for perfor-
mance of the algorithm.

V. RESULTS

We applied ray tracing isosurface extraction to interactively
visualize the Visible Woman dataset. The Visible Woman
dataset is available through the National Library of Medicine as
part of its Visible Human Project [40]. We used the computed
tomography (CT) data which was acquired in 1mm slices with
varying in-slice resolution. This rectilinear data is composed of
1734 slices of 512x512 images at 16 bits. The complete dataset
is 910 MBytes. Rather than down-sample the data with a loss
of resolution, we utilize the full resolution data in our experi-
ments. As previously described, our algorithm has three phases:
traversing a ray through cells which do not contain an isosurface,
analytically computing the isosurface when intersecting a voxel
containing the isosurface, and shading the resulting intersection
point.

Figure 8 shows a ray tracing for two isosurface values. Fig-
ure 9 illustrates how shadows can improves the accuracy of our

Fig. 8. Ray tracings of the bone and skin isosurfaces of the Visible Woman.

IEEE TRANSACTIONS ON COMPUTER GRAPHICS AND VISUALIZATION 6

Fig. 9. A ray tracing with and without shadows.

Fig. 10. Ray tracings of the skin and bone isosurfaces with transparency.

TABLE I

DATA FROM RAY TRACING THE VISIBLE WOMAN. THE

FRAMES-PER-SECOND (FPS)GIVES THE OBSERVED RANGE FOR THE

INTERACTIVELY GENERATED VIEWPOINTS ON64 CPUS.

Isosurface Traversal Intersec. Shading FPS
Skin (� = 600:5) 55% 22% 23% 7-15

Bone(� = 1224:5) 66% 21% 13% 6-15

TABLE II

SCALABILITY RESULTS FOR RAY TRACING THE BONE ISOSURFACE IN THE

VISIBLE HUMAN . A 512X512 IMAGE WAS GENERATED USING A SINGLE

VIEW OF THE BONE ISOSURFACE.

View 1 View 2
cpus FPS speedup FPS speedup

1 0.18 1.0 0.39 1.0
2 0.36 2.0 0.79 2.0
4 0.72 4.0 1.58 4.1
8 1.44 8.0 3.16 8.1

12 2.17 12.1 4.73 12.1
16 2.89 16.1 6.31 16.2
24 4.33 24.1 9.47 24.3
32 5.55 30.8 11.34 29.1
48 8.50 47.2 16.96 43.5
64 10.40 57.8 22.14 56.8
96 16.10 89.4 33.34 85.5

128 20.49 113.8 39.98 102.5

geometric perception. Figure 10 shows a transparent skin iso-
surface over a bone isosurface. Table I shows the percentages of
time spent in each of these phases, as obtained through the cycle
hardware counter in Silicon Graphics’ Speedshop1. As can be
seen, we achieve about 10 frames per second (FPS) interactive
rates while rendering the full, nearly 1 GByte, dataset.

Table II shows the scalability of the algorithm from 1 to 128
processors. View 2 uses a zoomed out viewpoint with approx-
imately 75% pixel coverage whereas view 1 has nearly 100%
pixel coverage. We chose to examine both cases since view 2
achieves higher frame rates. The higher frame rates cause less
parallel efficiency due to synchronization and load balancing.
Of course, maximum interaction is obtained with 128 proces-
sors, but reasonable interaction can be achieved with fewer pro-
cessors. If a smaller number of processors were available, one
could reduce the image size in order to restore the interactive
rates. Efficiencies are 91% and 80% for view 1 and 2 respec-
tively on 128 processors. The reduced efficiency with larger
numbers of processors (> 64) can be explained by load imbal-
ances and the time required to synchronize processors at the re-
quired frame rate. The efficiencies would be higher for a larger
image.

Table III shows the improvements which were obtained

1Speedshop is the vendor provided performance analysis environment for the
SGI IRIX operating system.

IEEE TRANSACTIONS ON COMPUTER GRAPHICS AND VISUALIZATION 7

TABLE III

TIMES IN SECONDS FOR OPTIMIZATIONS FOR RAY TRACING THE VISIBLE

HUMAN . A 512X512 IMAGE WAS GENERATED ON16 PROCESSORS USING A

SINGLE VIEW OF AN ISOSURFACE.

View Initial Bricking Hierarchy+Bricking
skin: front 1.41 1.27 0.53
bone: front 2.35 2.07 0.52
bone: close 3.61 3.52 0.76

bone: from feet 26.1 5.8 0.62

TABLE IV

FRAMERATES VARYING SHADOW AND TEXTURE FOR THEVISIBLE MALE

DATASET ON 64 CPUS (FPS).

no shadows, no texture 15.9
shadows, no texture 8.7
no shadows, texture 12.6

shadows, texture 7.5

through the data bricking and spatial hierarchy optimizations.
Using a ray tracing architecture, it is simple to map each iso-

surface with an arbitrary texture map. The Visible Man dataset
includes both CT data and photographic data. Using a texture
mapping technique during the rendering phase allows us to add
realism to the resultant isosurface. The photographic cross sec-
tion data which was acquired in 0.33mm slices, and can be reg-
istered with the CT data. This combined data cab be used as a
texture mapped model to add realism to the resulting isosurface.
The size of the photographic dataset is approximately 13 GBytes
which clearly is too large to fit into texture memory. When us-
ing texture mapping hardware it is up to the user to implement
intelligent texture memory management. This makes achieving
effective texture performance non-trivial. In our implementa-
tion, we down-sampled this texture by a factor of 0.6 in two of
the dimensions so that it occupied only 5.1 GBytes. The fram-
erates for this volume with and without shadows and texture are
shown in Table IV. A sample image is shown in Figure 11. We
can achieve interactive rates when applying the full resolution
photographic cross sections to the full resolution CT data. We
know of no other work which achieves these rates.

Figure 12 shows an isosurface from an unstructured mesh
made up of 1.08 million elements which contains adaptively
refined tetrahedral elements. The heart and lungs shown are
polygonal meshes that serve as landmarks. The rendering times
for this data, rendered without the polygonal landmarks at 512
by 512 pixel resolution, is shown in Table V. As would be ex-
pected, the FPS is lower than the structured data but the method
scales well. We make the number of lowest-level cells propor-
tional to the number of tetrahedral elements, and the bottleneck
is the intersection with individual tetrahedral elements. This
dataset composed of adaptively refined tetrahedral with volume
differences of two orders of magnitude.

Figure 13 shows a maximum-intensity projection of the Visi-
ble Female dataset. This dataset runs in approximately 0.5 to 2
FPS on 16 processors. Using the “use lastt” optimization saves

Fig. 11. A 3D texture applied to an isosurface from the Visible Man dataset.

Fig. 12. Ray tracing of a 1.08 million element unstructured mesh from bio-
electric field simulation. The heart and lungs are represented as landmark
polygonal meshes and are not part of the isosurface.

IEEE TRANSACTIONS ON COMPUTER GRAPHICS AND VISUALIZATION 8

TABLE V

DATA FROM RAY TRACING UNSTRUCTURED GRIDS AT512X512 PIXELS ON

1 TO 126 PROCESSORS. THE ADAPTIVELY REFINED DATASET IS FROM A

BIOELECTRIC FIELD PROBLEM.

cpus FPS speedup
1 0.108 1
2 0.21 1.97
3 0.32 2.95
4 0.42 3.91
6 0.63 5.86
8 0.84 7.78

12 1.25 11.56
16 1.64 15.20
24 2.44 22.58
32 3.21 29.68
48 4.76 44.07
64 6.46 59.81
96 9.05 83.80

124 11.13 103.06

approximately 15% of runtime. Generating such a frame rate
using conventional graphics hardware would require approxi-
mately a 1.8 GPixel/second pixel fill rate and 900 Mbytes of
texture memory.

VI. D ISCUSSION

We contrast applying our algorithm to explicitly extracting
polygonal isosurfaces from the Visible Woman data set. For the
skin isosurface we generated 18,068,534 polygons. For the bone
isosurface we generated 12,922,628 polygons. These numbers
are consistent with those reported by Lorensen given that he was
using a cropped version of the volume [41]. With this number
of polygons, it would be challenging to achieve interactive ren-
dering rates on conventional high-end graphics hardware. Our
method can render a ray-traced isosurface of this data at roughly
ten frames per second using a 512 by 512 image on 64 proces-
sors. Table VI shows the extraction time for the bone isosurface
using both NOISE [42] and marching cubes [17]. Note that be-
cause we are using static load balancing, these numbers would
improve with a dynamic load balancing scheme. However, this
would still not allow interactive modification of the isovalue
while displaying the isosurface. Although using a downsampled
or simplified detail volume would allow interaction at the cost
of some detail. Simplified, precomputed isosurfaces could also
yield interaction, but storage and precomputation time would be
significant. Triangle stripping could improve display rates by up
to a factor of three because isosurface meshes are usually trans-
form bound. Note that we gain efficiency for both the extraction
and rendering components by not explicitly extracting the geom-
etry. Our algorithm is therefore not well-suited for applications
that will use the geometry for non-graphics purposes.

The interactivity of our system allows exploration of both the
data by interactively changing the isovalue or viewpoint. For
example, one could view the entire skeleton and interactively
zoom in and modify the isovalue to examine the detail in the

Fig. 13. A maximum-intensity projection of the Visible Female dataset.

Fig. 14. Variation in framerate as the viewpoint and isovalue changes.

IEEE TRANSACTIONS ON COMPUTER GRAPHICS AND VISUALIZATION 9

TABLE VI

EXPLICIT BONE ISOSURFACE EXTRACTION TIMES IN SECONDS.

cpus NOISE build NOISE extract Marching cubes
1 4838 110 627
2 2109 81 324
4 1006 56 171
8 885 31 93

16 437 24 49
32 118 14 26
64 59 12 24

toes all at about ten FPS. The variation in framerate is shown in
Fig. 14.

Brady et al. [43] describe a system which allows, on a Pen-
tium workstation with accelerated graphics, interactive naviga-
tion through the Visible Human data set. Their technique is
two-fold: 1) combine frustum culling with intelligent paging
from disk of the volume data, and 2) utilize a two-phase per-
spective volume rendering method which exploits coherence in
adjacent frames. Their work differs from ours in that they are
using incremental direct volume rendering while we are exploit-
ing isosurface or MIP rendering. This is evidenced by their in-
cremental rendering times of about 2 seconds per frame for a
480x480 image. A full (non-incremental) rendering is nearly
20 seconds using their technique. For a single CPU, our isosur-
face rendering time is several seconds per frame (see Table II)
depending on viewpoint. While it is difficult to directly com-
pare these techniques due to their differing application focus,
our method allows for the entire data set to reside within the
view frustum without severe performance penalties since we are
exploiting parallelism.

The architecture of the parallel machine plays an important
role in the success of this technique. Since any processor can
randomly access the entire dataset, the dataset must be avail-
able to each processor. Nonetheless, there is fairly high locality
in the dataset for any particular processor. As a result, a shared
memory or distributed shared memory machine, such as the SGI
Origin 2000, is ideally suited for this application. The load bal-
ancing mechanism also requires a fine-grained low-latency com-
munication mechanism for synchronizing work assignments and
returning completed image tiles. With an attached Infinite Real-
ity graphics engine, we can display images at high frame rates
without network bottlenecks. We feel that implementing a sim-
ilar technique on a distributed memory machine would be ex-
traordinarily challenging, and would probably not achieve the
same rates without duplicating the dataset on each processor.

VII. FUTURE WORK AND CONCLUSIONS

Since all computation is performed in software, there are
many avenues which deserve exploration. Ray tracers have a
relatively clean software architecture, in which techniques can
be added without interfering with existing techniques, without
re-unrolling large loops, and without complicated state manage-
ment as are characteristic of a typical polygon renderer.

We believe the following possibilities are worth investigating:

ρ000

(x0,y0,z0)
(0,0,0)

ρ100

(x1,y0,z0)
(1,0,0)

ρ110

(x1,y1,z0)
(1,1,0)

ρ111

(x1,y1,z1)
(1,1,1)

ρ001

(x0,y0,z1)
(0,0,1)

ρ011

(x0,y1,z1)
(0,1,1)

ρ101

(x1,y0,z1)
(1,0,1)

x

y
z

ρ010

(x0,y1,z0)
(0,1,0)

Fig. 15. The geometry for a cell. The bottom coordinates are the(u; v; w)
values for the intermediate point.

� Exploration of other hierarchical methods in addition to the
multilevel hierarchy described above.
� Combination with other scalar and vector visualization tools,
such as cutting planes, surface maps, streamlines, etc.
� Using higher-order interpolants. Although numerical root
finding would be necessary, the images might look better [19].
Since the intersection routine is not the bottleneck the degrada-
tion in performance might be reasonable.

We have shown that ray tracing can be a practical alterna-
tive to explicit isosurface extraction for very large datasets. As
data sets get larger, and as general purpose processing hardware
becomes more powerful, we expect this to become a very attrac-
tive method for visualizing large scale scalar data both in terms
of speed and rendering accuracy.

VIII. A CKNOWLEDGMENTS

Thanks to Matthew Bane and Michelle Miller for comments
on the paper. Thanks to Chris Johnson for providing the open
collaborative research environment that allowed this work to
happen. Special thanks to Steve Modica and Robert Cummins
at SGI for crucial bug fixes in support code. This work was
supported by the SGI Visual Supercomputing Center, the Utah
State Centers of Excellence, the Department of Energy and the
National Science Foundation. Special thanks to Jamie Painter
and the Advanced Computing Laboratory at Los Alamos Na-
tional Laboratory for access to a 128 processor machine for fi-
nal benchmarks. Ruth Klepfer provide assistance in obtaining
the various unstructured data sets.

APPENDIX

I. RAY-ISOSURFACEINTERSECTION FORTRILINEAR

BOXES

This appendix expands on some details of the intersection of
a ray and a trilinear surface. It is not new research, but is helpful
for implementors.

A rectilinear volume is composed of a three dimensional array
of point samples that are aligned to the Cartesian axes and are
equally spaced in a given dimension. A single cell from such a
volume is shown in Figure 15. Other cells can be generated by
exchanging indices(i; j; k) for the zeros and ones in the figure.

IEEE TRANSACTIONS ON COMPUTER GRAPHICS AND VISUALIZATION 10

(x0, y0)

(x
1
, y1)

a

b

a0

b0

a1

b1

u0

v0

v1

u1

(0, 0)

(1, 1)

(1, 1)

(0, 0)

Fig. 16. Various coordinate systems used for interpolation and intersection.

The density at a point within the cell is found usingtrilinear
interpolation:

�(u; v;w) = (1� u)(1� v)(1�w)�000 + (1)

(1� u)(1� v)(w)�001 +

(1� u)(v)(1� w)�010 +

(u)(1� v)(1� w)�100 +

(u)(1� v)(w)�101 +

(1� u)(v)(w)�011 +

(u)(v)(1� w)�110 +

(u)(v)(w)�111

where

u =
x� x0

x1 � x0
(2)

v =
y � y0

y1 � y0

w =
z � z0

z1 � z0

Note that

1� u =
x1 � x

x1 � x0
(3)

1� v =
y1 � y

y1 � y0

1� w =
z1 � z

z1 � z0

If we redefineu0 = 1 � u andu1 = u, and similar definitions
for v0; v1; w0; w1, then we get:

� =
X

i;j;k=0;1

uivjwk�ijk

For a given point(x; y; z) in the cell, the surface normal is
given by the gradient with respect to(x; y; z):

~N = ~r� =
�
@�

@x
;
@�

@y
;
@�

@z

�

So the normal vector of(Nx;NY ;Nz) = ~r� is

Nx =
X

i;j;k=0;1

(�1)i+1vjwk

x1 � x0
�ijk

Ny =
X

i;j;k=0;1

(�1)j+1uiwk

y1 � y0
�ijk

Nz =
X

i;j;k=0;1

(�1)k+1uivj
z1 � z0

�ijk

Lin and Ching [18] described a method for intersecting a ray
with a trilinear cell. We derive a similar result that is more tai-
lored to our implementation.

See figure 16. Given a ray~p = ~a + t~b, the intersection with
the isosurface occurs where�(~p) = �iso. We can convert this

ray into coordinates defined by(u0; v0; w0): ~p0 = ~a0 + t~b0 and
a third ray defined by~p1 = ~a1 + t~b1. These rays~p0 = ~a0 + t~b0
and~p1 = ~a1+t~b1 are now used for the intersection computation.
These two rays are in the two coordinate systems (Figure 16):

~a0 = (ua0 ; v
a
0 ; w

a
0) =

�
x1 � xa

x1 � x0
;
y1 � ya

y1 � y0
;
z1 � za

z1 � z0

�
;

and

~b0 = (ub0; v
b
0; w

b
0) =

�
xb

x1 � x0
;

yb

y1 � y0
;

zb

z1 � z0

�
:

These equations are different because~a0 is a location and~b0 is
a direction. The equations are similar for~a1 and~b1:

~a1 = (ua1 ; v
a
1 ; w

a
1) =

�
xa � x0

x1 � x0
;
ya � y0

y1 � y0
;
za � z0

z1 � z0

�
;

and

~b1 = (ub1; v
b
1; w

b
1) =

� �xb
x1 � x0

;
�yb

y1 � y0
;
�zb

z1 � z0

�
:

Note thatt is the same for all three rays. This point can be found
by traversing the cells and doing a brute-force algebraic solution
for t. The intersection with the isosurface�(~p) = �iso occurs
where:

�iso =
X

i;j;k=0;1

�
uai + tubi

� �
vai + tvbi

� �
wa
i + twb

i

�
�ijk

This can be simplified to a cubic polynomial int:

At3 + Bt2 +Ct+D = 0

where
A =

X
i;j;k=0;1

ubiv
b
iw

b
i �ijk

B =
X

i;j;k=0;1

�
uai v

b
iw

b
i + ubiv

a
i w

b
i + ubiv

b
iw

a
i

�
�ijk

C =
X

i;j;k=0;1

�
ubiv

a
i w

a
i + uai v

b
iw

a
i + uai v

a
i w

b
i

�
�ijk

D = ��iso+
X

i;j;k=0;1

uai v
a
i w

a
i �ijk

The solution to a cubic polynomial is discussed the article
by Schwarze [44]. We used his code (available on the web in
severalGraphics Gemsarchive sites) with two modifications:
special cases for quadratic or linear solutions (his code assumes
A is non-zero), and the EQNEPS parameter was set to 1.e-30
which provided for maximum stability for large coefficients.

IEEE TRANSACTIONS ON COMPUTER GRAPHICS AND VISUALIZATION 11

ρ0

(x0,y0,z0)
(1,0,0,0)

ρ1

(x1,y1,z1)
(0,1,0,0)

ρ2

(x2,y2,z2)
(0,0,1,0)

ρ3

(x3,y3,z3)
(0,0,0,1)

Fig. 17. The geometry for a barycentric tetrahedron. The bottom barycentric
coordinates are the(�0; �1; �2; �3) values for the vertex.

p0 p

D

d

Fig. 18. The barycentric coordinate�0 is the scaled distanced=D. The dis-
tances ared andD are signed distances to the plane containing the triangu-
lar face oppositep

0
.

II. RAY-ISOSURFACEINTERSECTION FORBARYCENTRIC

TETRAHEDRA

This appendix is geared toward implementors and discusses
the details of intersecting a ray with a barycentric tetrahedral
isosurface.

An unstructured mesh is composed of three dimensional point
samples arranged into a simplex of tetrahedra. A single cell
from such a volume is shown in Figure 17, where the four ver-
tices arepi = (xi; yi; zi).

The density at a point within the cell is found usingbarycen-
tric interpolation:

�(�0; �1; �2; �3) = �0�0 + �1�1 + �2�2 + �3�3;

where
�0 + �1 + �2 + �3 = 1:

Similar equations apply to points in terms of the vertices. For
points inside the tetrahedron, all barycentric coordinates are pos-
itive.

One way to compute barycentric coordinates is to measure
the distance from the plane that defines each face (Figure 18).
This is accomplished by choosing a plane equationf0(p) = 0
such thatf0(p0) = 1. Such equations for all four plane-faces of
the tetrahedron allow us to compute barycentric coordinates of
a pointp directly:�i(p) = fi(p).

If we take the rayp(t) = a+ t~b, then we get an equation for
the density along the ray:

�(t) =

3X
i=0

fi(a+ t~b)�i:

If we solve for�(t) = �iso, then we get a linear equation int,
so solution is straightforward. If the resulting barycentric coor-
dinates ofp(t) are all positive, the point is in the tetrahedron,
and it is accepted. Finding the normal is just a matter of taking
the gradient:

~r�(p) =
3X

i=0

�i~rfi(p):

Becausefi is just a plane equation of the form~ni � (p � qi)

whereqi is a constant point, the normal vector~N is simply

~N =

3X
i=0

�i~ni:

This is a constant for the cell, but we do not precompute it since
it would require extra memory accesses.

REFERENCES

[1] Steven Parker, Peter Shirley, Yarden Livnat, Charles Hansen, and Peter-
Pike Sloan, “Interactive ray tracing for isosurface rendering,” inProceed-
ings of Visualization ’98, October 1998.

[2] Steven Parker, William Martin, Peter-Pike Sloan, Peter Shirley, Brian
Smits, and Charles Hansen, “Interactive ray tracing,” inSymposium on
Interactive 3D Graphics, April 1999.

[3] James T. Kajiya, “An overview and comparison of rendering methods,”
A Consumer’s and Developer’s Guide to Image Synthesis, pp. 259–263,
1988, ACM Siggraph ’88 Course 12 Notes.

[4] Mark Levoy, “Display of surfaces from volume data,”IEEE Computer
Graphics & Applications, vol. 8, no. 3, pp. 29–37, 1988.

[5] Paolo Sabella, “A rendering algorithm for visualizing 3d scalar fields,”
Computer Graphics, vol. 22, no. 4, pp. 51–58, July 1988, ACM Siggraph
’88 Conference Proceedings.

[6] Craig Upson and Micheal Keeler, “V-buffer: Visible volume rendering,”
Computer Graphics, vol. 22, no. 4, pp. 59–64, July 1988, ACM Siggraph
’88 Conference Proceedings.

[7] E. Reinhard, A.G. Chalmers, and F.W. Jansen, “Overview of parallel
photo-realistic graphics,” inEurographics ’98, 1998.

[8] Arie Kaufman,Volume Visualization, IEEE CS Press, 1991.
[9] Lisa Sobierajski and Arie Kaufman, “Volumetric Ray Tracing,”1994

Workshop on Volume Visualization, pp. 11–18, Oct. 1994.
[10] K.L. Ma, J.S. Painter, C.D. Hansen, and M.F. Krogh, “Parallel Volume

Rendering using Binary-Swap Compositing,”IEEE Comput. Graphics
and Appl., vol. 14, no. 4, pp. 59–68, July 1993.

[11] Michael J. Muuss, “Rt and remrt - shared memory parllel and network
distributed ray-tracing programs,” inUSENIX: Proceedings of the Fourth
Computer Graphics Workshop, October 1987.

[12] Guy Vézina, Peter A. Fletcher, and Philip K. Robertson, “Volume Ren-
dering on the MasPar MP-1,” in1992 Workshop on volume Visualization,
1992, pp. 3–8, Boston, October 19-20.

[13] P. Schröder and Gordon Stoll, “Data Parallel Volume Rendering as Line
Drawing,” in 1992 Workshop on volume Visualization, 1992, pp. 25–31,
Boston, October 19-20.

[14] Michael J. Muuss, “Towards real-time ray-tracing of combinatorial solid
geometric models,” inProceedings of BRL-CAD Symposium, June 1995.

[15] Scott Whitman, “A Survey of Parallel Algorithms for Graphics and Visu-
alization,” in High Performance Computing for Computer Graphics and
Visualization, 1995, pp. 3–22, Swansea, July 3–4.

[16] B. Wyvill G. Wyvill, C. McPheeters, “Data structures for soft objects,”
The Visual Computer, vol. 2, pp. 227–234, 1986.

[17] William E. Lorensen and Harvey E. Cline, “Marching cubes: A high reso-
lution 3d surface construction algorithm,”Computer Graphics, vol. 21, no.
4, pp. 163–169, July 1987, ACM Siggraph ’87 Conference Proceedings.

[18] Chyi-Cheng Lin and Yu-Tai Ching, “An efficient volume-rendering algo-
rithm with an analytic approach,”The Visual Computer, vol. 12, no. 10,
pp. 515–526, 1996.

[19] Stephen Marschner and Richard Lobb, “An evaluation of reconstruction
filters for volume rendering,” inProceedings of Visualization ’94, October
1994, pp. 100–107.

[20] Milos Sramek, “Fast surface rendering from raster data by voxel traversal
using chessboard distance,” inProceedings of Visualization ’94, October
1994, pp. 188–195.

IEEE TRANSACTIONS ON COMPUTER GRAPHICS AND VISUALIZATION 12

[21] Georgios Sakas, Marcus Grimm, and Alexandros Savopoulos, “Optimized
maximum intensity projection (MIP),” inEurographics Rendering Work-
shop 1995. Eurographics, June 1995.

[22] Robert A. Drebin, Loren Carpenter, and Pat Hanrahan, “Volume render-
ing,” Computer Graphics, vol. 22, no. 4, pp. 65–74, July 1988, ACM
Siggraph ’88 Conference Proceedings.

[23] Don Speray and Steve Kennon, “Volume probes: Interactive data explo-
ration on arbitrary grids,” inComputer Graphics (San Diego Workshop on
Volume Visualization), 1990, pp. 5–12.

[24] John Amanatides and Andrew Woo, “A fast voxel traversal algorithm for
ray tracing,” inEurographics ’87, 1987.

[25] Akira Fujimoto, Takayu Tanaka, and Kansei Iwata, “Arts: Accelerated
ray-tracing system,”IEEE Computer Graphics & Applications, pp. 16–
26, April 1986.

[26] John Danskin and Pat Hanrahan, “Fast algorithms for volume ray tracing,”
1992 Workshop on Volume Visualization, pp. 91–98, 1992.

[27] Marc Levoy, “Efficient ray tracing of volume data,”ACM Transactions on
Graphics, vol. 9, no. 3, pp. 245–261, July 1990.

[28] J. Wilhelms and A. Van Gelder, “Octrees for faster isosurface generation,”
in Computer Graphics (San Diego Workshop on Volume Visualization),
Nov. 1990, pp. 57–62.

[29] J. Wilhelms and A. Van Gelder, “Octrees for faster isosurface generation,”
ACM Transactions on Graphics, vol. 11, no. 3, pp. 201–227, July 1992.

[30] Jane Wilhelms and Judy Challinger, “Direct volume rendering of curvi-
linear volumes,” inComputer Graphics (San Diego Workshop on Volume
Visualization), Nov. 1990, pp. 41–47.

[31] M. Garrity, “Ray Tracing Irregular Volume Data,” in1990 Workshop on
Volume Visualization, 1990, pp. 35–40, San Diego.

[32] Cláudio Silva, Joseph S. B. Mitchell, and Arie E. Kaufman, “Fast render-
ing of irregular grids,” in1996 Volume Visualization Symposium. IEEE,
Oct. 1996, pp. 15–22, ISBN 0-89791-741-3.

[33] C. E. Prakash and S. Manohar, “Volume rendering of unstructured grids–a
voxelization approach,”Computers & Graphics, vol. 19, no. 5, pp. 711–
726, Sept. 1995, ISSN 0097-8493.

[34] Michael B. Cox and David Ellsworth, “Application-controlled demand
paging for Out-of-Core visualization,” inProceedings of Visualization
’97, October 1997, pp. 235–244.

[35] James Arvo and David Kirk, “A survey of ray tracing acceleration tech-
niques,” inAn Introduction to Ray Tracing, Andrew S. Glassner, Ed. Aca-
demic Press, San Diego, CA, 1989.

[36] David Jevans and Brian Wyvill, “Adaptive voxel subdivision for ray trac-
ing,” in Proceedings of Graphics Interface ’89, June 1989, pp. 164–172.

[37] Kryzsztof S. Klimansezewski and Thomas W. Sederberg, “Faster ray trac-
ing using adaptive grids,”IEEE Computer Graphics & Applications, vol.
17, no. 1, pp. 42–51, Jan.-Feb. 1997, ISSN 0272-1716.

[38] Al Globus, “Octree optimization,” Tech. Rep. RNR-90-011, NASA Ames
Research Center, July 1990.

[39] Greg Nielson and Bernd Hamann, “The asymptotic decider: Resolving
the ambiguity in marching cubes,” inProceedings of Visualization ’91,
October 1991, pp. 83–91.

[40] National Library of Medicine (U.S.) Board of Regents, “Electronic imag-
ing: Report of the board of regents. u.s. department of health and human
services, public health service, national institutes of health,” NIH Publica-
tion 90-2197, 1990.

[41] Bill Lorensen, “Marching through the visible woman,”
http://www.crd.ge.com/cgi-bin/vw.pl, 1997.

[42] Y Livnat, H. Shen, and C. R. Johnson, “A near optimal isosurface extrac-
tion algorithm using the span space,”IEEE Trans. Vis. Comp. Graphics,
vol. 2, no. 1, pp. 73–84, 1996.

[43] M.L. Brady, K.K. Jung, H.T. Nguyen, and T.PQ. Nguyen, “Interactive
Volume Navigation,” IEEE Transactions on Visualization and Computer
Graphics, vol. 4, no. 3, pp. 243–256, July 1998.

[44] Jochen Schwarze, “Cubic and quartic roots,” inGraphics Gems, Andrew
Glassner, Ed., pp. 404–407. Academic Press, San Diego, 1990.

Steven Parker is a research scientist in the Depart-
ment of Computer Science at the University of Utah.
His research focuses on problem solving environ-
ments, which tie together scientific computing, scien-
tific visualization, and computer graphics. He is the
principal architect of the SCIRun Software System,
which formed the core of his Ph.D. dissertation. He
was a recipient of the Computational Science Gradu-
ate Fellowship from the Department of Energy. He re-
ceived a B.S. in Electrical Engineering from the Uni-
versity of Oklahoma in 1992.

Michael Parker Michael Parker is a Ph.D. student in
Computer Science at the University of Utah. He is in-
terested in Computer Architecture and VLSI Design.
He has recently concluded his work on a project to re-
duce communication latency and overhead in clusters
of workstations. He is currently involved in the archi-
tecture of an adaptable memory controller. His dis-
sertation deals with reducing I/O and communication
overhead and latency. He received a B.S. in Electri-
cal Engineering from the University of Oklahoma in
1995.

Yarden Livnat is a Research Associate at the Depart-
ment of Computer Science at the University of Utah.
working with the Scientific Computing and Imaging
Research Group. Yarden received a B.Sc. in com-
puter science in 1982 from Ben Gurion University Is-
rael and an M.Sc. cum laude in computer science from
the Hebrew University, Israel in 1991. He will re-
ceive his Ph.D from the University of Utah in 1999.
His research interests include computational geome-
try, scientific computation and visualization and com-
puter generated holograms.

Peter-Pike Sloanhas recently joined the Graphics Re-
search group at Microsoft as a Research SDE. He
previously was a student at the University of Utah
and worked in the Scientific Computing and Imag-
ing group for Chris Johnson. He has also previously
worked on a 3D Painting product at Parametric Tech-
nology in Salt Lake City. His interests span the spec-
trum of computer graphics, and most recently has
been working/dabbling in the areas of interactive tech-
niques, image-based rendering, surface parameteriza-
tions, and non-photorealistic rendering.

Charles Hansenis an Associate Professor of Com-
puter Science at the University of Utah. From 1989
to 1997, he was a Research Associate Professor of
Computer Science at Utah. From 1989 to 1997, he
was a Technical Staff Member in the Advanced Com-
puting Laboratory (ACL) located at Los Alamos Na-
tional Laboratory where he formed and directed the
visualization efforts in the ACL. His research interests
include large-scale scientific visualization, massively
parallel processing, parallel computer graphics algo-
rithms, 3D shape representation, and computer vision.

He received a B.S. in Computer Science from Memphis State University in1981
and a Ph.D. in Computer Science from the University of Utah in 1987. He was
a Bourse de Chateaubriand PostDoc Fellow at INRIA, in 1987 and 1988.

IEEE TRANSACTIONS ON COMPUTER GRAPHICS AND VISUALIZATION 13

Peter Shirley is an Assistant Professor of Computer
Science at the University of Utah. From 1994 to 1996
he was a Visiting Assistant Professor at the Cornell
Program of Computer Graphics. From 1990 to 1994
he was an Assistant Professor of Computer Science at
Indiana University. His research interests include vi-
sualization, realistic rendering, and application of vi-
sual perception research in computer graphics. He re-
ceived a B.A. in Physics from Reed College in 1984
and a Ph.D. in Computer Science from the University
of Illinois at Urbana/Champaign in 1991.

Eurographics Symposium on Rendering (2004)
H. W. Jensen, A. Keller (Editors)

An Interactive Out-of-Core Rendering Framework for
Visualizing Massively Complex Models

Ingo Wald†‡, Andreas Dietrich‡, and Phlipp Slusallek‡

†MPI Informatik, Saarbrücken, Germany,
wald@mpi-sb.mpg.de

‡Saarland University, Saarbrücken, Germany
{dietrich,slusallek}@cs.uni-sb.de

Figure 1: The “Boeing 777” model containing 350 million triangles. a.) Overview over the entire model, including shadows. b.) Zoom
into the engine, showing intricately interweaved, complex geometry. c.) The same as b.), but zooming in even closer. All of the individual
parts of the entire plane are modeled at this level of complexity. d.) The cockpit, including shadows. Using our out-of-core visualization
scheme, all of these frames can be rendered interactively at 3–7 frames per second on a single desktop PC.

Abstract

With the tremendous advances in both hardware capabilities and rendering algorithms, rendering performance is
steadily increasing. Even consumer graphics hardware can render many million triangles per second. However,
scene complexity seems to be rising even faster than rendering performance, with no end to even more complex
models in sight.
In this paper, we are targeting the interactive visualization of the “Boeing 777” model, a highly complex model of
350 million individual triangles, which – due to its sheer size and complex internal structure – simply cannot be
handled satisfactorily by today’s techniques. To render this model, we use a combination of real-time ray tracing,
a low-level out of core caching and demand loading strategy, and a hierarchical, hybrid volumetric/lightfield-like
approximation scheme for representing not-yet-loaded geometry. With this approach, we are able to render the full
777 model at several frames per second even on a single commodity desktop PC.

Keywords: Real-time rendering, out-of-core rendering, complex models, distributed computing, ray tracing

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Ray tracing I.6.3 [Simu-
lation and Modeling]: Applications I.3.2 [Computer Graphics]: Distributed/network graphics

1. Introduction

For many years now, the performance of commodity CPUs
has increased at a rate of a factor of two roughly every 18
months. At least in the last few years, the performance of
graphics hardware has grown even faster, having led to com-
modity graphics hardware that can render up to several mil-
lion triangles per second. In addition to this “free” increase
in rendering performance, we also see a steady improve-
ment in rendering algorithms. With all this taken together,
the model complexity that is affordable at interactive rates is
constantly and rapidly increasing.

Unfortunately, the complexity of practical models seems
to be rising even faster: First of all, users of modeling sys-
tems (and game designers as well) tend to immediately
spend every grain of increased performance into even more
detail, i.e. into more triangles.

Additionally, virtual prototyping is becoming increasingly
important and hardwired into the design process. Tradition-
ally, virtual reality has been but loosely coupled to the actual
design process, and has merely visualized semi-manually
prepared (i.e. simplified) versions of the CAD models. With
VR getting increasingly involved into the production pro-

c© The Eurographics Association 2004.

Wald, Dietrich, Slusallek / Interactive Out-of-Core Rendering for Massively Complex Models

Figure 2: Some example closeups of the 777, to show the high geometric complexity, small degree of occlusion, and com-
plex topological structure of the model, which make it complicated for most simplification/approximation-based approaches.
a.) Zoom onto a small object of roughly one cubic foot in size, showing each individual nut and bolt modeled with hundreds
of badly-shaped triangles. Multiple surfaces with different materials overlap themselves, as can be seen e.g. on the mixed
white/blue-patched structure. Due to the randomly jittered vertex positions (introduced to prevent data theft), such structures
self-intersect with each other randomly. b.) The same view from a few meters away. The left image corresponds to the red rect-
angle in the middle. c.) & d.) The same for a view into the engine. Note how much detail is visible in that view, and how the
many pipes and cables are intricately interweaved. The low degree of occlusion is also demonstrated in Figure 3.

cess, there is a growing need to render models “directly out
of the database”, i.e. without any model “preparation” and
simplification. Such CAD datasets, however, can be quite
complex.

Furthermore, the increased use of “collaborative engineer-
ing” for large-scale industrial projects leads to models con-
sisting of hundreds and thousands of individual parts (poten-
tially created by different suppliers), each of which modeled
at whatever complexity and accuracy has been affordable for
that individual part. In practice, this often means that each
individual nut and bolt of a model (also see Figures 1– 3) is
represented in full geometric detail.

Taken together, these developments lead to a growth in
model complexity that seems to be at least as fast as the
growth in hardware resources. An end to these developments
currently is not foreseeable.

In this paper, we are targeting the interactive visualization
of the “Boeing 777” model, a model consisting of roughly
350 million individual triangles, i.e. without using instantia-
tion to generate this triangle count. Just the raw input data of
that model ships – in compressed form – on a total of eleven
CDs. After unpacking and storing each triangle as a triple
of three floats without any additional acceleration data, the
model is 12 GByte in size, and requires several minutes just
for reading it from disk. For this kind of model complexity,
generating frame rates of several frames per second is quite
challenging for contemporary massive model rendering ap-
proaches.

1.1. Outline

In the remainder of this paper, we will first discuss relevant
related work regarding rendering complex models in Sec-
tion 2, and will particularly discuss their problems in han-
dling a model of the size, topological structure, and com-
plexity of the 777. Based on this discussion, we will then

develop and describe our new approach to such models: Af-
ter giving an overview of our system in Section 3, we will
then describe the caching and demand loading subsystem in
Section 4, and our hierarchical approximation scheme for
not-yet-loaded geometry in Section 5. Section 6 then sum-
marizes some results of using our framework for rendering
the full 777 model on a single dual-1.8 GHz AMD Opteron
desktop PC with 6 GB RAM. Finally, Section 7 concludes
and ends with an outlook on future work.

2. Previous Work

Due to the practical and industrial importance of render-
ing complex datasets, there exists a vast suite of different
approaches to this problem. However, many of these tech-
niques perform well only for specific kinds of models, but
prove problematic for others.

Brute-Force Rendering. Obviously, a model of the size of
the 777 cannot be handled by a pure brute-force approach.
In theory, the most up-to-date graphics hardware (e.g. an
NVIDIA Quadro FX 4000) features a theoretical peak per-
formance of 133 million shaded and lit triangles per second,
and could thus raster the full model in only a few seconds.
Unfortunately, the practical performance usually is much
lower, in particular for models that do not fit into graphics
card memory. Thus, typical approaches to rendering com-
plex datasets rely on reducing the number of triangles to be
sent to the graphics card.

Culling Techniques. Typical approaches like view-frustum
culling are quite limited for a model of as high a depth com-
plexity as the 777. Depth complexity can only be handled
by taking occlusion into account. At least for 2D or 2 1

2 D
scenes (e.g. urban walkthroughs), occlusion can be conser-
vatively precomputed quite well [WWS00]. In three dimen-
sions, in particular with as few occlusion as in the 777 (see
Figures 2 and 3), visibility preprocessing is quite problem-
atic [ACW∗99].

c© The Eurographics Association 2004.

Wald, Dietrich, Slusallek / Interactive Out-of-Core Rendering for Massively Complex Models

Instead of precomputing visibility, the alternative is to
use a hierarchical visibility culling mechanism, e.g. the
hierarchical z-buffer [GKM93], possibly implemented via
OpenGL occlusion queries [BMH99]. However, neither of
these approaches has been designed for handling gigabyte-
sized models that do not even fit into main memory. Re-
cently, Correa et al. [CKS03] have proposed a visibility-
based out-of-core rendering framework that can also cope
with models larger than memory. However, even if visibility-
based approaches would achieve perfect culling, for many
views the low degree of occlusion in the 777 still results in
millions of potentially visible triangles.

To handle this case, the randomized z-buffer algo-
rithm [WFP∗01] randomly selects one triangle out of the
many triangles that project onto a pixel. This, however,
works only for scenes in which it does not actually matter
which of the triangles is chosen, e.g. for picking one of the
thousands of leaves of a tree. For the 777 the exact ordering
and mutual occlusion of even very close-by triangles is quite
important. For example, in order to avoid the small yellow
pipes “shining through” the green hull to which they are at-
tached. Finally, like all the previously mentioned techniques,
the randomized z-buffer is not designed for handling models
that do not even fit into memory.

Model Simplification. As pure visibility culling even the-
oretically is not enough, many approaches try to “re-
duce” the model by some form of mesh simplification,
e.g. via edge contraction, vertex removal, or remeshing
(see e.g. [CMS98]), often requiring some form of “well-
behaving” geometry. Typically, these methods perform best
for highly tessellated surfaces that are otherwise relatively
smooth, flat, and topologically simple. In the 777 the trian-
gles actually form many detailed, loosely connected though
interweaving parts of complex topological structure, such as
mazes of tubes, pipes, and cables (see Figures 2 and 3). Such
kinds of geometry are very hard to simplify effectively in a
robust manner.

Moreover, each part of the 777 comes in a “soup” of un-
connected triangles, without any connectivity information,
often forming self-intersecting and overlapping surfaces (see

Figure 3: In comparison to most other “massive” models,
the 777 has a much lower degree of occlusion. a.) Zoom onto
the front part of the model, where the rays penetrate deeply
into the model. b.) Closeup of the geometry that can be seen
through the ribs of the plane.

Figure 2a) with different material properties. Even worse,
the vertex positions have been slightly jittered to prevent
public spreading of the sensitive original CAD data. Thus,
overlapping surfaces are not perfectly aligned, but rather ran-
domly intersect each other multiple times. For such kinds of
input data, most geometrically based algorithms are likely to
fail.

As each individual technique usually has a
weak point, the UNC’s MMR/Gigawalk sys-
tem [ACW∗99, BSGM02, GLY∗03] is based on a combina-
tion of different techniques, combining mesh simplification,
visibility preprocessing, impostors [SDB97], textured depth
meshes, and hierarchical occlusion maps [ZMHH97].
However, as just discussed each of these individual parts is
problematic in the 777. This raises the question whether a
combination of these techniques can still succeed in each
technique masking the shortcomings of the other.

Image-based and Point-based Approaches. In addition to
these “traditional” methods, researchers have also looked
into image-based and point-based approaches. For exam-
ple, the Holodeck [WS99], Render Cache [WDP99], and
Edge-and-Point-Image [BWG03] progressively sample the
model asynchronously to displaying it, and interactively re-
construct the image from these sparse samples. In principle,
both approaches might be applicable to the 777. However,
the rays traced by these systems are likely to cause signifi-
cant paging, resulting in prohibitively long times for gener-
ating enough image samples. This is likely to result in severe
subsampling, and in strong visual artifacts.

As yet another alternative, researchers have pro-
posed to represent models using point samples (see
e.g. [CH02, PZvBG00]). Though this decouples geometric
complexity from display complexity, the sparse number of
samples often limits the detail that is present in the recon-
structed image. To avoid this problem, QSplat [RL00] em-
ploys a hierarchical scheme in which the entire mesh is rep-
resented by at least one sample per triangle. However, its
hierarchical approximation scheme assumes that nearby tri-
angles can, if seen from a distance, be well approximated by
a disk-shaped “splat” with filtered color and normal infor-
mation. Like mesh simplification, this works only for rela-
tively smooth and topologically simple surfaces, and is likely
to fail for the geometrical structure of the 777 as described
above.

Interactive Ray Tracing. Finally, complex models can also
be visualized using interactive ray tracing. Due to its log-
arithmic dependence on scene complexity, ray tracing can
easily handle even highly complex scenes of several mil-
lion triangles at full detail. For example, the OpenRT real-
time ray tracing system [Wal04] has been shown to inter-
actively render the one billion triangle “Sunflowers” scene
even including shadows, semi-transparent leaves, and mov-
ing geometry. However, this has only been possible through

c© The Eurographics Association 2004.

Wald, Dietrich, Slusallek / Interactive Out-of-Core Rendering for Massively Complex Models

instantiation, i.e. by reusing the same kind of sunflower sev-
eral thousand times, therefore being able to keep the entire
model in main memory. For the 777 model, we simply can-
not store the entire dataset – which occupies 30–40 GByte
including acceleration structures – in main memory. Once
the operating system starts to generate the inevitable page
faults the ray tracer would run idle while waiting for data,
and could not maintain interactivity.

In order to solve that problem, Pharr et al. [PKGH97] have
proposed a caching and reordering scheme that reorders the
rays in a way that minimizes disk I/O. Though this allows
for efficiently ray tracing models that are much larger than
main memory, the approach is not easily applicable to in-
teractive rendering. A simplified version of this scheme has
also been used by Wald et al. [WSB01]. They have proposed
to “suspend” rays that would cause a page fault and load the
required data asynchronously over the network while trac-
ing other rays in the meantime. The stalled rays then get
“resumed” once the data is available. Though that approach
worked well for the target model (the 12.5 million triangle
UNC Power Plant), it fails in interactively rendering a model
as complex as the 777: The proposed suspend/resume ap-
proach can hide the loading latency only within the dura-
tion of one frame. In the 777, however, even a small cam-
era change often triggers thousands of disk read requests
that simply cannot be fulfilled within a single frame. Though
prefetching (in the sense of e.g. [CKS03]) would help, it can
hide loading latencies only to a limited degree.

Furthermore, their demand loading scheme was based on
splitting the model into “voxels” of several thousand trian-
gles, which were then loaded and discarded as required. This
caching granularity is far too large for our purposes, as each
individual ray may cause loading another of these voxels.
Additionally, this method is prone to memory fragmenta-
tion, and carries a certain overhead for managing the data
(also see the discussion in [DGP04]).

3. An Out-of-Core Framework for Interactively
Rendering Massively Complex Models

As shown by the discussion in the previous section, contem-
porary techniques to handle massive models cannot easily
cope with a model of the size, structure, and complexity of
the 777. Thus, a new approach had to be taken.

Since ray tracing can in principle handle such massive
amounts of geometry, in a first experiment we ported the
OpenRT ray tracer to a shared-memory architecture, and ex-
perimented with rendering the 777 on 16 UltraSPARC III
CPUs in a SUN Sun Fire 11K with 180 GB RAM. This al-
lowed for storing the model – including pre-built BSP data
– into the RAM disk, making it possible to load the entire
scene within a few seconds, and to interactively inspect it at
several frames per second, even including shadows.

With these successful experiments, we started designing

an architecture that could deliver similar performance even
on a commodity PC. In order to be able to at least address the
entire model, we decided to build on AMD’s 64-bit Opteron
CPUs [AMD03], which have recently become available in
commodity desktop systems. Compared to e.g. the Intel Ita-
nium CPU, the Opteron also supports the IA32 SSE Instruc-
tion set [Int02], and thus can exploit also those traversal
and intersection routines of OpenRT that have been specifi-
cally optimized towards SSE [WSBW01, Wal04]. This sup-
port for using SSE instructions – together with a nominally
higher clock rate – allow the Opteron to easily outpace the
UltraSPARC III. Instead of having to use many CPUs in a
Sun Fire, we can achieve similar performance on a single
dual-CPU Opteron PC.

Unfortunately, having a 64-bit address space allows for
addressing the entire model, but cannot help the fact that we
still are not able to keep it entirely in memory. We therefore
decided to follow the approach of Wald et al. [WSB01], and
use a combination of manual memory management and de-
mand loading in order to detect and avoid page faults due to
access to out-of-core memory. As discussed in the previous
section, however, their approach had several shortcomings
with respect to a 777-class model, mainly with respect to
the design and implementation of the memory management
scheme. Most importantly, their system has mainly been de-
signed for hiding the scene access latency by suspending and
resuming rays, which we have argued cannot work success-
fully for the 777.

As a consequence, our framework builds on two pil-
lars: First, on a new memory management scheme that has
been redesigned from scratch. It avoids the fragmentation,
caching granularity, and I/O problems of the original ap-
proach, and is thus much better suited for a 777-class model.
Second, our approach does not even try to hide scene ac-
cess latency, but instead kills off potentially page-faulting
rays, which are then being replaced by shading information
from so-called “proxies”. This is achieved by efficiently de-
termining in advance accesses to parts of the BSP that may
potentially lead to a page fault. Proxies are a pre-computed
coarse yet appropriate approximate representation for the re-
spective subtree. This proxy mechanism is similar to a hi-
erarchical level-of-detail representation intermixed with the
spatial index structure, and will be described in more detail
in Section 5.

4. Memory Management

As just motivated, a memory management scheme based on
manually managing individual sub-parts of several thousand
triangles is inappropriate for the 777 due to memory frag-
mentation, much too coarse cache granularity, and thus bad
memory efficiency and high I/O cost. In contrast to this, the
Linux/UNIX memory mapping facilities (mmap() [BC02])
provide a convenient way of addressing and demand load-
ing memory on a per-page basis. In particular, it realizes

c© The Eurographics Association 2004.

Wald, Dietrich, Slusallek / Interactive Out-of-Core Rendering for Massively Complex Models

a unified cache, i.e. it does not matter which data is con-
tained in which physical page, and it never pages in any data
(e.g. shading information) that might not be required.

Leaving the memory management (MM) to the operating
system greatly simplifies the design, and improves the effi-
ciency of the implementation: For example, manual memory
management requires to take special care in order to avoid
race conditions where one thread accesses data that is just
being freed by another thread. If not avoided by costly syn-
chronization via mutexes, such race conditions usually lead
to program crashes. If a similar race condition happens in our
OS-based MM scheme, the worst that can happen is a page
fault, as the pointer to the not available memory region is
still considered valid. Additionally, working on “real” point-
ers minimizes the address lookup overhead, as this is done
automatically by the processor’s hardware MMU, and do not
cost precious CPU time (also see [DPH∗03]).

Finally, using this scheme is quite simple: All one has
to do to implement this scheme is to precompute all static
data structures (e.g. BSP index structures etc.), store them
on disk in binary form, and map them into the address space
via mmap(). This preprocessing is done in an out-of-core
approach similar to [WSB01].

4.1. Detecting and Avoiding Page Faults

Though an OS-based MM system has many advantages over
manual caching, it also has a major drawback in that we lose
control over what data is loaded into or discarded from mem-
ory at what time. Although data is automatically paged in on
demand upon accessing it, the resulting page fault stalls the
rendering thread until the data is available.

To retain control over the caching process we imple-
mented a hybrid memory management system, which uses
the operating system to perform demand paging, but which
detects and avoids potential page faults before they occur,
and which manually steers page loading and eviction.

In order to avoid page faults, we have to detect whether or
not memory referenced by a pointer is actually in core mem-
ory. Though Linux for this purpose offers the mincore()
function, performing an OS call on each memory access ob-
viously is not affordable. When taking a closer look at the
Linux memory mapping implementation, however, there are
several important observations to be made: First, after hav-
ing once loaded a page, it will stay in memory at least for a
limited amount of time. Second, pages in memory will not
be paged out as long as there is some unused memory avail-
able. Thus, as long as we know that there is some memory
left, we can mark once-accessed pages, and can be (almost)
sure that the respective page will still be in memory later on.

Obviously, this only works as long as we do not try to page
in more data than fits into physical memory. Fortunately, this
can be easily guaranteed: By using the Linux madvise()

call, we can force the kernel to free pages of our choice,
thereby guaranteeing that some free memory is available at
any time, and that no pages become unavailable without us
knowing it. Of course, this assumes that no other processes
start using up our memory.

4.2. The Tile Table

In order to mark pages as either available or missing, we
have to store at least one bit per page. Keeping an entry for
each potential 4 KB page in a 64-bit address space would
require 252 entries and is not affordable. Instead, one could
use a hierarchical scheme as used by the processor’s MMU,
which however would be quite costly to access. We there-
fore group several pages into one “tile” and keep our tiles
organized in a hash table of tile addresses. If the hash ta-
ble is large enough to minimize hash collisions, hashing is
quite efficient, and can be implemented with a few bit op-
erations on the address pointer. Furthermore, a hash table
is quite memory efficient: For hashing 128 GB RAM of 4
KB sized tiles (one page per tile) we only need 32M entries.
Using a larger cache granularity of 16 KB or 64 KB, this re-
duces even more to 8M and 2M entries, respectively. If the
size of the tile table is a power of two, all addressing and
hashing operation can be performed efficiently by simple bi-
nary ands and shifts.

Each tile table entry contains a 64-bit pointer with the vir-
tual base address of the tile for detecting hashing collisions.
The lower 12–16 bits of this entry are always zero, and can
thus be used for other purposes, i.e. for marking whether the
page is available (bit 0), and whether it has recently been
referenced (bit 1). Thus, in order to check if a page is in
memory, we simply have to find its entry in the tile table
(one shift operation), validate there is no hash collision
(one and), check bit 0 for availability (one more and), and,
if required, set bit 1 (one or) to mark an access.

4.3. Tile Fetching

In case we found a tile that is not marked as available, we
cancel the respective ray and schedule the tile’s address for
asynchronous loading by putting it into a request queue.

Once a tile is scheduled to be fetched, it will eventually
be loaded by an asynchronous fetcher thread. In an infinite
loop, this thread in each iteration takes one request from the
request queue, reads in the page via madvise(), and then
marks the tile as available. Though reading the page obvi-
ously stalls the fetcher thread, the ray tracing threads are not
affected at all, and remain busy. Note that we run several
(4–8) fetcher threads in parallel, thereby allowing the OS to
schedule multiple parallel disk requests as it deems appro-
priate.

Fetch Prioritization. Missing data leads to cancellation of
rays, so missing data that cancels many rays should be

c© The Eurographics Association 2004.

Wald, Dietrich, Slusallek / Interactive Out-of-Core Rendering for Massively Complex Models

overview engine wheels cockpit cabin
Figure 4: Reference views for our experiments. From left to right: Overview over the whole model, a view into the engine,
zoom onto the front wheels, the cockpit, and one of the main cabins. Using a single dual-CPU AMD Opteron 1.8 GHz PC, these
respective views can be rendered at 4.1, 2.9, 7.1, 3.1, and 3.2 frames per second at video resolution (640×480).

fetched faster than data affecting only a single ray. Count-
ing the actual accesses to a tile, however, is too costly, as
it would require to coordinate the different write accesses
to the shared counter. Instead, we observe that the number
of affected rays is proportional to the size of the BSP voxel
they are about to enter, and inversely proportional to its dis-
tance to the camera. We use this value for prioritizing fetch
requests. To avoid searching for the most important requests,
we map the priority to 8 discrete values, and keep one re-
quest queue for each of them. The fetchers then always take
the first entry out of the queue with highest priority. This
mapping is performed linearly, relative to the minimum and
maximum priorities of the previous frame.

4.4. Tile Eviction

As mentioned before, the tile fetcher can only fetch new
tiles if some unused memory is available. Otherwise, the OS
pages out tiles without us even noticing it (i.e. they are still
being marked available). We therefore use the madvise()
function to discard mapped pages from main memory. This
obviously should be done only for pages that are likely not
needed any longer. As a full “least recently used” strategy
would be too expensive, we follow the same strategy as the
Linux kernel swapper, and use a “second chance” strategy.
The tile evictor slowly but continuously cycles through the
tile table and resets the tile’s “referenced” bit to zero (the
page is still marked as present!). If the tile is still needed,
this bit will soon be re-set by a rendering thread. If, how-
ever, the evictor visits a tile a second time with the R-bit still
zero, it evicts the tile and marks it as missing. Similar to the
Linux kernel swapper, tile eviction only starts once memory
gets scarce, currently at a memory utilization of ∼80%.

4.5. Minimizing MM Overhead

While the just described memory management is an integral
part of our system, we have to keep its performance impact
to an absolute minimum. In particular, we have to minimize
the number of semaphore synchronization operations, which
otherwise tend to block the rendering threads.

Apart from the time consumed by the asynchronous
fetcher and evictor threads, the main ray tracing threads have

to constantly check each memory access for availability of
the data. To minimize this overhead, we first check each
pointer dereference for whether it crosses a tile boundary
(with respect to the previous access). This can be done quite
efficiently by simple bit operations, already reduces most
of the tile table lookups, and does not require any costly
semaphore operations.

Even in the case that we have to access the tile table, we
can often get away without having to perform locking op-
erations: If the tile is marked as available, or is marked as
already being fetched, we can immediately return. Though
this can result in a race condition – e.g. the evictor might
evict the tile at exactly this moment – this event is extremely
improbable. Even if it occurs, in the worst case it can lead to
either a single, improbable page fault, or to scheduling a tile
twice for being loaded. Both cases are well tolerable even in
the rare event that they occur.

As such, there are only two cases where a ray tracing
thread has to use a mutex. Once it adds a previously unvis-
ited tile to the tile table, and every time it has to add a tile
to the request queue. Both cases happen but relatively rarely.
We also have to lock a mutex every time the tile fetcher or
tile evictor want to modify the tile table or request queues.
These threads, however, are not performance critical.

5. Geometry Proxies

Using our MM scheme, we can efficiently detect and avoid
any page fault of the ray tracing threads, and thus main-
tain interactivity and high performance at all times. Unfortu-
nately cache misses are detected but shortly before the data
is actually required. Thus, the ray that caused this page fault
obviously cannot be traversed any further.

As already discussed in Section 2, only suspending that
ray until the data has been fetched will not work for a model
of the 777’s complexity, as we simply cannot load thousands
of tiles within a single frame. Hence, we have no other way
but to accept the fact that there eventually will be pixels in
a frame for which we cannot completely trace the necessary
ray(s). Therefore, we have to decide on what color to assign
to such pixels. Obviously, coloring these pixels in a fixed
color (like red in Figure 5) results in large parts of the image
being unrecognizable.

c© The Eurographics Association 2004.

Wald, Dietrich, Slusallek / Interactive Out-of-Core Rendering for Massively Complex Models

Figure 5: Approximation quality during startup time. Left:
Immediately after startup. Right: after loading for a few
seconds. Even then only a fraction of the model has been
loaded. Top row: Without proxy information, by just mark-
ing canceled rays in red. Bottom row: Using our geometry
proxies. While the proxy quality after startup is quite coarse,
it suffices to navigate the model. As can be seen, without the
proxies almost no pixel contains sensible information. Even-
tually all data will be loaded, with no artifacts left at all.
Also note that the positive influence of the proxies can hardly
be shown in a still image, and becomes fully apparent only
while interactively navigating the model.

Alternatively one could fill in such a pixels color from
the nearest valid sample, interpolate its color from several
surrounding pixels, or even do sophisticated sparse sample
reconstruction as done in e.g. the Render Cache [WDP99].
This approach however is quite problematic too: First, it re-
quires costly (and badly parallelizable) post-filtering of the
rendered image, which is too costly for full-screen resolu-
tions. More importantly however, even a slight change of
camera position can result in large fractions of the image
becoming invalid (see Figure 5): Though most of the re-
quired nodes in the upper BSP levels will be in memory,
many of the subpixel-sized leaf voxels will not yet be avail-
able, and will result in killing off many pixels, even after the
rays could be traced “almost” up to he final hitpoint.

5.1. Proxies for Missing Data

For a cache miss however there are several important obser-
vation to be made: First, a cache miss can only be caused
by a ray that wishes to traverse a specific subtree of the BSP
that is not yet in memory. Such a subtree – no matter how
many nodes or triangles it contains – is always a volume en-
closed in an axis-aligned box. Furthermore, walkthrough ap-
plications tend to not change the view drastically, and similar
views will touch similar data, particularly in the upper levels
of the BSP tree. As such, going from one view to the next
most of the upper-level BSP nodes will already be in mem-

ory, and only small subtrees close to the leaves are likely to
be missing. These subtrees fortunately are quite small, and,
when projected, often smaller than a pixel. For such small
voxels it often does not matter which triangle exactly is hit
by the ray, as long as there is some kind of “proxy” that mim-
ics the subtrees appearance. As a result, we have chosen to
compute such a proxy for each potentially missing subtree.

Note that this scheme is inherently hierarchical, as each
proxy represents a subtree that in turn contains other sub-
trees and proxies. Moreover, this hierarchical approximation
is tightly coupled to the BSP tree, and thus adapts well to the
geometry.

Number of Proxies. Before discussing how exactly we are
going to represent our proxies, we first have to evaluate how
many of them we actually need (in order to estimate the
amount of memory we can spend on them), and how to ef-
ficiently find the proxies. As we want to use our proxies for
hiding the visual impact of a cache miss, we obviously need
a proxy for each potentially occurring cache miss. As al-
ready discussed above, cache misses can only happen when
following pointers from a parent node to its children that are
located in a different tile. Instead of building a proxy for each
child, we only build a proxy for the parent node.

More importantly, we change our BSP memory orga-
nization such that the number of pointers across tiles is
minimized: Instead of storing BSP nodes in depth-first
order [Wal04], we now use a scheme where we always
fill cache-tile sized memory regions in breadth-first or-
der [Hav99], thereby combining nodes forming small sub-
trees in the same tile. Apart from having fewer tile-crossing
pointers, this has the positive and visually notable side ef-
fect that the proxy distribution is more symmetric: In depth-
first order, the parents tile is usually filled up with nodes of
the left child’s subtree, almost always yielding a potentially
faulting pointer for the right son. This insymmetry results is
visually displeasing images while not all data is loaded.

granularity 16KB 64KB
BSP number memory number memory

deep 15.6M 1.2GB 4.3M 344MB
shallow 833K 66MB 383K 30MB

Table 1: Number of proxies with respect to cache granular-
ity, and for two different BSP tree parameters. The deeper
BSP generates somewhat faster performance (see Table 3),
but requires more memory and many more proxies. For our
experiments, we typically use the shallow BSP with 16 KB
tiles, resulting in less than 70 MB of proxy memory. How-
ever, using only 80 bytes per proxy (see below), even the deep
BSPs are affordable when using 64 KB tiles, using 344 MB
out of 6 GB RAM. Note that the deep BSPs are a worst-case
configuration.

Obviously, the exact parameters with which the BSP was

c© The Eurographics Association 2004.

Wald, Dietrich, Slusallek / Interactive Out-of-Core Rendering for Massively Complex Models

built influences the number of proxies. Deeper BSPs tend to
achieve higher performance (see Table 3), but unfortunately
also have more potentially page-faulting subtrees (see Ta-
ble 1). Note that we can also influence the number of proxies
by adjusting the caching granularity, as we can also perform
our caching on e.g. 16 KB or 64 KB tiles. A larger cache
granularity results in less tiles, in less pointers crossing tile
borders, and thus in less proxies (see Table 1). Due to their
lower memory consumption, by default, we use the shallow
BSPs with a cache granularity of 16 KB, resulting in roughly
1.1 million proxies for the 777 model.

5.2. Hybrid Volumetric/Lightfield-like Proxies

As proxies, we have chosen a lightfield-like approach: As
just argued, each proxy represents a volumetric subpart of
the model, that will be viewed only from the outside, but
from different directions. Thus, we only need to generate
some meaningful shading information for each potentially
incoming ray. This representation of discretized rays in fact
is similar to a lightfield [LH96], except that we do not store
readily shaded illumination samples in our proxy, but rather
pre-filtered shading information. In particular, we store the
averaged material information (currently only a single dif-
fuse 5+6+5 bit RGB value) and the averaged normal (dis-
cretized into 16 bits). As mentioned above such a proxy will
usually be subpixel-sized, we ignore the spatial distribution
of the incoming ray on the proxy’s surface, and rather only
consider its direction. To this end, we triangulate the sphere
of potentially incoming directions around the proxy, and pre-
compute average normal and material value for each vertex
of this discretized sphere of directions.

In case a canceled ray must use such a proxy, we then sim-
ply find the three nearest discretized directions with respect
to the rays direction (i.e. the spherical triangle that contains
this direction), compute the ray direction’s barycentric coor-
dinates with respect to its neighboring directions, and then
interpolate the shading information from the data stored at
these neighboring directions.

As discretized directions, we currently use the trian-
gulation given by once subdividing the Octahedron given
by the +X,-X,+Y,-Y,+Z, and -Z axes, which results in 18
discretized directions: 6 directions along the major axes,
and 12 directions halfway in-between two adjoining axes
(i.e. (1,1,0),(1,0,1),...). This discretization has been chosen
very carefully, as it allows for finding the three nearest di-
rections quite efficiently: The direction’s three signs specify
the octant of the spheres which has only 4 triangles. The co-
ordinate with the maximum value then fixes the main axis,
and leaves but two potential triangles, the one adjoining the
axis, and the center triangle of the octant. By computing the
four dot products between the ray and these triangles’ four
vertices, the nearest three vertices – and their barycentric co-
ordinates – can be easily and efficiently determined.

The main problem with this approach is that averaging the

normal tends to result in a normal that points more into the
direction of the viewer than each individual normal. For ex-
ample, looking symmetrically onto the edge of a box shows
two sides facing the viewer in a 45-degree angle, but aver-
aging the normals results in the averaged normal pointing
towards the viewer. This effect leads to over-estimation of
the cosine between normal and viewing direction and thus
in overly bright proxies.

By only considering directional information, a proxy will
for each individual direction look like a simple, colored box.
This obviously leads to artifacts if a proxy covers many pix-
els. As these proxies are fetched with higher priority such
large blocks however appear rarely, and disappear quickly.
For proxies of small projected size our representation is
sufficient and very compact. Alternatively, one could use
a method in which this purely directional scheme is only
used for small proxies, and proxies higher up in the BSP
also get some positional information. So far however this
scheme was not deemed necessary, and thus has not been
implemented.

5.3. Discretization, Generation, and Reconstruction

Though we have just argued that the actual hitpoint is not im-
portant as long as we have a solid approximation, it is impor-
tant to note that occlusion has to be taken into account. Most
proxies contain a significant number of triangles, potentially
with different materials and orientation. It often happens that
a proxy contains e.g. lots of yellow cables being hidden be-
hind a green metal part. In that case, just randomly picking
a triangle is not appropriate, as it would lead to the proxy
getting yellowish.

We therefore compute the directional information by sam-
pling the proxy with ray tracing. Rays are traced from the
outside onto the object, and only triangles actually visible
from that respective direction will contribute to the proxy’s
appearance in that direction. Each proxy is sampled by a cer-
tain number (∼10K) of random rays, whose hit information
is stored within the proxy. To increase uniformity of the rays,
we use Halton sequences [Nie92] for generating the rays.

5.4. Memory Overhead and Reconstruction Quality

For obvious reasons, we can spend only a small amount of
memory for our proxies: We want to use the proxies to hide
page faults, and thus currently need all proxies in physi-
cal memory. Otherwise, we would only replace paging for
BSP nodes by paging for proxies. On the other hand, we still
need a significant portion of main memory for our geometry
cache, and cannot “waste” it on proxies.

As mentioned above, we use a discretization of 18 direc-
tions for each proxy. At two 16-bit values per direction, each
proxy consumes 72 bytes, plus a float for specifying its sur-
face area (for prioritized loading), plus a 32-bit unique ID

c© The Eurographics Association 2004.

Wald, Dietrich, Slusallek / Interactive Out-of-Core Rendering for Massively Complex Models

specifying to which BSP subtree it belongs. In total, this re-
quires a mere 80 bytes per proxy, or 66–344 megabytes for
our two example configurations (shallow 16 KB, deep 64
KB).

Addressing of Proxies. In case of a cache miss, we have
to efficiently find the corresponding proxy. As we can’t add
any pointer to the respective BSP node – at least not with-
out changing the entire BSP structure of the ray tracer – we
simply use the parents address as a unique identifier for the
proxy, and use this address to index into an STL-”map” to
find the proxy. Thus, we can implement our MM scheme
without interfering at all with OpenRT’s internal data struc-
tures, and can use the same data structures and algorithms as
without our memory management unit (MMU).

Note that we only build proxies only for BSP subtrees,
and not for faulting triangles or shading data. For such page
faults, we simply use the last proxy encountered during
traversal, which represents the subtree that this faulting tri-
angle is located in.

6. Results

Once all the individual parts of our system are now together,
we can start evaluating its performance. As target hardware
platform, we have chosen a dual-processor 1.8 GHz AMD
Opteron 246 system with 6 GB RAM, running SuSE 9.0
Linux with kernel 2.4.25. Though the machine is equipped
with an NVIDIA graphics card, this card is only used for
displaying the final image, and otherwise remains unused.
For storing the model, the system uses a standard Western
Digital WD2500JB IDE disk with a nominal throughput of
roughly 50–55 MB/s. All of these parts are commodity PC
parts, and the whole system costs is less than $5000.

6.1. Preprocessing

As mentioned before, all preprocessing – i.e. model splitting,
BSP construction, and proxy computation – is performed out
of core. For this preprocessing, by default we stop subdi-
viding at 2–4 million triangles per voxels. At this size the
individual blocks conveniently fit into memory for BSP con-
struction. BSPs that are built in core can be built with ad-
vanced BSP generation schemes using cost prediction func-
tions [Hav01, Wal04], which results in higher rendering per-
formance than for the typical “split-in-the-middle” strategy
adopted while splitting the model.

Depending on the actual BSP parameters, we need around
30–40 GB on disk for the preprocessed model. Preprocess-
ing – including unpacking, conversion, splitting, BSP gen-
eration, and proxy computation – takes in the order of one
day on a single PC, depending on the actual parameter val-
ues. Most of this time however is spent in BSP generation
and proxy computation, which can be trivially parallelized
by simply having N machines working on every Nth voxel

each. This allows for performing the entire preprocessing in
less than a night. For example, in the course of writing this
paper we have performed this preprocessing several times a
day in order to experiment with different parameters.

6.2. Proxy Memory Overhead and Cache Configuration

From these experiments, we have picked two different con-
figurations that represent a range of typical values. For one
setting, we have chosen high-quality BSP trees of up to 60
levels of depth for each voxel generated during out-of-core
preprocessing. This obviously results in many BSP nodes,
roughly 40 GB on disk, and many proxies (see Table 1).
In the other experiments, we have used rather shallow BSP
trees, which use only 30 GB of disk space, and much less
proxies.

As mentioned before, we use a cache granularity of 64
KB for the deep BSPs, and 16 KB for the shallow BSPs,
resulting in 66 MB and 344 MB for the proxies, respectively.
With 6 GB of physical RAM, we can configure our cache
size at 4–5 GB, with plenty of RAM left for the OS and
for OpenRT runtime data. At this cache size, large parts of
the model fit into the cache. In particular, each individual
view fits into cache, and the proxies only have to bridge the
loading latencies when changing views.

6.3. Demand Loading Time and Approximation Quality

After a complete restart of the entire system, our framework
starts by parsing the list of voxel files, creates the yet-empty
containers for the voxels, and builds a “top-level” BSP for
these voxels. All this takes at most a few seconds. It then
reads in all the proxies, which takes several seconds to a few
minutes, depending on the actual proxies’ data size. Once all
proxies are read, the ray tracer immediately starts shooting
rays, and uses the proxies while the data is being fetched
asynchronously.

Depending on how much data is required for loading the
working set of a frame, it can take in the order of up to sev-
eral minutes until all data is loaded. Some views require up
to more than a gigabyte of data, which simply cannot be
loaded from disk within a few seconds. The memory foot-
print and loading time for our reference views (see Figure 4)
are given in Table 2. As a worst-case example, we have taken
the “overview” viewpoint, in which the entire airplane is
seen from a viewpoint with minimal occlusion and in which
the rays travel deeply into all parts of the model . This view
requires more than 2 gigabytes of data, and can take minutes
to page in.

While the approximation is rather coarse immediately af-
ter startup (see Figure 5), the structure of the model is al-
ready well recognizable after having loaded only a few per-
cent of the data. Though this quality is far from perfect, it is
totally sufficient for navigating through the model while it is

c© The Eurographics Association 2004.

Wald, Dietrich, Slusallek / Interactive Out-of-Core Rendering for Massively Complex Models

being loaded and refined simultaneously. Additionally, when
zooming onto a specific part the data is usually fetched quite
fast, and shows the part in full detail after only a few frames.

Once a significant portion of the model has been loaded,
most of the geometry needed for rendering is already present
in the cache. In particular, most of the upper levels of the
BSP are already in the cache, and potential cache misses will
typically affect only a few pixels. In that case, the proxies
can do a good job at masking these isolated missing pixels.
As our proxies were never designed to provide a high-quality
hierarchical approximation, they fulfill their planned task of
providing solid feedback for interactive navigation.

BSP/View overview engine wheels cockpit cabin

deep 2,300 145 40 122 254
shallow 2,150 215 36 105 236

Table 2: Memory footprint (in MB) for our reference
views. As expected, some views require up to hundreds of
megabytes. Particularly the intentionally chosen worst-case
“overview” requires more than 2 GB, which can take min-
utes to load completely. Note however that we do not have
to wait until all data is loaded, but can already navigate the
proxy-approximation from the very first second.

6.4. Performance Overhead

Obviously, our demand loading scheme will not come for
free. Through aggressively minimizing the tile table lookups
and mutex locks (see Section 4.5), we have reduced the over-
head of our MM scheme to the bare minimum. Even so, a
certain overhead remains. In particular, testing if a pointer
crosses a tile boundary – though it costs only a few bit tests –
has to be performed for each memory access even in the ray
tracers inner traversal loop, and thus affects performance.
Tile table access is less common, but unfortunately more
costly, and thus affects performance, too.

To determine the total overhead of our system, we have
measured the frame rate for our reference views (see Fig-
ure 4), once using the “standard” OpenRT ray tracer with-
out our MM scheme, and once with the MMU turned on.
This experiment can be performed only for static views, as
even small camera movements lead to long paging stalls if
the MMU is turned off. To enable a fair comparison, for the
MMU version we have measured the frame rate after all tiles
have been paged in. This in fact is the worst-case scenario
as rays have to be traversed quite deeply, and have to per-
form many checks and locks. Once some pixels get killed
off – i.e. during startup or when accessing previously invisi-
ble parts of the scene – frame rate is rather higher than lower.

As can be seen from Table 3, the total overhead for our
example views consistently is in the range of 25% for the
shallow BSPs, and 20% for the deep BSPs, respectively.
Note that this includes the entire overhead, including pointer

checking, tile lookups, threading, tile fetching, mutexes, etc.
As our MM scheme enables us to navigate fluently without
any paging stalls, we believe this overhead to be quite toler-
able.

BSP/View overview engine wheels cockpit cabin

shallow BSPs
w/o MMU 2.7 2.4 5.3 2.0 2.1
w/ MMU 1.9 1.8 4.0 1.5 1.6

overhead 26% 25% 24% 25% 23%

deep BSPs
w/o MMU 4.9 3.6 9.0 4.0 4.0
w/ MMU 4.1 2.9 7.1 3.1 3.2

overhead 16% 19% 21% 22% 20%

Table 3: Total overhead of our memory management
scheme for different views (see Figure 4), and for BSPs built
with different cost parameters, measured in frames per sec-
ond. As can be seen, total overhead is in the range of 25% for
the shallow BSPs, and only 20% for the higher-performing
deeper BSPs.

6.5. Overall System Performance

With this small performance overhead, the ray tracer is quite
efficient at rendering the model. As can be seen from Ta-
ble 4, using a single dual-Opteron PC we achieve interactive
frame rates of 3–7 fps at video resolution of 640× 480 pix-
els. Even at full-screen resolution of 1280× 1024, we still
maintain frame rates of 1–2 fps. Such high resolutions are
particularly important for getting a feeling of the relative ori-
entation of the highly detailed geometry. While the just men-
tioned frame rates do not include antialiasing, supersampling
can still be added progressively as soon as the camera stops
moving.

Also note that this performance data again corresponds to
all data being present in the geometry cache. Upon cache
misses and use of proxies, frame rates are even higher, as
the rays perform less traversal steps. Thus, we can main-
tain these interactive frame rates at all times while navigat-
ing freely in and around the model.

Resolution overview engine wheels cockpit cabin

shallow BSPs
640x480 1.9 1.8 4.0 1.5 1.6
1280x1024 0.7 0.6 1.3 0.5 0.5

deep BSPs
640x480 4.1 2.9 7.1 3.1 3.2
1280x1024 1.3 0.9 2.3 1.0 1.0

Table 4: System performance in frames per second on a sin-
gle dual-1.8 GHz Opteron, using our two configurations.

c© The Eurographics Association 2004.

Wald, Dietrich, Slusallek / Interactive Out-of-Core Rendering for Massively Complex Models

6.6. Shading and Shadows

In the course of the paper, we have only concentrated on the
memory management scheme and proxy mechanism, and
so far have neglected secondary rays and shading at all. Of
course, using a ray tracer allows for also computing shadows
and reflections. Without sensible material data (which is not
included in the 777 model), and in particular with the ran-
domly jittered vertex positions (and therefore randomly jit-
tered normals) however computing reflections simply does
not make much sense.

Shadow effects can be added quite easily. While the per-
formance and caching impact of shadows so far have shown
to be surprisingly low, an exact discussion of these effects
is beyond the scope of this paper. Nonetheless, adding shad-
ows in practice is relatively simple. For example, Figure 6
shows some images that have been computed with shadows
from a flashlight-like light source that is attached relative to
the viewer.

Figure 6: Using a ray tracer, adding shadows to the model is
(almost) trivial. As expected, shadows significantly improve
the impression of shape and depth (compare to Figure 4).
This is particularly the case during interaction.

As expected, shadows add an important visual cue to the
image, and significantly improve the impression of shape
and depth, which can best be seen by comparing Figures 4
and 6. This improved sense of depth is particularly apparent
once the shadows move with the light during interaction.

7. Conclusions

In this paper, we have presented a framework that allows for
interactively ray tracing gigabyte-sized models consisting of
hundreds of millions of individual triangles on a single desk-
top PC. This is achieved using a combination of real-time ray
tracing, an out-of-core demand-loading and memory man-
agement scheme for handling the massive amounts of geom-
etry, and a hybrid volumetric/lightfield-like approximation
scheme for representing not-yet-loaded geometry.

By detecting and canceling potentially page-faulting rays,

we can avoid system paging, and maintain high frame rates
of several frames a second, even while flying into or around
our example airplane model.

The visual impact of killing off rays is reduced by ap-
proximating the missing geometry using a lightfield-like
approach. For not too drastic camera changes, the prox-
ies can well hide the visual artifacts otherwise caused by
the canceled rays. For large camera movements however, or
when entering a previously occluded part of the model, the
proxy structure becomes visible in form of blocky artifacts
in the image. These artifacts then are similar to other ap-
proaches like Holodeck, Render Cache, point-based meth-
ods, or even MPEG/JPEG-compression. Using the surface-
based loading prioritization however these artifacts disap-
pear quite quickly. Furthermore, the quality is still sufficient
for interactively navigating the model.

Using our approach, we achieve frame rates of 3–7 frames
per second at 640×480 pixels, or still 1–2 frames per second
at full-screen resolution of 1280 × 1024 pixels, even on a
single dual-CPU desktop PC.

7.1. Future Work

As next steps, we will investigate ways to further improve
the visual appearance of our proxies, potentially by includ-
ing positional information at least for large voxels.

More importantly, we are planning to make this technol-
ogy available to industrial end-users, which means that we
have to target real-time frame rates at full-screen resolu-
tions. Eventually, this will require using more than only two
CPUs. Fortunately, quad-CPU systems are already available,
and eight-way systems have been announced. Additionally,
it seems interesting to parallelize and distribute the current
system over a cluster of cheap dual-CPU PCs. Preliminary
result already look promising.

Once the computational power is available, we also plan
on evaluating how high-quality shadows, reflections, and in
particular interactive lighting simulation can be achieved in
models of this complexity.

Acknowledgements

We would like to express our thanks to Boeing Corp. for gra-
ciously providing this model, and to our system administra-
tion team for getting the prototype Opteron to run so quickly.
Source 3D data provided by and used with permission of the
Boeing Company.

References

[ACW�99]ALIAGA D. G., COHEN J., WILSON A., BAKER E.,
ZHANG H., ERIKSON C., HOFF III K. E., HUDSON

T., STÜRZLINGER W., BASTOS R., WHITTON M. C.,
BROOKS JR. F. P., MANOCHA D.: MMR: An Interac-
tive Massive Model Rendering System using Geometric

c© The Eurographics Association 2004.

Wald, Dietrich, Slusallek / Interactive Out-of-Core Rendering for Massively Complex Models

and Image-Based Acceleration. In ACM Symposium on
Interactive 3D Graphics (1999), pp. 199–206.

[AMD03] AMD: AMD Opteron Processor Model 8 Data Sheet.
http://www.amd.com/us-en/Processors, 2003.

[BC02] BOVET D. P., CESATI M.: Understanding the Linux
Kernel (2nd Edition). O’Reilly & Associates, 2002.
ISBN 0-59600-213-0.

[BMH99] BARTZ D., MEISSNER M., HÜTTNER T.: OpenGL as-
sisted Occlusion Culling for Large Polygonal Models.
Computer and Graphics 23, 3 (1999), 667–679.

[BSGM02]BAXTER III W. V., SUD A., GOVINDARAJU N. K.,
MANOCHA D.: Gigawalk: Interactive Walkthrough of
Complex Environments. In Rendering Techniques 2002
(Proceedings of the 13th Eurographics Workshop on
Rendering) (2002), pp. 203 – 214.

[BWG03] BALA K., WALTER B., GREENBERG D.: Combining
Edges and Points for Interactive High-Quality Render-
ing. ACM Transactions on Graphics (Proceedings of
ACM SIGGRAPH) (2003), 631–640.

[CH02] COCONU L., HEGE H.-C.: Hardware-Accelerated
Point-Based Rendering of Complex Scenes. In Proceed-
ings of the 13th Eurographics Workshop on Rendering
(2002), Eurographics Association, pp. 43–52.

[CKS03] CORREA W., KOSLOWSKI J. T., SILVA C.: Visibility-
Based Prefetching for Interactive Out-Of-Core Render-
ing. In Proceedings of Parallel Graphics and Visualiza-
tion (PGV) (2003), pp. 1–8.

[CMS98] CIGNIONI P., MONTANI C., SCOPIGNIO R.: A Com-
parison of Mesh Simplification Algorithms. Computers
and Graphics 22, 1 (1998), 37–54.

[DGP04] DEMARLE D. E., GRIBBLE C., PARKER S.: Memory-
Savvy Distributed Interactive Ray Tracing. In Euro-
graphics Symposium on Parallel Graphics and Visual-
ization (2004). To appear.

[DPH�03] DEMARLE D. E., PARKER S., HARTNER M., GRIB-
BLE C., HANSEN C.: Distributed Interactive Ray Trac-
ing for Large Volume Visualization. In Proceedings of
the IEEE Symposium on Parallel and Large-Data Visu-
alization and Graphics (PVG) (2003), pp. 87–94.

[GKM93] GREENE N., KASS M., MILLER G.: Hierarchical Z-
Buffer Visibility. In Computer Graphics (Proceedings
of ACM SIGGRAPH) (August 1993), pp. 231–238.

[GLY�03] GOVINDARAJU N. K., LLOYD B., YOON S.-E., SUD

A., MANOCHA D.: Interactive Shadow Generation in
Complex Environments. ACM Transaction on Graphics
(Proceedings of ACM SIGGRAPH) 22, 3 (2003), 501–
510.

[Hav99] HAVRAN V.: Analysis of Cache Sensitive Representa-
tion for Binary Space Partitioning Trees. Informatica 23,
3 (May 1999), 203–210. ISSN: 0350-5596.

[Hav01] HAVRAN V.: Heuristic Ray Shooting Algorithms. PhD
thesis, Faculty of Electrical Engineering, Czech Techni-
cal University in Prague, 2001.

[Int02] INTEL CORP.: Intel Pentium III Streaming SIMD Ex-
tensions. http://developer.intel.com, 2002.

[LH96] LEVOY M., HANRAHAN P.: Light field rendering. In
Proceedings of the 23rd Annual Conference on Com-
puter Graphics and Interactive Techniques (ACM SIG-
GRAPH) (1996), pp. 31–42.

[Nie92] NIEDERREITER H.: Random Number Generation and
Quasi-Monte Carlo Methods. Society for Industrial and
Applied Mathematics, 1992.

[PKGH97] PHARR M., KOLB C., GERSHBEIN R., HANRAHAN P.:
Rendering Complex Scenes with Memory-Coherent Ray
Tracing. Computer Graphics 31, Annual Conference Se-
ries (Aug. 1997), 101–108.

[PZvBG00]PFISTER H., ZWICKER M., VAN BAAR J., GROSS M.:
Surfels: Surface elements as rendering primitives. In
Proc. of ACM SIGGRAPH (2000), pp. 335–342.

[RL00] RUSINKIEWICZ S., LEVOY M.: QSplat: A Multiresolu-
tion Point Rendering System for Large Meshes. In Proc.
of ACM SIGGRAPH (2000), pp. 343–352.

[SDB97] SILLION F., DRETTAKIS G., BEDELET B.: Efficient
Imposter manipulation for Real-Time Visualization of
Urban Scenery. Computer Graphics Forum, 16, 3
(1997), 207–218. (Proceeding of Eurographics).

[Wal04] WALD I.: Realtime Ray Tracing and Interactive Global
Illumination. PhD thesis, Computer Graphics Group,
Saarland University, 2004. Available at http://www.mpi-
sb.mpg.de/∼wald/PhD/.

[WDP99] WALTER B., DRETTAKIS G., PARKER S.: Interactive
Rendering using the Render Cache. In Rendering Tech-
niques 1999 (Proceedings of Eurographics Workshop on
Rendering) (1999).

[WFP�01] WAND M., FISCHER M., PETER I., AUF DER HEIDE

F. M., STRASSER W.: The Randomized z-Buffer Algo-
rithm: Interactive Rendering of Highly Complex Scenes.
In Proc of ACM SIGGRAPH (2001), pp. 361–370.

[WS99] WARD G., SIMMONS M.: The Holodeck Ray Cache:
An Interactive Rendering System for Global Illumina-
tion in Nondiffuse Environments. ACM Transactions on
Graphics 18, 4 (Oct. 1999), 361–398.

[WSB01] WALD I., SLUSALLEK P., BENTHIN C.: Interactive
Distributed Ray Tracing of Highly Complex Models. In
Rendering Techniques (2001), pp. 274–285. (Proceed-
ings of Eurographics Workshop on Rendering).

[WSBW01]WALD I., SLUSALLEK P., BENTHIN C., WAGNER M.:
Interactive Rendering with Coherent Ray Tracing. Com-
puter Graphics Forum 20, 3 (2001), 153–164. (Proceed-
ings of Eurographics).

[WWS00] WONKA P., WIMMER M., SCHMALSTIEG D.: Visibil-
ity Preprocessing with Occluder Fusion for Urban Walk-
throughs. In Rendering Techniques (2000), pp. 71–82.
(Proceedings of Eurographics Workshop on Rendering).

[ZMHH97]ZHANG H., MANOCHA D., HUDSON T., HOFF III
K. E.: Visibility Culling using Hierarchical Occlusion
Maps. Computer Graphics 31, Annual Conference Se-
ries (1997), 77–88.

c© The Eurographics Association 2004.

University of Texas at Austin Dept. of Computer Sciences Technical Report #TR-05-18, May 2, 2005

Real-Time Rendering Systems in 2010

William R. Mark ∗ Donald Fussell †

Department of Computer Sciences
The University of Texas at Austin

Abstract

We present a case for future real-time rendering systems that sup-
port non-physically-correct global illumination techniques by using
ray tracing visibility algorithms, by integrating scene management
with rendering, and by executing on general-purpose single-chip
parallel hardware (CMP’s). We explain why this system design is
desireable and why it is feasible. We also discuss some of the re-
search questions that must be addressed before such a system can
become practical.

CR Categories: I.3.1 [Computer Graphics]: Hardware
Architecture— [I.3.2]: Computer Graphics—Graphics Systems

1 Introduction

For many years, real-time graphics systems have used the tradi-
tional Z-buffer pipeline model, which is limited to local illumina-
tion computations. With appropriate modifications, this pipeline
can support some restrictive global illumination techniques, but do-
ing so is awkward and often inefficient. A different strategy is pos-
sible – VLSI technology has now progressed to the point where we
are on the verge of having sufficient raw computational capability
to use more general global illumination techniques. But there is no
consensus yet about how future graphics systems supporting global
illumination should be organized.

If we look a few years into the future, several major questions
become evident: What rendering algorithms are most appropriate
for this new era? What architectures should we build to support
these algorithms? And what overall system organization should tie
together the application, rendering algorithms, and hardware? We
believe that these questions have not yet been answered satisfacto-
rily.

The purpose of this paper is to argue that these questions are
closely coupled and that addressing them will require simultaneous
investigation of software algorithms and hardware architectures.
We also propose a set of algorithmic and architectural approaches
that we believe present one promising avenue of investigation. Our
hope is that this paper will stimulate discussion in the research com-
munity and help to inspire the combined software and hardware re-
search that we believe is critical to forward progress.

The application-level goal that drives our investigation is sup-
port for real-time global illumination for dynamic scenes. We
place greater emphasis on non-physically-correct global illumina-
tion techniques than on fully physically-based techniques, since
non-physically-correct techniques represent an intermediate step
between today’s local illumination models and eventual use of
100% physically-based techniques.

Most global illumination techniques require a more general
visibility-computation capability than that provided by today’s Z
buffer. We present an algorithmic approach organized around
ray tracing visibility algorithms that efficiently supports dynamic
scenes by integrating scene management with rendering. But this

∗e-mail: billmark@cs.utexas.edu
†e-mail: fussell@cs.utexas.edu

tighter integration requires that the graphics hardware directly sup-
port model management as well as rendering.

At the hardware level, we advocate a very flexible architecture:
a multi-core, multi-threaded, MIMD architecture with coherent ac-
cess to a single address space. This architecture efficiently supports
application-specific scene management code as well as the creation
and traversal of dynamic, irregular data structures.

1.1 Background

The Z-buffer 3D graphics pipeline has been widely used for more
than 20 years. As VLSI technology has advanced, this system orga-
nization has progressed down the cost curve from multimillion dol-
lar flight simulators, through high-end graphics workstations made
by companies such as SGI (e.g. [Akeley 1993]), down to single-
chip GPUs made by companies such as NVIDIA and ATI.

For most of this history, Z-buffer graphics hardware was config-
urable but not programmable. However, over the past four years,
we have seen the introduction of user-accessible programmability
at both the vertex [Lindholm et al. 2001] and fragment [NVIDIA
Corp. 2003] stages of the pipeline. The vertex programmability
merely exposed a programmable engine that had already existed in
various forms for many years, but the fragment programmability
exposed fundamentally new hardware functionality. Its introduc-
tion was driven by the realization that beyond a certain point, the
best way to use additional VLSI transistors to improve image qual-
ity is to increase the quality of each pixel rather than increasing the
number of pixels or increasing the geometric detail.

Fragment programmability enabled commodity real-time sys-
tems [Mark et al. 2003] to support programmable shading capabili-
ties inspired by those of Renderman [Hanrahan and Lawson 1990].
However, this programmability has proven to be sufficiently flex-
ible that researchers have begun to think of graphics processors
as general-purpose stream processors [Kapasi et al. 2002], capable
of supporting a variety of non-shading computations [Purcell et al.
2002; Thompson et al. 2002; Bolz et al. 2003]. But at the current
time, most of these other uses of the GPU are not yet fully prac-
tical. The reason is that the current GPU programming model has
limitations that limit performance on general-purpose computations
to much less than peak performance. We expect that this situation
will change with time, but not as rapidly as many researchers are
expecting.

Thus, the primary economic force driving GPU design is still
real-time rendering, which leads us to the following question: What
rendering requirements should drive the future evolution of graph-
ics hardware? Another way of asking this question is, what addi-
tional capabilities could best be put to good use by applications?
Of course, it only makes sense to consider capabilities that have the
potential to be cost effective in the time frame of interest.

2 Application needs

We believe that there is still unmet application demand for higher-
fidelity real-time imagery. For example, most observers would

1

University of Texas at Austin Dept. of Computer Sciences Technical Report #TR-05-18, May 2, 2005

agree that the images produced by batch-rendering systems are no-
ticeably superior to those produced by interactive graphics systems,
and that they would like to see these higher-quality images pro-
duced by real-time systems.

Some of the demand for improved image quality in real-time
graphics can be met by adding support for object-space shading like
that used in batch rendering systems such as REYES [Cook et al.
1987]. In particular, REYES provides better temporal and spatial
anti-alising than the screen-space shading used in current real-time
graphics systems. However, much of the current difference between
batch rendering and real-time rendering results from the poor mod-
eling of global illumination effects in real-time rendering systems
as compared to batch rendering systems. We are already seeing de-
mand for realistic global illumination with the current focus on the
special case of real-time hard shadow generation. REYES and sim-
ilar systems do not support global illumination computations in any
general sense.

Some observers argue that REYES and similar algorithms can be
used to fake a wide variety global illumination effects, as demon-
strated by their use for over 10 years for movie rendering. However,
interactive graphics applications are fundamentally different from
batch movie rendering because the viewpoints and scene configura-
tions are not known a-priori by the programmers and artists. Most
of the techniques used to fake global illumination with REYES-like
systems rely on viewpoint-dependent hand tuning and thus are not
appropriate for use in real-time graphics.

2.1 Use ray tracing visibility

Almost all algorithms that model global illumination effects with-
out the use of extensive hand-tuning rely on global visibility com-
putations. Examples include radiosity, ray tracing [Whitted 1980],
photon mapping [Wann Jensen 2001], approximation of far-field
illumination using spherical basis functions, etc. Thus, we be-
lieve that robust support for global illumination requires support
for global visibility computations, and specifically for ray tracing
visibility.

Recent work shows that raw computational capability has now
advanced to the point where it is reasonable to consider using ray
tracing visibility in real-time graphics systems. Over the past sev-
eral years, several groups have built near-real-time ray tracing sys-
tems with steadily improving price/performance ratios. Most of
these systems run on standard CPUs (e.g. [Parker et al. 1999a;
Parker et al. 1999b; Hurley et al. 2002; Wald et al. 2003b], but one
runs on a specialized ray tracing architecture implemented with an
FPGA [Schmittler et al. 2004], and another uses the fragment pro-
cessors of mainstream GPUs [Purcell et al. 2002]. The system with
the best price/performance ratio [Hurley 2005] runs on a desktop
PC with frame rates over 30 frames/sec for eye+shadow rays on
complex scenes. Its raw performance has been quoted at over 100M
Ray segments/sec. A recent review article [Wald et al. 2003c] pro-
vides an excellent overview of recent developments in this area.

2.2 Use non-physically-correct global illumination

Experience has proven [Gritz and Hahn 1996; Kato 2002] that ray
tracing algorithms and variants such as photon mapping provide the
most robust and general solution to the global illumination problem.
However, we do not expect 2010-era real-time game applications to
rely primarily on physically correct global illumination. Instead, we
expect that these applications will use the point-to-point visibility
queries enabled by a ray tracing visibility framework to implement
various non-physically correct approximations to global illumina-
tion. For example, we expect techniques such as ambient occlusion
[Moyer 2004], instant radiosity [Keller 1997], and variations of pre-
computed radiance transfer [Sloan et al. 2002] to be used. For most

of its history, computer graphics has relied heavily on phenomeno-
logical or quasi-physical approximations to illumination computa-
tion, and we do not expect that situation to change immediately.
In fact, we expect that new phenomenological approximation tech-
niques will be developed that leverage the capabilities of a ray trac-
ing visibility engine.

2.3 Dynamic scenes are the challenge

Most interactive applications, particularly those in the economi-
cally important gaming market, use dynamic scenes. These scenes
include geometrically complex objects that move, and, more sig-
nificantly, deform. Unfortunately, there has been very little effort
devoted to raytracing for dynamic scenes, and in particular for de-
formable objects.

Deformable objects such as the skinned characters [Lander
1998] used in QuakeIII and Doom present a significant challenge.
The deformable nature of these characters is not well supported by
any existing method for ray tracing. In particular, the simple ap-
proach of pre-building an acceleration data structure for the object
and repositioning that object within the scene [Lext and Akenine-
Moller 2001; Wald et al. 2003a] does not work for objects in which
many polygons deform every frame. We believe that any practical
real-time raytracing system must support moving and deformable
objects with reasonable performance.

3 Integrate scene management with rendering

To ray trace dynamic scenes in real time we must reassess the cru-
cial role of acceleration structures in making the ray tracing pro-
cess efficient. The highest performance ray tracers use a space
partitioning acceleration structure such as an octree or BSP tree,
but the scene data is not originally stored in this form. Instead, the
space partitioning data structure is constructed from data stored in a
scene graph represented as a hierarchy of (potentially overlapping)
bounding volumes.

A simple approach is to begin the computation of each frame by
rebuilding an acceleration data structure of the type used in batch
ray tracing. The problem with this approach is that the cost of re-
building the acceleration structure may exceed the ray tracing cost
itself. This problem is particularly serious if the scene has very high
depth complexity, forcing the system to perform work for objects
that are not hit by any rays. Even if we only rebuild those por-
tions of the acceleration structure containing moving objects [Rein-
hard et al. 2000] the system may be performing much unnecessary
work. For dynamic scenes it becomes apparent that minimizing the
rebuild cost may be as important as minimizing the traversal cost,
since the minimization of the total cost is the overriding criterion.

The most promising approach is to use lazy evaluation tech-
niques to build the acceleration structure (building on and extending
work by Ar et al. [Ar et al. 2002]). When a ray enters a previously
untouched portion of the space partitioning data structure, the sys-
tem puts the ray traversal on hold; then constructs that portion of the
space partitioning data structure from the scene graph; and finally
lets ray traversal resume through the newly created geometry.

However, this approach requires a close interaction between the
acceleration data structure and the scene graph used to model the
world at the application level. We believe that this recognition is
the key to designing an effective system organization for real time
dynamic ray tracing.

Consider a system in which scene management is tightly inte-
grated with rendering (Figure 1). Such a system does not necessar-
ily eliminate the need to store geometry using two different organi-
zations – hierarchical scene graph and space partitioning – but such
a system can tightly control which data is converted into the space
partitioning form and when it is stored in this form. In particular,

2

University of Texas at Austin Dept. of Computer Sciences Technical Report #TR-05-18, May 2, 2005

Integrated
scene manager
and ray tracing

renderer

Application
code

Application
code

Flexible
parallel hardware

Today’s
System Architecture

S
Y

S
T

E
M

L
A

Y
E

R
S

Proposed
System Architecture

OpenGL/Direct3D
(Z-buffer algorithm
embedded in HW)

Scene manager
(e.g. game engine)

CPU CPUGPU PPU/GPU

Application

Scene Manager

Rendering
Algorithms

Hardware

Figure 1: We propose that scene management be tightly integrated with rendering and that both be executed on the flexible parallel hardware.
We refer to this flexible parallel hardware as a PPU (parallel processing unit).

the system can insure that only visible or nearly-visible surfaces are
stored in space partitioning form.

Requiring the rendering system to integrate scene management
with rendering is a major change from today’s systems, so it is rea-
sonable to ask why it is possible to separate scene management
from rendering in a Z-buffer system but not in a ray tracer. In a
simple Z-buffer system, visibility computations are performed in
object order, so that each polygon in the scene is touched once and
only once each frame by the visibility algorithm. Thus, for the pur-
pose of the visibility computation, there is no need to store more
than one polygon in local memory at a time. Of course the geome-
try must be stored somewhere in the system, but this can be done by
the application or scene graph in any manner that is desired, with
the geometry streamed across the immediate mode interface to the
Z-buffer system. Commonly, the geometry is stored in a hierar-
chical data structure for the application to animate and otherwise
modify.

Typically, ray tracing algorithms are “ray order” algorithms, in
which the basic visibility algorithm can touch one polygon, then
touch a second polygon, and eventually return to the first poly-
gon. This type of algorithm requires direct access to the geomet-
ric database describing the scene. However, the geometric database
need not be stored in the same format as the scene graph that is
manipulated by the application. By transferring data lazily between
the two data structures, we can minimize the cost of maintaining
two different data structures.

3.1 Additional improvements

If ray traversal is managed so that most rays touching a particular
portion of space are processed simultaneously [Pharr et al. 1997],
then the system has the option of treating geometry represented in
space-partitioning form as disposable. That is, when a particular
volume of space is visited by a batch of rays, first the system cre-
ates an acceleration structure in on-chip memory for the geometry
residing in that volume of space, then performs ray/triangle inter-
section tests, then discards the acceleration structure. The acceler-
ation structure for that volume of space can be recreated later from
the scene graph if it happens to be needed again.

Several other optimizations become convenient in this frame-
work. If the system stores scene graph data using higher-order rep-
resentations such as subdivision surfaces, these representations may
be tesselated into triangles as the system creates the spatial acceler-
ation structure. The data explosion that occurs during this step can
be confined to on-chip memory, just as it is for a Z-buffer pipeline

that includes a tesselation processor. Pharr and Hanrahan describe a
variant of approach for displacement surfaces [Pharr and Hanrahan
1996].

An additional advantage of tight integration of scene manage-
ment with rendering is that the system can automatically adapt the
LOD of geometry to local ray density, even instantiating the same
geometry at two different levels of detail, as is often needed when
different types of rays (eye and reflected, for example) intersect the
same geometry. A recent paper from Pixar [Christensen et al. 2003]
has clearly demonstrated the value of using ray differentials to man-
age geometric level of detail in a raytracer.

4 Is a unified system organization practical?

We recognize that proposing to tightly couple scene management
with rendering flies in the face of conventional wisdom about
graphics system design. Current systems, following the lead of Iris
GL and OpenGL [Segal and Akeley 2002], are characterized by
the separation of scene management from rendering, mediated by a
carefully-designed immediate mode rendering interface (Figure 1).

Why do we have this interface? Because experience has shown
that it is not possible to build an efficient, fully general-purpose
scene manager. Attempts to standardize systems of this type,
such as CORE [Graphics standards planning committee 1979] and
PHIGS [(american national standards institute) 1988], failed largely
because of their attempt to integrate support for modeling and ren-
dering using an API framework.

So why do we think we can do better? Because experience has
also shown that it is possible to build reusable scene managers
specialized for particular application domains. The most promi-
nent examples are Performer [Rohlf and Helman 1994] which is
specialized for visual simulation and id software’s widely licensed
game engines, which are specialized for first-person-shooter games.
However, these systems do not use a standard API framework – ei-
ther the engine is either highly configurable through internal hooks
(Performer) or it can be directly modified in source code form (id’s
game engines).

We conclude that it is probably not possible to build a fully
generic scene engine behind an API, but that it is possible to build
specialized engines that implement performance critical tasks and
can be adapted for particular applications. Thus, if one is will-
ing to allow a scene manager to be implemented in “user” code
(i.e. not embedded in unprogrammable hardware, or behind a one-
size-fits-all interface), then it is perfectly possible to build a high-
performance scene manager. If this scene manager can run on the

3

University of Texas at Austin Dept. of Computer Sciences Technical Report #TR-05-18, May 2, 2005

same hardware that supports the rendering, then we believe that the
scene manager can include rendering code, and thus provide the in-
tegrated renderer / scene manager that we propose. This approach
is analogous to the programmable shaders in today’s hardware, but
carried much farther.

5 Parallel architecture supporting late binding

To efficiently support the ray tracing system we have described,
the hardware architecture and corresponding parallel programming
model must be very flexible and allow most control and data bind-
ing decisions to be deferred until run time. For example, a highly-
specialized architecture, a SIMD architecture, or a streaming archi-
tecture would not be appropriate for this workload.

Several factors drive this need for generality:

• Application-dependent scene management: The architec-
ture cannot be designed for particular scene management
code.

• Irregular data structures: The scene graph and acceleration
data structures are irregular, requiring pointer-chasing or its
equivalent.

• Dynamic data structures: The irregular data structures must
be built and modified with high performance, as well as being
traversed with high performance.

• Data dependent control flow: Adaptive tesselation, ray trac-
ing, and other tasks use highly data-dependent control flow.

• Data locality: Many of the data structures exhibit temporal
locality in their access patterns, but the exact form of the lo-
cality is not known at compile time due to the irregular nature
of the data structures.

We take as a starting point that our target architecture provides
explicit parallelism, which provides better power efficiency than a
single mainstream high-ILP CPU [Sasanka et al. 2004].

5.1 MIMD control flow

We advocate a MIMD programming model because it supports data
parallel execution of computation kernels that use data-dependent
conditionals and looping. Support for MIMD control flow is criti-
cal for efficiently creating and traversing adaptive spatial data struc-
tures such as k-d trees, as well as for executing short data-dependent
loops such as those used in vertex skinning and anisotropic texture
filtering [Sankaralingam et al. 2003a]. MIMD computation also
supports general task level parallelism, i.e. it allows multiple dis-
tinct “kernels” to run concurrently. A primary example of the need
for this is to allow closely coupled scene graph management and
rendering tasks to run concurrently, particularly when these tasks
are not individually sufficiently parallelizable to be able to occupy
the entire machine.

Current graphics hardware (e.g. NVIDIA 6800 with shader
model 3.0) supports a more restrictive SPMD (single-program, mul-
tiple data) programming model in which MIMD-style control flow
is supported, but all fragment or vertex processors must be running
the same program. However, the hardware implementation of the
control flow is closer to a SIMD implementation, so that code with
divergent branching behavior is inefficient [Nvidia Corp. 2004].

Even if future architectures use a MIMD organization as we ad-
vocate, that does not preclude support for simpler programming
models as well. Most other parallel programming models (e.g.

various variants of “stream programming”) can be described as re-
stricted subsets of the one we have outlined and thus can be sup-
ported by the same hardware. For tasks that can tolerate these lim-
itations, the restricted programming models are often easier to use
and typically encourage the programmer to express the task in a
form that will perform well. For example, the stream programming
model forbids the code within one kernel from directly communi-
cating with the code within another kernel, thereby eliminating the
potential for many types of concurrency and performance bugs.

Recent industry designs seem to endorse our view that MIMD ar-
chitectures are a better choice than SIMD architectures for general-
purpose single-chip parallel computation. Sun’s Niagara [Krewell
2003] and IBM/STI’s CELL [Pham et al. 2005] are both fully
MIMD. The most advanced graphics processors (e.g. GeForce
6800) currently have a MIMD programing model (actually SPMD)
implemented as a MIMD execution model in the vertex processor
and a SIMD execution model in the fragment processor. We expect
future architectures to gradually move towards a MIMD implemen-
tation, although maintaining current fragment ordering semantics in
a MIMD machine presents some challenges. Several interesting re-
search architectures that use a highly-parallel MIMD organization
are IBM’s Cyclops [Caşcaval et al. 2002] (not yet built), Stanford’s
Smart Memories [Mai et al. 2000] (not yet built), MIT’s RAW [Tay-
lor et al. 2004] (already built), and the MIT M-Machine [Keckler
et al. 1998] (already built) which demonstrated some promising ap-
proaches for supporting fine-grained MIMD parallelism.

Note that although all of the architectures mentioned above are
MIMD in their overall organization, many of them support 4-wide
SIMD instructions within each core. These short-vector SIMD
instructions are an efficient mechanism for exploiting what is re-
ally just a particularly common form of instruction-level paral-
lelism found in graphics and scientific code. Even in machines that
are designed to exploit MIMD thread-level parallelism, it is still
worthwhile to support such low-cost forms of instruction level par-
allelism, since exploiting such parallelism improves performance
without requiring an increase in on-chip storage such as would be
required by support for additional threads.

5.2 Hardware caches and global address space

For processors built using modern VLSI technology it is desir-
able to include a multi-level memory hierarchy on chip, since for
workloads with temporal memory-access locality this strategy pro-
vides a favorable combination of low power consumption, low aver-
age memory-access latency, and high load/store bandwidth [Kapasi
et al. 2002].

There are a variety of mechanisms by which a programming
model can provide access to high-speed on-chip memory. The
two most popular mechanisms are a hardware-managed cache and
a software-managed scratchpad memory. The difference between
these two approaches is fundamental. For a cache, the decision as
to which elements of data should be stored on chip is automatically
made by the hardware at run-time, with the decision typically made
at a fine granularity (e.g. blocks of 32 bytes). With a software-
managed scratchpad memory, the decision as to which data should
be stored on chip is made either at compile time or made explicitly
by software at runtime, usually at a coarser granularity.

In applications with highly regular memory access patterns, such
as classical DSP applications, a software-managed memory is the
right choice. Software-managed memories carry less hardware
overhead, allow static scheduling of the entire machine (particularly
important for SIMD architectures), and provide the user and com-
piler with better performance guarantees than a hardware-managed
cache.

In contrast, applications that manipulate adaptive data structures
such as k-d trees, BSP trees, or short variable-length lists cannot

4

University of Texas at Austin Dept. of Computer Sciences Technical Report #TR-05-18, May 2, 2005

easily manage memory at compile time. The application writer and
compiler may know that there will be significant spatial and tempo-
ral locality of the memory accesses, but they do not know exactly
what form this locality will take for any particular data set. For
these applications, the binding of particular data elements to the
on-chip memory is best performed at a fine spatial granularity. This
approach is exactly that used by conventional hardware-managed
caches. Since we believe that the construction, modification, and
use of adaptive spatial data structures will be a performance-critical
part of future real-time 3D graphics applications, we believe that
future hardware architectures should support hardware-managed
caches or at a minimum must include hardware primitives from
which equivalent behavior can be efficiently implemented in soft-
ware.

One important advantage of an architecture with traditional
hardware-managed caches – especially if cache-coherency is sup-
ported – is that the architecture can provide the illusion of a single
large memory, in which the storage hierarchy is simply an auto-
matic hardware-supported performance optimization. In practice,
parallel software must be heavily tuned to achieve good perfor-
mance from such an architecture, but this performance tuning can
be done incrementally. In contrast, software-managed memories
are usually exposed to the programmer and/or compiler as a series
of architecturally visible capacity “cliffs”, which must be painfully
overcome even in the earliest software prototypes.

The recently announced CELL architecture [Pham et al. 2005],
is an interesting hybrid between the traditional cache strategy and
scratchpad strategy. CELL’s parallel cores (called SPE’s) have
a local scratchpad memory, but the DMA transfers between this
scratchpad and main memory are coherent within a single global
address space. The difficulty of managing a scratchpad memory is
mitigated by the fact that the scratchpad is unusually large (256 KB
per core). For a programmer, is is qualitatively easier to manage this
L2-sized scratchpad than it is to manage a more traditional L1-sized
scratchpad. Nevertheless, we believe that it will prove to be chal-
lenging to efficiently implement some irregular-datastructure algo-
rithms on CELL. Even the strategy of using software to mimic tra-
ditional cache behavior is unlikely to perform well on CELL, due to
the long branch mis-predict penalty and lack of hardware-supported
multithreading. However, we believe that adding minimalist multi-
threading capability to the CELL SPE architecture would substan-
tially improve this situation at relatively low cost, and we hope that
this capability will be considered for future versions of CELL.

5.3 Hardware support for multithreading

A major problem encountered by most modern architectures is that
the latency for moving data between the processing chip and off-
chip DRAM memory can be 100 or more cycles. To maintain
high ALU utilization, the machine must perform other work while
such requests are outstanding. With a hardware-managed cache, the
problem is particularly severe, because the compiler and hardware
do not know in advance whether a particular ‘load’ or ‘store’ will
miss the cache(s). Thus, every access to the unified address space
potentially incurs a 100 cycle delay, whereas in a machine with a
scratchpad, only the explicit accesses to off-chip memory can incur
this delay.

Fortunately, highly parallel computations such as those in 3D
graphics normally have other work (i.e. other threads) that can be
processed during an off-chip memory access. There are two strate-
gies for switching to other thread(s), which we will now describe.

The first strategy is to assume that every memory access misses
the cache. This approach is followed by classical texture caching
systems [Igehy et al. 1998], by the specialized SaarCOR raytrac-
ing architecture [Schmittler et al. 2004], and by cacheless multi-
threaded architectures like Tera [Alverson et al. 1990]. The ALU

switches to other thread(s) (e.g. another fragment or vertex) for the
required number of cycles, regardless of whether or not the memory
request actually missed the cache. Unfortunately, this strategy re-
quires that the number of active threads per ALU be approximately
equal to the off-chip memory latency. The memory needed to store
the working set for these threads can easily dominate the die area
of the parallel processor, particularly when one considers the data-
cache or scratchpad-memory footprint of each thread as well as its
registers.

The second strategy is to switch to another thread only if the
data access actually misses the cache. This approach is the one
used by modern multithreaded machines such as Niagara [Krewell
2003], Cyclops [Caşcaval et al. 2002], and MAJC [Kowalczyk et al.
2001]. The advantage of this second approach is that fewer threads
are required, particularly if cache misses are infrequent. Thus we
consider this strategy to be the better one, at least if the machine
is already a MIMD machine. However, it is worth noting that this
strategy may not perform well if the memory accesses by different
threads are highly correlated, leading to situations where all threads
stall at the same time waiting for the same cache line. For exam-
ple, this situation can occur for texture map lookups in a fragment
shader. In some cases careful use of ‘prefetching’ can mitigate this
problem, but it is not yet clear if this strategy would be effective for
texture mapping.

There is an unfortunate tension between the goal of maximizing
overlap of the working sets of different threads (which in turn re-
duces the per-thread SRAM requirements) and minimizing the tem-
poral correlation between cache misses of different threads (which
in turn allows a reduction in the ratio of threads-per-ALU). We ex-
pect that managing this tradeoff will be a major focus of future
performance-optimization efforts for both hardware and software
in single-chip parallel systems. One advantage of SIMD control
flow that is often under-appreciated is that SIMD execution pro-
vides implicit but very tight inter-thread synchronization that facil-
itates reasoning about and management of this tradeoff. Managing
this tradeoff in MIMD systems can require that fine-grained inter-
thread synchronization be used for this purpose as well as for the
traditional purpose of managing the more obvious control and data
dependencies in the parallel computation.

5.4 Parallelism Summary

The various design decisions for a parallel machine are closely cou-
pled to each other. For example, the decision to use a hardware-
managed L1 cache in each core is at odds with a decision to use
SIMD control. Broadly speaking, there appear to be two reason-
able points in the design space, which can be referred to as “static”
and “dynamic”. Static machines such as Imagine bind and schedule
most fine-grain resources at compile time – ALUs, on-chip mem-
ory, off-chip memory accesses, etc. The static strategy can use
compile-time information about the program, but cannot not use
much if any information about data-dependent behavior. In con-
trast, dynamic machines such as Niagara [Krewell 2003], Cyclops
[Caşcaval et al. 2002] and the Intel IXP network processor [Adiletta
et al. 2002] bind and schedule most resources at run time with hard-
ware assistance. The dynamic-binding strategy uses both program
information and runtime information derived from the data being
processed.

For tasks in which the runtime information can significantly im-
prove the quality of resource binding and scheduling, we believe
that the dynamic approach will provide superior performance and
will also be easier to program. However, for problems that can be
effectively scheduled at compile time, there is no benefit to the dy-
namic approach, and the hardware support needed for it reduces the
performance/price ratio of the hardware. Thus, the decision as to
what type of machine to build should rest largely on anticipated ap-

5

University of Texas at Austin Dept. of Computer Sciences Technical Report #TR-05-18, May 2, 2005

plication characteristics. We have argued that future real-time 3D
graphics algorithms will use adaptive data structures, and thus that
future architectures targeted to support these algorithms should use
dynamic binding and scheduling. The close coupling we find here
between the choice of software algorithms and the choice of hard-
ware architectures is one of the reasons that we are advocating that
algorithmic and hardware questions be investigated in tandem.

As with most such design-space tradeoffs, hybrid strategies ex-
ist. For example CELL has MIMD control flow, seemingly placing
it in the dynamic category, but its high branch-mispredict penalty
coupled with lack of multithreading somewhat penalize highly dy-
namic algorithms, as does CELL’s choice of scratchpad memory
rather than cache for local storage. A useful perspective on the
general static-vs-dynamic tradeoff can be found in the architectural
taxonomy found at the end of [Taylor et al. 2004].

5.5 CPU and parallel processor on the same die

Experience teaches us that very few problems are perfectly paral-
lelizable. Historically, Cray’s vector machines outperformed their
competitors because they had superior performance for scalars and
short vectors [Hennessy et al. 2003]. 3-D graphics is no exception
to this general rule – modern graphics hardware has serialization
points, although these potential bottlenecks are normally not user
programmable.

For this reason, we believe that future graphics algorithms will
split their work between an array of parallel processors optimized
for high, power-efficient throughput on parallel code and at least
one CPU-like processor optimized for maximum performance on
a single thread. We believe that these two core types will be im-
plemented with different sets of transistors, rather than by recon-
figuring a single underlying substrate [Sankaralingam et al. 2003b;
Taylor et al. 2004; Mai et al. 2000]. The reason is that a well-
designed throughput-optimized processor differs from a single-
thread-optimized processor in almost every respect, including the
physical design of the individual transistors. The flexibility gained
from a single reconfigurable substrate is likely to be more than off-
set by the cost of the necessary compromises.

To facilitate the low-latency, high-bandwith transfer of work be-
tween the throughput-optimized and single-thread-optimized pro-
cessing cores, they must be integrated on a single die. Network
processors [Adiletta et al. 2002] and CELL use this organization al-
ready, and we believe that in the long term these technical benefits
as well as market trends towards cost reduction make such integra-
tion inevitable for graphics processors.

5.6 More than one kind of throughput-optimized core?

One important but open question is whether future chip-
multiprocessors should have just one kind of throughput-optimized
core, or two or more varieties of such cores. For example, it would
be reasonable to build an architecture which has one set of cores
that can only write to memory via stream outputs (like today’s GPU
fragment processors), and a second set of cores supporting cache-
coherent memory writes and reads. The first set of cores would
have higher peak performance, but would be restricted to a nar-
rower class of computations than the second set of cores.

Other kinds of cores may also be useful. For example, current
graphics chips include a simple configurable hardware unit (the
raster-operation unit) located next to each of several memory con-
trollers. We have shown that adding additional capabilities to this
unit enables it to efficiently assist the task of building linked lists
[Johnson et al. 2005]. Others have shown that such “near-memory
processing” can be useful for traversing linked lists [Hughes and
Adve 2005].

Finally, if a single-chip parallel architecture is expected to be
heavily used for one particular task such as 3D rendering, it may
be advantageous to include highly-specialized cores optimized for
particular tasks such as texture filtering (included in today’s GPU’s)
or ray/triangle intersection testing.

Most of these decisions must be made based on detailed
cost/benefit analysis of both the workload and the hardware imple-
mentation, but there is one broad issue that will impact all such de-
cisions. It is possible that future power budgets will prohibit archi-
tectures from using all of their transistors at once. This constraint
would favor heterogeneous specialization of the architecture’s pro-
cessing units, a point that was first brought to our attention by Mark
Horowitz.

6 Conclusion

We have argued that the next frontier in improved real-time im-
age quality is to simulate global illumination effects for dynamic
scenes. We claim that ray tracing will be the visibility algorithm of
choice, but that it will initially be used to support non-physically-
correct global illumination techniques.

We believe that a ray tracing system that efficiently supports dy-
namic scenes will need to integrate scene management with ren-
dering. Since scene management code is somewhat application
specific, this tight integration implies that the parallel architec-
ture used to accelerate rendering must also be capable of executing
application-specific scene management code. In turn, this requires
that the parallel architecture support a general-purpose parallel pro-
gramming model, with inter-thread communication, synchroniza-
tion, and perhaps cache-coherent memory operations. The pro-
gramming model supported by today’s GPUs lacks most of these
capabilities, and in particular it does not provide adequate support
for creating and modifying adaptive data structures.

We believe the most promising hardware architecture to support
this programming model is a MIMD multithreaded machine with
cache-coherent shared memory. However, this conjecture remains
unproven, and many questions remain about the details of such an
architecture as well as its price/performance ratio.

To date we have not built either the software or the hardware
necessary to confirm our hypothesis. What we have presented is a
set of informed opinions backed by reasonable arguments and some
initial results from architecture and algorithm simulations [Johnson
et al. 2005]. Our purpose in presenting these opinions is two-fold.
First, we think the ideas are sufficiently interesting that they will
stimulate useful discussion within the research community. Second,
we hope to persuade the research community that the particular ap-
proach we have outlined is sufficiently promising to be worthy of
detailed investigation.

7 Acknowledgements

Gordon Stoll has contributed substantially to our thinking about
real-time ray tracing systems and in particular is responsible for the
insight that ray casting visiblity is likely to be used initially to sup-
port non-physically-correct techniques such as ambient occlusion
rather than to support physically-correct techniques such as photon
mapping.

Kurt Akeley is responsible for the insight that scene-graph ren-
dering interfaces can be successful if they are tailored to sufficiently
narrow application domains.

Our research group and collaborators – Greg Johnson, Paul
Navratil, Calvin Lin, Chris Burns, Juhyun Lee, Karthikeyan
Sankaralingam, Doug Burger, Steve Keckler, the Stanford Smart
Memories group, Alex Joly, Ikrima Elhassan, David Whiteford,

6

University of Texas at Austin Dept. of Computer Sciences Technical Report #TR-05-18, May 2, 2005

Chris Lundberg, Chendi Zhang and Peter Djeu – have been build-
ing systems and gathering results that have influenced our thinking
about both rendering algorithms and parallel architectures.

We thank Microsoft, Intel, NVIDIA, and the University of Texas
for supporting this research.

References

ADILETTA, M., ROSENBLUTH, M., BERNSTEIN, D., WOLRICH, G., AND

WILKINSON, H. 2002. The next generation of Intel IXP network pro-
cessors. Intel technology journal 6, 3 (Aug.).

AKELEY, K. 1993. RealityEngine graphics. In SIGGRAPH 93, 109–116.

ALVERSON, R., CALLAHAN, D., CUMMINGS, D., KOBLENZ, B.,
PORTERFIELD, A., AND SMITH, B. 1990. The tera computer system.
SIGARCH Comput. Archit. News 18, 3, 1–6.

(AMERICAN NATIONAL STANDARDS INSTITUTE), A. 1988. programmer’s
hierarchical interactive graphics system (PHIGS) functional description.
Tech. rep., ANSI.

AR, S., MONTAG, G., AND TAL, A. 2002. Deferred, self-organizing bsp
trees. In Eurographics 2002.

BOLZ, J., FARMER, I., GRINSPUN, E., AND SCHRODER, P. 2003. Sparse
matrix solvers on the gpu: conjugate gradients and multigrid. In SIG-
GRAPH 2003.

CAŞCAVAL, C., NOS, J. G. C., CEZE, L., DENNEAU, M., GUPTA, M.,
LIEBER, D., MOREIRA, J. E., STRAUSS, K., AND JR, H. S. W.
2002. Evaluation of a multithreaded architecture for cellular comput-
ing. In Proceedings of the Eighth International Symposium on High-
Performance Computer Architecture (HPCA’02), IEEE Computer Soci-
ety, 311–322.

CHRISTENSEN, P. H., LAUR, D. M., FONG, J., WOOTEN, W. L., AND

BATALI, D. 2003. Ray differentials and multiresolution geometry
caching for distribution ray tracing in complex scenes. In Eurograph-
ics 2003.

COOK, R. L., CARPENTER, L., AND CATMULL, E. 1987. The REYES
image rendering architecture. SIGGRAPH 87 21, 4 (July), 95–102.

GRAPHICS STANDARDS PLANNING COMMITTEE. 1979. Status report of
the graphics standards planning committee. Computer graphics 13, 3
(Aug.).

GRITZ, L., AND HAHN, J. K. 1996. BMRT: A global illumination imple-
mentation of the RenderMan standard. Journal of Graphics Tools 1, 3,
29–47.

HANRAHAN, P., AND LAWSON, J. 1990. A language for shading and
lighting calculations. In SIGGRAPH 90, 289–298.

HENNESSY, J. L., PATTERSON, D. A., AND GOLDBERG, D. 2003. Com-
puter Architecture: A Quantitative Approach, 3rd ed. Morgan Kauf-
mann.

HUGHES, C. J., AND ADVE, S. V. 2005. Memory-side prefetching for
linked data structures for processor-in-memory systems. Journal of Par-
allel and Distributed Computing 65, 4 (Apr.), 448–463.

HURLEY, KAPUSTIN, RESHETOV, AND SOUPIKOV. 2002. Fast ray tracing
for modern general purpose CPU. In Graphicon 2002.

HURLEY, J., 2005, Mar. Personal Communication.

IGEHY, H., ELDRIDGE, M., AND PROUDFOOT, K. 1998. Prefetching in
a texture cache architecture. In Proc. of 1998 Eurographics/SIGGRAPH
workshop on graphics hardware.

JOHNSON, G. S., LEE, J., BURNS, C. A., AND MARK, W. R. 2005. The
irregular z-buffer. ACM Transactions on Graphics (to appear).

KAPASI, U. J., DALLY, W. J., RIXNER, S., OWENS, J. D., AND

KHAILANY, B. 2002. The Imagine stream processor. In Proc. of IEEE
Conf. on Computer Design, 295–302.

KATO, T. 2002. The “Kilauea” massively parallel ray tracer. In Practical
Parallel Rendering, A K Peters, A. Chalmers, T. Davis, and E. Reinhard,
Eds.

KECKLER, S. W., DALLY, W. J., MASKIT, D., , CARTER, N. P., CHANG,
A., AND LEE, W. S. 1998. Exploiting fine-grain thread level parallelism
on the MIT multi-alu processor. In ISCA 1998, 306–317.

KELLER, A. 1997. Instant radiosity. In SIGGRAPH ’97: Proceedings
of the 24th annual conference on Computer graphics and interactive
techniques, ACM Press/Addison-Wesley Publishing Co., New York, NY,
USA, 49–56.

KOWALCZYK, A., ADLER, V., AMIR, C., CHIU, F., CHNG, C. P.,
LANGE, W. J. D., GE, Y., GHOSH, S., HOANG, T. C., HUANG, B.,
KANT, S., KAO, Y. S., KHIEU, C., KUMAR, S., LEE, L., LIEBER-
MENSCH, A., LIU, X., MALUR, N. G., MARTIN, A. A., NGO, H.,
OH, S.-H., ORGINOS, I., SHIH, L., SUR, B., TREMBLAY, M., TZENG,
A., VO, D., ZAMBARE, S., AND ZONG, J. 2001. The first majc mi-
croprocessor: A dual cpu system-on-a-chip. IEEE Journal of Solid-State
Circuits 36, 11 (Nov.), 1609–1616.

KREWELL, K. 2003. Sun weaves multithreaded future. Available online at
http://www.sun.com/processors/throughput/MDR_Reprint.pdf.

LANDER, J. 1998. Skin them bones: game programming for the web
generation. Game Developer Magazine (May), 11–16.

LEXT, J., AND AKENINE-MOLLER, T. 2001. Towards rapid reconstruction
for animated ray tracing. In Eurographics 2001.

LINDHOLM, E., KILGARD, M. J., AND MORETON, H. 2001. A user-
programmable vertex engine. In SIGGRAPH 2001.

MAI, K., PAASKE, T., JAYASENA, N., HO, R., DALLY, W. J., AND

HOROWITZ, M. 2000. Smart memories: A modular reconfigurable
architecture. In ISCA 2000.

MARK, W. R., GLANVILLE, S., AKELEY, K., AND KILGARD, M. J.
2003. Cg: A system for programming graphics hardware in a C-like
language. In SIGGRAPH 2003.

MOYER, B., 2004. Ambient occlusion: It’s better than a kick
to the head. WWW page visited December 2004, http://www-
viz.tamu.edu/students/bmoyer/617/ambocc/.

NVIDIA CORP. 2003. NV_fragment_program. In NVIDIA OpenGL Ex-
tension Specifications. Jan.

NVIDIA CORP. 2004. NVIDIA GPU programming guide, v2.2.1, Nov.

PARKER, S., MARTIN, W., SLOAN, P.-P. J., SHIRLEY, P., SMITS, B.,
AND HANSEN, C. 1999. Interactive ray tracing. In Symposium on
interactive 3D graphics.

PARKER, S., PARKER, M., LIVNAT, Y., SLOAN, P.-P., HANSEN, C., AND

SHIRLEY, P. 1999. Interactive ray tracing for volume visualization.
IEEE Transactions on Visualization and Computer Graphics 5, 3, 238–
250.

PHAM, D., S.ASANO, BOLLIGER, M., DAY, M., HOFSTEE, H., JOHNS,
C., KAHLE, J., KAMEYAMA, A., KEATY, J., MASUBUCHI2, Y., RI-
LEY1, M., SHIPPY1, D., STASIAK1, D., M.WANG, J.WARNOCK,
S.WEITZEL, D.WENDEL, T.YAMAZAKI, AND K.YAZAWA. 2005. The
design and implementation of a first-generation cell processor. In Pro-
ceedings of 2005 IEEE Intl. Solid-State Circuits Conf.

PHARR, M., AND HANRAHAN, P. 1996. Geometry caching for ray-tracing
displacement maps. In 1996 Eurographics workshop on rendering.

PHARR, M., KOLB, C., GERSHBEIN, R., AND HANRAHAN, P. 1997. Ren-
dering complex scenes with memory-coherent raytracing. In SIGGRAPH
1997.

PURCELL, T. J., BUCK, I., MARK, W. R., AND HANRAHAN, P. 2002.
Ray tracing on programmable graphics hardware. In SIGGRAPH 2002,
703–712.

REINHARD, E., SMITS, B., AND HANSEN, C. 2000. Dynamic acceler-
ation structures for interactive ray tracing. In Proceedings of the 11th
Eurographics Workshop on Rendering, Eurographics Association, 299–
306.

ROHLF, J., AND HELMAN, J. 1994. IRIS performer: A high performance
multiprocessing toolkit for real–time 3D graphics. In SIGGRAPH 94,
381–394.

7

University of Texas at Austin Dept. of Computer Sciences Technical Report #TR-05-18, May 2, 2005

SANKARALINGAM, K., KECKLER, S. W., MARK, W. R., AND BURGER,
D. 2003. Universal mechanisms for data-parallel architectures. In Pro-
ceedings of the 36th Annual International Symposium on Microarchitec-
ture.

SANKARALINGAM, K., NAGARAJAN, R., LIU, H., KIM, C., HUH, J.,
BURGER, D., KECKLER, S. W., AND MOORE, C. R. 2003. Exploiting
ilp,tlp, and dlp with the polymorphous trips architecture. In Proc. of the
30th Annual Intl. Symp. on Computer Architecture (ISCA).

SASANKA, R., ADVE, S. V., CHEN, Y.-K., AND DEBES, E. 2004. The
energy efficiency of cmp vs. smt for multimedia workloads. In ICS ’04:
Proceedings of the 18th annual international conference on Supercom-
puting, ACM Press, New York, NY, USA, 196–206.

SCHMITTLER, J., WOOP, S., WAGNER, D., PAUL, W. J., AND

SLUSALLEK, P. 2004. Realtime ray tracing of dynamic scenes on an
fpga chip. In Graphics Hardware 2004.

SEGAL, M., AND AKELEY, K. 2002. The OpenGL Graphics System: A
Specification (Version 1.4). OpenGL Architecture Review Board. Editor:
Jon Leech.

SLOAN, P.-P., KAUTZ, J., AND SNYDER, J. 2002. Precomputed radi-
ance transfer for real-time rendering in dynamic, low-frequency lighting
environments. In SIGGRAPH ’02: Proceedings of the 29th annual con-
ference on Computer graphics and interactive techniques, ACM Press,
New York, NY, USA, 527–536.

TAYLOR, M. B., LEE, W., MILLER, J., WENTZLAFF, D., BRATT, I.,
GREENWALD, B., HOFFMANN, H., JOHNSON, P., KIM, J., PSOTA, J.,
SARAF, A., SHNIDMAN, N., STRUMPEN, V., FRANK, M., AMARAS-
INGHE, S., AND AGARWAL, A. 2004. Evaluation of the raw micropro-
cessor: An exposed-wire-delay architecture for ilp and streams. In ISCA
2004.

THOMPSON, C. J., HAHN, S., AND OSKIN, M. 2002. Using modern
graphics architectures for general-purpose computing: a framework and
analysis. In Intl. symposium on computer architecture.

WALD, I., BENTHIN, C., AND SLUSALLEK, P. 2003. Distributed interac-
tive ray tracing of dynamic scenes. In Proc. IEEE symp. on parallel and
large-data visualization and graphics.

WALD, I., PURCELL, T. J., SCHMITTLER, J., BENTHIN, C., AND

SLUSALLEK, P. 2003. Realtime ray tracing and its use for global il-
lumination. In Eurographics 2003.

WALD, I., PURCELL, T. J., SCHMITTLER, J., BENTHIN, C., AND

SLUSALLEK, P. 2003. Realtime ray tracing and its use for interactive
global illumination. In State of the Art Reports, EUROGRAPHICS 2003.

WANN JENSEN, H. 2001. Realistic image synthesis using photon mapping.
AK Peters.

WHITTED, T. 1980. An improved illumination model for shaded display.
Communications of the ACM 23, 6 (June), 343–349.

8

Siggraph 2005 Course on Interactive Ray Tracing

The OpenRT API

Ingo Wald

This is an excerpt from
“Realtime Ray Tracing and Interactive Global Illumination”,

PhD Thesis, Ingo Wald,
Computer Graphics Group, Saarland University.

Full Version available at http://www.mpi-sb.mpg.de/∼wald/PhD

In the preceding course sections, all the basic constituents of a complete
realtime ray tracing engine have been described: A highly efficient ray tracing
kernel for modern CPUs, its efficient parallelization, and a simple yet efficient
framework for handling dynamic scenes.

Once these “building blocks” have successfully been merged, essentially all
the technical requirements for realtime ray tracing are fulfilled. However, a key
issue for reaching the scenario of realtime ray tracing on everybody’s desktop is
widespread application support, which requires a standardized and commonly
accepted API. Roughly speaking, having a powerful new technology is one thing,
having a good means of making the power of this technology available to the “av-
erage end user” is a totally different story. For hardware rasterization, this role
of a powerful and widely accepted API has been taken by OpenGL [Neider93]1,
which today is used by almost any graphics application, and which is well-known
to virtually any graphics developer. Ideally, one could simply adopt OpenGL
for ray tracing, in which case any existing OpenGL application could transpar-
ently render its images using ray tracing. Thus, one could (in theory) write an
OpenGL “wrapper library” in the spirit of WireGL/Chromium [Humphreys02],
that would perform the state tracking, would extract a ray-tracing suitable scene
description from that, and would then call the ray tracer. The extended capa-
bilities of ray tracing – namely shaders and global effects – could then be made
available to the graphics programmer via the use of the well-known OpenGL
extension mechanism (i.e. by offering a “GL ARB RAYTRACE” extension).

Unfortunately, this is but a mere theoretical option. as OpenGL and sim-
ilar graphics APIs are too closely related to the rasterization pipeline. These
APIs clearly reflect the stream of graphics commands that is fed to the rasteri-
zation pipeline, and as such also closely reflect the capabilities and limitations
of the rasterization approach. In contrast to OpenGL, RenderMan [Pixar89,
Apodaca90, Hanrahan90, Upstill90, Apodaka00] offers a more suitable high-
level API that also supports ray tracing. However, these APIs offer almost no

1And, more recently, also by DirectX and Direct3D [DirectX].

1

support for interactive applications, and are thus not well suited for driving
interactive applications.

Another option would be the use of an existing high-level scene graph li-
brary such as Performer, OpenInventor, OpenSG, OpenSceneGraph, or oth-
ers [Rohlf94, Wernecke94, OpenSG01, OSG] for driving the ray tracer. This
would already enable many new applications and would already reach a large
number of potential users. However, the level of abstraction of such high-level
scene graphs is too high for a generic ray tracing API, often is too application
specific, and is unnecessarily restrictive. Being a low-level API, OpenGL allowed
for all the “non-intended” uses (e.g. multipass rendering) while still allowing for
layering higher-level APIs on top of it. In order not to unneccessarily restrict
the potential uses of the API, it seems appropriate to follow this approach and
design the API to be as low-level and flexible as possible. This allows for per-
forming all the tasks that it is mainly thought for today, while still being flexible
enough to adapt to potentially changing demands in the future.

As discussed above, none of the commonly available graphics APIs could
be easily adopted for our ray tracing engine without unnecessary restrictions of
its functionality. As such, we have decided to design a new API explicitly for
realtime ray tracing. Ideally, such an API for realtime ray tracing should not
only be an API specific to a certain implementation (i.e. the RTRT kernel), but
should be both general and powerful enough to support the upcoming trend
towards more widespread use of realtime ray tracing in general. Thus, we have
designed our API with the following guidelines in mind:

• The API should be as low-level as possible in order to be able to layer
higher-level scene graph APIs on top of it.

• It should be syntactically and semantically as similar to an existing, widely
used graphics API as possible, in order to facilitate porting of existing
applications and for leveraging programmers’ experiences. Being the most
commonly adopted graphics API, we have chosen OpenGL as a “parent
API” to our new API, and have thus called it “OpenRT”.

• It should be as powerful and flexible as RenderMan for writing shaders in
order not to restrict the kinds of shading functionality that can be realized
through this API.

The OpenRT API [Wald02, Wald03, Dietrich03] has been designed explicitly
with these key observations in mind. While OpenRT so far has been imple-
mented only on top of the previously mentioned RTRT kernel, it is not specific
to this system. For example, the entire cluster infrastructure of the RTRT
system has been completely abstracted from, and is not reflected in the API.
Already today, two different implementations of this API are available, a dis-
tributed cluster version and a “stand-alone” shared-memory version (although
both actually build on the same RTRT core). In the near future, it is planned
to also use this OpenRT API for driving the SaarCOR architecture [Woop05].

2

1 General Design of OpenRT

As briefly mentioned above, one problem in designing OpenRT was choosing the
right “parent” API to inherit ideas from: While it is generally a good idea to
stay close to popular APIs – allowing to draw from a wide range of experienced
people – there is the open question what API exactly to inherit from. On one
side, OpenGL is the favorite API for writing interactive applications – it is very
powerful, many people are experienced in OpenGL, and there is a huge amount
of documentation and practical applications using OpenGL. On the other hand,
OpenGL does not really fit a ray tracing engine: For example, it is mostly an
immediate-mode API, and does not have any support for specifying shaders or
for handling secondary effects (reflections, refraction) in a sensible manner.

In contrast to OpenGL, there are many APIs (like RenderMan2, POV-Ray,
etc.) that allow for taking advantage of all the benefits of ray tracing, but which
are usually not applicable to interactive settings.

On the other hand, writing shaders and writing applications are usually
two fundamentally different (though inter-playing) parts that can be realized
with different APIs. As such, it is possible to take the best of both worlds, by
using a RenderMan like API for writing shaders, and an OpenGL like API for
writing the application. With this in mind, OpenRT has not been designed as
one single graphics API, but actually consists of two mostly independent parts:
One part is concerned with application programming, i.e. specifying geometric
primitives, handling transformations and user input, handling textures, loading
and communicating with shaders (but not writing them!), etc. This part of
the API has been designed to be as close to OpenGL as possible. The second
part of OpenRT describes how shaders are written – essentially describing a
shading language – which has inherited much functionality from the RenderMan
language, though it is not yet as flexible as “full” RenderMan.

1.1 Shader API – Application API Communication

All that is required to use this concept of having two separate parts of the
same API is a minimal interface between these two subsystems. In OpenRT,
this interface is realized via shader parameters (see below): Shaders are written
independently from the application, and are stored in shared library files. Each
shader “exports” a description of its shader parameters which control its shading
calculations (e.g. the surface material properties to be implemented by this
shader) but otherwise performs all its computations independently from the
application. The application API then offers calls for loading these shaders, for
binding them to geometry, for acquiring “handles” to their parameters, and for
writing data to their parameters. For a closer description of this process, see
below.

2RenderMan was originally not designed to be a “ray tracing” API, but mainly to drive the
REYES [Cook87] architecture. However, its flexibility and powerful shading language allow
for also using it for ray tracing and global illumination, see e.g. [Gritz96, Slusallek95].

3

Having a clear abstraction layer between application interface and shading
language it is also possible to exchange any of these two parts without affecting
the other. For example, it would be possible to use different shading languages
like e.g. Cg [Mark03, Fernando03], OpenGL 2.0 Shading language [Kessenich02],
or RenderMan [Upstill90, Apodaca90, Apodaka00] for writing the shaders, while
still using the same application interface.

Instead of adopting another API as a parent API, it would also have been
possible to create a completely new, independent API from scratch. Such ap-
proaches however tend to reinvent the wheel, and often have problems getting
widely accepted (and used) by the users.

2 Application Programming Interface

As just described the application programming part of OpenRT has been de-
signed to be as close to OpenGL as possible. As a rule of thumb, OpenRT
offers the same calls as OpenGL wherever possible (albeit using “rt” as a prefix
instead of “gl”), and only uses different calls where a concept of ray tracing
has no meaningful match in OpenGL (or vice versa). In particular any calls
for specifying geometry (i.e. vertices or primitives), transformations, and tex-
tures have identical syntax and semantics as OpenGL. This simplifies porting
of applications where large parts of the OpenGL code can be reused without
changes.

2.1 Semantical Differences

Note however that OpenRT is not compatible with OpenGL. In fact, the general
rule often has been to use the same syntax where possible but not supporting
all semantical details that do not easily fit a ray tracer. In practice that means
that there are several concepts in which OpenRT can be used just as a “typical”
user would use OpenGL, even though the actual semantics slightly differ. For
example, the viewpoint in OpenGL is usually specified via calls to gluLookAt
and gluPerspective. While OpenRT offers exactly the same functions with
the same parameters (consequently called rtLookAt and rtPerspective) that
also specify the camera position, OpenRT does not exactly follow the OpenGL
semantics of having these functions change a “perspective transform” which
in OpenGL could also be used for other applications, e.g. projective textures.
Supporting these semantical details in OpenRT does not make much sense, as a
ray tracer uses the much more general and flexible concept of a camera shader
instead of a perspective transformation.

Though there are actually several of such low-level semantical differences,
most are actually not very important for practical applications, as they usually
appear only for concepts in which the ray tracer offers a more general concept
(such as a freely programmable camera shader) anyway. In fact, many users of
OpenRT take quite a while to discover the first of these differences at all. While
these semantical differences obviously make porting more complicated, the two

4

main goals of making OpenRT similar to OpenGL are not successfully realized
with this approach: First, to the average user, OpenRT appears quite similar
to OpenGL, and thus is easy to learn, understand, and accept as a new API.
Second, none of the flexibility, features and functionality of ray tracing have
to be sacrificed in order to be comply to OpenGL features that simply don’t
match.

2.2 Geometry, Objects and Instances

The main issue with using OpenGL for ray tracing is the fact that no information
is available about the changes between successive frames. In OpenGL, even
unchanged display lists can be rendered differently in successive frames due to
global state changes in-between the frames3. This however does not map to a
ray tracing engine, which needs information on which parts of a scene did or did
not change since the last frame in order to achieve interactive performance (see
accompanying document on “Handling Dynamic Scenes”). Therefore, instead of
display lists OpenRT offers objects (see Figure 1). Objects encapsulate geometry
together with references to shaders and their attributes. In contrast to display
lists, objects may not have any side effects and as such changing the definition
of one object can never affect the shape or appearance of any other object. On
the other hand, global side effects are still possible (and usually beneficial) for
the appearance of an object: As the primitives only store references to shaders,
changing a shader at any later time will immediately change the appearance of
all the primitives that this shader is bound to4.

Objects are defined using an rtNewObject(id)/rtEndObject() pair. Each
object is assigned a unique ID that is used to instantiate it later by a call
to rtInstantiateObject(ID). Note how this is (intentionally) very similar to
OpenGL’s way of handling display lists (i.e. glNewList(id),glEndList() and
glCallList(id)).

Essentially, an instance consists of a reference to an object, together with a
transformation matrix that this object is subject to (see Figure 1). Therefore, re-
instantiating an object with a different transformation will change the position
of the object in the scene (also see the accompanying document on “Handling
Dynamic Scenes”).

In order to support unstructured motion, each object can be redefined at
any time by calling rtNewObject with the same object ID. Note that here too,
global side effects can take place once an object is changed: Redefining an object
automatically changes all the instances that have instantiated the redefined

3Actually, this “feature” of changing the effects of a display list by global state changes
often even happens in the same frame.

4In OpenRT, the shape of the object (i.e. its triangles and vertices) is captured in the
kd-tree, and will not be affected by any global state changes lateron. The appearance of the
object if described by its references to the respective shaders (and, of course, by the global
light sources shaders), and thus can change lateron by changing these respective shaders (see
Figure 1. Even though this allows for side effects, it is conceptually slightly different from
side effects through global state changes in OpenGL.

5

Transorm ObjID

InstanceList[Ninst]

name file params

Shader List[Nshaders]

acc0

acc1

...

accN−1

TriAccel[Ntri]

vtxA vtxB vtxC shader

TriDesc[Ntri] VtxPos[Nvtx]

Px, Py, Pz

VtxNor[Nvtx]

Nx, Ny, Nz

TxtCoord[Nvtx]

Tx, Ty, Tz

BSP triAccel triDesc vtxPos vtxNor txtCoord

Object List [Nobj]

O
b

je
ct

 0
O

b
je

ct
 1

Figure 1: In the RTRT/OpenRT system, all geometry is encapsulated in objects.
Each object (the grey block) contains the vertices, triangle description records,
as well as their local acceleration structure. Each triangle contains references to
its three vertices, as well as to its globally defined shader. In fact, each of these
objects corresponds exactly to the RTRT Kernel data structures as described
earlier in this course. In order to take effect, objects are instantiated, where
each instance consists of an object ID and a transformation that this object is
subject to (which corresponds to our method for handling dynamic scenes, as
described in the accompanying document on “Handling Dynamic Scenes”). The
entire scene then consists of the list of objects, the list of shaders, and the list
of instances. Objects, shaders, and instances reference themselves by ID only,
thereby allowing for dynamic and fully automatic side effects when changing
any of these records.

object. Note that this API functionality perfectly matches the requirements of
the previously proposed method to handle dynamic scenes.

Here again, the detailed semantics of OpenGL display lists and OpenRT
objects/instances are slightly different. For example, certain “special features”
(such as the above-mentioned global state changes) are not supported by OpenRT
objects. However, the way that the “average user” uses a display list (i.e. for
encapsulating a certain part of a scene graph for faster rendering) corresponds
exactly to what an OpenRT object is being used for. As such, most users will
hardly see the difference at all.

6

2.3 Shading, Shaders and Lighting

In order not to be limited by the fixed reflectance model of standard OpenGL,
OpenRT does not offer or emulate the OpenGL shading model at all, but rather
supports programmable shaders similar to RenderMan [Pixar89]. Shaders pro-
vide a flexible “plug-in” mechanism that allows for modifying almost any func-
tionality in a ray tracer, e.g. the appearance of objects, the behavior of light
sources, the way that primary rays are generated, how radiance values are
mapped to pixel values, or what the environment looks like. In its current ver-
sion, OpenRT supports all these kinds of programmability by offering support
for “surface”, “light”, “camera”, “pixel”, and “environment” shaders, respec-
tively.

In terms of the API, shaders are named objects that receive parameters
and can then be referenced lateron by name or ID, e.g. in order to attach
(“bind”) a surface shader to geometry. The syntax and functionality are essen-
tially the same as the functionality to specify texture objects in OpenGL: A set
of shader IDs is allocated by rtGenShaders(), and a shader with a certain ID
is then loaded by rtNewShader(ID). lateron, a previously defined shader can
be activated at any time by rtBindShader(ID), e.g. in order to assign to some
geometric primitives. Binding shaders to geometry works similarly to how mate-
rials properties are “assigned” in OpenGL: The application just binds a certain
shader, at which stage all primitives issues after this call get this respective
shader assigned to them.

Once the primitive is issues, the ID of the shader bound to the respective
triangle is stored with the respective triangle. As changing individual triangles
is only possible by redefining the respective object containing that triangle, this
shader-primitive binding can not be changed any more without redefining the
object and re-issueing the primitives with a differently bound shader. Note
however that the triangles actually store only references to their respective
shader (in fact, the ID of the shader). As such, changing the shader associated
to these triangles itself (i.e. loading a new shader with the same ID as the
original one) thus allows for changing the appearance of the respective triangle
or object without having to touch any triangle or object at all.

2.3.1 Parameter Binding

For communicating with the applications, shaders export “parameters”, each
parameter having a symbolic name (e.g. “diffuse”). The application can then
register a handle to a specific shader parameter (rtParameterHandle()), and
can write to that parameter with a generic rtParameter() call. Note that the
syntax and semantics for defining and accessing shader parameters is almost ex-
actly the same as proposed in the Stanford shader API [Proudfoot01, Mark01].
A shader can specify its parameters to reside in different “scopes”, i.e. a shader
can be specified to be stored per vertex, per triangle, per object, or per scene.
For example, a Phong shader would most likely want to have its material param-
eters stored per shader, whereas a radiosity viewer might want to store certain

7

radiosity values in the vertices5. These different ways to specify parameters
allow for optimizing shaders and minimize storage requirements.

Using a parameter binding by name allows for a very flexible way of having
an application communicate with many different kinds of shaders. For example,
if a VRML viewer [Dietrich04]) follows the convention to always assign the
diffuse component of its VRML material to the “diffuse” parameter of a shader,
all that different shaders have to do to get access to the applications material
model is to implement and export the respective shaders. In this example, the
same diffuse parameter value can be used for both a simple flat shader as well as
for a shader implementing interactive global illumination. Neither application
nor shader have to know anything else about each other except that they follow
this convention6. Overhead due to binding by name is not an issue: Once the
“handle” to the parameter has been acquired by the application, the assignment
itself does not have to consider any symbolic names any more.

2.3.2 Lighting

The same argument given for materials is actually true for lighting: The OpenGL
lighting model simply is too limited for a ray tracer to be useful. As such, all
lighting calculations are implemented via programmable light source shaders
(see below).

For convenience and compatibility, the OpenRT library comes equipped with
default implementations for all the typical OpenGL (or VRML) light source
types like point lights, spot lights, directional lights, or ambient lights. Even so,
loading these shaders is different from specifying a light source in OpenGL (via
glLight()), and requires special handling when porting applications.

2.4 A Simple Example

Obviously, this thesis can not give a complete description of the full OpenRT
API with all its details. However, for readers being familiar with both OpenGL
and with the concepts of a ray tracer, the following simple example should give
a good overview of how OpenRT is used in practical applications 7.

// EightCubes.c:
// Simple OpenRT example showing
// eight rotating color cubes
#include <rtut/rtut.h> // include GLUT-replacement

5Obviously, it could do this also by storing them in the triangles vertex colors
6If the application tries to assign a value to a parameter that a shader never actually

exported, this “invalid” assignment will be detected and ignored. This can be very useful
for many applications: For example, a typical VRML application [Dietrich04] might simply
assign the typical VRML material properties to each shader (writing to parameters named
“diffuseColor”, “specularColor”, etc.). If the shader writer wants to have access to the VRML
materials “diffuseColor”, it simply has to export a parameter with that name.

7The example given below uses a slightly outdated version of the OpenRT API (pre-1.0).
In the most up-to-date version (currently 1.0R2), the example would look slightly different.

8

#include <openrt/rt.h> // include OpenRT header files

RTint createColorCubeObject()
{
// Create an object for our
// vertex-colored cube

// Step1: Define the *class* of a vertex color shader
int cid = rtGenShaderClasses(1);
//allocate one slot for a shader class
rtNewShaderClass(cid,’’VertexColor’’,’’libVertexColor.so’’);
// load shader class ‘‘VertexColor’’ from a shared library

// Step2: Create one instance of that shader class
int sid = rtGenShaders(1);
// allocate one slot for a shader instance
rtNewShader(sid); // creates an instance of the

// currently bound shader class
...

// Step3: Define the object
RTint objId = rtGenObjects(1);
rtNewObject(objId, RT_COMPILE);
// Step3a: Bind the shader
rtBindShader(sid);
// Step3b: Specify transforms
rtMatrixMode(RT_MODELVIEW);
rtPushMatrix();
rtLoadIdentity();
// scale the cube to [-1,1]^3
rtTranslatef(-1, -1, -1);
rtScalef(2, 2, 2);
// first cube side
// Step3c: Issue geometry
rtBegin(RT_POLYGON);
rtColor3f(0, 0, 0);
rtVertex3f(0, 0, 0);
rtColor3f(0, 1, 0);
rtVertex3f(0, 1, 0);
rtColor3f(1, 1, 0);
rtVertex3f(1, 1, 0);
rtColor3f(1, 0, 0);
rtVertex3f(1, 0, 0);

rtEnd();
// other cube sides
...

9

rtPopMatrix();
rtEndObject(); // finish building the object
return objId; // return object’s ID to the caller

}

int main(int argc, char *argv[]) {
// Init, open window, etc.
// virtually exactly the same as any GLUT program
rtutInit(&argc, argv);
rtutInitWindowSize(640, 480);
rtutCreateWindow("Simple OpenRT Example");

// set Camera
rtPerspective(65, 1, 1, 100000);
rtLookAt(2,4,3, 0,0,0, 0,0,1);

// generate object *once*
objId = createColorCubeObject();
for (int rot = 0; ; rot++) {
// instantiate object eight times,
// re-instantitate object for every frame
// with different transformation
rtDeleteAllInstances();
for (int i=0; i<8; i++) {
int dx = (i&1)?-1:1;
int dy = (i&2)?-1:1;
int dz = (i&4)?-1:1;

// position individual objects
rtLoadIdentity();
rtTranslatef(dx,dy,dz);
rtRotatef(4*rot*dx,dz,dy,dx);
rtScalef(.5,.5,.5);
rtInstantiateObject(objId);

}
// start rendering and display the image
// frame buffer automatically handled by RTUT
rtutSwapBuffers();

}
return 0;

}

After opening a window, the “main” function first generates a vertex-colored
RGB cube with a shader that just displays the interpolated vertex color. The
cube is generated by first loading the “VertexColor” shader class from its shared
library file, creating a single instance of it, and defining an object containing

10

the geometry for the sides of the triangle. After the object has been completed,
the “for”-loop creates eight rotating instances of this cube by re-instantiating
each of the eight instances with a different transformation in subsequent frames.
In fact, this simple example already features most of the important features of
OpenRT: Specifying objects and instantiating them, issuing geometry, loading
shaders, animating the objects, specifying the camera, and opening and using
a window8.

Being similar to OpenGL, this example should be easy to understand – and
extend – by any slightly experienced OpenGL programmer. Of course, this
is but a very simple example, and real programs will be considerably more
complex. For example, a real program also has to load textures, specify light
shaders, assign shader parameters, aso. Still, using advanced ray tracing ef-
fects in OpenRT is significantly simpler than generating the same effect in an
OpenGL program: For example, rendering a scene once with global illumination
effects and once without only requires to load a different shader – e.g. changing
the shader name in “rtNewShaderClass” from “VertexColor” to “InstantGlob-
alIllumination” [Wald04, Benthin03] – without having to touch any other code
in the program.

2.5 Semantical Differences to OpenGL

As already mentioned before, there are several issues on which OpenRT seman-
tically differs from OpenGL.

2.5.1 Retained Mode and Late Binding

For example, OpenRT differs from the semantics of OpenGL when binding ref-
erences. OpenGL stores parameters on its state stack and binds references
immediately when geometry is specified. This is natural for immediate-mode
rendering, but does not easily fit a ray tracer. OpenRT instead extends the no-
tion of identifiable objects embedding state, similar to OpenGL texture objects.
However, this binding is performed only during rendering once the frame is fully
defined. This approach significantly simplifies the reuse of unchanged geometric
objects across frames, thus getting rid of the need to redefine such unchanged
objects every frame. On the other hand this means that any changes to an
objects or shader defined in a previous frame might also affect the appearance
of geometry defined earlier. For example, changing a shader parameter will
automatically change the appearance of all triangles that this shader is bound
to, even if those triangles have been specified in an earlier frame. Similarly,
redefining a geometric object will automatically and instantly change the shape
of all instances of that object, even if those have been defined in a previous
frame. Though this sounds obvious, it can lead to somewhat unexpected results
for people being used to OpenGL. For example, the code sequence

8Though the example uses RTUT (a GLUT) replacement, it is not required to use this
interface. It is also possible to directly get access to the ray tracers frame buffer, and to
display this e.g. via OpenGL

11

rtGenNewShaderClass(‘‘Diffuse’’,’’libDiffuse.so’’);
RTint diffuse = rtParameterHandle(‘‘diffuse’’);
rtParameter3f(diffuse, 1.f,0.f,0.f);
<triangle A>
rtParameter3f(diffuse, 0.f,1.f,0.f);
<triangle B>
rtSwapBuffers(); // render frame

will actually result in two triangle that are both green9, which is not what an
OpenGL-experienced programmer would expect.

Thus, these semantics are natural for a ray tracer but require careful at-
tention during porting of existing OpenGL applications. More research is still
required to better resolve the contradicting requirements of rasterization and
ray tracing in this area.

2.5.2 Unsupported GL Functionality

Finally, some OpenGL functions are meaningless in a 3D ray tracing context
and consequently are not supported in OpenRT. For instance, point and line
drawing operations are not (currently) supported, and effects like “stipple bits”
and “fill modes”, as well as 2D frame buffer operations make little sense for
a ray tracing engine either. Similarly, fragment operations, fragment tests,
and blending modes are no longer useful and can be better implemented using
surface and pixel shaders if necessary. Traditionally ray tracing writes only a
single “fragment” to each pixel in the frame buffer after a complete ray tree has
been evaluated. Thus the usual ordering semantics of OpenGL and its blending
operations that are based on the submission order of primitives are no longer
meaningful, either.

However the lack of this functionality so far has not been a problem for any
of the applications already written on top of OpenRT: While these unsupported
operations are very important for triangle rasterization, their main use is for
multi-pass rendering. With the powerful shader concept offered by OpenRT,
multipass-rendering is not neccessary any more, so this functionality so far has
not been missed yet.

2.5.3 Frame Buffer Handling

Instead of writing the pixels to a hardware frame-buffer OpenRT renders into
an application-supplied memory region as a frame buffer. This, however, is only
due to the current hardware setup which uses a software implementation. For
more dedicated ray tracing hardware, this is likely to change. For example, an
OpenRT application on top of the SaarCOR architecture [Woop05] would most
likely have the option to use a hardware frame buffer with direct VGA output

9Both triangles share the same shader. Until the two triangles are actually rendered during
rtSwapBuffers, that shaders diffuse parameter has been set to green. Whether or not that
parameter has had a different value when specifying triangle A does not make a difference.

12

instead of always transferring the rendered pixel values back to the application
for display.

The above described “late binding”10 also results in up to one frame of ad-
ditional latency compared to OpenGL. The rasterization hardware can already
start rendering as soon as the first geometric primitive is received by the ren-
derer, and renders each primitive directly once it is specified (except for some
buffering in the driver). Once all primitives have been sent to the graphics card,
the resulting image as such is already finished. In contrast to this, the ray tracer
has to wait for the full scene to be completely finished before it can actually
start tracing any rays.

3 OpenRTS Shader Programming Interface

As motivated in the introduction of this chapter, the shader API in OpenRT
(called “OpenRTS”) has intentionally been designed to be mostly independent
of the core API for writing applications. In order to allow for all the typical
ray tracing effects that users are already used to, this API is as similar to
RenderMan as possible.

3.1 Shader Structure Overview

The base class of all shaders in OpenRT is the “OpenRT Plug-in”, i.e. an entity
that can be loaded dynamically from a file, and which offers functionality for
registering itself and exporting its parameters11. Once a parameter has been
exported, the application can lateron bind a ’handle’ to this parameter, and can
assign values to it (see the above OpenRT example). Apart from registration
and parameter export, all RTPlugins are equipped with an Init and NewFrame
method that can be overwritten by its subclasses.

All other shader types – i.e. surface, light, camera and pixel shaders, and
the rendering object (see below) – are derived from this base class, and as such
can all be parameterized by the application.

3.1.1 Surface Shaders

The most common shader types in OpenRT obviously are surface shaders. Sur-
face shaders have a virtual “Shade” function that is expected to return the
color of the ray it got passed. For the shading operations, the surface shader
has access to an extensive API for accessing scene data (e.g. vertex positions,
normals, or texture coordinates) and for querying data concerning the ray and
hit point (such as the shading normal, the ray origin and direction, the trans-
formation that the hit object is subject to, etc). To differentiate these shader

10Sometimes also called “frame semantics” to stress its difference from “immediate mode
semantics”

11For convenience, we only speak about C++ classes for specifying shaders. Though
OpenRT in principle also allows for writing pure C-code shaders, C++ classes are actually
more natural for implementing a shader concept and as such are usually preferred.

13

API functions from those of the core OpenRT API, all these functions (except
class methods) start with the prefix “rts”.

3.1.2 Accessing Light Sources

In order to access light sources, a surface shader can query a list of light shaders
over which it can iterate. The surface shader can then call back to each light
shader (via rtsIlluminate(...)) to ask it for an “illumination sample”, or
“light sample”. A “light sample” consists of all 3 values required for doing the
lighting calculations in the surface shader: The direction towards the light, its
distance (possibly infinite), and the intensity with which it influences the hit
position.

Once a light shader has returned its light sample, this sample forms a
complete shadow ray description with origin, direction, and maximum dis-
tance. This shadow ray description can then (but does not have to) be used
by the surface shader to compute shadows by calling rtsOccluded(...) with
this light sample, which in turn uses the ray tracing core to cast a shadow
ray. If semi-transparent occluders are used, the surface shader can also use
rtsTransparentShadows() instead of rtsOccluded, which will iterate over all
the potential occluders along the shadow ray to compute the attenuated contri-
bution of the light source.

3.1.3 Casting Secondary Rays

Except for casting shadow rays via rtsOccluded() (or via rtsTransparent-
Shadows() for computing transparent shadows), further secondary rays can
also be shot via rtsTrace. This rtsTrace shoots an arbitrarily specified ray,
determines the hit point, calls the respective shader at that hit point, and
returns the color computed by that shader. In case the ray did not hit any
objects, rtsTrace automatically calls the environment shader for computing
the color of that ray.

While rtsTrace already allows for all kinds of rays to be generated and
shot, OpenRT offers several “convenience functions” for the most often used
kinds of secondary rays, like e.g. rtsReflectionRay(), rtsRefractionRay(),
rtsTransparencyRay(), etc.

3.1.4 Light Shaders

Similarly to the “Shade” function of the surface shaders, light shaders have a
virtual Illuminate method that can be overridden to write new kinds of light
shaders. As described above, OpenRT already comes equipped with the most
common light source shaders like point, spot, and directional lights. For global
illumination purposes, OpenRT also contains a few area light source shaders. As
the surface shader expects illuminate to return a single light sample, these area
light shaders take a list of pseudo-random numbers that they got passed from
the surface shader to create a light sample. If a surface sample needs multiple

14

samples from the same light source, it has to call rtsIlluminate several times
with different random numbers.

3.1.5 Camera Shader

Camera shaders work in a similar way as surface and light shaders: Each camera
shader has a single virtual function for initializing and returning a primary ray
through the pixel, which will then be cast into the scene via rtsTrace().

3.1.6 Environment Shader

Environment shaders are automatically called for all rays traced via rtsTrace
that did not hit an object. In fact, an environment shader is a shader like any
other (i.e. with a Shade() function), except that it does not make any sense to
query any hit point information within the shading code.

3.1.7 The Rendering Object Concept

Whereas all the surface, light, camera, and environment shaders are typical
shader types in any programmable shader concept, OpenRT additionally offers
the concept of a “rendering object”. A rendering object is responsible for actu-
ally computing pixel values, and as such enables the user to completely change
the way that the ray tracer works. Typically, a rendering object will call a
camera shader to generate a primary ray through each pixel, will call rtsTrace,
and will let the respective surface shaders do the rest.

For special applications however, the rendering object can skip this flexible
though costly shader concept, and can perform the rendering in a more “hard-
coded” way, e.g. by directly using the fast RTRT packet tracing code with a
hard-coded shading model. Similarly, many global illumination algorithms do
not easily fit the above surface shader concept12, but can be quite efficiently
implemented as a rendering object. As such, rendering objects greatly extend
the range of applications that can be realized with OpenRT. However, rendering
objects are an advanced concept of OpenRT, and should be used with extreme
care.

3.2 A Simple Shader Example

Obviously, the above explanation is but a very brief sketch of the OpenRT shader
concept. The complete description of the shader API is beyond the scope of this
thesis. More information on OpenRT and OpenRT shading can also be found
in the respective OpenRT manuals and tutorials (see e.g. [Wald]).

As for the previously described application part of the OpenRT API, how
the OpenRT Shader API is actually used in practice can best be described

12For example, the above shader concept expects a shader to compute the color of a ray,
whereas many global illumination algorithms require evaluation of a BRDF with given in-
coming and outgoing directions (such as bidirectional path tracing), or sampling of a BRDF
(e.g. for photon shooting or generation of light- and eye-paths).

15

with a simple example. As such, the following example implements some simple
(though typical) OpenRT shaders, one light shader and one surface shader. The
surface shader implements a simple diffuse shader, parameterized by a diffuse
color and an ambient term). The light shader implements a typical point light
source consisting of position and intensity, and with a hard-coded quadratic
intensity falloff.

3.2.1 Simple Diffuse Shader

class SimpleDiffuse : public RTShader {
RTVec3f diffuse;
RTVec3f ambient;

RTvoid Register() {
// register parameters
rtDeclareParameter("diffuse", PER_SHADER,

offsetof(diffuse),sizeof(diffuse));
rtDeclareParameter("ambient", PER_SHADER,

offsetof(ambient),sizeof(ambient));
}

RTvoid Shade(RTState *state)
{
RTVec3f color = ambient; // init with ambient color
RTVec3f P; // surface hit position
RTVec3f N; // normal
rtsGetHitPosition(state,P);
rtsFindShadingNormal(state,N);// interpolate normal, make

// sure it faces toward the viewer
RTState shadow = *state; // init shadow ray state
RTenum *light; RTint lights;
lights = rtsGlobalLights(&light);
for (int i=0;i<lights;i++)
{ // iterate over all light sources
rtsIlluminate(light[i],P,&shadow,NULL);
if (rtsOccluded(&shadow))

continue; // test for shadows

Vec3f L; // light direction
Vec3f I; // light intensity
rtsGetRayDirection(&shadow,L);
rtsGetRayColor(&shadow,I);
RTfloat cosine = N * L; // dot product
I *= diffuse; // component-wise mult.
color += (cosine * I);

}

16

rtsReturnColor(state,color);
}

};
rtsDeclareShader(SimpleDiffuse, SimpleDiffuse);

3.2.2 Simple PointLight Shader

class SimplePointLight : public RTLight {
RTVec3f position;
RTVec3f intensity;

RTvoid Register() {
rtDeclareParameter("position",

offsetof(position),sizeof(position));
rtDeclareParameter("intensity",

offsetof(intensity),sizeof(intensity));
}

RTvoid Illuminate(RTState *state) {
RTVec3f P; // surface hit point
rtsGetRayOrigin(state,P);

RTVec3f L = position - P; // direction towards light
RTfloat distance = Lenght(L);
Normalize(L);

RTVecf3 I = intensity * 1./(distance * distance);
// quadratic distance attenuation

rtsSetRayDirection(state,L);
rtsSetRayMaxDistance(state,length - Epsilon);
rtsReturnColor(state,I);

}
};
rtsDeclareShader(SimplePointLight, SimplePointLight);

4 Taking it all together

Having now described all the different parts of the API, it is important to briefly
summarize how these different parts actually play together. To do this, we will
briefly go – step by step – through the process of rendering a frame:

1. First, the application specifies the scene itself, i.e. it loads and parame-
terizes shaders, specifies objects and instances, issues geometry, sets the
frame buffer, etc. All the time, the OpenRT implementation makes sure

17

that all these calls get executed on all rendering clients, be it the local
CPU, remote cluster clients, or a hardware architecture.

2. Once the scene is specified, the application calls rtSwapBuffers to tell the
ray tracer that any scene updates are finished and that it should render a
frame.

3. Upon rtSwapBuffers the OpenRT library calls the user-programmable
rendering object to actually perform the rendering computations. In a
single-CPU or shared-memory version, the rendering object will simply
render a complete frame. In the distributed cluster version, the ray tracer
will automatically perform the load distribution, load balancing, and com-
munication between the clients and the server. As such, it will automat-
ically request each client’s respective rendering object to render one or
more tiles.

4. The rendering object iterates over all the pixels in its frame (respectively
tile), and calls the user-programmable camera shader to generate a pri-
mary ray through that tile.

5. Once a valid primary ray has been generated, the rendering object tells
OpenRT to trace this ray and compute its color. To do this, OpenRT uses
the RTRT kernel to trace the ray and find a hit point.

6. If no valid hit could be found, OpenRT automatically calls the (user-
programmable) environment shader to shade the ray. If a hit was found,
OpenRT determines the respective surface shader and calls its Shade
method.

7. The (user-programmable) surface shader uses the shader API to call back
to the library while performing its shading computations, e.g. by asking
OpenRT for the list of active lights, or for the shading normal of the hit
point. This also includes asking OpenRT for a light sample from a given
light shader. OpenRT will then look up that light shader, and call its
respectiveIlluminate function.

8. The light shader generates this light sample (probably with some addi-
tional calls into the shader API), and returns this – via OpenRT – to the
surface shader.

9. Having processed all light samples, the surface shader may tell OpenRT to
shoot some additional secondary rays, for which stages 5–9 are recursively
repeated13.

10. Once the entire shading tree has been processed, the rendering object
has the color of the hit point as determined by the surface shader. It
may now do some final operations on this ray (in the spirit of a “pixel

13Obviously, the secondary rays can be shot at any time, not only at the end of the shader
routine.

18

shader”), e.g. for performing tone mapping. Once this is done, it writes
the pixel to the frame buffer. Again, in the distributed version all these
pixels that have been computed on different machines get automatically
communicated back to the server (where they can be again manipulated
by a user-programmable routine).

11. Once all pixels have been computed, the OpenRT library returns the frame
buffer to the application, and returns from the rtSwapBuffers call.

12. The application can now display the frame buffer, and can start over by
starting to specify the next frame.

Though this is in fact exactly the same ray tracing pipeline that any decent
ray tracer uses as well, two things are important to note: first, the modularity
and programmability of this framework, and second, the hardware abstraction
model used in OpenRT.

4.1 Modularity and Programmability

First of all, taking a closer look at the above topics makes clear that OpenRT is
a highly flexible API in which almost all parts are user programmable and can
be arbitrarily replaced. Surface, light, environment and camera shaders, the
rendering mode, and to a certain degree even the parallelization can be changed
by the user.

The OpenRT library in fact provides only the basic infrastructure – such
as abstracting from the distributed architecture, automatic handling of all par-
allelization and communication, scene management etc – and nicely glues the
different user-programmable parts together. Last but not least, the OpenRT
library also drives the ray tracing kernel and makes it available to all the re-
spective subsystems.

Of course, for all these user-programmable parts (such as generating the
tiles in the rendering object, generating primary rays, or assembling the pixels
to the final image) there are optimized default routines. Most users will never
make contact with any of these advanced issues, and will concentrate on writing
surface and/or light source shaders.

4.2 Hardware Abstraction Model

The second important issue to mention is how this design carefully abstracts
from the underlying hardware. For example, the shader-application communi-
cation works entirely over the shader parameter concept, and never assumes any
direct communication between shaders and application. As such, the shaders
can either be located on the same machine as the application, or could run on
another, remote machine that does not even know about the application. It
would just as well possible that the shaders themselves are not software C++
classes at all, but might reside directly on a ray tracing hardware architecture
such as SaarCOR.

19

Similarly, the shader API (i.e. the API used by the shader programmer) is
strictly kept apart from the main OpenRT application API. As such, the same
application program could be used even if the shader API changes. For example,
the SaarCOR architecture [Woop05] obviously will not use the same C/C++
shader API that is currently used on the CPU14.

5 Conclusions and Future Work

In summary, OpenRT is a simple yet highly flexible API for realtime ray tracing.
It is simple to use and flexible enough to support all typical ray tracing effects
though a RenderMan like shading API and a highly modular user-programmable
plug-in concept.

While the application API is not actually semantically 100% compatible to
OpenGL, the syntax and semantics for typical programs are still very similar.
Thus, novice OpenRT users with (some) previous OpenGL experience so far
found OpenRT easy to learn and use. In fact, many concepts (e.g. shaders)
appeared easier and more natural to these users. Because of this, OpenRT so
far has shown to be well accepted by current users. However, highly experi-
enced OpenGL users (which tend to know – and use – all the subtle details
of OpenGL) sometimes found it hard to understand that certain concepts are
different (e.g. that a rtLookAt call does not have any side effects on the matrix
stack that could then be exploited for projective textures). Though some open
questions remain, OpenRT has already been used for several practical projects,
and so far has been very successful for those projects. In particular, it is already
being using in real-world industrial project, and so far has been very successful.

For really widespread use, however, still some more work has to be invested:
First, it would be desirable if more different implementations of the OpenRT
API would be available, e.g. on the SaarCOR architecture, on a GPU-based
implementation (e.g. [Purcell02]), or on an open source ray tracer.

Furthermore, it has to be evaluated whether – and how – the remaining
differences between OpenGL and OpenRT could be bridged. Eventually, it
would be a highly interesting option to somehow combine OpenGL and OpenRT,
e.g. by making OpenRT to be an OpenGL extension. Due to fundamentally
different semantics as discussed above, it yet unclear if this is possible at all, let
alone in which way.

An even more important issue to work on is an efficient shading API that
supports coherent packets of rays. As described in earlier on, the full perfor-
mance of the RTRT core can only be unleashed if SIMD packet traversal with
efficient SIMD shading can be used. In its current form, however, the OpenRT
shader API actually supports only the shading and tracing of single rays. For
those having the actual RTRT sources, it is still possible to use both packet

14Though it is still imaginable to use the same “shading language” for both the software
and the hardware implementation, e.g. by using different shading language compilers (with
the same syntax) for the different platforms.

20

traversal code and OpenRT API at the same (e.g. by performing the packet
traversal code inside a rendering object), but a clean external API does not
exist. As it is not yet even clear how such packet shading could be efficiently
performed at all, it seemed premature to already discuss its API issues.

Finally, probably the biggest challenge for the success of OpenRT is to create
new, powerful interactive applications. This also implies making it available to
a much wider range of users to actually build these applications. Though all our
experiences with OpenRT so far have been highly encouraging, only once many
different kinds of users will actually use if for solving their everyday practical
rendering problems will it be possible to objectively evaluate the real potential
– and the limitations – of this API.

As most applications in fact operate on a much higher level of abstraction –
usually working on scene graphs rather than directly on the API level – making
OpenRT available to a wider range of users also implies to investigate how scene
graphs can be efficiently mapped to the new API. Preliminary work has already
investigated how a VRML-based scene graph (the XRML engine [Bekaert01])
can be mapped to OpenRT [Wagner02, Dietrich04]. However, an even deeper
investigation of this problem has yet to be performed.

References

[Apodaca90] A. Apodaca and M. Mantle. RenderMan: Pursuing the Fu-
ture of Graphics. IEEE Computer Graphics & Applications,
10(4):44–49, July 1990.

[Apodaka00] Anthony Apodaka and Larry Gritz. Advanced RenderMan: Cre-
ating CGI for Motion Pictures. Morgan Kaufmann, 2000. ISBN:
1558606181.

[Bekaert01] Philippe Bekaert. Extensible Scene Graph Manager, August
2001. http://www.cs.kuleuven.ac.be/∼graphics/XRML/.

[Benthin03] Carsten Benthin, Ingo Wald, and Philipp Slusallek. A Scalable
Approach to Interactive Global Illumination. Computer Graph-
ics Forum, 22(3):621–630, 2003. (Proceedings of Eurographics).

[Cook87] Robert L. Cook, Loren Carpenter, and Edwin Catmull. The
REYES Image Rendering Architecture. Computer Graphics
(Proceedings of ACM SIGGRAPH 1987), pages 95–102, July
1987.

[Dietrich03] Andreas Dietrich, Ingo Wald, Carsten Benthin, and Philipp
Slusallek. The OpenRT Application Programming Interface –
Towards A Common API for Interactive Ray Tracing. In Pro-
ceedings of the 2003 OpenSG Symposium, pages 23–31, Darm-
stadt, Germany, 2003. Eurographics Association.

21

[Dietrich04] Andreas Dietrich, Ingo Wald, Markus Wagner, and Philipp
Slusallek. VRML Scene Graphs on an Interactive Ray Trac-
ing Engine. In Proceedings of IEEE VR 2004, pages 109–116,
March 2004.

[DirectX] Microsoft DirectX 8.0. http://www.microsoft.com/windows/-
directx/.

[Fernando03] Randima Fernando and Mark J. Kilgard. The Cg Tutorial –
The Definitive Guide to Programmable Real-Time Graphics.
Addison-Wesley, 2003.

[Gritz96] Larry Gritz and James K. Hahn. BMRT: A Global Illumina-
tion Implementation of the RenderMan Standard. Journal of
Graphics Tools, 1(3):29–47, 1996.

[Hanrahan90] Pat Hanrahan and Jim Lawson. A language for shading and
lighting calculations. Computer Graphics (Proceedings of ACM
SIGGRAPH), 24(4):289–298, August 1990. ISBN: 0-201-50933-
4.

[Humphreys02] Greg Humphreys, Mike Houston, Ren Ng, Sean Ahern, Randall
Frank, Peter Kirchner, and James T. Klosowski. Chromium: A
Stream Processing Framework for Interactive Graphics on Clus-
ters of Workstations. ACM Transactions on Graphics (Proceed-
ings of SIGGRAPH 2002), 21(3):693–702, July 2002.

[Kessenich02] John Kessenich, Dave Baldwin, and Randi Rost. The OpenGL
Shading Language, Version 1.051, February 2002. Avail-
able from http://www.3dlabs.com/support/developer/ogl2/-
downloads/ShaderSpecV1.051.pdf.

[Mark01] William Mark. Shading System Immediate-Mode API, v2.1.
In SIGGRAPH 2001 Course 24 Notes – Real-Time Shading,
August 2001.

[Mark03] William R. Mark, R. Steven Glanville, Kurt Akeley, and
Mark J. Kilgard. Cg: A System for Programming Graphics
Hardware in a C-like Language. ACM Transactions on Graph-
ics (Proceedings of ACM SIGGRAPH), 22(3):896–907, 2003.

[Neider93] Jackie Neider, Tom Davis, and Mason Woo. OpenGL Program-
ming Guide. Addison-Wesley, 1993. ISBN 020163-2748.

[OpenSG01] OpenSG-Forum. http://www.opensg.org, 2001.

[OSG] OpenSceneGraph. http://www.openscenegraph.org.

[Pixar89] Pixar. The RenderMan Interface. San Rafael, September 1989.

22

[Proudfoot01] Kekoa Proudfoot, William Mark, Svetoslav Tzvetkov, and Pat
Hanrahan. A Real-Time Procedural Shading System for Pro-
grammable Graphics Hardware. In Proceedings of ACM SIG-
GRAPH, pages 159–170, August 2001.

[Purcell02] Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Han-
rahan. Ray Tracing on Programmable Graphics Hardware.
ACM Transactions on Graphics, 21(3):703–712, 2002. (Pro-
ceedings of SIGGRAPH 2002).

[Rohlf94] John Rohlf and James Helman. IRIS Performer: A High Per-
formance Multiprocessing Toolkit for Real-Time 3D Graph-
ics. Computer Graphics, 28(Annual Conference Series):381–394,
July 1994.

[Slusallek95] Philipp Slusallek, Thomas Pflaum, and Hans-Peter Seidel. Us-
ing Procedural RenderMan Shaders for Global Illumination. In
Computer Graphics Forum (Proc. of Eurographics ’95, pages
311–324, 1995.

[Upstill90] Steve Upstill. The RenderMan Companion. Addison-Wesley,
1990.

[Wagner02] Markus Wagner. Development of a Ray-Tracing-Based VRML
Browser and Editor. Master’s thesis, Computer Graphics
Group, Saarland University, Saarbrücken, Germany, 2002.

[Wald] Ingo Wald and Tim Dahmen. OpenRT User Manual. Computer
Graphics Group, Saarland University. http://www.openrt.de.

[Wald02] Ingo Wald, Carsten Benthin, and Philipp Slusallek. OpenRT
- A Flexible and Scalable Rendering Engine for Interactive 3D
Graphics. Technical report, Saarland University, 2002. Avail-
able at http://graphics.cs.uni-sb.de/Publications.

[Wald03] Ingo Wald, Timothy J. Purcell, Jörg Schmittler, Carsten Ben-
thin, and Philipp Slusallek. Realtime Ray Tracing and its use
for Interactive Global Illumination. In Eurographics State of the
Art Reports, 2003.

[Wald04] Ingo Wald. Realtime Ray Tracing and Interactive Global
Illumination. PhD thesis, Computer Graphics Group,
Saarland University, 2004. Available at http://www.mpi-
sb.mpg.de/∼wald/PhD/.

[Wernecke94] Josie Wernecke. The Inventor Mentor. Addison-Wesley, 1994.
ISBN 0-20162-495-8.

23

[Woop05] Sven Woop, Joerg Schmittler, and Philipp Slusallek. RPU: A
Programmable Ray Processing Unit for Realtime Ray Tracing.
Proceedings of ACM SIGGRAPH, (to appear), 2005.

24

Realtime Ray Tracing for Current and Future Games

Jörg Schmittler, Daniel Pohl, Tim Dahmen, Christian Vogelgesang, and Philipp Slusallek
{schmittler,sidapohl,morfiel,chrvog,slusallek}@graphics.cs.uni-sb.de

Abstract: Recently, realtime ray tracing has been developed to the point where it is
becoming a possible alternative to the current rasterization approach for interactive 3D
graphics. With the availability of a first prototype graphics board purely based on ray
tracing, we have all the ingredients for a new generation of 3D graphics technology
that could have significant consequences for computer gaming. However, hardly any
research has been looking at how games could benefit from ray tracing.

In this paper we describe our experience with two games: The adaption ofa well
known ego-shooter to a ray tracing engine and the development of a newgame espe-
cially designed to exploit the features of ray tracing. We discuss how existing features
of games can be implemented in a ray tracing context and what new effects and impro-
vements are enabled by using ray tracing. Both projects show how ray tracing allows
for highly realistic images while it greatly simplifies content creation.

1 Introduction

Ray tracing is a well-known method to achieve high quality and physically-correct images,
but only recently its performance was improved to the point that it can now also be used
for interactive 3D graphics for highly complex and dynamic scenes including global illu-
mination [Wa04, WDS04, WBS03, BWS03, GWS04].

While the above systems still rely on distributed computing to achieve realtime perfor-
mance, a first prototype of a purely ray tracing based graphics chip [SWWS04] shows that
efficient hardware implementations are indeed possible andprovide many advantages over
rasterization

This encourages the research on possible effects of ray tracing technology for computer
games. In this paper we describe our experiences with two games which use ray tracing
for rendering and the physics engine.

2 Computer Games Based on Ray Tracing

Ray tracing and rasterization technology are basically twodifferent algorithms to solve the
same problem: the visibility calculation. While rasterization uses a set of potential visible
triangles which are rendered sequentially into the Z-buffer, ray tracing starts at the virtual
camera and for every pixel shoots rays into the scene. Since rays are terminated as soon

as they hit an object, the visibility calculation is highly efficient and fully output sensitive.
As shading is performed after visibility calculation, you only pay for what you see.

While ray tracing has access to the entire scene database and only reads what it needs
to, current rasterization technology operates on a stream of independent triangles sent by
the application. Therefore it cannot efficiently and accurately renderglobal effects such
as shadows, reflections, and indirect illumination on demand, i.e. after finding out that
these effects are actually visible. Every effect has to be split into several render passes by
the application and relies on tricks and approximations (e.g. shadow and reflection maps)
which are inaccurate and break down in many situations (e.g.multiple reflections).

In contrast ray tracing trivially supports global effects by shooting on demand additional
rays for shadows, reflections, and refractions. This outputsensitivity allows for efficiently
rendering even highly complex scenes. For every pixel this recursive approach automa-
tically combines all visible shading effect correctly without involving the application or
the need for separate rendering passes. Even memory management of the graphics card’s
memory is handled automatically by the ray tracer [SLS03].

Basic shading computations are the same as for rasterization. Thus, the same shaders (e.g.
for texture filtering and calculation of light intensities)and image filters (e.g. for anti-
aliasing) can be used. However, ray tracing allows to adaptively shoot new rays as required.
While both techniques can eventually achieve similar results, this requires complex and
costly operation by both the graphics hardware and the application. In contrast ray tracing
handles most effects automatically and internally. This greatly simplifies content creation
for games, which is increasingly becoming a limiting factorfor the gaming industry.

2.1 Traditional Ego Shooter

We started our research with adapting the existing, well-known ego-shooterQuake 3: Are-
na by Id-Software to use ray tracing for rendering. We concentrated our efforts on adapting
shading effects and general game management because most otherwise difficult rendering
effects (e.g. shadows and reflections) were automatically handled by the ray tracer.

The game engine was written from scratch and supports playerand bot movement in-
cluding shooting and jumping, collision detection, and many special effects like jump-
pads and teleporters. The main development was done by a single student in less than six
months.

The game engine interfaces with the ray tracer through the OpenRT-API [DWBS03],
which is very close to the OpenGL. OpenRT manages all ray tracing events fully trans-
parent to the application, making it unaware of the underlying ray tracing implementation,
which may run on a single computer, a cluster of PCs, or a dedicated ray tracing hardware.

Figure 1 shows several example images from the game with manyshading effects. The en-
gine supportsall of the standard effects of traditional computer games like dynamic place-
ment of (blood) splats, texture animation and blending, volumetric fog, and pre-computed
light maps (if desired).

Figure 1: Screen shots of the ray traced version ofQuake 3: Arena.

Screen shots of live game play. While most images are taken from the PC-cluster-based version, the
right-most image was rendered on the hardware prototype (1024x768, 32bit). All images were

rendered at fully interactive rates of 5-20 fps.

Some of the effects supported by ray tracing: a portal providing a view into distant places, light
effects in the power-up, and correct reflections in the ammo-box and on some spheres.

More ray tracing specific effects like dynamic lighting including shadows and physically-
correct reflections and refractions are trivially supported by simply specifying the corre-
sponding material attributes. This also holds for camera portals and surveillance cameras,
which are automatically rendered correctly by default evenif they recursively see each
other.

Since ray tracing is output sensitive there is no need for anylevel-of-detail mechanism
to reduce scene complexity. This allows for highly crowded scenes with many players,
monsters, and complex trees in a forest. Furthermore as ray tracing efficiently supports
multiple instantiations, even crowded scenes have negligible memory requirements and
scene complexity has only a minimal impact on performance.

In summary, we were able to support all the traditional effects of Quake 3 while most
effects were significantly simpler to implement. Looking atnewer engines such asUnreal
3, we still see no effects that could not be supported easily byray tracing.

2.2 Novel Game Design for Ray Tracing

Ray tracing offers new ways to design a game which led us to thedevelopment ofOasen
game. Oasen operates in a fully open space on a huge world consisting of several islands
and includes day time simulation with changing sky and lightsituations (see Figure 2).
The player takes the role of a salesman on a flying carpet visiting different places, buying
and selling goods while fighting off other players or bots.

While ray tracing is basically a method for visibility calculation, we were also able to use it
for the physics engine, acoustics, and collision detection. Similar to a radar system it uses
rays to determine the distance to nearby objects. By reusingthe existing fast ray tracer on
the original geometry we avoided having to build special algorithms and data structures
for those tasks.

No level-of-detail mechanisms, clipping-planes, or fog have been used to reduce scene
complexity, since ray tracing efficiently handles huge amounts of geometry and objects
automatically. This avoids any artifacts such as popping and results in smooth flights.
Huge numbers of light sources are efficiently handled by exploiting the restricted range of
illumination of each light and organizing them in a spatial index structure. For each pixel
we can then efficiently locate light sources that contributeto its illumination, allowing
physically-correct illumination at very low costs even in the presents of hundreds of visible
light sources.

Figure 2: Screen shots of the ray tracing based gameOasen.

Typical life screen shots showing correct shadows, nicely renderedwater including caustic-effects,
and volumetric clouds.

The two left-most images show the inherent scene management capabilityof ray-tracing:
vegetation and buildings add 40-times triangles over the basic landscape geometry while the

performance drops by less than 10% – without the use of any level-of-detail or clipping techniques.

3 Conclusion

In this paper we briefly summarized the experience we gained from implementing two
games using a ray tracing based game engine. We have been ableto easily port all of the
exiting rendering effects to ray tracing, where their implementation has been much simpler
and more efficient. Furthermore ray tracing adds many novel aspects that help designing
more realistic and compelling game contents.

Any shading effect can be approximated with rasterization,but every combination of sha-

ders requires special support and complex programming for both the application and sha-
ders. In contrast, ray tracing automatically handles all shader interaction allowing for plug-
and-play use of arbitrary shading effects. As a result, content creation is greatly simplified
and game designers can again concentrate on the content and game experience instead of
working around the many limitations of current technology.Furthermore ray tracing offers
new ways to design the physics engine including collision detection and acoustics.

The main limitation of ray tracing has been its still limitedsupport for dynamic sce-
nes [WBS03], but ongoing research will soon remove this constraint. Even though LOD
mechanisms were not needed for supporting complex scenes, new approaches are required
to efficiently handle resulting geometric aliasing.

The highly realistic and physically-correct images together with a greatly simplified rende-
ring engine make ray tracing an interesting technology for future computer games. Today,
the system requirements for ray tracing based games seem to be very high as a cluster of
PCs forming a virtual CPU with 30 GHz is required to render theimages present here at in-
teractive rates (5-20 fps for 640x480 pixels). But future hardware will allow to have even
higher performance on a single PC board similar to today’s graphics cards [SWWS04].
This encourages further research on ray tracing and computer games. More details and
videos are available athttp://graphics.cs.uni-sb.de/RTGames/

Literatur

[BWS03] Benthin, C., Wald, I., und Slusallek, P.: A Scalable Approachto Interactive Global
Illumination. Computer Graphics Forum. 22(3):621–630. 2003. (Proceedings of
Eurographics).

[DWBS03] Dietrich, A., Wald, I., Benthin, C., und Slusallek, P.: The OpenRT Application Pro-
gramming Interface – Towards A Common API for Interactive Ray Tracing. In: Pro-
ceedings of the 2003 OpenSG Symposium. S. 23–31. Darmstadt, Germany. 2003.
Eurographics Association.

[GWS04] G̈unther, J., Wald, I., und Slusallek, P.: Realtime caustics using distributedphoton
mapping. In:To appear in Proceedings of Eurographics Symposium on Rendering.
2004.

[SLS03] Schmittler, J., Leidinger, A., und Slusallek, P.: A Virtual Memory Architecture for Real-
Time Ray Tracing Hardware.Computer and Graphics, Volume 27, Graphics Hardware.
S. 693–699. 2003.

[SWWS04] Schmittler, J., Woop, S., Wagner, D., und Slusallek, P.: Realtime Ray Tracing of
Dynamic Scenes on an FPGA Chip. In:To appear in Proceedings of the ACM SIG-
GRAPH/Eurographics Conference on Graphics Hardware. 2004.

[Wa04] Wald, I.: Realtime Ray Tracing and Interactive Global Illumination. PhD thesis.
Computer Graphics Group, Saarland University. 2004. Available at http://www.mpi-
sb.mpg.de/∼wald/PhD/.

[WBS03] Wald, I., Benthin, C., und Slusallek, P.: Distributed Interactive Ray Tracing of Dy-
namic Scenes. In:Proceedings of the IEEE Symposium on Parallel and Large-Data
Visualization and Graphics (PVG). 2003.

[WDS04] Wald, I., Dietrich, A., und Slusallek, P.: An interactive out-of-core rendering framework
forvisualizing massively complex models. In:To appear in Proceedings of Eurogra-
phics Symposium on Rendering. 2004.

Computer Science Department

Technical Report

NWU-CS-05-07

April 26, 2005

Adaptive Frameless Rendering

Abhinav Dayal
1
, Cliff Woolley

2
, Benjamin Watson

1
 and David Luebke

2

1Northwestern University, 2University of Virginia

Abstract

We propose an adaptive form of frameless rendering with the potential to dramatically in-
crease rendering speed over conventional interactive rendering approaches. Without the
rigid sampling patterns of framed renderers, sampling and reconstruction can adapt with
very fine granularity to spatio-temporal color change. A sampler uses closed-loop feed-
back to guide sampling toward edges or motion in the image. Temporally deep buffers
store all the samples created over a short time interval for use in reconstruction and as
sampler feedback. GPU-based reconstruction responds both to sampling density and
space-time color gradients. Where the displayed scene is static, spatial color change
dominates and older samples are given significant weight in reconstruction, resulting in
sharper and eventually antialiased images. Where the scene is dynamic, more recent sam-
ples are emphasized, resulting in less sharp but more up-to-date images. We also use
sample reprojection to improve reconstruction and guide sampling toward occlusion
edges, undersampled regions, and specular highlights. In simulation our frameless ren-
derer requires an order of magnitude fewer samples than traditional rendering of similar
visual quality (as measured by RMS error), while introducing overhead amounting to
15% of computation time.

Keywords: I.3.3 [Computer Graphics]: Picture-Image Generation—Display algorithms;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics And Realism—Raytracing; Vir-
tual reality.

Technical Report NWU-CS-05-07
Northwestern University, Evanston, IL 60201

Adaptive Frameless Rendering

Abhinav Dayal1, Cliff Woolley2, Benjamin Watson1 and David Luebke2

1Northwestern University, 2University of Virginia

Abstract

We propose an adaptive form of frameless rendering with the potential to dramatically increase rendering speed over

conventional interactive rendering approaches. Without the rigid sampling patterns of framed renderers, sampling

and reconstruction can adapt with very fine granularity to spatio-temporal color change. A sampler uses closed-loop

feedback to guide sampling toward edges or motion in the image. Temporally deep buffers store all the samples cre-

ated over a short time interval for use in reconstruction and as sampler feedback. GPU-based reconstruction re-

sponds both to sampling density and space-time color gradients. Where the displayed scene is static, spatial color

change dominates and older samples are given significant weight in reconstruction, resulting in sharper and eventu-

ally antialiased images. Where the scene is dynamic, more recent samples are emphasized, resulting in less sharp but

more up-to-date images. We also use sample reprojection to improve reconstruction and guide sampling toward oc-

clusion edges, undersampled regions, and specular highlights. In simulation our frameless renderer requires an or-

der of magnitude fewer samples than traditional rendering of similar visual quality (as measured by RMS error),

while introducing overhead amounting to 15% of computation time.

Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Picture-Image Generation—Display algorithms; I.3.7
[Computer Graphics]: Three-Dimensional Graphics And Realism—Raytracing; Virtual reality

1. Improving Interactive Rendering

In recent years a number of traditionally offline rendering
algorithms have become interactive or nearly so. The intro-
duction of programmable high-precision graphics processors
(GPUs) has drastically expanded the range of algorithms that
can be employed in real-time graphics; meanwhile, the steady
progress of Moore’s Law has made techniques such as ray
tracing, long considered a slow algorithm suited only for
offline realistic rendering, feasible in real-time rendering
settings [WDB*03]. These trends are related; indeed, some of
the most promising interactive global illumination research
performs algorithms such as ray tracing and photon mapping
directly on the GPU [PBMH02]. Future hardware should
provide even better support for these algorithms, bringing us
closer to the day when ray-based algorithms are an accepted
and powerful component of every interactive rendering sys-
tem.

What makes interactive ray tracing attractive? Researchers
in the area have commented on ray tracing’s ability to model
physically accurate global illumination phenomena, its easy
applicability to different shaders and primitives, and its out-
put-sensitive running time, which is only weakly dependent

on scene complexity [WPS*03]. We focus on another unique
capability: selective sampling of the image plane. By design,
depth-buffered rasterization must generate an entire image at
a given time, but ray-tracing can focus rendering with very
fine granularity. This ability enables a new approach to ren-
dering that is both more interactive and more accurate.

The topic of sampling in ray tracing may seem nearly ex-

Figure 1: Adaptive frameless rendering improves upon

frameless rendering [BFMS94] (left) with adaptive sam-

pling and reconstruction (right). Resulting imagery has

similar visual quality to a framed renderer but is produced

using an order of magnitude fewer samples per second.

2 A. Dayal, C. Woolley, B. Watson & D. Luebke / Adaptive Frameless Rendering

Technical Report NWU-CS-05-07, Northwstern University

hausted, but almost all previous work has focused on spatial

sampling, or where to sample in the image plane. In an inter-
active setting, the question of temporal sampling, or when to
sample with respect to user input, becomes equally important.
Temporal sampling in traditional graphics is bound to the
frame: an image is begun in the back buffer incorporating the
latest user input, but by the time the frame is swapped to the
front buffer for display, the image reflects stale input. To
mitigate this, interactive rendering systems increase the frame
rate by reducing the complexity of the scene, trading off fi-
delity for performance.

In this paper we investigate novel sampling schemes for
managing the fidelity-performance tradeoff. Our approach
has two important implications. First, we advocate adaptive

temporal sampling, analogous to the adaptive spatial sam-
pling long employed in progressive ray tracing [BFGS86;
M87; PS89]. Just as spatially adaptive renderers display de-
tail where it is most important, temporally adaptive sampling
displays detail when it is most important. Second, we advo-
cate frameless rendering [BFMS94], in which samples are
located freely in space-time rather than placed at regular tem-
poral intervals forming frames, and with images recon-
structed from a sampled space-time volume, rather than a
coherent temporal slice. Frameless rendering decouples spa-
tial and temporal sampling, enabling adaptive spatial and
temporal sampling.

Our prototype adaptive frameless renderer consists of four
primary subsystems. An adaptive sampler directs rendering
to image regions undergoing significant change (in space
and/or time). The sampler produces a stream of samples scat-
tered across space-time; recent samples are collected and
stored in two temporally deep buffers. One of these buffers
provides feedback to the sampler, while the other serves as
input to an adaptive reconstructor, which repeatedly recon-
structs the samples in its deep buffer into an image for dis-
play, adapting the reconstruction filters to local sampling
density and color gradients. Where the displayed scene is
static, spatial color change dominates and older samples are
given significant weight in reconstruction, resulting in
sharper images. Where the scene is dynamic, only more re-
cent samples are emphasized, resulting in a less sharp but
correctly up-to-date image.

We describe an interactive system built on these principles,
and show in simulation that this system achieves superior
rendering accuracy and responsiveness. We compare our
system’s imagery to the imagery that would be displayed by a
hypothetical zero-delay, antialiased renderer using RMS er-
ror. Our system outperforms not only frameless sampling
(Figure 1), but also equals the performance of a framed ren-
derer sampling 10 times more quickly.

2. Related work

Bishop et al.’s frameless rendering [BFMS94] replaces the
coherent, simultaneous, double-buffered update of all pixels
with samples distributed stochastically in space, each repre-
senting the most current input when the sample was taken.
Pixels in a frameless image therefore represent many mo-
ments in time. Resulting images are more up-to-date than
double-buffered frames, but temporal incoherence causes
visual artifacts in dynamic scenes.

Inspired by frameless rendering, other researchers exam-
ined the loosening of framed sampling constraints. The just in
time pixels scheme [OCMB95] takes a new temporal sample
for each scanline. The address recalculation pipeline [RP94]
sorts objects into several layered frame buffers refreshed at
different rates. The Talisman system [TK96] renders portions
of the 3D scene at different rates. Ward and Simmons
[WS99] and Bala et al. [BDT99] store and reuse previously
rendered rays. In work that is particularly relevant here, sev-
eral researchers have studied sample reprojection, which
reuses samples from previous frames by repositioning them
to reflect the current viewpoint. Walter et al.’s Render Cache
[WDP99; WDG02] reconstructs these temporally incoherent
samples using depth comparisons and filtering that span
small pixel neighborhoods. New samples are guided toward
regions that have not been recently sampled, are sparsely
sampled, or contain temporal color discontinuities. Simmons
and Séquin [SS00] use a hardware interpolated 2.5D mesh to
cache and reconstruct the samples, and guide new samples
toward spatial color and depth discontinuities. Tolé et al.’s
Shading Cache [TPWG02] stores samples in the 3D scene
itself, performing reconstruction by rendering that scene in
hardware. Sampling is biased toward spatial color disconti-
nuities and toward specular and moving objects. Havran et al.
[HDM03] calculate the temporal intervals over which a given
sample will remain visible in an offline animation and repro-
ject that sample during the interval. Shading is recalculated
for reprojected samples in every frame. Although the images
they produce combine samples created at many different
moments, all of these systems sample time at regular inter-
vals.

Woolley et al. [WLWD03] describe a fully framed but
temporally adaptive sampling scheme called interruptible
rendering. The approach adaptively controls frame rate to
minimize simultaneously the error created by reduced render-
ing fidelity and by reduced rendering performance. A pro-
gressive renderer refines a frame in the back buffer until the
error created by unrepresented input exceeds the error caused
by coarse rendering. At that point, the front and back buffers
are swapped and rendering begins again into the back buffer
using the most recent input. Coarse, high frame-rate display
results when input is changing rapidly, and finely detailed,
low frame rate display when input is static.

Many advances in high-speed ray tracing have been made
recently. These include clever software techniques to im-

3 A. Dayal, C. Woolley, B. Watson & D. Luebke / Adaptive Frameless Rendering

Technical Report NWU-CS-05-07, Northwstern University

prove memory locality [PKGH97; TA98; WBWS01], as well
as advances in hardware that enable interactive ray tracers on
supercomputers [PMS*99], on PC clusters [WSB01;
WBDS03], on the SIMD instruction sets of modern CPUs
[WBWS01], and on graphics hardware [PBMH02; CHH02].
Wald et al. provide a good summary of the state of the art
[WPS*03]. These advances will soon allow a very fine-
grained and selective space-time sampling, in real time.

This real-time, selective sampling enables a new adaptive
form of frameless rendering that incorporates techniques
from adaptive renderers, reprojecting renderers, non-uniform
reconstruction [M87], and GPU programming. The resulting
system outperforms framed and traditional frameless render-
ers and offers the following advantages over reprojecting
renderers:

Improved sampling response. Rather being clustered at
each frame time, samples reflect the most up-to-date input
available at the moment they are created. Further, closed-
loop control guides samples toward not only spatial but
temporal color discontinuities at various scales. These ele-
ments combine to reduce rendering latency.

Improved reconstruction. Rather than being non-adaptive
or hardware-interpolated, reconstruction is adaptive over
both space and time, responding to local space-time color
gradients. This drastically improves image quality, elimi-
nating the temporal incoherence in traditional frameless
imagery without requiring framed sampling and its in-
creased latency, and permitting antialiasing in static image
regions. Moreover this reconstruction is already interactive
and implemented on existing GPU hardware.

3. Adaptive frameless sampling

Previous importance sampling techniques [BFGS86; G95;
M87; PS89] are spatially adaptive, focusing on regions where
color changes across space. Our renderer is both spatially and
temporally adaptive, focusing also on regions where color
changes over time (Figure 2). Adaptive bias is added to sam-
pling with the use of a spatial hierarchy of image-space tiles.
However, while previous methods operated in the static con-

text of a single frame, we operate in a dynamic frameless
context. This has several implications. First, rather than oper-
ating on a frame buffer, we send samples to two temporally
deep buffers that collect samples scattered across space-time
(one buffer for the sampler, one for the reconstructor). Our
tiles therefore partition a space-time volume using planes
parallel to the temporal axis. We call each resulting sub-
volume a block. Second, as in framed schemes, color varia-
tion within each tile guides rendering bias, but variation
represents change over not just space but also time. More-
over, variation does not monotonically decrease as the ren-
derer increases the number of tiles, but rather constantly
changes in response to user interaction and animation. There-
fore the hierarchy is also constantly changing, with tiles con-
tinuously merged and split in response to dynamic changes in
the contents of the deep buffer.

The sampler’s deep buffer provides it with important feed-
back. This deep buffer is a 3D array sized to match the num-
ber of image pixels in two dimensions, and a shallow buffer
depth b in the third, temporal dimension (we use b = 4).
Buffer entries at each pixel location form a queue, with new
samples inserted into the front causing the removal of the
sample in the back if the queue is full. Each sample is also
sent to the reconstructor’s buffer as soon as it arrives in the
sampler’s buffer, and is described by its color, position in
world space, age, and a view-independent velocity vector. In
addition to filling the reconstructor’s deep buffer, the sampler
sends the reconstructor regular updates describing the current
view and tiling. This information is sent to the reconstructor
60 times per second, and includes each tile’s image coordi-
nates as well as the average temporal and spatial color gradi-
ents in the tile’s block.

We implement our sampler’s tiling hierarchy using a K-D
tree. Given a target number of tiles, the tree is managed to

Figure 2: A reconstructed image and an overlay showing

the tiling used by the sampler at that moment in time. Note

the finer tilings over object edges and occlusions.

fill deep buffers non-adaptively
loop

choose a tile to render and a pixel within it
find last location sampled in pixel
complete a crosshair of samples at last location
update deep buffers and tile statistics
repeat 5 times

choose a tile crosshair and reproject it
reevaluate tile gradients in crosshair
check visibility of crosshair center sample
if occluded then create new crosshair at same location
update deep buffers and tile statistics

end repeat

choose a different pixel in tile to sample
create sample, update last location sampled in pixel
update deep buffers and tile statistics
if one display time elapsed

then send reconstructor view and tile information
if another chunk of crosshairs has been completed

then adjust tiling
end loop

Figure 3: Pseudocode for the main loop in the sampler.

4 A. Dayal, C. Woolley, B. Watson & D. Luebke / Adaptive Frameless Rendering

Technical Report NWU-CS-05-07, Northwstern University

ensure that the amount of color variation in each tile’s block
is roughly equal: the tile with the most color variation is split
and the two tiles with the least summed variation are merged,
until all tiles have roughly equal variation. We calculate
variation across all of a tile’s samples using the equation vtile
= 1/n

Σ
i (Li – Lm)2, where Li is a sample’s luminance and Lm

the mean luminance in the tile. We ensure prompt response to
changes in scene content by weighting samples in the vari-
ance calculation using a function that declines exponentially
as sample age increases. As a result, small tiles are located
over dynamic or finely detailed buffer regions, while large
tiles emerge over static or coarsely detailed regions (Figure
2). The tiling is updated after a chunk of c new samples has
been generated (we set c = 150).

Sampling now becomes a biased probabilistic process (Fig-
ure 3). Since the current time is not fixed as it would be in a
framed renderer, we cannot just iteratively sample the tile
with the most variation—in doing so, we would overlook
newly emerging motion and detail. At the same time, we
cannot leave rendering unbiased and unimproved. Our solu-
tion is to select each tile with equal probability and select the
sampled location within the tile using a uniform distribution.
Because tiles vary in size, sampling is biased towards those
regions of the image which exhibit high spatial and/or tempo-
ral variance. Because all tiles are sampled, we remain sensi-
tive to newly emerging motion and detail.

This sampler thus constitutes a closed-loop control system
[DTB97], capable of adapting to user input with great flexi-
bility (Figure 4). In control theory, the plant is the process
being directed by the compensator, which must adapt to ex-
ternal disturbance. Output from the plant becomes input for
the compensator, closing the feedback loop. In a classic adap-
tive framed sampler, the compensator chooses the rendered
location, the ray tracer is the plant that must be controlled,
and disturbance is provided by the scene as viewed at the
time being rendered. Our frameless sampler faces a more
difficult challenge: view and scene state may change after
each sample.

To meet this challenge, we apply two control engineering
techniques. We first use a PD controller, in which control
responds not only in proportion to error itself (P), but also to
its derivative (D). In our sampler, error is color variation, and
by biasing sampling toward variation, we are already re-
sponding in proportion to it. By responding to error’s deriva-
tive, we bias sampling toward regions in which variation is
changing such as the edge of the moving table in Figure 2,
compensating for delay in our control system. We accomplish
this by tracking variation change d and adding it to normal-
ized variation p to form a new summed control error e in the
tile:

e = kp + (1-k)d,
where

∑
= ||tiles

j j

tile

v

svp

is the temporally weighted color variance in the tile block vtile
normalized by the sum of these variances over all tiles scaled
by the tile size s, d is the absolute difference between p’s
current value and its value u updates of the tile ago (we use u
= 4) divided by the time between those updates, and k in the
range [0,1] is the weight applied to the proportional term. The
left image in Figure 5 visualizes d for each tile by mapping
high d values to brighter colors.

Our prototype adaptive sampler will be less effective when
the rendered scene is more dynamic, changing the desired
image (or target signal in control theory) more rapidly. In
such cases, fixed delays in response will make control in-
creasingly ineffective. To address this problem we apply
another control engineering technique: adjusting gain. We
implement this by restricting or increasing the ability of the
sampler to adapt to deep buffer content. Specifically, we
adjust the number of tiles onscreen so that color change over
space and time are roughly equal in all tiles by ensuring that
dC/ds S = i dC/dt T, where dC/ds and dC/dt are spatial and
temporal color gradients averaged over the entire image (Fig-
ure 5), S is the average width of the tiles, T the average age of
the samples in each tile, and i is a constant adjusting the rela-
tive importance of temporal and spatial change in control. By
solving for S we can derive the appropriate number of tiles.

Figure 4: Adaptive frameless sampling as closed loop con-

trol. Samples from the ray tracer (plant) are sent to an

error tracker, which adjusts the tiling or error map. The

adaptive sampler (compensator) then selects one location

to render in a tile. Constantly changing user input (distur-

bance) makes it very difficult to track and limit error.

ray tracer

error tracker

model,

user input

image-loc

(x,y)
sample

error

map adaptive

sampler

_

+
ray tracer

error tracker

model,

user input

image-loc

(x,y)
sample

error

map adaptive

sampler

_

+

Figure 5: Error derivatives (left) and the tile gradients

(right) Gx, Gy, and Gt (shown here as red, green, and blue,

respectively) in a scene corresponding to Figure 2.

5 A. Dayal, C. Woolley, B. Watson & D. Luebke / Adaptive Frameless Rendering

Technical Report NWU-CS-05-07, Northwstern University

We find current spatial gradients by sampling five tightly
clustered image locations (xy, x±1y and xy±1) in a crosshair
pattern each time we add samples to the deep buffers, and
averaging the horizontal and vertical absolute differences. To
find a temporal gradient, we find the absolute difference be-
tween the center xy sample and a sample made at the same
location the last time we visited the same pixel region, and
divide by the time elapsed since that previous sample was
made. We then produce and store a sample at a new location
in the pixel region for pairing with the next crosshair made in
the pixel region. This set of six samples forms a single entry
in the xy queue of the sampler’s deep buffer (they are not
grouped when sent to the reconstructor’s deep buffer). To
determine average tile gradients, we reduce the weight of
each sample gradient as a function of time using the same
exponential scheme used to track color variation.

To permit antialiasing, we center sample crosshairs at ran-
dom spatial locations. However when the scene is particularly
dynamic and spatial sampling density is decreased, sharp
edges may appear to “shimmer” in reconstructed imagery.
Although adaptive reconstruction reduces these artifacts, we
eliminate them by randomizing crosshair location only when
the scene is locally static and temporal gradients approach
zero.

4. Interactive space-time reconstruction

Frameless sampling strategies demand a rethinking of the
traditional computer graphics concept of an “image”, since at
any given moment the samples in an image plane represent
many different moments in time. The original frameless work
[BFMS94] simply displayed the most recent sample at every
pixel. This traditional reconstruction results in a noisy image
that appears to sparkle when the scene is dynamic (see Figure
1). In contrast, we convolve the frameless samples in the
reconstructor’s temporally deep buffer with space-time filters
to continuously reconstruct images for display. This is similar
to the classic computer graphics problem of reconstruction of
an image from non-uniform samples [M87], but with a tem-
poral element: since older samples may represent “stale”
data, they are treated with less confidence and contribute less
to nearby pixels than more recent samples. The resulting
images greatly improve over traditional reconstruction (see
again Figure 1).

4.1. Choosing a filter

The key question is what shape and size filter to use. A tem-
porally narrow, spatially broad filter (i.e. a filter which falls
off rapidly in time but gradually in space) will give very little
weight to relatively old samples, emphasizing the newest
samples and leading to a blurry but very current image. Such
a filter provides low-latency response to changes and should
be used when the underlying image is changing rapidly. A
temporally broad, spatially narrow filter will give nearly as

much weight to relatively old samples as to recent samples;
such a filter accumulates the results of many samples and
leads to a finely detailed, antialiased image when the underly-
ing scene is changing slowly. However, often different re-
gions of an image change at different rates, as for example in
a stationary view in which an object is moving across a static
background. A scene such as this demands spatially adaptive
reconstruction, in which the filter extent varies across the
image. What should guide this process?

We use local sampling density (Figure 7) and space-time
gradient information (Figure 5) to guide filter size. The re-
constructor maintains an estimate of local sampling density
across the image, based on the overall sampling rate and on
the tiling used to guide sampling. We size our filter sup-
port—which can be interpreted as a space-time volume—as if
we were reconstructing a regular sampling with this local
sampling density, and while preserving the total volume of
the filter, perturb the spatial and temporal filter extents ac-
cording to local gradient information. A large spatial gradient
implies an edge, which should be resolved with a narrow
filter to avoid blurring across that edge. Similarly, a large
temporal gradient implies a “temporal edge” such as an oc-
clusion event, which should be resolved with a narrow filter
to avoid including stale samples from before the event. This
is equivalent to an “implicit” robust estimator; rather than
searching for edges explicitly, we rely on the gradient to al-
low us to size the filter such that the expected contribution of
samples past those edges is small.

Thus, given a local sampling rate Rl, expressed in samples
per pixel per second, we define VS as the expected space-time
volume occupied by a single sample:

1
S

l

V
R

= .

The units of VS are pixel-seconds per sample (note that the
product of pixel areas and seconds is a volume). We then
construct a filter at this location with space-time support pro-
portional to this volume. For simplicity we restrict the filter
shape to be axis-aligned to the spatial x and y and the tempo-
ral t dimensions. The filter extents ex, ey, and et are chosen to
span equal expected color change in each dimension, deter-
mined by our estimates of the gradients Gx, Gy, and Gt and
the total volume constraint Vs:

x x y y t te G e G e G= =

S x y zV e e e= .

Thus the filter extents are given by

3 332 2 2
, ,S y t S x yS x t

x y t

x y t

V G G V G GV G G
e e e

G G G
= = = .

What function to use for the filter kernel remains an open
question. According to signal theory, a regularly sampled,
band limited function should be reconstructed with a sinc
function, but our deep buffer is far from regularly sampled

6 A. Dayal, C. Woolley, B. Watson & D. Luebke / Adaptive Frameless Rendering

Technical Report NWU-CS-05-07, Northwstern University

and the underlying signal (an image of a three-dimensional
scene) contains high-frequency discontinuities such as occlu-
sion boundaries. We have experimented with a range of fil-
ters. Box and tent filters have poor bandpass properties but
are extremely cheap to evaluate. A gaussian filter looks better
but also requires more computation. The Mitchell-Netravali
filter [M87] is considered among the best filters for nonuni-
form sampling, but is still more costly and requires more
precision than is provided by our 16-bit GPU implementa-
tion. We have also experimented with a simple inverse expo-
nential filter, which has the nice temporal property that the
relative contribution of two samples does not change as both
grow older; however, the bandpass properties of this filter are
less than ideal. We are currently using a gaussian filter.

4.2. Scatter versus gather

We can consider reconstruction a gather process which loops
over the pixels, looks for samples in the neighborhood of
each pixel, and evaluates the contribution of those samples to
that pixel. Alternatively, we can cast reconstruction as a scat-

ter process which loops over the samples, projects each onto
the image plane, and evaluates its contribution to all pixels
within some footprint. We have experimented with both ap-
proaches.

We implemented the reconstructor initially as a gather
process directly on the sampler’s deep buffer. At display time
the reconstructor looped over the pixels, then adjusted the
filter size and extents at each pixel using gradient and local
sample density as described above. The reconstructor gath-
ered samples outwards from each pixel in space and time
until the maximum possible incremental contribution of addi-
tional samples would be less than some threshold ε . The final
color at that pixel was computed as the normalized weighted
average of sample colors. This process proved expensive in
practice—our unoptimized simulator required reconstruction
times of several hundred ms for small (256 × 256) image

sizes. It was also unclear how to efficiently implement hard-
ware sample reprojection

We have therefore moved to a scatter-based implementa-
tion that stores the N most recent samples produced by the
sampler across the entire image; the value of N is typically at
least 4× the desired image resolution. This store is a distinct
deep buffer for the reconstructor that organizes the samples
as a single temporally ordered queue rather than a spatial
array of crosshairs. At reconstruction time, the system splats
each of these samples onto the image plane and evaluates the
sample’s affect on every pixel within the splat extent by
computing the distance from the sample to the pixel center
and weighting the sample’s color contribution according to
the local filter function. These accumulated contributions are
then divided by the accumulated weight at each pixel to pro-
duce the final image (Figure 6).

We implement this scatter approach on the GPU, achieving
real-time or near real-time performance and improving on the
speed of our CPU-based gather implementation by almost
two orders of magnitude. The GPU treats the samples in the
deep buffer as vertices in a vertex array, and uses an OpenGL
vertex program to project them onto the screen as splats (i.e.,
large GL_POINTS primitives). A fragment program runs at
each pixel covered by a sample splat, finding the distance to
the sample and computing the local filter shape by accessing
tile information—local filter extent, precomputed from sam-
ple density and Gx,Gy,Gt gradients—stored in a texture. This
texture is periodically updated by rasterizing the latest tiling
(provided by the sampler) as a set of rectangles into an off-
screen buffer. To reduce overdraw while still providing broad
filter support in sparsely sampled regions, the vertex program
rendering the samples adaptively adjusts point size. Section
5.2 describes this process in more detail.

The reconstructor uses several features of recent graphics
hardware, including floating-point textures with blend sup-
port, multiple render targets, vertex texture fetch, dynamic
branching in vertex programs, and separate blend functions

 (a) (b) (c) (d)

Figure 6: Adaptive reconstruction illustrated in one moment of a scene with a moving view and car, sampled using our adap-

tive frameless techniques. In (a), traditional frameless reconstruction leaves many artifacts of the view motion in the image.

In (b), adaptive reconstruction rejects many of the outdated samples, eliminating artifacts and clarifying edges. (c) shows the

improvements possible by reprojecting samples as in [WDP99], even without adaptive reconstruction. When reprojection is

combined with adaptive reconstruction as in (d), the car’s motion and view-dependent reflections in the floor are clarified.

7 A. Dayal, C. Woolley, B. Watson & D. Luebke / Adaptive Frameless Rendering

Technical Report NWU-CS-05-07, Northwstern University

for color and alpha. The results presented in this paper were
obtained on a NVIDIA GeForce 6800 Ultra. In general, re-
construction occurs at 20 Hz rates when keeping a visually
sufficient number of samples N (N=400K). This is remark-
able considering that our use of the hardware differs greatly
from the rendering task the hardware was designed to sup-
port.

5. Reprojection

Our adaptive frameless sampling and reconstruction tech-
niques operate entirely in 2D image space and do not rely on
information about sample depth or the 3D structure of the
scene. However, because camera location and sample depth
are easily available from our ray-tracing renderer, we also
incorporate sample reprojection [WDP99; WDG02; BDT99;
WS99] into our algorithms. During sampling, reprojection
can help the sampler find and focus on image regions under-
going disocclusion, occlusion, view-dependent lighting
changes, or view-independent motion. During reconstruction,
sample reprojection extends the effective “lifetime” of a
sample by allowing older samples to contribute usefully to
imagery even after significant camera or object motion. This
section describes our strategies for using reprojection with
our sampler and reconstructor.

5.1. Reprojection in the sampler

It is not necessary to reproject every sample at fixed intervals,
and indeed this would not be desirable since it would intro-
duce periodicity into our frameless sampler. Instead, we re-
project a small number of recent samples as we generate each
new sample. When updates of tiling statistics (e.g. variation,
gradients) are included, reprojecting a sample takes roughly
1/35th the mean time required to generate a new sample. We
therefore reproject a small number (currently 5) of a tile’s
crosshairs each time the sampler visits a tile. In this way the
same useful rendering bias that guides generation of new
samples determines which samples are reprojected, focusing
reprojections on important image areas.

Within each tile, we choose the corresponding pixels to re-
project randomly and relocate the crosshairs from the front of
each pixel’s queue in the deep buffer. We apply both motion
and viewing transformations to the samples in the crosshair.
Despite being updated in some sense, reprojected samples
continue to age normally and do not receive increased weight
in variance and gradient calculations. On a local per-tile ba-
sis, every sample is treated similarly, and its age remains a
good indicator of its utility. We determine a crosshair’s new
location in the buffer solely by its relocated center sample,
and insert the crosshair sample at the back of its new queue,
updating source and destination tile statistics if necessary.
When updating tile gradients, spatial gradients for the cross-
hair are recalculated using the new spatial locations of the
crosshair samples (after reprojection, they are no longer sepa-

rated by one pixel length). We recalculate the crosshair tem-
poral gradients by finding the absolute difference between the
reprojected center sample and the newest sample in that pixel
region, and dividing this difference by the age of this newest
sample. Reprojection of a crosshair continues until it ages so
much that it no longer affects tile variance and gradients, or
until it is pushed out of its queue in the deep buffer by a
newly arriving crosshair.

Regions containing disocclusions will be undersampled as
samples reproject to other image locations. We bias sampling
toward these disocclusions with a new undersampling meas-
ure utile:

.
||

|||)|(
,1min1

||
1















−
∑ −

−= =

tilesb

tilesbufferwhbm
u

tiles
j

tile

Here the number of empty samples in a tile must be m times
greater than the mean number of empty samples in all tiles to
affect sampling. |buffer| and |tile| are the number of samples
in the deep buffer and the current tile’s block, while whb is
the number of samples the deep buffer can hold (with image
size w×h).

Regions undergoing occlusion will contain samples from
multiple surfaces at differing view depths, leading to uncer-
tainty about image content. To resolve this uncertainty, we
increase sampling in occluded regions. We detect occlusions
by casting rays from the eye to each reprojected sample. If
the sample is no longer visible from the eye, we add a new
sample at the occluded image location. We also increase
sampling density in the occluded region by increasing error in
tiles experiencing occlusion with an occlusion term otile =
|O|/sb, where |O| is the number of occluded samples in a tile’s
block, tracked by our occlusion test. Figure 7 shows the oc-
clusions that affect sampling. Proportional error p for the
sampler then becomes:

() 










∑
−−+

∑
+

∑
= |||||| 1 tiles

j j

tile
tiles
j j

tile
tiles
j j

tile

o

o

u

u

v

vsp λκλκ w

ith κ ,
λ

, and (κ +
λ

) all in [0,1].

Figure 7: A sample density map (left) used by the recon-

structor to determine the expected local sample volume Vs,

and occlusion detection (right) used direct sampling.

8 A. Dayal, C. Woolley, B. Watson & D. Luebke / Adaptive Frameless Rendering

Technical Report NWU-CS-05-07, Northwstern University

5.2. Reprojection in the reconstructor

Unlike the sampler, the reconstructor operates in a framed
context: to display an image on existing hardware, it scans
out a traditional image (i.e., a uniform grid of pixels) at the
regular intervals of the display refresh. Since each sample in
the reconstructor’s deep buffer stores the 3D hit point of the
primary ray that generated that sample, reprojecting and re-
constructing each of our renderer’s images reduces to render-
ing the vertex array in the deep buffer with the current cam-
era and projection matrices bound. Figure 6 shows the results
of using reprojection in reconstruction.

Reprojection sometimes generates regions of low sample
density, for example at disocclusions and near the leading
edge of the screen during camera rotation. In such regions,
the filter support for the few samples present must be quite
large, requiring the reconstructor to rasterize samples with
large splats. Rather than rasterizing all samples using large
splats, we avoid overdraw with an adaptive point size
scheme. All samples are accumulated into a coverage map
during rendering that tracks the number and average splat
size of all samples rendered to each pixel. To size splats, the
sample vertex program binds the previous image’s coverage
map as a texture, computes the projected coordinates of the
sample, and uses the coverage information at those coordi-
nates to calculate the splat size at which the sample will be
rasterized. Sample splats in a region are sized according to
the average point size used in that region during reconstruc-
tion of the previous image, but point sizes in undersampled
regions (defined currently as fewer than 4 samples affecting a
pixel) are multiplied by 4 to grow rapidly, while point sizes
in oversampled regions (more than 32 samples reaching a
pixel) are multiplied by 0.7 to shrink gradually.

6. Evaluation

Using the gold standard validation described in [WLWD03],
we find that our adaptive frameless renderer consistently
outperforms other renderers that have the same sampling
rates.

Gold standard validation uses as its standard an ideal ren-

derer I capable of rendering antialiased imagery in zero time.
To perform comparisons to this standard, we create n ideal
images Ij (j in [1,n]) at 60 Hz for a certain animation A using
a simulated ideal renderer. We then create n more images Rj
for animation A using an actual interactive renderer R. We
next compare each image pair (Ij,Rj) using an image compari-
son metric comp. Here we use root-mean-squared error
(RMS).

We report the results of our gold standard evaluation in Ta-
ble 1, which compares several rendering methods producing
256x256 images using various sampling rates. Two framed
renderings either maximize Hz at the cost of spatial resolu-
tion (lo-res), or spatial resolution at the cost of Hz (hi-res).

The traditional frameless rendering simply displays the new-
est sample at a given pixel. The adaptive frameless render-
ings use our system to produce the imagery. The hi-res 60Hz
is a framed renderer that uses a sampling rate 10 times higher
than other renderers to produce full resolution imagery at
60Hz. (The difference between the ideal renderer and this hi-
res 60Hz renderer is that the latter suffers from double-
buffering delay and does not use anti-aliasing). Rendering
methods were tested in 3 different animations, all using the
publicly available BART testbed [LAM00]: the viewpoint
animation in the testbed itself (BART); a fixed viewpoint
close-up of a moving car (toycar), and a recording of user
viewpoint interaction (interactive).

Adaptive frameless rendering is the clear winner, with
lower RMS error than all techniques using the same sampling
rate and comparable error to the hi-res 60Hz rendering, which
uses sampling rates 40, 10 and 5 times faster than the 100K,
400K and 800K adaptive frameless renderings.

Figure 8 offers a more detailed view that confirms this im-
pression. The graphs here show frame-by-frame RMS error
comparisons between several of these rendering techniques
and the ideal rendering. Note the sawtooth pattern produced
by the low-sampling rate hi-res renderer, due to double buff-
ering error. In the interactive animation, the periodic in-
creases in error correspond to periods of viewpoint change.
Once more, adaptive frameless rendering has lower RMS
error than all rendering techniques using equivalent sampling
rates, and comparable error to the much more densely sam-
pled hi res 60Hz renderer. The top right graph also depicts
the advantage of using reprojection in the sampler. RMS
error is considerably higher if reprojection is not used.

7. Discussion and future work

Frameless rendering and selective sampling have been criti-
cized for sacrificing spatial coherence and thus memory lo-
cality, which can reduce sampling speed. We plan to experi-
ment with increases in the number of samples we generate
each time we visit a tile, increasing spatial coherence at the
cost of slightly less adaptive sampling overall. However,
exploiting spatial coherence has its limits: ultimately, it will
limit our ability to take advantage of temporal coherence and
force us to sample more often. Traditional renderers must
sample every single pixel dozens of times each second; as
displays grow in size and resolution, this ceaseless sampling

Table 1: Summary error analysis using the techniques of

Figure 8, with some additional sampling rates.

100k 400k 800k 400k 800k 400k 800k

Framed: lo-res 92.7 71.8 60.9 112 100 47 42.8

Framed: hi-res 110 72.6 60.4 127 112 43.8 38.9

Traditional Frameless 80.8 48.8 39.3 92.3 74.8 35.3 32.5

Adaptive 34.4 24.1 23.6 50.1 51.9 20.4 18.5

hi-res 60Hz 28 28 28 30.7 30.7 29.4 29.4

Render Method

Animation/Sampling rate

Interactive Bart Toycar

9 A. Dayal, C. Woolley, B. Watson & D. Luebke / Adaptive Frameless Rendering

Technical Report NWU-CS-05-07, Northwstern University

becomes wasteful of computation, power, and heat. With this
work, we hope to shift the emphasis of interactive ray tracing
research from spatial to temporal coherence, and from brute-
force to selective sampling.

Good filter design for the adaptive space-time reconstruc-
tion of frameless sample streams remains an open problem.
We have begun investigating the edge-preserving concepts of
bilateral and trilateral filtering [DD02; CT03], which perform
nonlinear filtering by weighting samples according to their
difference in luminance as well as their distance in space.
However, extending these approaches to include a third tem-
poral dimension and to operate on a non-uniformly distrib-
uted samples presents a significant challenge. A related pos-
sibility is to exploit a priori information about the underlying
model or animation, as do Bala et al. [BWG03].

We believe this work has great potential, and will continue
this research in several longer-term directions. Extending our
temporally adaptive methods to more sophisticated global
illumination algorithms is one obvious avenue. With its abil-
ity to selectively alter sampling and reconstruction across
both space and time, our adaptive frameless renderer is an
ideal platform for experimenting with perceptually driven
rendering in interactive settings [LRC02]. We are studying

the possibility of extremely high resolution (“gigapixel”)
display hardware fed streams of frameless samples, with
adaptive reconstruction performed in the display itself. This
might be one solution to the immense bandwidth challenge
posed by such displays. Such a rendering configuration
would also enable a truly asynchronous parallelism in graph-
ics, since renderers would no longer have to combine their
samples into a single frame [MCEF94]. For this reason we
are particularly interested in implementing these algorithms
in graphics hardware.

8. Conclusion

In conclusion, we advocate a revival of frameless rendering,
based on temporally adaptive sampling and reconstruction,
and enabled by recent advances in interactive ray tracing.
This approach improves traditional framed and frameless
rendering by focusing sampling on regions of spatial and
temporal change, and with adaptive reconstruction that em-
phasizes new samples when scene content is changing
quickly and incorporates older samples when the scene is
static. In testing, our prototype system displays greater accu-
racy than framed and frameless rendering schemes at compa-
rable sampling rates, and comparable accuracy to a framed

Figure 8: An error analysis of rendering techniques for several animation sequences created using 100K or 400K sam-

ples/sec. Graphs show frame-by-frame RMS error between each technique’s images and the ideal image that would be dis-

played by a hypothetical zero-delay, antialiased renderer at the same moment in time. Resolution is 256x256 pixels at 60 Hz.

Interactive Animation 100k samples/sec

0

20

40

60

80

100

120

140

160

180

200

0 200 400 600 800 1000 1200

#Frame

R
M

S
 e

rr
o

r

Interactive Animation 400k samples/sec

0

20

40

60

80

100

120

140

160

180

0 200 400 600 800 1000 1200 1400 1600 1800

Frame#

R
M

S
 e

rr
o

r

400k Full Res

400k 60Hz

traditional frameless

Full Res 60Hz

adaptive no reprojections

adaptive

Bart Animation 400k samples/sec

0

50

100

150

200

250

0 200 400 600 800 1000 1200

Frame#

R
M

S
 e

rr
o

r

Toycar Animation 400k samples/sec

0

10

20

30

40

50

60

70

0 50 100 150 200

#Frames

R
M

S
 e

rr
o

r

10 A. Dayal, C. Woolley, B. Watson & D. Luebke / Adaptive Frameless Rendering

Technical Report NWU-CS-05-07, Northwstern University

renderer sampling 10 times more quickly. Based on these
results, we believe that a temporally adaptive frameless ap-
proach shows great promise for future rendering algorithms
and hardware.

9. Acknowledgements

We would like to thank Edward Colgate and Kevin Lynch
(Department of Mechanical Engineering, Northwestern Uni-
versity) for their fruitful discussions on control systems and
the Saarland University Graphics Group for providing us
with the OpenRT ray tracer. This work was supported in part
by the NSF grants 0092973, 0093172, 0112937, and
0130869. The 3D model (kitchen) is the courtesy of the
BART (A Benchmark for Animated Ray Tracing) project at
Chalmers University of Technology, Sweden.

10. References

[BDT99] BALA, K., DORSEY, J., TELLER, S. 1999. Radiance
interpolants for accelerated bounded-error ray tracing. ACM Trans.

Graph, 18, 3, 213-256.
[BWG03] BALA, K., WALTER, B., GREENBERG, D.P. 2003.

Combining edges and points for interactive high-quality rendering.
ACM Trans. Graph., 22, 3, 631–640 (Proc. ACM SIGGRAPH).

[BFGS86] BERGMAN, L., FUCHS, H., GRANT, E., SPACH, E.
1986. Image rendering by adaptive refinement. Proc. ACM

SIGGRAPH, 29–37.
[BFMS94] BISHOP, G., FUCHS, H., MCMILLAN, H., SCHER

ZAGIER, E.J. 1994. Frameless rendering: double buffering con-
sidered harmful. Proc. ACM SIGGRAPH, 175–176.

[CHH02] CARR, N.A., HALL, J.D., HART, J.C. 2002. The ray
engine. Proc. ACM SIGGRAPH/Eurographics Graphics Hard-

ware, 37–46.
[CT03] CHOUDHURY, P., TUMBLIN, J. 2003. The trilateral filter

for high contrast images and meshes. Proc. Eurographics Work-

shop on Rendering, 186–196.
[DD02] DURAND, F., DORSEY, J. 2002. Fast bilateral filtering for

the display of high-dynamic-range images. ACM Trans. Graphics,

21, 3, 257–266 (Proc. ACM SIGGRAPH).
[DTB97] DUTTON, K., THOMPSON, S., BARRACHLOUGH, B.

1997. The Art of Control Engineering, 1st ed. Addison-Wesley.
[G95] GLASSNER, A. 1995. Principles of Digital Image Synthesis,

1st ed. Morgan Kaufmann.
[HDM03] HAVRAN, V., DAMEZ, C., MYSZKOWSKI, K. 2003.

An efficient spatio-temporal architecture for animation rendering.
Proc. Eurographics Symposium on Rendering, 106-117.

[J01] JENSEN, H.W. 2001. Realistic Image Synthesis Using Photon

Mapping. AK Peters.
[LAM00] LEXT, J., ASSARSSON, U., MOELLER, T. 2000. Bart: A

benchmark for animated ray tracing. Tech. Rpt. 00-14, Dept. Com-
puter Engineering, Chalmers Univ. Tech.
http://www.ce.chalmers.se/BART.

[LRC*02] LUEBKE, D., REDDY, M., COHEN, J.D., VARSHNEY,
A., WATSON, B., HUEBNER, R. 2002. Level of Detail for 3D

Graphics, 1st ed. Morgan Kaufmann.
[M87] MITCHELL, D.P. 1987. Generating antialiased images at low

sampling densities. Proc. ACM SIGGRAPH, 65–72.
[MCEF94] MOLNAR, S., COX, M., ELLSWORTH, D., FUCHS, H.

1994. A sorting classification of parallel rendering. IEEE Com-

puter Graphics and Applications, 14, 4, 23–32.

[OCMB95] OLANO, M., COHEN, J., MINE, M., BISHOP, G. 1995.
Combatting rendering latency. Proc. ACM Interactive 3D Graph-

ics, 19–24.
[PS89] PAINTER, J., SLOAN, K. 1989. Antialiased ray tracing by

adaptive progressive refinement. Proc. ACM SIGGRAPH, 281–
288.

[PMS*99] PARKER, S., MARTIN, W., SLOAN, P.-P.J., SHIRLEY,
P., SMITS, B., HANSEN, C. 1999. Interactive ray tracing. Proc.

ACM Interactive 3D Graphics, 119–126.
[PKGH97] PHARR, M., KOLB, C., GERSHBEIN, R.,

HANRAHAN, P. 1997. Rendering Complex Scenes with memory-
coherent ray tracing. Proc. ACM SIGGRAPH, 101– 108.

[PBMH02] PURCELL, T.J., BUCK, I., MARK, W.R.,
HANRAHAN, P. 2002. Ray tracing on programmable graphics
hardware. ACM Trans. Graphics, 21, 3, 703–712 (Proc. ACM

SIGGRAPH).
[RP94] REGAN, M.J.P., POSE, R. 1994. Priority rendering with a

virtual reality address recalculation pipeline. Proc. ACM

SIGGRAPH, 155–162.
[SS00] SIMMONS, M., SÉQUIN, C. 2000. Tapestry: A dynamic

mesh-based display representation for interactive rendering. Proc.

Eurographics Workshop on Rendering, 329–340.
[TA98] TELLER, S., ALEX, J. 1998. Frustum Casting for Progres-

sive, Interactive Rendering. Massachusetts Institute of Technology

Technical Report LCS TR-740. Available at
http://graphics.csail.mit.edu/pubs/MIT-LCS-TR-740.ps.gz

[TPWG02] TOLE, P., PELLACINI, F., WALTER, B.,
GREENBERG, D.P. 2002. Interactive global illumination in dy-
namic scenes. ACM Trans. Graphics, 21, 3, 537–546 (Proc. ACM

SIGGRAPH).
[TK96] TORBORG, J., KAJIYA, J. 1996. Talisman: Commodity

Reality Graphics for the PC. Proc. ACM SIGGRAPH, 353-363.
[WBDS03] WALD, I., BENTHIN, C., DIETRICH, A.,

SLUSALLEK, P. 2003. Interactive distributed ray tracing on
commodity PC clusters—state of the art and practical applications.
Lecture Notes on Computer Science, 2790, 499–508 (Proc. Eu-

roPar).
[WBWS01] WALD, I., BENTHIN, C., WAGNER, M.,

SLUSALLEK, P. 2001. Interactive rendering with coherent ray
tracing. Computer Graphics Forum, 20, 153–164 (Proc. Euro-

graphics).
[WPS*03] WALD, I., PURCELL, T.J., SCHMITTLER, J.,

BENTHIN, C., SLUSALLEK, P. 2003. Realtime ray tracing and
its use for interactive global illumination. Eurographics State of

the Art Reports.
[WSB01] WALD, I., SLUSALLEK, P., BENTHIN, C. 2001. Interac-

tive distributed ray tracing of highly complex models. Proc. Euro-

graphics Workshop on Rendering, 277– 288.
[WDG02] WALTER, B., DRETTAKIS, G., GREENBERG, D.P.

2002. Enhancing and optimizing the render cache. Proc. Euro-

graphics Workshop on Rendering, 37–42.
[WDP99] WALTER, B., DRETTAKIS, G., PARKER S. 1999. Inter-

active rendering using render cache. Proc. Eurographics Workshop

on Rendering, 19–30.
[WS99] WARD, G., SIMMONS, M. 1999. The Holodeck Ray

Cache: An Interactive Rendering System for Global Illumination in
Nondiffuse Environments, ACM Trans. Graph. 18, 4, 361-398.

[WLWD03] WOOLLEY, C., LUEBKE, D., WATSON, B.A.,
DAYAL, A. 2003. Interruptible rendering. Proc. ACM Interactive

3D Graphics, 143–151.

Multi-Level Ray Tracing Algorithm

Alexander Reshetov Alexei Soupikov Jim Hurley
Intel Corporation

Abstract

We propose new approaches to ray tracing that greatly reduce the
required number of operations while strictly preserving the
geometrical correctness of the solution. A hierarchical “beam”
structure serves as a proxy for a collection of rays. It is tested
against a kd-tree representing the overall scene in order to discard
from consideration the sub-set of the kd-tree (and hence the
scene) that is guaranteed not to intersect with any possible ray
inside the beam. This allows for all the rays inside the beam to
start traversing the tree from some node deep inside thus
eliminating unnecessary operations. The original beam can be
further sub-divided, and we can either continue looking for new
optimal entry points for the sub-beams, or we can decompose the
beam into individual rays. This is a hierarchical process that can
be adapted to the geometrical complexity of a particular view
direction allowing for efficient geometric anti-aliasing. By
amortizing the cost of partially traversing the tree for all the rays
in a beam, up to an order of magnitude performance improvement
can be achieved enabling interactivity for complex scenes on
ordinary desktop machines.
CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism — Ray Tracing, Global Illumination, Beam
Tracing, Geometric Anti-Aliasing.
Keywords: ray-tracing, frustum occlusion culling, anti-aliasing

1 Introduction
A renewed interest in Ray Tracing (RT) algorithms is being
fueled by the relentless progress of Moore’s law in terms of raw
compute power and various algorithmic discoveries resulting in
significant performance improvements. This makes real-time Ray
Tracing and Global Illumination (GI) attractive for
implementation on desktop machines. Some of these new
discoveries are summarized by Wald et al. [2003]. Table 1
provides comparison results for our implementation and those
described by Wald. We were able to improve performance further
by up to an order of magnitude. This is achieved by amortizing
per-beam operations which would otherwise be performed for
each ray in a group.

e-mail: {Alexander.Reshetov, Alexei.Soupikov,
Jim.Hurley}@intel.com

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or direct commercial advantage and that copies
show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permission
and/or a fee. Permissions may be requested from Publications Dept., ACM,
Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or
permissions@acm.org.

In this paper, we focus on the most fundamental task in ray
tracing, namely, finding the intersection of one or more rays with
a given geometry. We consider reducing the average number of
operations per ray as the most objective metric for comparing
different algorithms. Generally speaking, there is no one
guaranteed best ray tracing algorithm as performance depends on
many factors such as: the overall scene complexity, the current
view of the scene, and the characteristics of the host platform.
Many of the techniques we use have been known for some time,
although not specifically applied to the problem of efficient ray
tracing. For example, a modified view frustum culling algorithm
is used to reduce redundant operations for big groups of rays. In
essence, we’re building on top of the work of Heckbert and
Hanrahan [1984], Teller and Alex [1998], Assarsson and Möller
[2000], Kay and Kajiya [1986], and others. Another motivating
factor is to address the issue of geometrical aliasing which is
especially pronounced at interactive rates. One way to improve
the quality of the resulting image is to cast multiple rays through
each pixel. We propose a mechanism for dynamically measuring
the geometrical complexity for a given view direction, which can
be used for budgeting rays more cost-effectively.

FFrraammeerraattee ((FFPPSS)) @@
11002244xx11002244 rreessoolluuttiioonn

sscceennee
ooff ttrriiaanngglleess
aanndd sshhaaddeerr ((++//--))

OOppeennRRTT @@
22..55 GGHHzz PP44

11 tthhrreeaadd

MMLLRRTTAA @@
22..44 GGHHzz PP44

11 tthhrreeaadd

MMLLRRTTAA @@
33..22 GGHHzz PP44

wwiitthh HHTT
22 tthhrreeaaddss

– shader 7.1 70.2 109.8 Erw6
804

+ shader 2.3 37.8 50.7

– shader 4.55 11.2 19.5 Confe-
rence
274K

+ shader 1.93 9.5 15.6

– shader 4.12 21.1 35.5 Soda
Hall
2195K

+ shader 1.8 15.3 24.1

Table 1: Framerate comparison results for 3 scenes. OpenRT data
is taken from Wald et al. [2003]. Two sets of data are provided:
one for a null shader, and the other for a simple shader (equivalent
to placing a point light at the camera position).

We start by giving a brief overview of related work in section 2.
Section 3 introduces the basic concepts which will be used
throughout this article. By following relevant prior work, these
concepts will be described and then refined and adapted for our
approach. Then we describe the complete multi-level ray tracing
pipeline in section 4 and discuss results in section 5. We conclude
with some considerations for further research ideas in section 6,
which will also describe limitations of the proposed method.

1.1 MLRTA Overview
The central contribution of this paper is a new robust approach to
high performance ray-tracing which is achieved without any

approximations or geometric simplifications. Instead of looking
for ray/geometry intersections, we effectively exclude certain
objects from consideration for any given group of rays. This is
accomplished by providing a separate entry point into the global
acceleration structure (kd-tree) for each group of rays. Instead of
traversing each constituent ray from the top of the tree, we start at
the group’s entry node inside the tree. This reduces the average
number of traversal steps by 2/3rds for typical scenes.
Further insight came from analyzing the frustum culling
algorithms used for axis-aligned bounded boxes (AABB) in the
context of traditional raster graphics. Here, simple tests are used
on AABB proxies for detailed geometries to purge objects which
do not intersect the frustum, effectively reducing the amount of
geometry submitted for rendering. These tests are designed to
quickly detect the majority of cases where objects do not intersect
with the view frustum. The objects can be trivially rejected if their
AABBs can be separated from the frustum by one of the
frustum’s planes. This works well in those cases where small
AABBs are culled by a relatively big frustum. A comparable
approach may be used in ray tracing, where the AABBs represent
the volumes associated within a kd-tree’s nodes, and the frustum
represents a beam of rays. Typically, this frustum will be much
smaller than most of the AABBs in the kd-tree. As a result, using
the trivial reject algorithm as described above would result in a
higher percentage of redundant potential accepts (cases where we
cannot trivially exclude the intersection for non-intersecting
objects). Conversely, for RT applications we propose reversing
the roles of the frustum and AABB by using the AABB faces as
separation planes during depth-first traversal of the kd-tree.
Furthermore, we recommend new approaches to the kd-tree
building process which make it more suitable for the Multi Level
Ray Tracing Algorithm (MLRTA) proposed herein. We also
introduce the new concept of an “empty occluder”, which is
basically a tagged empty box contained inside a watertight object.
We use such empty occluders to stop further traversal of beams
that completely intersect such occluders.
All these innovations together allow us to improve the
performance of the ray-tracing algorithm by up to an order of
magnitude compared with previous results in the literature. As an
added bonus, the MLRTA provides a natural mechanism for
measuring the geometric complexity of the portion of the scene
visible to a given group of rays, which enables geometric anti-
aliasing.

2 Related Work
A number of researchers have developed strategies for exploiting
coherence between spatially adjacent rays. We took inspiration
from the early work of Heckbert and Hanrahan [1984], in which
polygonal beams were used instead of rays to improve the anti-
aliasing properties of an image. The beam was annotated as it
intersected with objects in the scene so that the edges of these
interfering objects could be more effectively anti-aliased. Similar
goals were pursued by different researchers through the
introduction of cone tracing [Amanatides 1984], pencil tracing
[Shinya at el. 1984], and ray bounds [Ohta and Maekawa 1990].
In [Heckbert and Hanrahan 1984], the beams are persistent with
extra information accumulated during tracing to describe multiple
beam/object intersections. Later, researchers switched to splitting
beams whenever such intersections occurred. In [Ghazanfarpour
and Hasenfratz 1998], this happens when a beam intersects

multiple objects thus necessitating smaller sub-beams to precisely
anti-alias a polyhedral scene. In [Genetti et al. 1998], “pyramidal
rays” (pyrays) are split when any part of one intersects an object.
Arvo and Kirk [1987] use a volume in a 5D space to represent a
collection of rays (3D for origin and 2D for direction). The
original 5D volume is then dynamically subdivided into
hypercubes, each linked to a set of objects which are candidates
for intersection. In [Heckbert and Hanrahan 1984], the beam tree
which represents the surfaces intersected by the beam, is
computed in object space and then passed to a polygon renderer
for scan conversion. In [Teller and Alex 1998], frustum casting is
proposed which samples discretely in image space, but operates in
object space. In this algorithm, the frustum is recursively
subdivided, while object space is organized linearly with indices
identifying neighbors of a given current cell. In [Cho and Forsyth
1999], a visibility complex is incrementally constructed enabling
efficient ray/geometry queries.
In [Havran and Bittner 2000], Longest Common Traversal
Sequences are used to amortize common operations among
multiple rays. In [Dmitriev et al. 2004], pyramidal shafts are used
for the same purpose. This technique is also extended to
secondary and shadow rays. In both of these works the convex
hull of a group of rays is represented by a few boundary rays,
which are traversed through the scene. It is then assumed that all
interior rays will follow the same path. This is not always correct
and we will provide examples illustrating this point in section 3.3.
We believe that we have come up with the necessary
mathematical apparatus which is geometrically accurate and
achieves the same goals.
All these algorithms attempt to combine view-dependent culling
in object space with some distance-based visibility determination
in image space. This is generally achieved by the use of a
spatially distributed recursive construct which initially
encompasses multiple rays and is then progressively refined. We
use the same approach, the fundamental difference between our
method and these others is that we are not trying to find objects
that this construct intersects. Instead, we eliminate those objects
that do not intersect with the construct.
A different category of algorithms aims at minimizing the
required number of intersection tests by budgeting rays diligently,
sampling sparsely in areas of low geometric variation and super-
sampling for geometrically complex or perceptually important
parts of the image [Ramasubramanian et al. 1999]. Our approach
facilitates this type of optimization by providing a natural
measure of geometrical complexity for a specific viewpoint.

3 Basic Concepts

3.1 Acceleration Structures
To naively find an intersection of a ray with a scene, one could
test this ray against all objects in the scene for an intersection and
keep the one with the shortest distance from the ray origin. This
algorithm might have the lowest memory footprint, but its
execution time is prohibitive. A much better approach would be to
organize the scene into some sort of data structure (usually called
an “acceleration structure” – AS) and use this structure to zero in
on the area of interest in a hierarchical fashion. An AS works by
splitting 3D space into subsets containing a certain number of
primitive objects (triangles if no other primitives are used). In
addition to this spatial organization, specific traversal routines are
defined as well. These routines are used to quickly decide which

subsets to look into further for possible intersections. Different
traversal routines may coexist for the same AS, for example, one
for primary and another for shadow rays. One object may belong
to multiple subsets and some subsets may be empty. Various
types of ASs that lend themselves to different scene geometries
and/or computer architectures are well known and described in
the literature [Szirmay-Kalos et al. 2002]. In this work we use a
kd-tree data structure; a systematic analysis of the kd-tree
building algorithm was first given by Glassner [1984] and
followed by numerous publications, in particular by Havran
[2000].
The main operation in the kd-tree building process is to split an
axis-aligned bounding box into two (potentially unequal) boxes
by a plane orthogonal to one of the axes. The process is repeated
recursively until some termination criteria are met. The splitting
algorithm and termination criteria, in essence, define a particular
flavor of a kd-tree building algorithm. The split position is chosen
by minimizing a cost function over a set of candidate split
positions, such as the coordinates of vertices inside the cell and
the coordinates of triangle/cell intersections. Following
MacDonald and Booth [1990], we use a surface area-based cost
function which is computed by multiplying the area of the cell by
the number of objects intersecting with it. We have modified the
pure area-based approach to bias it in favor of creating large
empty cells and also 2D cells (cells with a zero extent along one
of the axes). The rationale for this adjustment is that a pure area-
based cost function underestimates the importance of placing such
cells closer to the top of the tree. This modification is based on
three simple rules applied sequentially:

 aa bb cc dd

o

 A B C D

nneeaarreesstt

cceellll ((CC00))
ffaarrtthheesstt

cceellll ((CC11))

δδ
χχ

ββ

αα

P0

1. We always create an empty cell if its volume with respect
to the original cell is greater than some threshold (10% in
our implementation).

2. If there is a possible split plane which is completely
covered by co-planar triangles, it will be selected and
these triangles will be included in the smaller sub-cell.
This heuristic sits well with the axis-aligned nature of kd-
trees.

3. In addition to termination criteria based solely on a cost
function (cost of splitting > cost of non-splitting), we also
avoid creating very small cells, as measured by the ratio
of the cell area to the area of the bounding box of the
scene.

The motivation for rule (3) is to avoid cells that may be so small
that it is unlikely to be hit even by one ray for a given camera
position from which the whole scene is visible. These rules also
speed up the kd-tree building process because, once conditions 1-
3 are established, no further processing is necessary.
These rules have to be considered together with a traversal
routine. For example, if a traversal routine cannot handle 2D cells,
the second rule is not feasible. In our opinion, there is no
guaranteed best kd-tree building or traversal algorithm suitable
for all scenes or all computer architectures. For current PCs and
our implementation of the traversal algorithm (see section 4.3),
these rules yielded roughly a 50% improvement in traversal
performance compared with pure area-based approaches.
In section 4.1 we will continue the discussion of kd-tree creation
and traversal algorithms by assessing the validity of the basic
concepts used and analyzing their drawbacks. This leads us
naturally to the concept of multi-level ray tracing. But before
doing that we have to discuss some additional concepts.

3.2 Grouping Rays Together
The evolution of desktop PCs (both CPUs and GPUs) is such that
math operations are getting faster at a higher rate than memory
operations. The Single Instruction Multiple Data (SIMD)
capability of such devices makes it possible to perform
calculations on four rays for the cost of one [Wald 2001; Benthin
et al 2003]. This is possible if we carefully choose which rays to
shoot together, as there is tremendous geometric spatial coherence
to exploit (especially in primary rays). This makes the caching
mechanism of modern computers very effective. The performance
gains correlate with the size of the group, however, current SIMD
hardware can only support four simultaneous operations. What we
would like is an algorithm that works independently of hardware
features and scales gracefully to a much larger number of
concurrent rays.

Figure 1: Tracing rays together: different rays go through
different cells in the tree.

With grouping of rays comes the necessity to deal with the
situation when rays go through different paths in the tree. Indeed,
as evident from Figure 1, rays oa and ob travel only through the
nearest cell (C0), while other rays (oc and od) go through both
cells. Obviously, as the number of rays in a group increases, so do
the chances that these rays will diverge at some stage in the
traversal process. Basically, we have 2 possibilities: we could
work with a variable number of rays and regroup them every time
some rays “get lost”; or we can mask the inactive rays in the
group. Clearly, under such circumstances we can’t realize the
maximum benefit of processing multiple rays simultaneously, and
worse, the overhead of tracking valid rays might even result in
inferior performance of the concurrent implementation relative to
one that process each ray individually. This also highlights
another reason behind some aspects of the termination criteria (3)
from the previous section. It doesn’t make sense to continue
splitting a cell for which only a few rays will still be active in
most situations. Effective traversal of groups of rays is possible
when all rays follow substantially the same path through the tree.
Consequently, the rays must intersect any given split plane in one
direction (either going from the negative to the positive direction
or vice versa). This translates into the requirement that the
coordinates of the direction vectors for all rays in a group have
the same sign [Wald et al. 2003]. Groups of rays which do not
possess this property must be split into multiple sub-groups which
do, or into individual rays.

3.3 Frustum Culling
From the previous section, we see that there can be a penalty for
grouping rays together (in the form of redundant operations), and
this penalty increases with the size of the group. The desire to
avoid or minimize this penalty led us to the development of the
multi-level ray traversal algorithm. Even though it looks

tempting, we cannot always use just a few specific rays to
ascertain the behavior of the whole group. For example, we may
consider using only the 4 corner rays in Figure 3a to represent all
the rays by proxy. This is the approach utilized by [Havran and
Bittner 2000] and [Dmitriev et al. 2004], where boundary rays are
used to determine the behavior of internal rays. Unfortunately,
this can lead to incorrect traversal choices. Consider the example
in Figure 2. The top AABB is split into the red and blue sub-
cells. We choose two points, b and c on two faces of the blue cell
and one on the edge of the red cell (a) as shown below. If we
place a camera o inside the plane passing through these 3 points,
then all 4 of the corner rays ob, oc, oe, and od intersect only the
blue cell. However, the ray oa (located inside the convex hull of
the 4 corner rays) passes through both sub-cells. By scrutinizing
this example, it is also obvious that even rays strictly inside the
convex hull may not always follow the same path as boundary
rays.

Figure 2: Problems using boundary rays as a proxy for the whole
group. The ray oa, which is inside the convex hull of the 4 corner
rays obcde, intersects both cells, while all 4 corner rays intersect
only the blue cell.

What we can do instead, is to derive some inclusive properties to
characterize the group as a whole, and then use these properties to
determine the behavior of the whole group. One intuitive way
would be to use the convex hull of all rays in the group, formed
by a few given planes. The key operation will then be the
determination of whether the convex hull intersects a particular
axis-aligned box. This is analagous to the classic frustum culling
algorithm used in raster graphics.
We will first describe the straightforward implementation of this
algorithm as defined by Assarsson and Möller [2000] and then
consider its applicability for ray-tracing purposes. In Figure 3a, a
frustum is formed by 4 planes intersecting at one point. Each
plane is defined by this intersection point and a normal, which we
consider to be pointing outward from the frustum. We have to
decide whether this frustum intersects with a given axis-aligned
box. For each frustum plane, there are two vertices of interest
belonging to the axis-aligned box: the one laying farthest in the
positive direction of the plane’s normal (p-vertex); and the other
laying farthest in the negative direction of the normal (n-vertex).
By inserting the n-vertex into the plane equation, we can decide
whether the n-vertex and therefore the whole box is located
outside this particular plane, and so on for each plane, hoping for
a trivial rejection. In addition, we could use the p-vertices to
determine whether or not the entire box is completely inside the
frustum. This approach works for any number of planes forming
the frustum.
In the special case where there are exactly 4 planes, the
performance of this algorithm can be greatly enhanced by storing
the positive and negative components of the 4 normal vectors
separately in SIMD form for each of the x, y, and z components.
As an axis aligned box can be represented by a pair of extremal

vertices (one with the minimum x, y, z, and the other with the
maximum x, y, z coordinate values), we can avoid having to find
the n-vertices explicitly by noticing that for any frustum plane,
the n-vertex has the lower coordinate value (among the 2 extremal
vertex possibilities) for any positive normal coordinate, and vice
versa for the negative normal direction. Consequently, using
hardware with a 4-wide SIMD engine, the box can be culled
against all 4 frustum planes using only 6 multiplications and 5
additions, this makes this approach very attractive for
performance reasons. If we use “+” and “*” to represent 4-way
SIMD operations, these calculations can be performed as follows:
__m128 nplane; // 4 plane values
nplane = (plane_normals[0][0] * bmin[0]) +
 (plane_normals[1][0] * bmax[0]);
nplane = (plane_normals[0][1] * bmin[1]) +
 (plane_normals[1][1] * bmax[1]) + nplane;
nplane = (plane_normals[0][2] * bmin[2]) +
 (plane_normals[1][2] * bmax[2]) + nplane;

plane_normals[0] and [1] contain positive and negative
components of the 4 normal vectors and bmin/bmax – are the
replicated x, y, and z coordinates of the min/max vertices of the
current cell. Effectively, the plane_normals variable is used as a
selector for the appropriate bmin/bmax values. With these 11
operations, we manage to find 4 n-vertices and compute all 4
plane values (for each frustum plane). The variable nplane now
contains these 4 plane values. If any one of these is positive, then
the frustum and the box are separated by the appropriate plane.
This trivial rejection mechanism is not perfect, as shown in
Figure 3b. Here we see the axis-aligned box on the lower left of
the frustum as viewed along its center axis. It fails the n-vertex
outside test for each of the frustum’s planes, implying that it may
intersect the frustum, when, in fact, it is entirely outside the
frustum. The proportion of these failed trivial rejects increases as
the AABB becomes larger and larger (with respect to the
frustum’s cross section). This problem becomes acute when
applied to ray-tracing traversal scenarios where the frustum is
used as a proxy for a group of rays. It is often much smaller than
the individual AABB cells that it is being tested against. One way
to handle this is to reverse the roles of the frustum and AABB: we
could use the AABB’s planes to attempt to separate it from the
frustum instead of the other way around. There is still the danger
of failed trivial rejects, but their proportion will be lower due to
the favorable ratio of the AABB’s cross section to the frustum in
the region where they pass one another. One circumstance that
makes this tactic especially appealing and easy to implement is
when the frustum contains only “coherent” groups of rays, that is,
those in which all ray directions have the same sign.

This inverse approach is illustrated in Figure 3, (c) and (d). We
are trying to decide whether the frustum intersects the red only,
the blue only, or both sub-cells formed by the split plane abcd,
with equation (x = 1). Suppose further that the frustum/plane
intersection is bounded by the values [p, n] for the y coordinate,
namely that all y-coordinates of the intersection lie in this range.
If n is less than the y-value for edge ad, then we can conclude
that:
1. If all rays have negative Y direction components, the

frustum does not intersect the blue sub-cell (Figure
3c). Since we know the frustum intersects the parent
cell, we deduce that only the red sub-cell must be
traversed.

2. If all rays have positive Y direction components, the

(1)

frustum does not intersect the red sub-cell (Figure
3d). Since we know the frustum intersects the parent
cell, we know that only the blue sub-cell must be
traversed.

Figure 3: Direct (a,b) and inverse (c,d) frustum culling
algorithms.

On architectures which allow it, we can execute these comparison
operations in one command, i.e. by comparing the four y
coordinates of frustum/plane intersection with the y-coordinate of
the ad edge.
The inverse algorithm does not use frustum plane normals per se.
What we need instead is the rectangular bounds for each axis-
aligned plane which enclose frustum/plane intersection. This
makes it possible to generalize this algorithm for groups of rays
which do not have a common origin.
Another important property of the inverse frustum culling
algorithm is that when used together with kd-tree traversal, it uses
values only for one axis at a time. As we descend into the kd-tree,
different axes will be processed at each level, thus allowing for
effective culling of the current cell. As with the forward frustum
culling algorithm, there may be situations where we erroneously
conclude that the frustum might intersect a cell when in fact it
does not. Any subsequent processing steps after this point will be
wasted. We are primarily concerned with unnecessary
intersection tests as they are quite expensive. Most of these extra
tests can be avoided by using frustum/plane intersection data as
specified in the inverse algorithm and executing additional
clipping tests at the leaf nodes. At every leaf node, we perform
robust clipping calculations for all 3 possible pairs of axes (xy, yz
and xz) against the 6 AABB box faces.

We will illustrate this in Figure 4 for the case of the x and y axes
by projecting everything on the (z = 0) plane. There are 8 possible
cases which can be easily detected. These cases differ by the
direction of the frustum along the x and y axes and whether the
frustum lies above or below the axis aligned box (using z
projections). These tests enable us to exclude the great majority of
the non-intersecting cases, and even though the remaining ones
may cause some redundant calculations, they are tolerable.

Amazingly enough, all 8 cases can be tested with only 2
comparisons. We will use terminology and ideas from Kay and
Kajiya [1986].

Figure 4: Frustum culling against leaf cell.

An axis-aligned box is defined as an intersection of 3 slabs, where
a slab is the space between two parallel planes. For each ray, we
may compute the entry and exit points for all 3 slabs which are
represented as distances along the ray from the ray’s origin.
Accordingly, for the whole frustum we will need to know the
ranges of these values. If either of the following two statements is
true we conclude that the frustum and the box are separated:

1. (minimum of y-entry values) > (maximum of x-exit values)

2. (minimum of x-entry values) > (maximum of y-exit values) (2)

The first condition here describes cases 1, 3, 6, and 8; the second
condition describes the rest. Instead of these two comparisons we
could use the direct frustum culling algorithm or even an exact
frustum/box intersection test, but this is expensive relative to the
number of non-intersection cases that it eliminates. It is also
possible to execute these 2 tests (for each pair of axes) at each
traversal step, but it is not very effective. We have found that the
best approach is to use assessments (1) for the internal nodes
followed by (2) for the leaves.

4 Tracing Rays at Multiple Levels
Now we have the mathematical apparatus ready to describe the
multi-level ray tracing algorithm (MLRTA). Any hierarchical
acceleration structure imposes a certain spatial organization which
is then stored in essentially linear memory. During a spatial query
this structure is used to find ray/geometry intersection points.
Processing is executed by sequentially narrowing the area of
interest until final tests resolve the query. As an example from
other field of study, we may look for a particular book in a
catalog by narrowing the focus from ‘science’ to ‘computer
graphics’ to ‘ray tracing’.
One problem with using kd-trees for 3D scenes is that one doesn’t
necessarily end up with what might be expected. Consider Figure
5a, the box in the middle of the text objects ends up being sub-
divided as shown in Figure 5b, and it ends up buried deep in the
tree because of higher level split decisions made based on the
surrounding geometry. If this box became the subject of interest
for the camera we would have to traverse the entire kd-tree from

its root for every ray we wish to trace until the box’s cells are
found (as depicted in Figure 5c). Wouldn’t it be much better if
we could dynamically find alternate entry points in the tree
(depending on the current camera view) and start traversing at
these nodes? If we are lucky, we might even find that the optimal
entry point is right at the leaf node itself. Even better, if we use
the beam concept described earlier, we can potentially “traverse”
the kd-tree for all the rays in the beam, directly to the leaf node
(in this optimistic example) in a single step.

Figure 5: Simple object inside complex scene.

4.1 Finding Ideal Entry Points for Groups of
Rays

Restating the results from section 3.3, the following information
is sufficient to execute the inverse frustum culling algorithm:
1. For any given axis-aligned plane, we compute a

rectangle inside this plane, which contains all
possible ray/plane intersection points. This
rectangle does not have to be tight.

2. All rays go in the same direction (i.e. x, y, and z
projections of ray directions have the same sign).

(3)

In this section we will describe a new algorithm which uses this
information and the frustum culling algorithm to find an optimal
entry point for all rays that satisfy condition (3). We will refer to
this as an “entry point search”, or EP search. It will be compared
with the traditional depth-first search for intersection points for
groups of rays using kd-trees [Wald 2004]. We will refer to this as
an “intersection point search” or XP search. The main differences
are that the new EP algorithm is not exhaustive and quickly aborts
branches of the kd-tree which would not contribute to the final
result. The EP search is used to find an optimal place to begin the
traditional XP search.
Definition (3) does not presume any particular organization of the
rays inside the group. Moreover, it does not even require that we
know the specific rays, or even the number of rays, in advance, a
fact which will be very handy later when we discuss adaptive tile
splitting. The next algorithm describes the steps executed while
looking for a common entry point. This is essentially a depth-first
traversal of the visible nodes in the tree allowing for early escape
from the traversal of branches that will not contribute further to
the final result. It is achieved by maintaining a stack of nodes

which can be potentially used as entry points (which we will call
the “bifurcation stack”).
1. The tree is traversed in depth-first order by

• Using the frustum culling algorithm.

• Store all bifurcation nodes (those where both
sub-cells are traversed) in a (last-in-first-out)
stack structure until the first leaf node with
potential intersections is found. This node is
then marked as a candidate entry point node.

2. Continue depth-first walkthrough starting from the
top-most node on the bifurcation stack. If another
leaf with potential intersections is found, the node
taken from the bifurcation stack will become the new
candidate.

3. The algorithm ends and the current candidate node
is returned as an entry point if

• The bifurcation stack is empty.

• All potential rays end inside the current leaf
node. Two cases are possible:

• The leaf has some objects, and, all rays
satisfying condition (3) intersect one of
these objects inside the cell.

• The leaf is empty, but is located inside
some “watertight” object and all rays or
groups satisfying condition (3) intersect
the bounding box of this leaf.

(4)

While executing this algorithm we are not interested in finding
specific ray/object intersections and we may not even be able to
do so since the rays in the group are not required to be defined at
this point. What we are looking for is the potential for
intersections. Specifically, if we cannot exclude an intersection
with any ray satisfying condition (3) we will consider it as a
potential intersection. We will illustrate this algorithm using the
tree pictured in Figure 6.

11
2222

3311
2211

3322
4411

5522 5511
4422

6622 6611 6633

4433 4444
5544 5533

6644
7711 7722

8822 8811

 LLeeggeenndd::

iinntteerrnnaall nnooddeess……
oonn EEPP ppaatthh

oouuttssiiddee EEPP ppaatthh

bbiiffuurrccaattiioonn

lleeaaff

eemmppttyy lleeaaff

EEPP sseeaarrcchh

XXPP sseeaarrcchh

Figure 6: Two traversal algorithms: searching for an entry point
(EEPP) and looking for intersections (XXPP).

Starting at node 1 and using group values described by condition
(3), we realize that only the left sub-cell 21 has to be traversed.
Both sub-cells of 21 have to be considered, so node 21 is stored in
the bifurcation stack and processing continues with nodes 31
(split is ignored), 41 (stored in the stack), and 51 (split is ignored).
While processing leaf 61, we conclude that there is a potential for
intersections. Leaf 61 is then marked as a candidate and the
bifurcation stack is frozen. The next node to consider, 41, is taken

from the stack and we continue the depth-first traversal with
nodes 52 and 63. Leaf 63 has a potential for intersections, so we
mark node 41 as a candidate and move to the next node from the
stack (21), abandoning the processing of the sub-tree starting at
node 64. From node 21 we go to node 32 which has two children:
43 (ignored because it is empty); and 44 (taken). Node 44 has two
leaves: 53 (ignored); and 54 (judged to have potential
intersections). Therefore, we will mark node 21 as a candidate
and return it as the entry point since the bifurcation stack is
empty. All the rays which are bound by condition (3) may now
start the tree traversal at node 21.
After the optimal group entry point is found we may split the
group and continue looking for better entry points for each sub-
group or perform intersection tests for all of the sub-groups to
completion (XP search). Note the dissimilarities between the two
traversal algorithms, one being a search for a common entry point
(EP) and the other which is a search for intersection points (XP):

• At node 21, the XP algorithm is able to exclude node 32 from
further processing since all the rays (in the beam) are now
known and they intersect only with the cell of node 31. The
EP algorithm uses only frustum properties that might intersect
with node 32 and therefore traversal of both nodes on behalf
of the group is required.

• The EP algorithm ignores node 64 when it reaches its parent,
node 52, because it would have no effect on the selection of
the group entry point. The XP algorithm however must
continue the traversal of nodes 64, 71, 72, 81 & 82 because
there may be some intersections to be found there.

This ability of the EP algorithm to disregard non-contributing
branches and to do this on behalf of all the rays in a group helps it
to greatly reduce the overall computations otherwise performed
per ray.

4.2 Tile Splitting
The EP algorithm finds an optimal common entry point for all
rays in a group by representing the group as a whole with the
ranges of the individual ray directions. For beams representing
broad ranges, the EP algorithm will most likely quickly detect
that a good (i.e. deep) entry point is not available. In this case, it
would be advantageous to split the ray direction ranges (and,
accordingly, the actual underlying rays) in an attempt to get better
separate EPs for individual sub-groups. Although the rays
themselves do not have to be evenly distributed, in our
implementation they are.
For primary rays it is practical to choose the initial groups of rays
by splitting the image plane into equal tiles. This allows for trivial
computation of bounding rectangles for the group/plane
intersections as required by (3). Moreover, each tile may be
assigned to a separate thread or task on a multi-processor or
multi-threaded machine.
There are many possible approaches that could be taken here. In
our experiments we used the simplest possible logic to decide
what to do with a tile, basing the decision on 3 parameters:
1. Initial Tile Size (ITS).
2. A Minimum Tile Size (MTS) which automatically

triggers XP search.
3. A Split Factor (SF), which defines how many pieces

to split a tile into.

(5)

Any tile larger than MTS is always split unless the chosen entry
point is already a leaf. This is illustrated in the sequence of

images in Figure 7. It is easy to see how the tile sizes change to
adapt to the changing underlying geometry. Tiles marked in red
are those which have diverging rays (going in different directions)
and are therefore unsuitable for the EP search. For such the XP
search is performed right away for all the coherent sub-groups of
the original tile.

Figure 7: Sequence of frames from Soda Hall scene showing
adaptive tile splitting (red color marks diverging packets).

Depending on a scene and/or the camera position, varying the
values for the ITS/MTS/SF parameters produce different results.
We tested various combinations of these parameters on a
collection of over 2500 different models. We varied the Initial
Tile Size parameter from 16x16 pixels to 256x256 pixels. Each
initial tile was subsequently split either into 4 or 16 sub-tiles and
we used a Minimum Tile Size between 4x4 and 64x64 pixels. The
measured performance variations were not very large, mostly
around 10%. This indicates that it is possible to derive a single set
of parameters which would be roughly optimal for most scenes.
Our best results were achieved by starting from tiles with
128x128 pixels and splitting them as needed into 16 sub-tiles
directly. It is expected that for multi-threaded implementations, a
smaller initial tile size might be better because the thread
execution granularity will be a function of the time required to
process one tile.
Another potential advantage of using the EP algorithm for such
tiles is that it provides a natural way to measure geometric
complexity. Given the way that the kd-tree creation algorithm
works, the size of the sub-tree underneath any given node
(measured by overall number of nodes in the sub-tree) serves as
an indication of the geometrical complexity in this volume of
space. In the extreme case, when an EP is a 2D leaf completely
covered by triangles, we could cast rays sparingly and reserve
more of the ray budget for more complicated regions. This
approach is similar to one described by Ghazanfarpour and
Hasenfratz [1998].

4.3 Interval Traversal Algorithm
The basic premise of MLRTA is that it works even if the exact
rays in the group are not known. If, however, such information is
available, MLRTA can be executed in parallel with the
computation of ray/geometry intersection points. We can then use
the found distances to intersection points to further purge traversal
steps based on visibility culling. In this section we will describe
one such implementation which we are currently using in lieu of
low level traversal (XP search) in our system. It will be described

together with a sample implementation which actually does not
require SIMD instructions in the inner cycle.
The algorithm is based on computing and updating minimum and
maximum distances to the traversed cell for all rays in the group.
At the beginning of the traversal we will store minimum and
maximum distances to the scene’s bounding box in the float array
t_cell[2]. In Figure 1, t_cell[0] = oa and t_cell[1] = oD. For each
traversed cell, by using conditions (3) from section 4.1, we can
compute two values: t_plane[0] – minimum distance to the split
plane P0 in the cell (oδ) and t_plane[1] – maximum such distance
(oα). Then
// If we can verify that all rays exit the cell
// before intersecting the plane...
if (t_cell[1] < t_plane[0]) {
 // Only the nearest cell is traversed.
 // Compute address of the nearest node and
 // continue traversal. t_cell is not changed.
 ...
}

// If all rays enter the cell
// only after intersecting the plane...
if (t_cell[0] > t_plane[1]) {
 // Only the farthest cell is traversed.
 // Compute address of the farthest node and
 // continue traversal. t_cell is not changed.
 ...
}

// We will have to traverse the nearest cell
// followed by the farthest cell. This branch also
// handles a small percentage of misdiagnosed cases
// (when only one cell is actually traversed).

// The next array will contain t_cell values
// for the farthest cell
float t_farthest[2];
t_farthest[0] = max(t_cell[0], t_plane[0]);
t_farthest[1] = t_cell[1];

// Store t_farthest values and the address
// of the farthest cell into the programming stack
// (it will be used after the subtree starting
// at the nearest node is processed).
...

// Modify the t_cell interval for the nearest cell
t_cell[1] = min(t_cell[1], t_plane[1]);
// Continue traversing nearest cell
...

It is evident that this algorithm has the same complexity as one
for traversing an individual ray [Wald 2004]. However, it
executes traversal of all rays in the group simultaneously by using
proxy intervals. Groups cannot be very large as performance will
suffer from too many inactive rays in the group (see discussion in
section 3.2). In our experiments, we found the best group size to
be 4x4, which compares favorably with the 2x2 groups used by
Wald.
Even though the interval traversal algorithm sharply reduces the
required number of operations compared to the diligent traversal
of all 16 rays in the group, overall performance improvement is
only about 20%. The reason is that the branches in the kd-tree
traversal are data dependent with all 3 continuation scenarios
(nearest, farthest or both sub-nodes) occurring with roughly equal
probability.

5 Results and Discussion
The simplest way to evaluate the performance impact of a
particular feature is to test two implementations, one with and one
without the feature. The average performance difference of our
MLRTA and non-MLRTA implementations for the 3 scenes in
Table 1 is about 3.25X for primary rays and 2.75X for primary
and shadow rays. As will be evident from the statistical data in
this section, this is roughly equivalent to the reduction in the
number of traversal steps executed by the algorithm. Compared
with the best results reported elsewhere in the literature, our
traditional implementation (without MLRTA) is still about 2X
faster. We can only speculate that this is due primarily to
different tree construction and somewhat different traversal and
intersection methods, API overhead may also play a role. In this
section we will provide a more formal quantification of the
performance results based on measurements of the mathematical
operations.
We will analyze the MLRTA results by providing data for 4
scenes which vary greatly in scene complexity and occlusion
properties. For convenience, all results will be presented on a per
packet basis - we use packets with 16 rays (4x4). If a total of k
cells are traversed during the rendering of a 1024x1024 pixel
image, the ratio k/(1024*1024/(4*4)) will be used. We account
for all traversal steps regardless of whether they are executed
during the EP or XP search. Only those intersection tests which
were not avoided through AABB culling are included in the
statistics. If a triangle intersection test is avoided then no triangle
data is accessed.

SScceennee
ooff ttrriiaanngglleess

aanndd vviieeww

AAvveerraaggee
mmeeaassuurreemmeennttss
ppeerr 44xx44 ppaacckkeett aatt
11002244×11002244 rreessoolluuttiioonn

EErrww66
((880044))

CCoonnffeerreennccee
((227744KK))

SSooddaa HHaallll
((22119955KK))

AAssiiaann DDrraaggoonn
((77MM))

1. MLRT 3.98 20.87 32.52 32.65 number of
traversed
cells 2. no MLRT 13.00 49.98 71.37 42.18

3. EP search only 0.51 2.30 4.44 2.72

4. MLRT 1.09 2.48 1.59 19.97 non-masked
intersections 5. no MLRT 1.09 2.55 1.52 19.94

Table 2: For primary rays MLRTA significantly reduces the
number of traversal steps (first row vs second) without adversely
affecting the number of intersection tests.

6. MLRT 10.07 53.73 69.07 45.01 number of
traversed
cells 7. no MLRT 24.83 101.06 117.22 58.41

8. MLRT 1.25 3.71 2.17 23.51 non-masked
intersections 9. no MLRT 1.22 3.75 2.09 23.48

Table 3: Corresponding measurements for primary + shadow rays
(one light source).

By analyzing rows 1 and 2 of Table 2 we see that the MLRTA
greatly reduces the number of traversal steps required. This ratio
varies from ~3X for scenes with a lot of occlusion to 1.3X for the
last scene which has limited occlusion. The MLRTA’s goal is to
minimize the number of operations in the most time-consuming
part of the ray-tracing pipeline. The return on investment is quite

high. A 10% investment in finding a good EP yields an overall
performance improvement of 2.5X (in the conference scene).
By examining rows 4 and 5 we see that there is no significant
change in the number of overall intersection tests performed,
which is ideally what you would expect (ie finding good EPs
helps you avoid redundant traversal of the upper parts of the kd-
tree, but has no detrimental effect on the processing at the lower
part of the tree). We have observed that the best RT results are
achieved when roughly 2/3 of the time is spent traversing the kd-
tree and 1/3 actually looking for intersections and that this ideal
ratio increases with model size. Because the termination criteria
do not depend explicitly on the kd-tree depth, the number of
triangles in the leaf nodes remains roughly constant. In most cases
individual triangles can show up in multiple leaf nodes. For those
leaves some redundant intersection tests can be avoided by using
a mailbox mechanism [Amanatides and Woo 1987].
The data in these tables were obtained for the inverse frustum
culling algorithm introduced in section 3.3. The direct method
requires about 20% more EP traversal steps. Also, a direct
frustum culling test is more expensive than an inverse test.
Accordingly, the inverse method clearly has an edge, at least for
the coherent packages which we are currently using.
We have conducted preliminary tests on using MLRTA to
facilitate adaptive geometric anti-aliasing as described above.
Preliminary results show that for a given level of quality it results
in a 50% reduction in the number of actual rays shot for a given
scene (these results were evaluated using static images). In our
experience, since we are now able to view most of these scenes at
interactive rates on ordinary desktop machines, temporal aliasing
artifacts are now more dominant. We are planning to revisit these
issues in the future.
The results given in Table 2 were obtained for primary rays.
Similar conclusions can be drawn also from analysis of secondary
rays. Table 3 includes data for primary and shadow rays for the
same 4 scenes (normalized for one primary packet of 4x4 rays). A
significant portion of the intersection tests for non-occluded
shadow rays can be avoided by excluding objects already hit by
the parent primary rays. For this reason the ratio of traversal vs.
intersection steps is even higher than for primary rays (compare
the quotients of rows 1 to 4 and 6 to 8).

6 Limitations of MLRTA and Future Work
MLRTA does not require advance knowledge of the rays in the
group and uses ranges of directions to traverse the whole group at
once. Even the interval extension, as described in section 4.3, uses
exact rays only during intersection tests and operates with
inclusive intervals during traversal. Although this feature
facilitates adaptive anti-aliasing of the image, it prevents direct
utilization of MLRTA for very “wide” packages with small
numbers of rays. In such cases we end up doing a lot of
unnecessary speculative work on behalf of rays which will never
materialize. This problem cannot be fixed merely by splitting the
range data. In Figure 8, a big group of secondary rays is
represented in some parametric space. If we just split the original
voxel uniformly, some sub-voxels will have no rays at all and
tracing them would be a waste of time.

If the size of the original group of rays is small compared with
number of sub-voxels, it is very unlikely that any sub-voxel will
include a large number of rays. In this situation, MLRTA or any

other collective traversal mechanism will be ineffective. At the
same time, for all secondary rays considered together there exists
a partitioning of the parametric space for which there will be
substantial amount of sub-voxels with a considerable number of
coherent rays in each one. This draws a parallel with the Dirichlet
Principle (if you try to place n+1 rabbits into n cells, there will be
at least one cell with at least 2 rabbits). We have to select sub-
voxels in such a way that they will be large enough to encompass
big groups of rays yet small enough to be traversed mostly
“together” through the tree.

Figure 8: Distribution of secondary rays.
Each red dot represents a ray in some
parametric space (3D origin + 2D
direction). Some voxels have none or very
few rays, while others have a lot of coherent
rays.

We are planning to research these issues, in particular exploring
approaches for culling such 5D voxels first outlined by Arvo and
Kirk [1987]. We assume that the 3D component of such a
parametric space can be handled implicitly by associating rays
with low-level cells in a kd-tree when they are traversed. These
cells are usually small as this is one of the goals of kd-tree
builder. We can then traverse those voxels with a larger number
of constituent rays using the interval approach as described in
section 4.3. All possible splits of the directions of the original
group can be pre-computed using a simple binning technique to
avoid tracing empty groups. Voxels with a small number of rays
could be traversed on a per-ray basis.
This is, of course, speculation at this point and whatever approach
eventually gets used will have to be compared against tracing
individual rays sequentially. Presumably, by selecting the proper
size of the original tile and tracing different levels of secondary
rays separately (as suggested by Nakamaru and Ohno in [1997]),
this could be effective for the majority of scenes.
Considering shadow rays for point lights, they can be handled by
MLRTA directly by tracing them from the light sources to the hit
points produced by the primary rays. Currently, we implemented
a simplified version of this approach by using MLRTA for all the
secondary rays which are reflected from flat surfaces (considering
reflected and shadow rays). For shadow rays originating from
secondary hits, it may be necessary to use partitioning schemes as
outlined at the beginning of this section.
MLRTA can certainly also be used in photon mapping (for the
final gathering step), area lights, and ambient occlusion schemes
[Gritz et al. 2002]. In fact, area lights seem to be well suited for
processing using a frustum formed between the hit point and
polygonal area lights. We are planning to explore these issues in
the near future.

7 Summary
MLRTA uses geometric properties of a large group of rays to find
a common entry point into the kd-tree for all of the rays in the
group, thus avoiding redundant operations. This approach enables
us to find correct intersection points by using just 1/3 of the
traversal steps which would otherwise be required.
The entry point search is carried out by identifying common
group properties and using these properties in lieu of rays. We

analyzed 2 different ways of defining such group properties. In
one, a set of planes enclosing all the rays is created and traversed
through the kd-tree using the direct frustum culling algorithm.
This approach works well in traditional CG applications where
the frustum is ‘big’ and objects are typically ‘small’ and can be
effectively culled against the frustum by using the frustum’s
planes. For ray-tracing applications however, the opposite
characterization is more likely. It allows us to “invert” the
traditional frustum culling algorithm, that is to cull the frustum by
using the faces of the AABBs. This new inverse frustum culling
algorithm is broader in scope and does not include the notion of
frustum bounding planes. Accordingly, it can be used for more
general collections of coherent rays.
Another attractive property of the MLRTA algorithm is that it
provides a natural measure of the geometric complexity of
specific view directions. We intend to continue investigating these
issues, paying particular attention to anti-aliasing in the temporal
domain [Martin et al. 2002]. An appealing approach would be to
track groups of rays through multiple time frames.

Acknowledgments

Many thanks to Ingo Wald, Philipp Slusallek, and Carsten
Benthin for sharing their results and models. The Asian Dragon
and Thai Statuette models are courtesy of the Stanford 3D
Scanning Repository and room model from the accompanying
video is courtesy of the Cornell University Graphics Group. The
authors would like to thank the anonymous reviewers for their
valuable comments and pointing out to missing references. We
gratefully acknowledge discussions with and assistance from
Radek Grzeszczuk and Gordon Stoll.

References
AMANATIDES, J. 1984. Ray Tracing with Cones, In Computer Graphics

(Proceedings of ACM SIGGRAPH 84), 18, 4, ACM, 129-135.
AMANATIDES, J. and WOO, A. 1987. A fast voxel traversal algorithm

for ray tracing. Eurographics Conference Proceedings 1987, 3–10.
ARVO, J. and KIRK, D. 1987. Fast Ray Tracing by Ray Classification,

In Computer Graphics (Proceedings of ACM SIGGRAPH 87), 21, 4,
ACM, 55-64.

ASSARSSON, U. and MÖLLER, T. 2000. Optimized View Frustum
Culling Algorithms for Bounding Boxes. Journal of Graphics Tools,
5, 9-22.

BENTHIN, C., WALD, I., and SLUSALLEK, P. 2003. A Scalable
Approach to Interactive Global Illumination, Computer Graphics
Forum (Proceedings of Eurographics 2003), 22(3), 621-630.

CHO, F.S. and FORSYTH, D. 1999. Interactive ray tracing with the
visibility complex. Computers and Graphics (Special Issue on
Visibility - Techniques and Applications), 23(5), 703-717.

DAVIS, T. and DAVIS, E. 1999. Exploiting frame coherence with the
temporal depth buffer in a distributed computing environment,
Proceedings of the 1999 IEEE symposium on Parallel visualization
and graphics, 29-38.

DMITRIEV, K., HAVRAN, V., and SEIDEL, H.-P. 2004. Faster Ray
Tracing with SIMD Shaft Culling, Research Report, Max-Planck
Institut Für Informatik, MPI–I–2004–4–006.

GENETTI, J., GORDON, D., and WILLIAMS, G. 1998. Adaptive
Supersampling in Object Space Using Pyramidal Rays. Computer
Graphics Forum, 16(1), 29-54.

GHAZANFARPOUR, D. and HASENFRATZ, J-M. 1998. A Beam
Tracing with Precise Antialiasing for Polyhedral Scenes. Computer &
Graphics, 22(1), 103-115.

GLASSNER, A. 1984. Space Subdivision for Fast Ray Tracing. IEEE
Computer Graphics & Applications, 4(10), 15-22.

GRITZ, L., APODACA, T., QUARONI, G., BREDOW, R., GOLDMAN,
D., LANDIS, H., and PHARR, M. 2002. RenderMan in Production.
ACM SIGGRAPH 2002 Course Notes, Course 16.

HAVRAN, V. and BITTNER, J. 2000. LCTS: Ray Shooting using
Longest Common Traversal Sequences. Computer Graphics Forum,
19(3), C59-C70.

HAVRAN, V. 2000. Heuristic Ray Shooting Algorithms, Ph.D. Thesis,
Czech Technical University.

HAVRAN, V., BITTNER, J., and SEIDEL, H.-P. 2003. Rendering:
Exploiting temporal coherence in ray casted walkthroughs,
Proceedings of the 19th Spring Conference on Computer Graphics
(SCCG 2003), 149-155.

HECKBERT, P. and HANRAHAN, P. 1984. Beam tracing polygonal
objects. In Computer Graphics (Proceedings of ACM SIGGRAPH
84), 18, 4, ACM, 119-127.

KAY, T. L. and KAJIYA, J. T. 1986. Ray Tracing Complex Scenes, In
Computer Graphics (Proceedings of ACM SIGGRAPH 86), 20, 4,
269-278.

MACDONALD, J. and BOOTH, K. 1990. Heuristics for ray tracing using
space subdivision. Visual Computer, 6, 153-166.

MARTIN, W., REINHARD, E., SHIRLEY, P., PARKER, S., and
THOMPSON, W. 2002. Temporally Coherent Interactive Ray
Tracing. Journal of Graphics Tools, 7(2), 41-48.

NAKAMARU, K. and OHNO, Y. 1997. Breadth-First Ray Tracing
Utilizing Uniform Spatial Subdivision, IEEE Transactions On
Visualization and Computer Graphics, 3(4), 316-328.

OHTA, M. and MAEKAWA, M. 1990. Ray-bound tracing for perfect and
efficient anti-aliasing. The Visual Computer: International Journal of
Computer Graphic, 6(3), 125-133.

RAMASUBRAMANIAN, M., PATTANAIK, S., and GREENBERG, D.
1999. A perceptually based physical error metric for realistic image
synthesis. In Proceedings of ACM SIGGRAPH 1999, ACM Press /
ACM SIGGRAPH, Computer Graphics Proceedings, Annual
Conference Series, ACM, 73-82.

SHINYA, M., TAKAHASHI, T., and NAITO, S. 1987. Principles and
applications of pencil tracing. In Computer Graphics (Proceedings of
ACM SIGGRAPH 87), 21, 4, ACM, 45-54.

SZIRMAY-KALOS, L., HAVRAN, V., BALAZS, B., and SZÉCSI, L.
2002. On the Efficiency of Ray-shooting Acceleration Schemes.
Proceedings of the 18th Spring Conference on Computer Graphics
(SCCG 2002), 89-98.

TELLER, S. and ALEX, J. 1998. Frustum Casting for Progressive,
Interactive Rendering. Technical Report, Laboratory for Computer
Science, Massachusetts Institute of Technology, TR-740.

WALD, I., SCHMITTLER, J., BENTHIN, C., SLUSALLEK, P., and
PURCELL, T.J. 2003. Realtime Ray Tracing and its use for
Interactive Global Illumination, STAR, Computer Graphics Forum
(Proceedings of Eurographics 2002), 22(3).

WALD, I., 2004. Realtime Ray Tracing and Interactive Global
Illumination, Ph.D. thesis, Saarland University.

WALD, I., SLUSALLEK, P., BENTHIN, C., and WAGNER, M. 2001.
Interactive Rendering with Coherent Ray Tracing, Computer
Graphics Forum (Proceedings of Eurographics 2001), 20(3), 153-
164.

Ray Tracing Animated Scenes using Coherent Grid Traversal
Ingo Wald Thiago Ize Andrew Kensler Aaron Knoll Steven G. Parker

SCI Institute, University of Utah, 50 S Central Campus Dr., Salt Lake City, UT, 84112

Figure 1: Several animated models ray traced using our coherent grid traversal: a) A gesturing hand of 16K triangles. b) An animated “Poser”
model (78K triangles). c) Animated wind-up toys (11K triangles) walking and jumping incoherently around each other. d) A rigid-body
dynamics simulation of marbles (8.8K triangles). e) A complex scene of 174K animated triangles, where a fairy and a dragonfly dance
through an animated forest. Scenes are rebuilt from scratch every frame, allowing fully dynamic animation. Including shading, texturing, and
hard shadows, as used in the above images, we can render these scenes at 1024 × 1024 pixels with 15.3, 7.8, 10.2, 26.2, and 1.4 frames per
second on a dual 3.2 GHz Xeon. Excluding shading, texturing, and shadows, we achieve 34.5, 15.8, 29.3, 57.1, and 3.4 frames per second.

Abstract
We present a new approach to interactive ray tracing of moderate-
sized animated scenes based on traversing frustum-bounded pack-
ets of coherent rays through uniform grids. By incrementally com-
puting the overlap of the frustum with a slice of grid cells, we accel-
erate grid traversal by more than a factor of 10, and achieve ray trac-
ing performance competitive with the fastest known packet-based
kd-tree ray tracers. The ability to efficiently rebuild the grid on ev-
ery frame enables this performance even for fully dynamic scenes
that typically challenge interactive ray tracing systems.

1 Introduction and Related Work

Over the last 20 years, a number of different data structures have
been proposed for accelerating ray tracing, such as Bounding Vol-
ume Hierarchies (BVH), Grids, Octrees [Glassner 1984], and Bi-
nary Space Partitioning (see, e.g., [Glassner 1989; Havran 2001]).
Each of these data structures has its own strengths and weaknesses,
and the effectiveness of each technique strongly depends on the
scene, application, and efficiency of the actual implementation. Re-
cent work in interactive ray tracing, however, has focused primarily
on kd-trees [Wald 2004; Foley and Sugerman 2005; Reshetov et al.
2005; Woop et al. 2005] and grids [Purcell et al. 2002], or multilevel
grids [Parker et al. 1999b; Reinhard et al. 2000].

While the first interactive ray tracers used grids [Parker et al.
1999b], algorithmic developments for kd-tree based ray tracers —
most notably coherent ray tracing [Wald et al. 2001] and MLRT
traversal [Reshetov et al. 2005] — have significantly improved the
performance of kd-trees. Packet tracing creates groups of spatially
coherent rays that are simultaneously traced together through a kd-
tree, where all rays perform each traversal iteration in lock-step.
This enables effective use of SIMD extensions on modern CPUs,
increases the computational density of the code, and reduces strain
on memory access. In turn, this gave rise to fast software implemen-
tations [Wald 2004], and to instruction-parallel special-purpose ray
tracing hardware [Woop et al. 2005]. Exploiting the coherence in
a packet of rays has yielded further improvements in “Multilevel

c©ACM, 2006. This is the author’s version of the work. it is posted here
with permission of ACM for your personal use. Not for redistribution. The
definitive version will be published in ACM Transactions on Graphics (Pro-
ceedings of ACM SIGGRAPH) 2006.

Ray Tracing” (MLRT) [Reshetov et al. 2005], where a bounding
frustum drives the kd-tree traversal of rays in bulk instead of con-
sidering each ray individually. Consequently, the cost of a traversal
step becomes independent of the number of rays in the packet, en-
couraging larger packets with significantly lower cost per ray.

Unfortunately, these techniques are not directly applicable to
grids. Thus, packet-enabled kd-trees have recently consistently out-
performed grid-based ray tracers, and many believe that they are a
superior acceleration structure (see, e.g., [Stoll 2005]).

Dynamic Scenes Although packet kd-tree traversals outper-
form grids for static scenes, animated scenes present a challenge
due to the high cost of rebuilding a kd-tree as objects move. For
the surface area heuristics required to build fast kd-trees [Wald
and Havran 2006], building the acceleration structure effectively
requires seconds to minutes for moderately complex scenes. This
limitation to static scenes limits the utility of interactive ray trac-
ing for many applications that would benefit from advanced light-
ing models, such as visual simulation, animations, and interactive
games. While some efforts have focused on extending kd-trees to
dynamic scenes [Wald et al. 2003; Günther et al. 2006], they are
limited to mostly hierarchical motion or require advance knowledge
of the scene, and therefore are unsuitable for most truly dynamic
animations that require unstructured motion. For full generality,
we propose rebuilding the acceleration structure from scratch every
frame. For general scenes, with kd-trees this is currently infeasible.

A grid, in contrast, can be created and modified at interactive
rates [Reinhard et al. 2000], at least for moderate sized scenes of
up to a few hundred thousand triangles. Consequently, grids are
attractive for dynamic scenes because of their faster build, even if
they have a higher traversal cost than a kd-tree. Nevertheless, as kd-
trees can be up to an order of magnitude faster than single-ray grids,
grids will only be viable when their traversal can be performed with
similar efficiency. Ultimately, this will require employing the same
techniques for grids that made kd-trees as fast as they are today:
coherent packets of rays, SIMD, and frusta. However, the 3D digital
differential analyzer algorithms usually used for traversing a grid do
not lend well to packetization, as we will explain below.

In this paper, we propose a new traversal scheme for grid-based
acceleration structures that allows for traversing and intersecting
packets of coherent rays using an MLRT-inspired frustum-traversal
scheme. This algorithm is well-suited for SIMD implementation
and provides dramatic speedup over a conventional grid traver-
sal, yielding performance comparable to kd-tree based systems for
static scenes. More importantly, this scheme facilitates animated

scenes in a straightforward manner by interactively rebuilding the
grid from scratch every frame. Using this technique on a fully
animated teapot-in-a-stadium stress scene of 174K triangles, we
achieve a ray tracing performance of around 1-2 frames per sec-
ond (at 10242 pixels with hard shadows and simple shading) on a
dual 3.2 GHz Xeon CPU; for a 16K triangle object, we achieve 15-
16 fps (Figure 1). We mostly consider moderate scenes of up to
a few hundred thousand triangles, and focus on only primary and
shadow rays.

The importance of supporting dynamic scenes has recently been
recognized by many different researchers, and several different ap-
proaches have been proposed concurrently to our work, for exam-
ple [Wald et al. 2006; Stoll et al. 2006; Günther et al. 2006; Lauter-
bach et al. 2006]. We will compare to these approaches in Section 5.

2 Coherent Grid Traversal
Efficient ray-grid traversal has already received much atten-
tion [Cleary et al. 1983; Fujimoto et al. 1986; Amanatides and Woo
1987; Parker et al. 1999b; Spackman and Willis 1991], in aspects of
both algorithm and implementation. Significant improvements can-
not be expected from merely optimizing current implementations;
we must explore new concepts to design an effective packetized
traversal. Our new algorithm delivers to grids the same compo-
nents that made kd-trees as fast as they are today: packets, SIMD
extensions, and frustum traversal; while preserving the trivial com-
putation of an incremental grid marching step.

In this section, we explain why these techniques have been suc-
cessful for other acceleration structures and discuss the difficul-
ties of applying the same concepts to a conventional grid traversal.
Then, we derive our new packet traversal scheme, and show how
it can benefit from known optimizations to achieve significantly
higher performance than past grid implementations.

2.1 Issues with Packetized Grids

The basic idea of packet and frustum traversal is straightforward:
rather than traverse each ray on its own, we exploit the intrinsic
coherence between neighboring rays, and trace them together. If
the rays are coherent, they will largely traverse the same regions
of space, accessing identical nodes in an acceleration structure, and
intersecting the same underlying triangles. Effectively, the cost of
memory access becomes amortized over all the rays in a packet,
ideally for both our acceleration structure and geometry data. In
addition, traversing multiple rays through the same node of the ac-
celeration structure allows us to perform SIMD operations on four
rays at once, reducing the computation costs of both traversal and
primitive intersection by up to a factor of four. Finally, frustum
techniques determine intersection patterns of an entire packet, of-
ten replacing intensive per-ray branching with a single test; thus
amortizing the computations over the entire packet.

The advantages of packets, SIMD, and frustum methods are ben-
eficial to any acceleration structure. Spatially hierarchical struc-
tures, such as a kd-tree or BVH, typically exhibit little divergence at
the upper levels of traversal, making them ideally suited for adapta-
tion to ray packets. Packets are easily traversed through hierarchical
acceleration structures where rays generally progress through iden-
tical cells; diverging only in finer nodes deep down in the hierarchy,
if at all. Even when rays diverge, some rays just traverse a few cells
that they would not have traversed otherwise, but do not interfere
with traversal decisions in the remaining part of the subtree. Since
the packet is never divided, those rays automatically are re-enabled
as soon as the recursion returns from that subtree.

For a grid, in contrast, the situation is more complicated: traver-
sal is always performed on the same fine level, where divergence is
most likely. Moreover, grid based ray tracers typically use 3D dig-
ital differential analyzers (3DDDA) or Bresenham-like algorithms

to iterate through the voxels traversed by the ray (e.g., [Fujimoto
et al. 1986; Amanatides and Woo 1987; Spackman 1990]). These
algorithms can chose only one cell at a time to step into, but differ-
ent rays can disagree on the next cell to be traversed. For example,
Figure 2 shows five rays diverging in cell B; some demand traversal
to C, while others demand traversal to D. If the packet decides to go
to C first, the 3DDDA state variables for those rays entering cell D
become invalid (and vice versa). These invalid state variables break
the 3DDDA algorithm in the next traversal step.

This disagreement could be solved by splitting the packet into
subpackets with the same traversal decision. However, Figure 2
shows that the rays that have diverged in cell B still traverse other
common cells (E and F) later on. If the packet were split at cell B,
that coherence would be lost; in practice, packet splitting quickly
deteriorates to single-ray traversal. Re-merging the packets after
each step would solve that problem, but is prohibitively expensive.

A B C

D E F

G

Figure 2: Five coherent rays traversing a grid. The rays are initially
together in cells A and B, but then diverge at B where they disagree
on whether to first traverse C or D in the next step. Even though they
have diverged, they still visit common cells (E and F) afterwards.

2.2 A Slice-based Packet Traversal for Grids

As the above discussion has shown, the primary concern with pack-
etizing a grid is that with a 3DDDA, different rays may demand
different traversal orders. We solve this by abandoning 3DDDA
altogether, and devise an algorithm that traverses the grid slice by
slice rather than cell by cell. For example, we can traverse the rays
in Figure 2 by traversing through vertical slices; from cell A in the
first slice, we would traverse the rays to cells B and D in the second
slice, then to C and E in the third, and so on. In each slice, we would
intersect all rays with all of the slice’s cells that are overlapped by
any ray. This may traverse some rays through cells they would not
have intersected themselves, but will keep the packet together at all
times. In Figure 2, we would intersect 7 cells with 5 rays each, in-
stead of 27 cell visits if the rays are traced individually. Though the
packet now intersects only 7 instead of 27 cells, the total number of
ray-cell intersection tests is 7× 5 = 35. In practice, ray coherence
easily compensates for this overhead.

We first transform the rays into the canonical grid coordinate sys-
tem, in which a grid of Nx×Ny×Nz cells maps to the 3D region of
[0..Nx)× [0..Ny)× [0..Nz). In that coordinate system, the cell co-
ordinates of any 3D point p can be computed simply by truncating
it. Then, we pick the dominant component (the ±X , ±Y, or ±Z
axis) of the direction of the first ray. This will be the major traver-
sal axis that we call ~K; all rays are then traversed along this same
axis; the remaining dimensions are denoted ~U and ~V . In order to
traverse the rays front to back, which allows early termination when
all rays have intersected before the next slice, all rays must have the
same sign along the traversal direction. For coherent packets, this
is not a limitation; to violate this assumption, two rays would need
to span an angle of more than π

2
. Note that we do not demand that

all rays in a packet have the same dominating axis, nor that their di-
rection signs match along ~U or ~V , as is usually required by kd-tree
packet traversers [Wald 2004] as long as the rays are coherent.

Now, consider a slice k along the major traversal axis, ~K. For
each ray ri in the packet, there is a point pin

i where it enters this
slice, and a point pout

i where it exits. The axis aligned box B that

encloses these points will also enclose all the 3D points — and thus,
the cells — visited by at least one of of the rays. Once B is known,
truncating its min/max coordinates yields the u, v extents of all the
cells on slice k that are overlapped by any of the rays (Figure 3d).

K

a)

K

b)

K

c) d)

U

V

Figure 3: Given a set of coherent rays, our algorithm first computes
the packet’s bounding frustum (a) that is then traversed through the
grid one slice at a time (b). For each slice (blue), we incremen-
tally compute the frustum’s overlap with the slice (yellow), which
determines the actual cells (red) overlapped by the frustum. (c) In-
dependent of packet size, each frustum traversal step requires only
one four-float SIMD addition to incrementally compute the min and
max coordinates of the frustum slice overlap, plus one SIMD float-
to-int truncation to compute the overlapped grid cells. (d) Viewed
down the major traversal axis, each ray packet (green) will have
corner rays which define the frustum boundaries (dashed). At each
slice, this frustum covers all of the cells covered by the rays.

Extension to Frustum Traversal Instead of determining the
overlap B based on the entry and exit points of all rays, we can
compute the four planes bounding the packet on the top, bottom,
and sides. This forms a bounding frustum that has the same overlap
boxB as that computed from the individual rays1. Since the rays are
already transformed to grid-space, we can determine our bounding
planes based on the minima and maxima of all the rays’ u and v

slopes along ~K. For a packet of N×N primary rays, we can simply
compute these extremal planes using the four corner rays; however
for more general (secondary) packets all rays must be considered.

Traversal Setup Once the plane equations are known, we can
intersect the frustum with the bounding box of the grid; the mini-
mum and maximum coordinates of the overlap determine the first
and last slice that should be traversed. If this interval is empty, the
frustum misses the grid, and we can terminate without traversing.

Otherwise, we compute the minimum and maximum u and v co-
ordinates of the entry and exit points with the first slice to be com-
puted. Essentially, these describe the lower left and upper right cor-
ner of an axis-aligned box bounding the frustum’s overlap with the
initial slice, B(0). Note that we only need the u and v coordinates
of each B(i), as the k coordinates are equal to the slice number.

Incremental Traversal Since each slice’s overlap box B(i) is
determined by the frustum’s planes, the minimum and maximum
coordinates of two successive boxes B(i) and B(i+1) will differ
by a constant vector ∆B. With each slice being 1 unit wide, this
∆B is simply ∆B = (dumin, dumax, dvmin, dvmax), where the

1This is similar in spirit to beam tracing [Heckbert and Hanrahan 1984].

dumin/max and dvmin/max are the slopes of the bounding planes
in the grid coordinate space.

Given a slice’s overlap box B(i), we can now incrementally com-
pute the next slice’s overlap box B(i+1) via B(i+1) = B(i) + ∆B.
This requires only four floating point additions, and can be per-
formed with a single SIMD instruction. As mentioned above, once
a slice’s overlap box B is known, the range [i0..i1] × [j0..j1] of
overlapped cells can be determined by truncating B’s coordinates
and converting them to integer values. This operation can also be
performed with a single SIMD float-to-int conversion instruction.
Thus, for arbitrarily sized packets of N × N rays, the whole pro-
cess of computing the next slice’s overlapped cell coordinates costs
only two instructions: one SIMD addition, and one SIMD float-to-
int conversion. The complete algorithm is sketched in Figure 3.

2.3 Efficient Slice and Triangle Intersection

Once the cells overlapped by the frustum have been determined, we
intersect all of the rays in a packet with the triangles in each cell.
Triangles may appear in more than one cell, and some rays will
traverse cells that would not have been traversed without packets.
Consequently, redundant triangle intersection tests are performed.
The overhead of these additional tests can be avoided using two
well-known techniques: SIMD frustum culling and mailboxing.

SIMD Frustum Culling A grid does not conform as tightly to
the geometry as a kd-tree, and thus requires some triangle inter-
sections that a kd-tree would avoid (see Figure 4). To allow for
interactive grid builds, cells are filled if they contain the bounding
boxes of triangles rather than the triangles themselves, further ex-
acerbating this problem (see Section 3). However, as one can see
in Figure 4, many of these triangles will lie completely outside the
frustum; had they intersected the frustum, the kd-tree would have
had to perform an intersection test on them as well.

a) b)

Figure 4: Since a grid (b) does not adapt as well to the scene geom-
etry as a kd-tree (a), a grid will often intersect triangles (red) that
a kd-tree would have avoided. These triangles however usually lie
far outside the view frustum, and can be inexpensively discarded by
inverse frustum culling during frustum-triangle intersection.

For a packet tracer, triangles outside the bounding frustum can
be rejected quite cheaply using Dmitriev et al.’s “SIMD shaft
culling” [2004]. If the four “corner rays” of the frustum miss the tri-
angle on the same edge of the triangle, then all the rays must miss
that triangle2. Using the SIMD triangle intersection method out-
lined in [Wald 2004], intersecting the four corner rays costs roughly
as much as a single SIMD 4-ray-triangle intersection test. As such,
for an N-ray packet, triangles outside the frustum can be intersected
at 4

N
the cost of those inside the frustum.

Mailboxing In a grid, large triangles may overlap many cells. In
addition, since a single-level grid cannot adapt to the position of a
triangle, even small triangles often straddle cell boundaries. Thus,
most triangles will be referenced in multiple cells. Since these ref-
erences will be in neighboring cells, there is a high probability that
our frustum will intersect the same triangle multiple times. In fact,

2Note that some (virtual) corner rays can also be computed for other than
primary rays, by taking the four edges of the bounding frustum.

as shown in Figure 5 this is much more likely for our frustum traver-
sal than for a single-ray traversal: While a single ray would visit the
same triangle only along one dimension, the frustum is several cells
wide, and will re-visit the same triangle in all three dimensions.

a) b)

Figure 5: While one ray (a) can re-visit a triangle in multiple cells
only along one dimension, a frustum (b) visits the same triangle
much more often (even worse in 3D). These redundant intersection
tests would be costly, but can easily be avoided by mailboxing.

Repeatedly intersecting the same triangle can be avoided by mail-
boxing [Kirk and Arvo 1991]. Each packet is assigned a unique
ID, and a triangle is tagged with that ID before the intersection test.
Thus, if a packet visits a triangle already tagged with its ID, it can
skip intersection. Mailboxing typically produces minimal perfor-
mance improvement in either a grid or a kd-tree for inexpensive
primitive such as triangles; and may even reduce performance if
gains from avoiding repeat intersection tests do not outweigh the
costs of checking and updating the mailbox [Havran 2002].

As explained above, however, our frustum grid traversal yields
far more redundant intersection tests than a single ray grid or kd-
tree, and thus profits better from mailboxing. Additionally, the
overhead of mailboxing for a packet traverser becomes insignifi-
cant; the mailbox test is performed per packet instead of per ray,
thus amortizing the cost as we have seen before.

Impact of Mailboxing and Frustum Culling Mailboxing
and frustum culling are both very useful in reducing the number of
redundant intersection tests. In fact, both methods are much more
powerful for our frustum grid traversal than for their original appli-
cations. Mailboxing is performed for multiple rays simultaneously,
so the cost is amortized over the entire packet, and also avoids more
redundant intersection tests. Similarly, due to the higher number of
redundant triangle intersections in the packetized grid, SIMD frus-
tum culling is more beneficial than in a kd-tree, where these inter-
sections may have been avoided in the first place.

To quantify the magnitude of this impact, we have measured
statistics on example scenes, using OpenRT’s kd-tree system em-
ploying 4 × 4 packets, and our frustum grid also using 4 × 4
packets. For each of those, we have measured the total number
of ray-triangle intersections that are performed if neither of these
techniques are used, then the results when mailboxing and finally
SIMD frustum culling are applied. As can be seen from Table 1,
mailboxing alone reduces the number of tests by up to a factor of 2;
for a kd-tree, it usually trims this by less than 10% [Havran 2002].
On top of the reductions achieved by mailboxing, frustum culling
achieves yet another reduction by a factor of 4 to 9. With both tech-
niques, the final number of intersection tests decreases by a factor
of 8.5 to 14, and the absolute number of ray-triangle intersection
tests roughly matches that of a kd-tree (see Table 1).

Together, mailboxing and frustum culling remedy the deficien-
cies of frustum traversal on uniform grids. Only one source of
overhead cannot be avoided: when the bounding box of a trian-
gle overlaps some cells traversed by a ray, but does not fall entirely
outside the frustum. This scenario, however, is not limited to the
grid; it also occurs in a packetized kd-tree.

scene #tris grid grid ratio kd-tree
MB/FC n/n y/n y/y n/n to y/y

toys 11K 14.0M 8.7M 1.0M 14.0 0.82M
hand 15K 12.5M 6.0M 0.9M 13.9 0.85M
ben 78K 12.8M 6.0M 1.5M 8.5 1.1M
conf 274K 96.0M 54M 6.9M 13.9 3.7M

Table 1: Ray-triangle intersection tests for a 4× 4 kd-tree and for
our 4×4 frustum-grid traversal, and the impact of using mailboxing
(MB) and frustum culling (FC). Mailboxing and frustum culling
reduce the number of ray-triangle intersections by up to a factor of
14, to roughly as few as performed by a good kd-tree.

2.4 Extension to Hierarchical Grids

Our algorithm so far has been described for a single-level grid;
however hierarchical grids generally achieve superior performance.
There are several ways to organize grids hierarchically, including
loosely nested grids [Cazals et al. 1995; Klimaszewski and Seder-
berg 1997], recursive or multiresolution grids [Jevans and Wyvill
1989], and macrocells or multigrids [Parker et al. 1999a]. Though
these terms are ill-defined and often used ambiguously, they all
share the same idea of subdividing some regions of space more
finely than others, and thus traverse empty space more quickly than
populated space. To demonstrate that our approach is not restricted
to uniform grids, we have extended it with a single-level macro-
cell layer. Macrocells are a simple hierarchical optimization to
a base uniform grid, often used to apply grids to scalar volume
fields [Parker et al. 1999a]. Macrocells superimpose a second,
coarser grid over the original fine grid, such that each macrocell
corresponds to an M ×M ×M block of original grid cells. Each
macrocell stores a boolean flag specifying whether any of its corre-
sponding grid cells are occupied.

Building the macrocell grid is trivial and cheap. Traversing it
with our algorithm is rather simple: the macrocell grid in essence is
just an M ×M ×M downscaled version of the original grid, and
many of the values computed in the frustum setup can be re-used,
or computed by dividing by M . During traversal, we first consider
a slice of macrocells, and determine all the macrocells overlapped
by the frustum (usually but one in practice). If the macrocells in our
slice are all empty, we can skip M traversal steps on our original
fine grid. Otherwise, we perform these steps as usual.

Though the best value of M obviously depends on the scene,
M = 6 has consistently shown to be a good choice for the test
scenes in our system. For smaller resolutions, the savings for each
macrocell step become too small to justify the additional computa-
tions; for larger resolutions the probability of finding empty regions
decreases. Using macrocells yields a performance improvement of
around 30%, which is consistent with improvents seen for single
ray grids. Additional levels of macrocells could further improve
performance for more complex models with larger grids. More ro-
bust varieties of hierarchical grids could speed up large scenes with
varying geometric density, at the cost of higher build time. As our
goal is to formulate a viable grid traversal for medium-size ani-
mated scenes, these have not yet been investigated.

3 Acceleration Structure Rebuild

With an animated scene, our acceleration structure is recreated ev-
ery frame. Though schemes for incrementally [Reinhard et al.
2000] or hierarchically [Lext and Akenine-Möller 2001] updating a
grid exist, we did not want to impose any restrictions on the kind of
animations we support, and thus opted for the most general method
by rebuilding the grid from scratch for every frame. We use the
common scheme of choosing the number of cells to be a multiple,
λ, of the number of triangles, N [Cleary et al. 1983]. Due to hav-
ing the smallest surface area in relation to volume, cubically shaped

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

no
rm

al
iz

ed
 fp

s

ben - static
erw6 - static
toys - static

fairy - dynamic
hand - dynamic

marbles - dynamic

Figure 6: For several different models, this graph shows the fram-
erate, normalized by the best time, in relation to grid size as deter-
mined by λ (on the X axis). Nearly all tested scenes, both static and
dynamic, reach their optimum at approximately λ ≈ 5.

cells minimize a grid’s expected ray tracing cost. Thus, we choose
the grid’s resolution as:

Nx = dx
3

r
λN

V
, Ny = dy

3

r
λN

V
, Nz = dz

3

r
λN

V
,

where ~d is the diagonal and V the volume of our grid. Fortunately,
our experiments show that most scenes are insensitive to the param-
eter λ and achieved their best performance around λ = 5 (Figure 6),
which we use for all the experiments throughout this paper.

Once the grid resolution is chosen, for each triangle we deter-
mine the cells overlapped by the triangle’s bounding box and add
a reference to the triangle to each of these cells. Since this is quite
conservative, we also tested a more exact grid insertion scheme
using an exact triangle-in-box test (e.g., [Akenine-Möller 2001]).
Though the exact test could reduce the number of triangle refer-
ences in the grid by more than one third, the number of ray-triangle
intersection tests after mailboxing would shrink by only a few per-
cent. For such a small gain, the significantly higher rebuild cost
does not pay off, leading us to use the less accurate — but faster —
bounding box test. For scenes with dominantly long, skinny, and
diagonal triangles, a more accurate test may still pay off.

Since memory allocations are costly, we use a preallocated
pooled-memory scheme that prevents per-cell memory allocations
and fragmentation as the scene changes from frame to frame. We
also use the macrocell information from the previous frame to re-
duce the number of cells we need to check for objects to clear.
Memory layout techniques such as bricking [Parker et al. 1999b]
have also been tested; but since the frustum traversal already amor-
tizes memory accesses over the entire packet, these techniques did
not result in a measurable performance difference for our scenes.
Larger grids, however, may still benefit from these techniques.

In addition to rebuilding the grid, we also need to create the de-
rived data for the triangle test described in [Wald 2004]. Though
this could be avoided by storage-free triangle tests [Möller and
Trumbore 1997], we found these to be slightly inferior in perfor-
mance even after per-frame triangle rebuild time is taken into ac-
count; again, this could be different for much larger scenes than we
tested. Furthermore, the triangle rebuild takes less time than the
grid rebuild, and can be run in parallel with the grid rebuild.

4 Experiments and Results
In addition to the statistics presented above, we evaluated the per-
formance of our algorithm on a working implementation. We
first discuss the impact of the different governing parameters, and
present performance for both static and dynamic scenes. If not men-
tioned otherwise, all experiments are performed at 1024 × 1024
pixels, without display, and on a dual 3.2 GHz Intel Xeon PC.

4.1 Impact of Grid and Packet Resolution

For any given scene, the performance of our frustum traversal algo-
rithm is governed by four factors: The resolution of the grid, macro-
cell resolution, screen resolution, and ray packet size. As shown in
the previous section, choosing the grid resolution via λ = 5 in
practice works fine for the kind of moderate-sized scene we are tar-
geting. Similar experiments show that a macrocell resolution of
6×6×6 usually yields reasonable performance. Though tweaking
these parameters can result in additional performance gains, these
default parameters usually work well.

While grid and macrocell resolution do have an impact, screen
resolution and packet size have the greatest impact on performance.
For any given packet size, the cost of a traversal step is constant, but
the cost for intersecting the cells in a slice increases with the num-
ber of cells that the frustum overlaps. Larger packets will benefit
more from the constant cost traversal step, but are also more likely
to overlap more cells. Thus, there is a natural crossover point where
the savings in traversal steps from a larger packet are offset by the
additional cell intersections. Obviously, this crossover point will
be influenced by the model resolution, as larger models have finer
grids and correspondingly smaller cells.

To find that crossover point — and thus determine the opti-
mal packet size — we generated different resolutions of the Stan-
ford Armadillo model and measured the rendering performance for
packets of 2×2, 4×4, 8×8, 16×16, and 32×32 rays per packet.
The results of these experiments are given in Figure 7. For 2 × 2
rays, the benefit of tracing packets is rather small, and the rendering
times correspondingly high. Also not surprisingly, for packets of
32× 32 rays, the frusta get very wide and performance deteriorates
quickly as model complexity increases. Packets of 16 × 16 rays
are better, but still deteriorate quite quickly. For small to medium
sized models, 8×8 packets performed best until the crossover point
of 250k triangles, at which point the smaller 4 × 4 packets begin
to work better for large models. If a higher degree of coherence
is given for a certain application — for example for higher resolu-
tions, multiple samples per pixel for antialiasing or motion blur, or
when computing soft shadows with lots of shadow rays to the same
light source — even larger packets can still be beneficial.

 0

 0.05

 0.1

 0.15

 0.2

350k300k250k200k150k100k50k#triangles

tim
e

fo
r 1

 fr
am

e
(s

)

2x2
4x4
8x8

16x16
32x32

Figure 7: Static render time with varying packet sizes and different
resolutions of the Stanford Armadillo. There is a crossover point
around 250K triangles where 4 × 4 packets become more efficient
than 8× 8 packets. Nevertheless, both 4× 4 and 8× 8 show nearly
the same performance over a wide range of model complexity.

4.2 Scalability with Screen Resolution

Obviously, the optimal packet size also depends on the screen res-
olution, as higher resolutions result in a higher density of rays, and
thus allow for larger packet sizes. Given today’s hardware con-
straints, we chose 1024× 1024 pixels as a default resolution for all

our experiments. In the future, high-resolution displays and super-
sampling will push demand for even larger images.

While the cost of ray tracing is usually considered to be linear in
the number of pixels, this is not the case for our algorithm. Since
higher resolutions enable larger packets, we generally see sublinear
scaling in screen resolution: When increasing the screen resolution
from 1024 × 1024 to 2048 × 2048 the frame rate usually drops
by only a factor of 1.75-2.25, significantly less than the expected
factor of 4. Weakening the linear dependence on pixel count helps
overcome a major hurdle in interactive ray tracing systems.

4.3 Performance for Static Scenes

Though our main motivation was to enable ray tracing of dynamic
scenes, the performance gains achieved by the packet traversal ap-
ply also to static models. To evaluate our raw ray tracing perfor-
mance, we used several typical static test models for ray tracing,
and rendered them with our system with the rebuild disabled. This
lets us consider traversal time independently from grid build time,
and facilitates a comparison between our algorithm and contempo-
rary interactive ray tracing systems, namely OpenRT [Wald 2004]
and Intel’s MLRT system [Reshetov et al. 2005].

For this comparison, we chose the erw6, conference, and soda
hall scenes of 800, 280K, and 2.2M triangles, respectively, as these
are the only scenes for which numbers from both systems are avail-
able [Reshetov et al. 2005]. Though the axis-aligned features of
these three architectural models strongly favor the kd-trees used in
MLRT and OpenRT, Table 2 shows that our system, despite rel-
atively little low-level optimization, is competitive even for these
best-case scenarios for the other systems, usually being around 3-
4× slower than MLRT, but consistently faster than OpenRT.

scene #tris OpenRT MLRT Frustum Grid
Pentium IV Pentium IV Pentium IV

2.5 GHz 3.2 GHz w/ HT. 3.2 GHz w/ HT
erw6 804 2.3 50.7 18.3
conf 274k 1.93 15.6 4.0
soda hall 2.2m 1.8 24.1 8.0

Table 2: Static scene ray tracing performance for both the packe-
tized grid, OpenRT, and MLRT. OpenRT and MLRT data are taken
from [Reshetov et al. 2005]; all times are including simple shad-
ing, but without display. Though these three scenes are best-case
examples for our competitors, we remain at least competitive.

4.4 Scalability with Model Resolution

As shown in Section 3, for moderate-sized scenes as targeted in
our system, the optimal grid resolution is usually near λ ≈ 5. For
significantly larger models of up to several million triangles, how-
ever, the time for building a fine grid may no longer pay off for
the constant number of rays shot, and a coarser grid may yield the
higher aggregate performance if build time is taken into account.
As shown in Figure 8, for the 10 million triangle Thai Statue, the
grid rebuild for λ = 5 already takes three times longer than trac-
ing the rays. In that case, trading grid resolution for lower rebuild
times pays off, reaching the optimal aggregate performance around
λ = 1. Though the thus reduced grid resolution increases the ren-
der time, this is more than made up for in saved rebuild time, re-

sulting in a total rendering time including rebuild of less then 1.5s
per frame. This time can be further reduced using a second thread
for the rebuild, which we do not want to discuss here in detail.

For comparison, for the Soda Hall model the grid at λ = 1 can be
rebuilt (using one build thread only) in a mere 110ms, and achieves
a frame rate (including rebuild) of 3.5 frames/second; i.e., even
including rebuild, the full 2.2M triangle model is still interactive.
Though this shows that a coarser grid can pay off for much larger
models than intended for our technique, in the remainder of this
paper we will use the above-mentioned default resolution of λ = 5.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 2 4 6 8 10

se
co

nd
s

triangles (millions)

build time λ=1
build time λ=5

render time λ=1
render time λ=5

build + render time λ=1
build + render time λ=5

Figure 8: Rebuild and render times at λ = 1 and λ = 5 for different
resolutions of the Stanford Thai Statue ranging from 100K to 10M
triangles. For these large models, we use a packet size of 4× 4.

4.5 Comparison to Single-Ray Grid Traversal

The somewhat surprising performance of our frustum grid on ar-
chitectural models can be explained by the benefits of packetiza-
tion. To illustrate this difference, we compare our approach to
an optimized single-ray 3DDDA implementation of a hierarchical
grid. Though this implementation uses a more sophisticated multi-
level hierarchy, Table 3 shows that the packetized grid ranges from
6 to 21 times faster, depending on the scene and viewpoint. Though
some of this improvement is due to our use of SIMD extensions that
cannot easily be used with single-ray traversal, SIMD implementa-
tion alone usually gives only about a factor of two; the remainder is
due to cost amortizations and the algorithmic improvements of the
packet/frustum technique.

scene ben hand toys erw6 conf
single-ray 1.57 1.59 1.53 0.67 0.30
8× 8 packets 10.6 16.1 20.0 14.0 3.2
ratio 6.75 10.1 13.1 20.9 10.6

Table 3: Static scene performance (in frames per second) for
our system; and for an optimized 3DDDA single-ray grid, us-
ing a macrocell hierarchy if advantageous. Images rendered at
1024 × 1024 pixels on a Pentium IV 3.2 GHz CPU with 1 thread
and simple shading. Our frustum traversal outperforms the single-
ray variant by up to an order of magnitude.

This effect can best be explained by the number of cells visited
during traversal: as we see in Table 4, compared to a single ray
traversal, the frustum version visits roughly 10 to 20 times fewer
cells for the 4 × 4 packets, and over 50 times fewer for the 8 × 8
packets. Due to efficient packetized slice and triangle intersection
(Section 2.3), the frustum actually tests fewer triangle intersections
as well; and can even do that in SIMD.

scene ben hand toys erw6 conf
ray-triangle intersection tests (millions)
single ray 2.96 3.58 1.97 8.90 15.70
packet 4× 4 1.50 0.93 1.02 1.54 6.90
packet 8× 8 5.74 2.54 2.23 2.00 20.70
visited cells (millions)
single ray 24.30 19.60 7.72 33.20 167.70
packet 4× 4 2.91 0.95 0.80 2.18 16.54
packet 8× 8 1.37 0.36 0.32 0.58 5.84
ratio 4× 4 13.10 20.74 9.65 15.23 10.13
ratio 8× 8 8.35 54.90 23.9 55.7 28.70

Table 4: Total number of triangles intersected and cells visited (in
millions) for a single ray grid; a 4×4; and an 8×8 packet traversal.
No macrocells are being used by either grid, and tests use identical
dimensions for the same scene. Frustum traversal dramatically re-
duces both the numbers of cell visits and triangle intersection tests.

4.6 Performance for Animated Scenes

To support animation, the simplest mechanism for a grid is to re-
build the grid structure every time the geometry changes. For small
to medium sized scenes, rebuilding the grid is fast; allowing the per-
formance achieved for static scenes to be sustained during anima-
tion. For larger scenes, other techniques such as incremental or par-
allel rebuilds may be required to maintain interactive performance,
although these techniques were not employed here. To demonstrate
these performance characteristics, we used several animated scenes
of various sizes and different dynamic behavior, and measured the
rebuild time and rendering performance.

Animated meshes Some of the benchmark scenes are depicted
in Figure 9: The “wood-doll” is a simple model with 5k triangles,
resulting in a grid of 18 × 48 × 36 cells that can be built in 1ms.
Without shading, this scene can be rendered at 67 frames per sec-
ond; even including shading and shadows, 35 frames per second can
be reached. However, consisting only of rigid body animation of its
otherwise static limbs, the wood-doll could also be rendered using
rigid-body animation schemes for kd-trees as proposed in [Wald
et al. 2003].

To stress more complex kinds of animation, we also tested an
animated “hand” model of 16K triangles, as well as “ben”, a runner
character of 80K triangles. Though the “ben” model is already non
trivial in size, its grid of 48× 108× 78 cells can be rebuilt in only
14ms, resulting in a final performance of 16fps without shading,
and 9fps with shading and shadows turned on. The “hand” (72 ×
36× 36 cells built in 5ms) can be rendered at 36 and 16 frames per
second, respectively.

Figure 9: Some of the simpler animated models: a rigid-body
wood-doll (5.3k triangles), a gesturing hand (16k triangles), and
a running poser figure (78k triangles). Without shading and shad-
ows, these scenes render at 66.9, 35.9, and 16.3 frames per second
(including grid rebuild), and still at 35.1, 15.9, and 8.9 frames per
second with shading, texturing, and shadows turned on.

Non-hierarchical animation Though differing in their forms
of animation, both “wood-doll”, “hand”, and “ben” are individual
models that are tightly enclosed by the grid. To demonstrate that
our method is not limited to such models, the “toys” scene has a
set of 5 individually animated wind-up toys that walk around in-
coherently, bump into each other, and even jump over each other
(see Figure 10). With a total of 11K triangles, grid rebuild (for
66 × 18 × 66 cells) took 4ms, yielding a frame rate of 9-17 and
28-40fps with and without shading and shadows, respectively.

The grid’s strongest advantage over other dynamic data struc-
tures is that it does not require any kind of a hierarchy to be present
in the model. Thus, it can also be used for completely incoherent
motion of triangles, such as explosions, physics-driven simulations,
or particle sets. To demonstrate this, we modelled a scene where
110 “marbles” are dropped into a (invisible) glass box, where they
participate in a rigid-body simulation (Figure 10). Since the grid
does not depend on any kind of coherence in the motion, this kind
of animation can be supported easily, taking just 2ms to rebuild
(24× 78× 24 cells), and rendering at 20-24 respectively 42-50fps.

Figure 10: Examples of complex scenes composed of multiple in-
dividual objects: a) wind-up toys walking around and colliding
with each other (11K tri); b) A simulation of 110 marbles dropping
into an (invisible) box (8.8K tri). c) A complex scene of a typical
game scenario: A skinned fairy and dragonfly dance through an an-
imated forest (174K tri total). For the camera and light positions
shown, these animations respectively run at 28.0/39.6, 41.5/50.2,
and 3.3/4.3 fps without shading, and still at 9.4/17.3, 19.6/24.2, and
1.3/1.8 fps if shading, texturing, and shadows are turned on.

A real-world example While all these scenes are more or less
artificial test models, the “fairy forest” scene (see Figure 10) has
been chosen in particular because of its similarity to typical interac-
tive scenarios: In this scene, a fairy and a dragonfly dance through
an animated forest; both fairy and dragonfly are animated via a
skinned skeleton. The scene incorporates both locally dense and
largely empty regions; it is rather wide in spatial extent, requires
complex shading, and consists of a total of 174K triangles, most
of which are animated. Initially, we expected the high variation in
scene density to be quite a challenge for our approach. However,
the frustum traversal did surprisingly well, and still achieved some
3-4 and 1-2fps for shading and no shading, respectively. The fairy’s
grid of 150× 42× 150 cells can be rebuilt in 68ms.

The scenes discussed above were all modeled offline as anima-
tion sequences. This fact is not exploited at all by our traverser. The
grid itself is built from a list of triangles and vertex positions every
frame, neither knowing nor caring where they originate. It does not
exploit the temporal coherence properties of sequenced animation,
but therefore also does not depend on it. Thus, the system would
work just as well for completely dynamic models. The number of
triangles in the scene can easily be changed from frame to frame,
and there is no restriction on the movement of existing triangles.

4.7 Shading, Shadows, and secondary Rays

So far all results have considered primary rays only. However, the
true beauty of ray tracing — and its main advantage over algorithms
like Z-Buffering — is that it can employ secondary rays to compute
effects such as shadows, reflections, and refraction.

Among all kinds of secondary rays, shadow rays are arguably
the easiest one, as they usually expose the amount of coherence that
packet and frustum-based techniques like ours depend on. For most
rendering algorithms, coherent shadow rays can be generated by
connecting all of the primary rays’ hit points to the same point light
source [Wald et al. 2001]. Though certain algorithms like Monte
Carlo path tracing [Kajiya 1986]), can exhibit incoherence even in
shadow rays, most practical applications of ray tracing produce co-
herent shadow rays, and even global illumination has already been
demonstrated with such rays [Benthin et al. 2003].

If we connect all surface hit points to the same point light source,
the resulting shadow packets share a common origin just like pri-
mary rays, and differ from those only in that they have no concept of
“corner rays”. However, one can easily determine a principal march
direction of the packet, and can then construct a frustum over the
packet by determining the four planes that tightly bound the rays
along that direction. The four edges of this frustum can then be
determined quite cheaply, and can be used to perform the SIMD
frustum marching and SIMD frustum culling.

Though shadow packets often are coherent, there is no guarantee
that this is always the case. For example, if a primary packet hits an
object’s silhouette, the 3D hitpoints can be quite distant from each
other, and connecting them to the same point light yields a wide
frustum for which our method breaks down. In fact, for a frustum-
based technique like ours the impact of some packets getting in-
coherent is much worse than for pure packet-based techniques, as
all the triangles in the frustum would get intersected, which might
comprise large parts of the scene.

Fortunately, however, this case can be detected and alleviated
quite easily as already proposed in [Wald et al. 2001]: If the pri-
mary hit points are too far apart (measured, for example, by the
minimum and maximum hit distances along the packet), the packet
can be split into two more coherent subpackets. Without packet
splitting, certain scene and light configurations can easily lead to
severe performance degradation for shadows; while with splitting,
shadow rays in practice work just as well as primary rays.

More general packets that do not even share the same origin
would also be possible, as long as the rays are still coherent. Initial
experiments have shown that this works quite well when, for exam-
ple, computing soft shadows by connecting multiple surface sam-
ples with multiple light samples on the same light source. Though
packet/frustum-based systems have shown that reflection and re-
fraction rays often work surprisingly well in packet-based render-
ers [Woop et al. 2005; Mahovsky 2005], no experimental data are
available for our coherent frustum traversal technique, yet.

5 Summary and Discussion

We presented a new approach to ray tracing with uniform grids.
This algorithm elegantly allows for transferring the recent advan-
tages in fast ray tracing — namely, ray packets, frustum testing and
SIMD extensions — to grids, for which these techniques had pre-
viously not been available. The frustum based grid traversal has
several important advantages. First, it has a simple traversal step,
where a few SIMD operations allow for determining all the cells
in a grid slice that are overlapped by the frustum. This operation
has a constant cost for the entire frustum that is amortized over the
entire packet of rays, and allows for a traversal step that is at least
as cheap as that of a packet/frustum kd-tree. Using mailboxing and
SIMD frustum culling (Section 2.3), our method performs roughly

the same number of ray-triangle intersection tests as the kd-tree.
Though our implementation is not as highly tuned as that of Intel’s
MLRT system [Reshetov et al. 2005], it is up to 21 times faster than
known single-ray grid traversal schemes; competitive with kd-trees;
and inherently supports fully-dynamic animated scenes.

Our method does possess several limitations. The very nature of
using a uniform grid makes the method ill-suited for highly com-
plex scenes with a high variation in size and density of geometry;
for example, the Boeing 777 data set or the classic teapot-in-a-
stadium. Though our macrocell technique works for most cases, for
highly complex scenes multiresolution grids [Parker et al. 1999b],
multilevel techniques [Wald 2004; Lext and Akenine-Möller 2001],
or separation of static and dynamic objects [Reinhard et al. 2000],
as well as mechanisms to incrementally rebuild the grid data struc-
ture may be advantageous.

Grids still suffer from common pathological cases such as large
flat areas (i.e., from architectural models) where geometry overlaps
numerous cells. These situations can be handled more efficiently by
today’s kd-tree based ray tracers and therefore, kd-trees are likely
to remain somewhat more efficient for many scenes. It is also not
guaranteed that our technique will perform similarly well for other
kinds of secondary rays like reflection and refraction, for which the
coherence can be lower than for primary and shadow rays.

Our technique may be very appropriate for special-purpose hard-
ware architectures such as GPUs and the IBM Cell processor [Mi-
nor et al. 2005] that offer several times the computational power of
our current hardware platform. Though kd-trees have been realized
on both architectures, they are limited by the streaming program-
ming model in those architectures. In contrast, a grid-based iter-
ation scheme is a better match to these architectures, and may be
able to achieve a higher fraction of their peak performance. The
current method may also be appropriate for a hardware-based im-
plementation, similar to Woop et al. [2005].

The primary motivation of this approach is to enable ray trac-
ing of dynamically deforming models. Rebuilding an acceleration
structure on each frame enables ray tracing these models without
placing any constraints on the motion. As this update cost is — like
rasterization — linear in the number of triangles, it introduces a
natural limit for the size of models that can be rebuilt interactively.
The rebuild cost is manageable for many applications such as vi-
sual simulation or games, where moderate scene sizes with several
thousand to a few hundred thousand polygons are common.

Comparison to Alternative Approaches In this paper, we
have shown that uniform grids are a viable option for interactively
ray tracing animated scenes. Nevertheless, other alternatives ex-
ist: Even without any assumptions on the scene structure, today’s
O(N log N) kd-tree construction schemes in practice exhibit near-
linear complexity [Wald and Havran 2006], albeit with higher con-
stants; thus, kd-tree construction could eventually be optimized to
achieve interactive rebuilds. As soon as some assumptions on the
scene can be made, even more alternatives become available: If
information from the scene graph could be exploited to steer the
building process [Stoll et al. 2006], interactive kd-tree rebuilds may
become feasible. For the case of locally smooth animations whose
deformations are known in advance, Günther et al. [2006] have
proposed to cluster the triangles into groups of similarly moving
triangles, the motion of which is decomposed into a rigid-body
transform and a residual motion, which are then handled sepa-
rately. For a similar class of scenes — albeit with fewer a-priori
knowledge of the deformation — Wald et al. have also proposed
an approach based on merely deforming a bounding volume hierar-
chy [Wald et al. 2006]: Using a specially designed traversal scheme
their dynamic BVH performs competitively to both grids and kd-
trees. All these approaches allow for interactively ray tracing an-
imated scenes, and more competitors are likely to appear. Hybrid
approaches (e.g., a kd-tree for static content and one separate grid

for each animated character) may be possible, but this has not yet
been investigated.

From the performance and efficiency standpoint, among all these
approaches our coherent grid traversal is arguably the most ex-
treme one in that it is a pure frustum-based technique, while all
other approaches are mixed packet/frustum-traversal techniques
(i.e., [Reshetov et al. 2005; Günther et al. 2006; Wald et al. 2006]).
Compared to a packet-based technique, a pure frustum traversal can
take even better benefit from coherence if it exists; for example,
though doubling the number of rays in the packet would increase
the total number of ray-triangle intersections, the traversal cost
would not change at all. On the other hand, with rising incoherency
a pure frustum based technique will deteriorate much more quickly
than the other techniques — a single incoherent ray in a packet
can significantly widen a frustum, and lead to painfully degraded
performance. Similarly, the frustum alone is prone to suffer worse
from triangles becoming smaller: In the worst case, the frustum
will intersect all the triangles in the frustum, even if those become
as small as to fall in between the raster of rays in the packet. Conse-
quently, when comparing our approach to, for instance, the BVH-
based packet/frustum technique described in [Wald et al. 2006] we
typically see that both techniques usually are within a factor of
∼ 2×within each others performance; the BVH usually has a slight
advantage — in particular for increasingly complex scenes — but
can suffer worse for intentionally designed worst-case scenes, and
in addition is less general in the kind of scenes it can handle.

In summary, we believe our approach to be at least competitive
with other data structures and traversal algorithms known today,
while at the same time being the most general of these techniques,
supporting any incoherent deformation to the scene.

Acknowledgments

The fairy animation has been created using DAZ Studio; the soft-
ware and base models have been graciously provided by DAZ Pro-
ductions (www.daz3d.com). The Thai Statue and Armadillo are
available through the Stanford Scanning Repository. We would like
to thank Alexander Reshetov, Carsten Benthin, Solomon Boulos,
Peter Shirley, Johannes Günther, and Heiko Friedrich for insight
into their respective systems. This work was supported by the State
of Utah Center of Excellence program and the U.S. Department of
Energy through the Center for the Simulation of Accidental Fires
and Explosions under grant W-7405-ENG-48.

References
AKENINE-MÖLLER, T. 2001. Fast 3D triangle-box overlap testing. J.

Graph. Tools 6 (1), 29–33.
AMANATIDES, J., AND WOO, A. 1987. A Fast Voxel Traversal Algorithm

for Ray Tracing. In Eurographics ’87. Eurographics Association, 3–10.
BENTHIN, C., WALD, I., AND SLUSALLEK, P. 2003. A Scalable Approach

to Interactive Global Illumination. Computer Graphics Forum 22 (3),
621–630. (Proceedings of Eurographics).

CAZALS, F., DRETTAKIS, G., AND PUECH, C. 1995. Filtering, Cluster-
ing and Hierarchy Construction: a new solution for Ray Tracing very
Complex Environments. In Proceedings of Eurographics ’95.

CLEARY, J., WYVILL, B., BIRTWISTLE, G., AND VATTI, R. 1983. A
Parallel Ray Tracing Computer. In Proceedings of the Association of
Simula Users Conference, 77–80.

DMITRIEV, K., HAVRAN, V., AND SEIDEL, H.-P. 2004. Faster Ray Trac-
ing with SIMD Shaft Culling. Research Report MPI-I-2004-4-006, Max-
Planck-Institut für Informatik, Saarbrücken, Germany.

FOLEY, T., AND SUGERMAN, J. 2005. KD-tree acceleration structures for
a GPU raytracer. In Proceedings of HWWS, 15–22.

FUJIMOTO, A., TANAKA, T., AND IWATA, K. 1986. ARTS: Accelerated
ray tracing system. IEEE CG&A 6 (4), 16–26.

GLASSNER, A. S. 1984. Space subdivision for fast ray tracing. IEEE
CG&A 4 (10), 15–22.

GLASSNER, A. 1989. An Introduction to Ray Tracing. Morgan Kaufmann.
GÜNTHER, J., FRIEDRICH, H., WALD, I., SEIDEL, H.-P., AND

SLUSALLEK, P. 2006. Ray tracing animated scenes using motion de-
composition. In Proceedings of Eurographics 2006. (to appear).

HAVRAN, V. 2001. Heuristic Ray Shooting Algorithms. PhD thesis, Faculty
of Electrical Engineering, Czech Technical University in Prague.

HAVRAN, V. 2002. Mailboxing, Yea or Nay? Ray Tracing News 15 (1).
HECKBERT, P. S., AND HANRAHAN, P. 1984. Beam tracing polygonal

objects. In Proceedings of SIGGRAPH, 119–127.
JEVANS, D., AND WYVILL, B. 1989. Adaptive voxel subdivision for ray

tracing. Proceedings of Graphics Interface ’89 (June), 164–172.
KAJIYA, J. T. 1986. The Rendering Equation. In Computer Graphics

(Proceedings of ACM SIGGRAPH), D. C. Evans and R. J. Athay, Eds.,
vol. 20, 143–150.

KIRK, D., AND ARVO, J. 1991. Improved ray tagging for voxel-based ray
tracing. In Graphics Gems II, J. Arvo, Ed. Academic Press, 264–266.

KLIMASZEWSKI, K. S., AND SEDERBERG, T. W. 1997. Faster ray tracing
using adaptive grids. IEEE CG&A 17 (1) (Jan./Feb.), 42–51.

LAUTERBACH, C., YOON, S.-E., TUFT, D., AND MANOCHA, D. 2006.
RT-DEFORM: Interactive Ray Tracing of Dynamic Scenes using BVHs.
Tech. Rep. 06-010, Department of Computer Science, University of
North Carolina at Chapel Hill.

LEXT, J., AND AKENINE-MÖLLER, T. 2001. Towards rapid reconstruction
for animated ray tracing. In Eurographics Short Presentations, 311–318.

MAHOVSKY, J. 2005. Ray Tracing with Reduced-Precision Bounding Vol-
ume Hierarchies. PhD thesis, University of Calgary.

MINOR, B., FOSSUM, G., AND TO, V. 2005. TRE : Cell broadband
optimized real-time ray-caster. In Proceedings of GPSx.

MÖLLER, T., AND TRUMBORE, B. 1997. Fast, minimum storage ray
triangle intersection. JGT 2 (1), 21–28.

PARKER, S., PARKER, M., LIVNAT, Y., SLOAN, P.-P., HANSEN, C., AND
SHIRLEY, P. 1999. Interactive ray tracing for volume visualization.
IEEE Trans. on Computer Graphics and Visualization 5 (3), 238–250.

PARKER, S. G., MARTIN, W., SLOAN, P.-P. J., SHIRLEY, P., SMITS,
B. E., AND HANSEN, C. D. 1999. Interactive ray tracing. In Proceed-
ings of Interactive 3D Graphics, 119–126.

PURCELL, T., BUCK, I., MARK, W., AND HANRAHAN, P. 2002. Ray trac-
ing on programmable graphics hardware. In Proceedings of SIGGRAPH,
703–712.

REINHARD, E., SMITS, B., AND HANSEN, C. 2000. Dynamic acceleration
structures for interactive ray tracing. In Proceedings of the Eurographics
Workshop on Rendering, 299–306.

RESHETOV, A., SOUPIKOV, A., AND HURLEY, J. 2005. Multi-level ray
tracing algorithm. In Proceedings of SIGGRAPH, 1176–1185.

SPACKMAN, J., AND WILLIS, P. 1991. The SMART navigation of a ray
through an oct-tree. Computers and Graphics 15 (2), 185–194.

SPACKMAN, J. 1990. Scene Decompositions for Accelerated Ray Tracing.
PhD thesis, The University of Bath, UK. Available as Bath Computer
Science Technical Report 90/33.

STOLL, G., MARK, W. R., DJEU, P., WANG, R., AND ELHASSAN, I.
2006. Razor: An Architecture for Dynamic Multiresolution Ray Tracing.
Tech. Rep. 06-21, University of Texas at Austin Dep. of Comp. Science.

STOLL, G. 2005. Part II: Achieving Real Time - Optimization Techniques.
In SIGGRAPH 2005 Course on Interactive Ray Tracing, P. Slusallek,
P. Shirley, I. Wald, G. Stoll, and B. Mark, Eds.

WALD, I., AND HAVRAN, V. 2006. On building good kd-trees for ray
tracing, and on doing this in O(N log N). Tech. Rep. UUSCI-2006-009,
SCI Institute, University of Utah.

WALD, I., SLUSALLEK, P., BENTHIN, C., AND WAGNER, M. 2001. Inter-
active Rendering with Coherent Ray Tracing. Computer Graphics Forum
20 (3), 153–164. (Proceedings of Eurographics).

WALD, I., BENTHIN, C., AND SLUSALLEK, P. 2003. Distributed Interac-
tive Ray Tracing of Dynamic Scenes. In Proceedings of the IEEE Sym-
posium on Parallel and Large-Data Visualization and Graphics (PVG).

WALD, I., BOULOS, S., AND SHIRLEY, P. 2006. Ray Tracing Deformable
Scenes using Dynamic Bounding Volume Hierarchies. ACM Transac-
tions on Graphics (conditionally accepted, to appear).

WALD, I. 2004. Realtime Ray Tracing and Interactive Global Illumination.
PhD thesis, Saarland University.

WOOP, S., SCHMITTLER, J., AND SLUSALLEK, P. 2005. RPU: A pro-
grammable ray processing unit for realtime ray tracing. In Proceedings
of SIGGRAPH, 434–444.

Razor: An Architecture for Dynamic Multiresolution Ray Tracing

Gordon Stoll*, William R. Mark**, Peter Djeu**, Rui Wang***, Ikrima Elhassan**

University of Texas at Austin Department of Computer Sciences
Technical Report #06-21

April 26, 2006

* = Intel Research, ** = University of Texas at Austin, *** = University of Virginia

Abstract

Rendering systems organized around the ray tracing visibility algorithm provide a powerful and
general tool for generating realistic images. These systems are being rapidly adopted for offline
rendering tasks, and there is increasing interest in utilizing ray tracing for interactive rendering as
well. Unfortunately, standard ray tracing systems suffer from several fundamental problems that
limit their flexibility and performance, and until these issues are addressed ray tracing will have
no hope of replacing Z-buffer systems for most interactive graphics applications.

To realize the full potential of ray tracing, it is necessary to use variants such as distribution ray
tracing and path tracing that can compute compelling visual effects: soft shadows, glossy
reflections, ambient occlusion, and many others. Unfortunately, current distribution ray tracing
systems are fundamentally inefficient. They have high overhead for rendering dynamic scenes,
use excessively detailed geometry for secondary rays, perform redundant computations for
shading and secondary rays, and have irregular data access and computation patterns that are a
poor match for cost-effective hardware.

We describe Razor, a new software architecture for a distribution ray tracer that addresses these
issues. Razor supports watertight multiresolution geometry using a novel interpolation technique
and a multiresolution kD-tree acceleration structure built on-demand each frame from a tightly
integrated application scene graph. This dramatically reduces the cost of supporting dynamic
scenes and improves data access and computation patterns for secondary rays. The architecture
also decouples shading computations from visibility computations using a two-phase shading
scheme. It uses existing best-practice techniques including bundling rays into SIMD packets for
efficient computation and memory access. We present an experimental system that implements
these techniques, although not in real time. We present results from this system demonstrating
the effectiveness of its software architecture and algorithms.

Outline of this document

Pages 4-15 of this document constitute the paper submitted to the SIGGRAPH 2006 conference
on January 25, 2006. We have not made any changes to the document since that date, other than
to de-anonymize the author list and change the page header to indicate that it is now a technical
report. The paper was not accepted to SIGGRAPH and so we expect to submit a future version of
the work for publication, but we wanted to make this snapshot description of our work available
to the research community now.

Pages 1-3 of this document provide some updated information that did not appear in the original
document, including some missing references to previous work, a list of concurrent work, and
acknowledgements.

Additional previous work

BENTHIN, C., WALD, I., AND SLUSALLEK, P. Interactive ray tracing of free-form surfaces, 2004,
Proceedings of Afrigraph 2004.
 This paper describes a system for interactive ray tracing of cubic Bezier patches and
Loop subdivision surfaces. It uses a fixed subdivision depth in contrast to Razor which
subdivides adaptively. By using a fixed subdivision depth, Benthin et al.’s system avoids the
need to address many of the issues with surface cracking and tunneling that Razor must address.

Concurrent work on ray tracing dynamic scenes

WALD, I., IZE, T., KENSLER, A., KNOLL, A., AND PARKER, S. Ray tracing animated scenes using
coherent grid traversal. Technical Report, SCI Institute, University of Utah, No UUSCI-2005-
014, 2006. (conditionally accepted to ACM SIGGRAPH 2006).
 This paper uses a grid acceleration structure for ray tracing arbitrary dynamic scenes of
moderate complexity. By adapting and extending packet-tracing and frustum culling techniques
originally developed for kd-trees, the system achieves performance for primary rays and shadow
rays that is reasonably close to that of a cost-optimized kd-tree. No results are reported for other
types of secondary rays.

WALD, I., BOULOS, S., SHIRLEY, P. Ray tracing deformable scenes using dynamic bounding
volume hierarchies. Technical Report, SCI Institute, University of Utah, No UUSCI-2005-014,
2006. (conditionally accepted to ACM Transactions on Graphics).
 This paper uses a bounding-volume acceleration structure for ray tracing dynamic
scenes, and more specifically deformable objects. To achieve high performance, the acceleration
structure must be pre-built in a cost-optimized manner for the expected object deformations.

LAUTERBACH, C., YOON, S., TUFG, D., AND MANOCHA, D. RT-DEFORM: Interactive ray
tracing of dynamic scenes using BVHs, 2006. Available online at
http://gamma.cs.unc.edu/BVH.
 This paper also directly uses a bounding-volume hierarchy as a ray tracing acceleration
structure. The BVH is incrementally updated as objects deform. Since the quality of the BVH
degrades with time due to the incremental updates, the system rebuilds the BVH from scratch
once its efficiency drops below a pre-set threshold.

WALD, I. On building fast kd-trees for ray tracing, and on doing that in O(N log N). Technical
Report, SCI Institute, University of Utah, No UUSCI-2006-009, 2006.
 This paper presents a nice overview of algorithms and implementation details for
constructing and traversing cost-optimized kd-tree acceleration structures. The paper also
describes an algorithmic change to improve the efficiency of building cost-optimized kd-trees.

Concurrent work on ray tracing with multiple levels of detail

YOON, S. LAUTERBACH, C., AND MANOCHA, D. R-LODs: Fast LOD-based ray tracing of large
models, University of North Carolina at Chapel Hill, Department of Computer Sciences
Technical Report #TR06-009, 2006.
 This paper describes a simple mechanism for supporting LOD in a ray tracer for static
scenes. As in Razor, a single kd-tree is used to hold both original and simplified representations.
The simplification used for LOD does not preserve topology, and the LOD transitions are

discrete. This approach has the advantages that the implementation is fast and that drastic
simplification is possible, but the disadvantage that artifacts such as cracking and popping occur.
The system provides some control over LOD artifacts by suppressing the LOD transition for a
particular kd-tree node until the screen-space projection of the kd-node is smaller than a user-
specific threshold measured in pixels.

Acknowledgements

Don Fussell participated in much of our early thinking about the system design and in particular
about the importance of integrating the scene graph with the acceleration structure. Okan Arikan
provided several useful suggestions and helped us compare Razor’s approach to that of batch
rendering systems. Jim Hurley, Bob Liang, and Stephen Junkins at Intel have strongly supported
this research effort. This work was funded by Intel, Microsoft Research, and the University of
Texas.

University of Texas at Austin, Dept. of Computer Sciences Technical Report #TR-06-21

Razor: An Architecture for Dynamic Multiresolution Ray Tracing

Gordon Stoll∗

Intel Corporation
William R. Mark†

UT Austin
Peter Djeu‡

UT Austin
Rui Wang§

U Virginia
Ikrima Elhassan¶

UT Austin

Abstract

Rendering systems organized around the ray tracing visibility algo-
rithm provide a powerful and general tool for generating realistic
images. These systems are being rapidly adopted for offline render-
ing tasks, and there is increasing interest in utilizing ray tracing for
interactive rendering as well. Unfortunately, standard ray tracing
systems suffer from several fundamental problems that limit their
flexibility and performance, and until these issues are addressed ray
tracing will have no hope of replacing Z-buffer systems for most
interactive graphics applications.

To realize the full potential of ray tracing, it is necessary to use
variants such as distribution ray tracing and path tracing that can
compute compelling visual effects: soft shadows, glossy reflec-
tions, ambient occlusion, and many others. Unfortunately, current
distribution ray tracing systems are fundamentally inefficient. They
have high overhead for rendering dynamic scenes, use excessively
detailed geometry for secondary rays, perform redundant computa-
tions for shading and secondary rays, and have irregular data access
and computation patterns that are a poor match for cost-effective
hardware.

We describe Razor, a new software architecture for a distribution
ray tracer that addresses these issues. Razor supports watertight
multiresolution geometry using a novel interpolation technique and
a multiresolution kD-tree acceleration structure built on-demand
each frame from a tightly integrated application scene graph. This
dramatically reduces the cost of supporting dynamic scenes and im-
proves data access and computation patterns for secondary rays.
The architecture also decouples shading computations from visibil-
ity computations using a two-phase shading scheme. It uses ex-
isting best-practice techniques including bundling rays into SIMD
packets for efficient computation and memory access. We present
an experimental system that implements these techniques, although
not in real time. We present results from this system demonstrating
the effectiveness of its software architecture and algorithms.

Keywords: ray tracing, level of detail, rendering

1 Introduction

It has been a longstanding goal in computer graphics to synthesize
images interactively that are indistinguishable from those we ob-
serve in the real world. Despite much progress over the past thirty

∗e-mail: gordon.stoll@intel.com
†e-mail:billmark@cs.utexas.edu
‡e-mail:djeu@cs.utexas.edu
§e-mail:rui.wang@gmail.com
¶e-mail:ikrima@mail.utexas.edu

years, current interactive graphics systems are still far from that
goal.

It is becoming increasingly clear that the Z-buffer algorithm used
in today’s interactive graphics systems is likely to fundamentally
limit progress towards photorealism. Within the next 5-10 years,
we believe that the Z-buffer algorithm will need to be augmented or
replaced with algorithms such as ray tracing that efficiently support
a more general class of visibility queries. This transition to ray
tracing is already well under way in offline rendering [Tabellion
and Lamorlette 2004].

Recently developed interactive ray tracing systems [Parker et al.
1999; Woop et al. 2005; Reshetov et al. 2005] compellingly demon-
strate that it is no longer possible to dismiss interactive ray tracing
as computationally infeasible. Yet these existing systems have se-
rious limitations that make them impractical for most mainstream
interactive applications. In particular, these systems perform poorly
for large dynamic scenes, and especially for scenes containing de-
formable objects such as human characters. Furthermore, when
these systems are running at interactive rates on practical hardware
they typically implement classical Whitted ray tracing, which for
most applications does not provide a compelling improvement in
visual quality over state-of-the-art Z-buffer rendering.

The true advantages of ray tracing visibility algorithms only be-
come apparent with the addition of effects that are produced using
distribution ray tracing [Cook et al. 1984]. These effects include
soft shadows, glossy reflections, diffuse reflections, ambient occlu-
sion, subsurface scattering, final gathering from photon maps and
others. But current distribution ray tracing systems are fundamen-
tally inefficient, particularly for dynamic scenes. Until these ineffi-
ciencies are resolved, ray tracing will not be able to replace Z-buffer
rendering for most interactive applications.

In this paper, we explain why current distribution ray tracing sys-
tems are inefficient, and propose a new rendering-system architec-
ture that reduces or eliminates the various inefficiencies. Our ap-
proach is explicitly designed to be appropriate for future interactive
use. We also present an experimental system that implements our
approach in testbed form. Although this system is not parallelized
and performance-tuned as would be necessary to achieve interac-
tive performance, it demonstrates the viability of the core ideas in
our new rendering architecture.

It is important to understand that our motivation for this work is
to develop a better understanding of how to build future interactive
rendering systems that support the full set of functionality that one
would want in an interactive ray tracing system. This strategy con-
trasts with most other recent work on interactive ray tracing, which
takes the opposite approach of either restricting functionality (e.g.
dynamics) or image quality (e.g. resolution, visual effects, shading)
or simply running on impractical hardware (large clusters) so that
the system can run at interactive rates today.

The most important new ideas in this paper are:

• The system architecture as a whole.

• A novel algorithm for representing and intersecting continu-
ous level-of-detail surfaces in a ray tracer.

• A practical technique for lazily building a multiresolution kD-

1

University of Texas at Austin, Dept. of Computer Sciences Technical Report #TR-06-21

tree each frame from a tightly-integrated scene graph holding
a dynamic scene. All major system data structures except the
original scene graph are rebuilt every frame.

• An approach to surface shading that partially decouples shad-
ing computations from visibility computations. This approach
extends the grid-based shading approach pioneered in the
REYES system [Cook et al. 1987] to a ray tracing framework.

2 The Challenges

There are several challenges to building an efficient distribution ray
tracing system:

Overall system performance:

Distribution ray tracing is computationally expensive, so systems
must use a variety of best-practice techniques to achieve high per-
formance at reasonable cost. First, geometry must be tessellated
into triangles before intersection testing (see e.g. [Christensen et al.
2003]). Second, the system must use an efficient acceleration struc-
ture such as a cost-optimized kD-tree [Havran and Bittner 2002]
1. Third, the system must support aggregation of rays into packets
[Wald et al. 2001]. By bundling rays into packets, cache hit rates
are improved, branch mis-predict penalties are reduced, and use of
register SIMD hardware such as SSE is improved. These practical
considerations constrain other aspects of the system design.

Dynamic scenes:

If objects are moving within the scene, it is not possible to treat
the construction of a spatial-acceleration structure as a “free” pre-
processing step – part or all of the work must be performed each
frame. Furthermore, if the objects undergo non-rigid motion such
as deformation (as is common in skinned characters used in com-
puter games), then it is not even possible to use the common opti-
mization of pre-building acceleration structures for individual ob-
jects.

If the scene is complex with many occlusions (such as an entire
building with occupants), then it is unacceptably expensive to build
the entire acceleration structure every frame. This problem is even
more acute if we want to represent each object at multiple levels
of detail; in this case the finer levels of detail will cause the sys-
tem to run out of memory if we store tessellated geometry in the
acceleration structure.

Distribution-sampled secondary rays:

Distribution ray tracing systems cast large numbers of secondary
rays. For example, many rays are cast to sample area light sources,
to sample incoming BRDF directions, and for ambient occlusion
computations. There are many more secondary rays than primary
rays, so the cost of tracing the secondary rays and tessellating the
geometry they hit dominates the ray tracing time.

Redundant shading computations:

Most ray tracers perform shading computations at each ray hit
point. At high screen-space super-sampling rates, most of these
shading computations are redundant. The situation is even worse
for shaders that require arbitrary differential computations, since
these shaders must be run three times at each hit point to compute
discrete differentials [Gritz and Hahn 1996]. Redundant shading
computations severely degrade overall system performance, since

1This data structure is perhaps more accurately an axis-aligned BSP tree,
but we use the common ray tracing parlance here

it is common for a renderer’s surface shading costs to be greater
than than that of all other rendering costs combined.

3 High-level solutions

Once the challenges above are understood, a set of potential solu-
tions emerges. At the conceptual level these solution strategies are
simple, but they each uncover more detailed challenges. In this sec-
tion we explain these solution strategies and corresponding detailed
challenges.

Use multiresolution surfaces to reduce the cost of tracing sec-
ondary distribution rays:

As [Christensen et al. 2003] and [Tabellion and Lamorlette 2004]
have demonstrated, most secondary rays can be traced using a very
coarse geometric representation of the scene. Mathematically the
reason for this is that most secondary rays have large ray differen-
tials [Igehy 1999] – i.e. they diverge strongly from each other as
they progress away from their origins (Figure 1).

Figure 1: Distribution-sampled secondary rays diverge rapidly as
they leave a surface. As Christensen et al. demonstrated, the ray
tracing system must use a multiresolution surface representation to
minimize the cost of tracing these secondary rays.

Thus, efficient distribution ray tracing for large scenes requires a
multiresolution scene representation. Without this capability, the
cost of generating and accessing the geometry touched by the sec-
ondary rays becomes prohibitive, particularly if this geometry is
dynamic. In addition to improving memory performance, and re-
ducing the cost of tessellation and shading, these techniques poten-
tially improve SIMD packet tracing efficiency for the same reasons.

Multiresolution and level-of-detail techniques are well understood
for Z-buffer systems, but using them in a ray tracing system
presents additional challenges. Most importantly, there is no longer
a single reference point (the eye point) with which to set the reso-
lution of each surface in the scene. Instead, each ray – including
secondary rays – may request an LOD that is essentially unrelated
to that requested by any other ray. An important implication of this
situation is that any particular surface region may be accessed at
multiple levels of detail by different rays. Under these conditions,
the problem of guaranteeing that surfaces are watertight is much
harder than it is in a Z-buffer system. This guarantee is important
to insure that reflections, refractions, and shadows do not have crack

2

University of Texas at Austin, Dept. of Computer Sciences Technical Report #TR-06-21

artifacts. It is unclear how or whether the multiresolution ray trac-
ing system described by [Christensen et al. 2003] solves this prob-
lem. In future interactive systems these guarantees must operate
automatically; it will be unacceptable to rely on manual per-shot
tuning of LOD parameters as is done in some offline ray tracing
systems [Tabellion and Lamorlette 2004].

Adding multiresolution capability to a ray tracing system makes the
design of the acceleration structure more complicated. Standard
space-partitioning data structures represent each surface once at a
single level of detail. To store each surface at multiple resolutions,
the system must use multiple acceleration structures or be able to
represent the same surface more than once in a single acceleration
structure. Similarly, the ray traversal algorithm must be able to
select the appropriate representation of a surface for intersection
tests with the ray.

These challenges are more serious in a system that builds its accel-
eration structure on demand from dynamic geometry. In particular,
solutions that require extensive preprocessing of geometry or that
require global topological knowledge are unlikely to be acceptable.

Thus the challenges are: 1) How do we provide multiresolution
surfaces that are watertight for ray tracing? 2) How should an ac-
celeration structure store multiresolution surfaces so that the overall
design is efficient for dynamic geometry?

Support dynamic scenes by lazily building the acceleration
structure each frame:

The most straightforward approach to supporting arbitrary dynamic
scenes is to dispense with the idea of pre-building an acceleration
structure, and instead build the acceleration structure each frame.
To avoid unnecessary work, the acceleration structure is built lazily,
so that only the portions of it needed for a particular frame are built.
At the end of the frame, the acceleration structure is discarded.

This conceptually simple idea presents three major challenges:
First, how do we efficiently find the subset of the scene geome-
try that we need to insert into the acceleration structure in any par-
ticular frame? Second, how does a system like this interface with
the rest of an interactive graphics application? Third, how do we
keep the cost of lazy kD-tree construction low enough to do it ev-
ery frame?

Decouple shading from visibility to eliminate redundant shad-
ing computations:

In a system that uses super-sampling the desired rate for visibility
computations is usually higher than that for shading computations.
The obvious solution to this mismatch is to decouple the visibility
computations from the shading computations in some manner.

This is exactly the approach used by the REYES system [Cook
et al. 1987] and by the multi-sampling technique used in modern Z-
buffer graphics systems [Akenine-Moller and Haines 2002]. How-
ever, both of these systems are designed exclusively for eye rays.
A ray tracer cannot pre-shade for a single viewpoint as the REYES
system does. A ray tracer also cannot assume a regular pattern for
all rays as the multi-sampling technique does.

Worse yet, the goal of decoupling visibility from shading interacts
in difficult ways with the goal of using multiresolution surfaces.
We now have a situation where shading may need to be performed
at multiple resolutions for any particular surface. This is straight-
forward when visibility is coupled to shading, but less so once we
decouple them. How do we solve this problem?

4 System architecture

It is clear that these various individual strategies for building an
efficient distribution ray tracing system interact in complex ways.
We will show how to combine these strategies so that they are com-
patible with each other and form a single integrated system. While
some pieces of our system adapt well-known approaches, other por-
tions of the system are individually novel and require more detailed
explanation. Fortunately, the major components are familiar from
any standard ray tracer: the ray/surface intersection technique, the
acceleration structure, and the shading system.

4.1 Multiresolution ray/surface intersection

As summarized earlier, the problem of managing geometric level
of detail [Luebke et al. 2003] is considerably more challenging in a
ray tracer than it is in systems such as a Z-buffer that only use eye
rays or their equivalent. This difficulty is caused by the fact that it is
no longer possible to choose a single level of detail for each object
or surface region based on its distance from the eye point. We must
switch from thinking about level-of-detail in an geometry-centric
manner to thinking about it in a ray-centric manner. The level of
detail required by each individual ray is a unique function of the
location along that ray. Each surface region may be accessed at
multiple levels of detail by different rays [Christensen et al. 2003].
This raises the question of how to generate and manage surface
tessellations at different levels of detail such that each ray can be
intersected with the unique geometry that it requires in a robust and
efficient fashion.

Our solution to this problem applies to adaptive surface tessella-
tion, rather than more aggressive topology modifying LOD or non-
surface primitives (volumes, point clouds, etc.) In other words, the
question is reduced to one of how to robustly and efficiently inter-
sect every ray in the system with surfaces tessellated to an appro-
priate level of detail. There are three important requirements that
constrain the solution space. First, the technique should guarantee
that there will be no cracks or pinholes in the surface. Second, the
technique must be entirely local in nature. This second requirement
is important because our system computes everything on demand
in an unspecified order, and so we cannot rely on the availability of
information about a large local neighborhood or about global sur-
face topology. Third, the technique must allow the system to cache
and reuse tessellations and shading computations at tessellation ver-
tices.

In order to generate and cache tessellations, it seems necessary
to discretize the levels of detail in the system. Conventional
continuous-LOD tessellation would have to generate unique geom-
etry for every ray and thus would not allow reuse of tessellations or
associated shading computations.

Unfortunately, in a ray tracer, discrete level-of-detail approaches
suffer from what we call the tunneling problem. Figure 2 illustrates
this problem, in which a ray with a series of discrete scales passes
through a surface without the intersection being detected, due to the
abrupt transition from one discrete scale to another at a point along
the ray. The result is cracking artifacts in the image. A key chal-
lenge in ray tracing multiresolution surfaces is to design a technique
that avoids tunneling while satisfying other system constraints.

Our solution is to use a hybrid scheme, in which tessellation and
shading are performed at discrete levels of detail, but the system
interpolates between adjacent discrete levels to produce a unique
continuous surface for intersection testing against each ray. Fig-
ure 3 illustrates this scheme. We refer to the adjacent discrete levels

3

University of Texas at Austin, Dept. of Computer Sciences Technical Report #TR-06-21

Figure 2: With discrete LODs, a ray may miss a surface completely
if it changes the LOD that it is requesting at a point along the ray
that is in between the surfaces produced by two discrete LODs.

of detail as the fine mesh and the coarse mesh. The meshes in our
system are generated by subdivision, and each triangle in the fine
mesh maps to a portion of a single triangle in the coarse mesh. The
system is capable of corresponding each vertex of the finer triangle
with a point on the corresponding triangle in the coarse mesh.

Figure 3: For each ray/triangle intersection test, the system gen-
erates a customized triangle that is specific to that ray. This cus-
tomized triangle (shown in green) is generated by interpolating be-
tween triangles from two discrete levels of detail (shown in blue
and in red). There is a separate interpolation weight for each vertex
of the customized triangle. The weight for a vertex is determined
by projecting the corresponding fine-triangle vertex (e.g. V1) onto
the ray, and computing the weight from the scale value at that point
on the ray (shown in yellow).

The system produces the in-between surface by interpolating be-
tween vertex positions in the fine mesh, and the corresponding
points on the coarse surface. This interpolation is performed inde-
pendently for each vertex in the fine mesh, with a separate interpo-
lation weight used for each of the three vertices in a triangle. The
interpolation weight for each vertex in the fine mesh is found by
projecting the vertex onto the ray, and computing the weight from a
continuous scale function defined on the ray. This projection and in-
terpolation step reduces the problem to normal ray/triangle intersec-

tion, and is thus very efficient (various direct solution alternatives
involve multiple cubic equations). One minor alternative would be
to use distance from the origin of the ray to the vertex rather than
projection of the vertex onto the ray, which might have advantages
when multiple rays share an origin (such as within a SIMD packet).
The interpolation weights in this scheme are associated with ver-
tices, not triangles, so if both the fine and the coarse meshes are
watertight, the interpolated mesh is as well. Note that this guaran-
tee is for a single ray, and that we currently make no guarantees
about the relation between what geometry will be “seen” by one
ray versus another. We also cannot guarantee that a surface will not
“misbehave” under interpolation (e.g. folding on itself, etc.). There
is some commonality between this approach and eye-ray LOD tech-
niques for terrain [Luebke et al. 2003].

The technique we have just described allows us to intersect a ray
with a blend of geometry from two adjacent discrete levels of de-
tail. The blend weights are computed from a continuous scale func-
tion along the ray. The remaining questions are how to compute
the continuous scale function and how to manage transitions from
using one pair of levels to using another. The continuous scale func-
tion is calculated using ray differentials [Igehy 1999], as described
below. We manipulate this scale function so that the abrupt switch
from using one pair of levels to using another pair occurs in a re-
gion of flat (constant) scale. These constant-scale regions are made
(provably) large enough that any individual vertex will always be
“seen” consistently by the ray. Space limitations prevent us from
discussing this mechanism in detail, but we hope to report on it in a
future publication that focuses on the LOD mechanism.

Figure 4: The system manipulates the scale values along the ray to
insure that regions of varying scale are separated from each other
by regions of constant scale. These regions of constant scale corre-
spond exactly to one of the discrete levels of detail.

4.1.1 Computing scale values for rays

Each ray in our system has an associated scale that varies continu-
ously with position along the ray. As explained earlier, this scale is
used to decide which surface resolution to use for intersection test-
ing. In this section we explain briefly how this scale is computed.

Our approach builds on the concepts of ray differentials [Igehy
1999] and path differentials [Suykens and Willems 2001], which
we will summarize here. Each ray carries information with it suffi-
cient to compute the origin and direction of its immediate neighbor.
For example, the image-plane differentials provide the origin and
direction of ray that is one pixel to the right and one pixel down on
the image. These differentials are propagated through events such
as reflections so that they continue to indicate the behavior of the
neighbor ray at that point in the ray tree. Additional differentials
are introduced each time the ray tree forks; for example, the system
generates an additional pair of differentials for a ray when an area
light source is sampled.

4

University of Texas at Austin, Dept. of Computer Sciences Technical Report #TR-06-21

Each ray is best thought of as a beam with a finite cross-section.
At any point on the ray, the ray differentials specify the area and
geometry of the beam cross section. Most systems project this cross
section onto a hit surface to compute a texture footprint.

Our system uses the differentials in a different manner, to compute
a single, isotropic world-space scale value at each point on the ray.
The scale is computed such that it is proportional to the width of the
beam footprint. In the case of an anisotropic beam cross-section,
the minimum width is used. By choosing the minimum width we
guarantee that we tessellate and shade at a rate in each dimension
equal to or greater than the desired rate.

Our system currently simplifies the problem of computing foot-
prints from arbitrary path differentials by retaining just the most
important differential pair along with the scale value used at the
last intersection point. Area light rays provide an example of how
this simplification works: as they first leave the surface, their foot-
print is a constant determined by the spacing on the surface, but as
they move further away from the surface, the area-light differential
pair takes over, allowing the footprint to grow rapidly thereafter.
For some effects, it might be necessary to track more differentials.

Before tracing rays, the system must partition each ray into a series
of segments. Each segment represents the portion of the ray that can
be intersected with a single pair of our discrete geometry levels. To
determine each cut point between segments, the system must invert
the equation that computes the scale value from the differentials as a
function of position along the ray. In the general case this inversion
requires solving a quadratic equation, although in common cases
such as eye rays and area-light shadow rays the equation is linear.
Our system uses division to solve the linear equation and otherwise
uses the quadratic formula.

4.1.2 Subdivision implementation

The geometry for each discrete scale is generated by adaptive tes-
sellation of subdivision patches. We currently use a very simple
implementation of the Loop subdivision scheme for triangles [Loop
1987], with support for crease edges [Hoppe et al. 1994] and tex-
ture coordinates [DeRose et al. 1998]. Our implementation of sub-
division operates on vertex grids formed from triangles pairs [Pulli
and Segal 1996]. Vertex grids larger than a specified threshold are
broken up into smaller grids to allow for adaptivity and lazy evalua-
tion in both tessellation and shading. Currently, the target grid size
is 5x5 vertices (32 triangles). Once subdivision has been applied
twice to reach this 5x5 size, all further grids will be of this size (i.e.
the vast majority of the grids in the system). The system computes
bounds on the limit surface for each patch and sub-patch using the
technique described by Kobbelt [Kobbelt 1998]. These bounds are
used during the kD-tree construction.

As in any adaptive tessellation system, there is the possibility of
cracks forming between adjacent patches. In our system, it is eas-
iest to consider the patch cracking problem for the case of a single
discrete scale applied to every patch on a surface. It turns out that
solving the patch cracking problem for this single-scale case is suf-
ficient to solve the problem for the general case as well, since our
multiresolution geometry-interpolation scheme will work correctly
if the geometry for each discrete scale is watertight. We use a sim-
ple local crack fixing technique [Owens et al. 2002] to insure that
each discrete scale is watertight.

Our current subdivision system has serious shortcomings for our
application in that it cannot actively target a specific edge length
(our world space scale threshold) and it cannot actively control
patch aspect ratios. It simply subdivides each patch into four pieces,

roughly evenly in each parametric direction. We initially chose ex-
plicit Loop subdivision for its simplicity and to allow the system
to be tested with existing triangle-mesh content. Using Catmull-
Clark patches instead [Catmull and Clark 1978; DeRose et al. 1998]
would facilitate independent and variable subdivision in both para-
metric directions, be a better match for modern animated content,
and generally be a better long-term choice.

4.2 Dynamic Multiresolution Acceleration Structure

The system utilizes two primary data structures: a scene graph and
a multi-scale kD-tree acceleration structure. The upper levels of the
scene graph contain the original geometric primitives comprising
the scene (subdivision surface patches) and are relatively persistent,
updated from frame to frame according to animation or interaction
as with any typical scene graph system. All other data in the system
is rebuilt from scratch every frame. The lower levels of the scene
graph are built out during the course of rendering a frame using
the results of subdivision operations applied to the original patches.
Hierarchical bounding volumes are maintained throughout this ex-
tended scene graph.

The multi-scale kD-tree acceleration structure must support the in-
terpolating intersection technique described earlier. This technique
breaks individual rays into segments, each of which is intersected
against geometry generated from adjacent discrete levels of detail.
Conceptually, we could build a separate kD-tree for every pair of
adjacent discrete levels. The geometric primitive at the leaf nodes
in each such tree would be a triangle pair consisting of a finer-level
triangle paired with the corresponding portion of a coarser-level tri-
angle. We elaborate on this basic scheme in three ways: 1) the kD-
trees for all of the level pairs are merged into a single data structure,
2) this merged data structure is built lazily from the scene graph,
and 3) the merged data structure stores grids (small regular meshes)
of vertices at its leaf nodes rather than storing individual triangle
pairs.

4.2.1 Merged kD-trees

Figure 5 illustrates our kD-tree. The multiresolution capability is
provided by allowing each node to fill a dual role: when traversed
at a particular scale the node acts as a leaf node containing geometry
at that scale, but when traversed at a finer scale the node acts as an
interior node with a split plane and child nodes. This multi-scale
kD-tree is similar to that described by [Wiley et al. 1997] for a
multiresolution BSP tree, although our system uses a hierarchical
nesting of LODs whereas theirs used n-ary LOD-selection nodes.
Also, our approach does not restrict the location of cut planes with
respect to the geometry as theirs did.

The multi-scale kD-tree acceleration structure can be thought of as
numerous separate kD-trees, each built for a different discrete scale
pair, layered on top of each other. The leaves of a kD-tree built for
a single pair become a frontier of internal nodes in the combined
tree. If we set aside the laziness of the building process for now, the
algorithm for building the tree is as follows:

1) Create a root node for the kD-tree with the
scene bounding box and the scene graph root node.

2) Set the current node to be the root.
3) Set the current discrete LOD level to be the

coarsest supported level.
4) Subdivide the geometry at the current node until

it satisfies the current discrete LOD criteria.
5) Build out the kD-tree from this node until the

5

University of Texas at Austin, Dept. of Computer Sciences Technical Report #TR-06-21

Scale
for

children

Child
node
data

Leaf
node
data

10

9 9

9 9 9 8

9

8

7
SG SG SG SG SG

SG

SG

SG SG

SG SG

SG

SG

Tree for
scale 10

Tree for
scale 9

Tree for
scale 8

Tree for
scale 7

KD-tree Root

= kD-node = igrid

Figure 5: Multi-scale dynamic kD-tree. ’SG’ designates a pointer into the scene graph.

tree termination criteria are satisfied.
6) Retain the current geometry

(these nodes are effectively leaves for
the current discrete LOD level).

7) Set the current discrete LOD level to the next
finer level.

8) Goto 4.

As mentioned, we perform traversal for a single ray segment (and
thus a single discrete level pair) at a time. Traversal is very nearly
identical to normal kD-tree traversal, and thus is similarly effi-
cient. Our kD-tree data structure is specifically designed to utilize
known best practices for high-performance kD-tree traversal [Wald
et al. 2001; Reshetov et al. 2005], including nearly identical SIMD
packet traversal code and an eight-byte internal node record. Rays
simply descend through the merged tree treating all nodes as in-
ternal (split) nodes until they reach either an empty leaf or a node
which is a leaf for the segment’s discrete level pair (i.e. from step
6 above). Note that we have not yet attempted to merge the traver-
sal of the individual segments of the rays into a single continuous
traversal operation. We simply break rays up into segments and
then process each segment against the merged data structure in or-
der along the rays. This is a significant inefficiency which we intend
to address in the future.

Split planes in our tree are chosen using a simple surface area cost
metric [Havran and Bittner 2002], using bounding boxes for split
candidate determination (as opposed to more exact geometry).

4.2.2 Lazy Construction

The basic idea of lazily tessellating and storing geometry has been
used for a long time. Arvo and Kirk lazily build a 5D acceleration
structure for a ray tracer [Arvo and Kirk 1987]. The RenderMan in-
terface [Pixar 2000] supports a callback to user code for on-demand
generation of geometry within a bounding box at the needed reso-
lution, and there are now several ray-tracing implementations of the
RenderMan interface (e.g. [Gritz and Hahn 1996]). [Pharr and Han-
rahan 1996] builds displacement maps on demand in a ray tracer.

But in addition to being desirable for efficiency in large or highly
occluded scenes, laziness is required in order to support multires-
olution geometry. Building out the entire data structure across the
entire range of interesting levels of detail would be prohibitive.

Thus, our system builds its kD-tree lazily. A node encountered
in our tree during traversal may have been previously marked as
“lazy”. Such a node has no children or geometry. Instead, it
has a pointer to a linked list of as-yet unprocessed nodes in the
scene graph. Conceptually these scene-graph nodes can be any
node in the scene graph: an original interior node; an original leaf
node (base patch); or a per-frame temporary node consisting of a
sub-patch produced by earlier subdivision and patch-splitting steps.
However, our current implementation only uses the last two cases.
The information in the lazy kD node’s linked list is sufficient to
build the missing portion of the kD-tree if it is needed. This mech-
anism is similar to one used by Ar et al to build BSP trees for colli-
sion detection [Ar et al. 2002].

At the beginning of every frame, kD-tree construction is initialized
with a single root kD-tree node containing the bounding box of the
entire scene and a single pointer to the root of the scene graph. All
further kD-tree building is triggered by traversal operations during
ray tracing.

4.2.3 Low-Level Grid Intersection Structures

The geometry in the system is managed in grids (small regular
meshes) rather than individual triangles, and the system also per-
forms lazy evaluation at the granularity of a grid. A kD-tree node
that serves as a leaf node at a particular scale may have the associ-
ated geometry marked as “lazy”. Such a node has a linked list of ge-
ometry (patches and sub-patches), but the final grid data structures
have not been constructed yet. When such a node is intersected, the
final vertex data is computed. In addition, a simple bounding vol-
ume hierarchy is constructed based on the internal structure of the
tessellation. This low-level acceleration structure (the “igrid” in fig-
ures 8 and 9) avoids computation of several levels of kD-tree splits

6

University of Texas at Austin, Dept. of Computer Sciences Technical Report #TR-06-21

at the bottom of the tree and likely has better computational regular-
ity and coherence properties as well. This data structure is traversed
with a non-recursive fixed order (“flattened”) traversal scheme as
per [Smits 1998]. As described above in Section 4.1.2, the target
grid size (and in fact the size of the vast majority of grids in the
system)is 5x5 vertices or 32 triangles.

4.2.4 A note on efficiency

This lazy kD-tree-building mechanism is extremely effective. As
mentioned above, laziness is required in order to efficiently support
multiresolution geometry. What is less obvious is the fact that mul-
tiresolution geometry, or some other form of hierarchical clustering,
makes lazy evaluation much more effective.

Standard kD-tree build algorithms build top-down starting from the
full geometry description of the scene and the scene’s bounding
box. Unfortunately this leads to a situation analogous to sifting
through individual grains of sand to figure out where to split a beach
in half. The time to compute the single split at the root node is linear
in the amount of geometry in the scene. This is the case even for
an “optimal” n log n build algorithm. The kD-tree is heavily “top-
loaded” in computational cost, greatly impairing the benefits of lazy
evaluation (you always touch the root, obviously).

Building a merged multiresolution tree as described above makes
the cost of the root node split proportional to the amount of geom-
etry at the coarsest supported level of detail, and similarly removes
the top-loading of computational cost from the entire build process.
Our results for tree building performance clearly demonstrate the
advantages of this technique. We currently only utilize the natu-
ral “clustering” provided by repeatedly subdividing and breaking
up patches. Further efficiency could be achieved by utilizing the
clustering information inherent in a well-structured scene graph.
We expect that the observed performance of kD-tree building for a
well-structured scene graph using these techniques (including lazy
evaluation) will be linear in the amount of geometry actually inter-
sected by rays.

4.3 Split-phase shading

The design of our shading system was driven by the desire to decou-
ple shading from visibility. The REYES system [Cook et al. 1987]
accomplishes this goal, but in a system that only supports eye rays.
Our goal was to extend the REYES approach to a ray tracing frame-
work. Like REYES, our goal is to perform shading computations at
the vertices of a finely tessellated polygon mesh and then interpo-
late to specific hit points, rather than shading at the hit points them-
selves. The REYES algorithm has amply demonstrated the benefits
of this technique: shading calculations can be performed in highly
regular and coherent batches in their natural coordinate space on
the surface, and a variety of otherwise tricky operations (arbitrary
differential calculations, displacement shading) are simplified.

Another critical performance characteristic is that this technique
creates a separation between functions which can be band-limited
a priori from functions which cannot. In REYES, this means that
procedural shaders (expected to band-limit themselves) are sepa-
rated from visibility calculations. The extremely expensive proce-
dural shading operations can be performed less frequently, at the
vertices of the grid, while the cheaper-to-evaluate but ill-behaved
visibility function is super-sampled.

Our system uses this concept by leveraging the system’s multires-
olution representation of geometry. Shading is explicitly factored
into two phases. Operations in the first phase are performed at the

vertices of grids. The functions calculated in phase one are expected
to be band-limited to the frequency of the sampling implied by the
tessellation of the grid. Additionally, as the results are cached and
reused by the system, these values must be independent of viewing
direction. The first phase of shading is calculated lazily the first
time that a ray strikes the given grid and requires the results.

The second phase of shading is more typical of a ray tracer. When a
ray strikes a grid, the results of the first phase are fetched (following
lazy evaluation of the first phase if necessary) and interpolated to
the hit point. These values are available as parameters to phase two.
Shading in this phase is as flexible as shading in any typical ray
tracer. In typical use a BRDF function would be generated from the
results available from phase one, and distribution sampling of the
BRDF would be performed by casting secondary rays as necessary.

A similar split-phase shading model has been applied previously in
physically-based rendering systems [Pharr and Humpreys 2004] in
order to enforce properties such as BRDF reciprocity. The sepa-
ration in our system is more pragmatic and performance-oriented.
Shading operations should be factored into phase one as much as
possible, with the remainder in phase two, without necessarily con-
sidering physical interpretations. Creative abuse of the shading sys-
tem is certainly an option, such as using various mapping tricks in
either of the phases, or casting various physical-or-otherwise sec-
ondary rays in phase one. Variants on irradiance caching based on
casting rays in phase one are certainly possible.

Altogether, there are four sources of performance improvement in
this shading system. First, redundant shading computations caused
by visibility super-sampling are reduced. Second, phase one is
performed on a grid, so that shading “derivative” computations
may be computed by discrete differences with neighbors, rather
than by executing the shader three times for each hit point as is
standard in ray tracers [Gritz and Hahn 1996]. Third, the grid
structure of phase one shading makes it amenable to acceleration
by SIMD mechanisms like x86 SSE. Grid-based shading also im-
proves memory-access locality. Fourth, the scheme improves the
efficiency of SIMD ray packets because there are fewer distinct
kinds of phase two shaders than kinds of combined shaders.

Our experimental system uses simple phase one shaders that read
and filter surface colors from a texture map and compute normal
vectors from a bump map. Our phase two shading currently in-
cludes area light source sampling, mirror reflection, hemisphere
sampling of ambient occlusion, and simple diffuse and Schlick
[Schlick] BRDF evaluation. It remains to be seen how well pro-
grammable shading can be adapted to this shading scheme.

5 Results

We have evaluated our prototype implementation using a courtyard
scene with several animated skinned characters and two area lights,
as shown in the accompanying video. Our rendering and timings
were performed using single-threaded code running on a single
3.2GHz Intel Pentium 4 Processor with 2GBytes of memory.

The courtyard scene contains over 31,000 Loop subdivision
patches, with 2,150 patches in each of the characters. Figure 6
shows a single frame from the animation, rendered at 512x512 res-
olution with 4x image-space super-sampling and 4x sampling of
each area light from each of the four image-space samples. Fig-
ure 7 shows the elapsed time for rendering this frame with a range
of tessellation rate settings. At the coarsest setting, the maximum
on-screen area of a triangle is 37.5 pixels, and roughly 9,500 32-
triangle grids are actually hit by rays and shaded. At the finest

7

University of Texas at Austin, Dept. of Computer Sciences Technical Report #TR-06-21

Figure 6: Courtyard Scene

0 100000 200000 300000

Micropolygon Grids Hit and Shaded

0

20

40

60

80

100

T
im

e
(s

ec
on

ds
)

Total Run Time
kD-Tree Building
Traversal
Intersection

Figure 7: Performance on the Courtyard Scene. The scene was
rendered at a range of tessellation rate settings, resulting in 9,500 to
300,000 visible micropolygon grids (each containing 32 triangles).

setting the maximum triangle area is one pixel, and over 300,000
grids are hit and shaded.

As can be seen in the figure, traversal and intersection consume
from 10-15 seconds each, and are fairly insensitive to the amount of
geometry. The time spent on calculating kD-tree splits is roughly
linear with respect to the amount of geometry and is remarkably
small, at roughly 10 seconds for over 300,000 grids (containing
over nine million triangles). Because of the merged kD-tree and
build algorithm, the maximum number of candidates considered for
any single split (the split at the root) is only proportional to the num-
ber of grids at the coarsest scale, rather than the finest. Lazy build-
ing provides additional efficiency. As a result, on-the-fly conversion
from the scene graph into a kD-tree is clearly not a bottleneck.

A large fraction of the run time is not being spent in any of these
three fundamental ray tracing operations. The bulk of the rest of
the time is being consumed by subdivision surface calculations,
ray differential calculations, and MIPmap filtering, all of which are
completely unoptimized in the prototype. The subdivision calcula-

tion and MIPmapping costs in particular are exacerbated by over-
tessellation, addressed below.

The ambient occlusion sequence in the accompanying video was
rendered with 6x image-space super-sampling and 26x hemisphere
occlusion sampling at each image-space sample for a total of 162
rays cast per pixel. On a similar machine, these frames are roughly
three times as expensive as the multiple-area-light frames, averag-
ing 292 seconds each.

5.1 Over-Tessellation

The prototype implementation suffers from severe over-tessellation,
producing approximately thirty times the number of micropolygons
that would be expected in the ideal case (i.e. simply the screen
area divided by the requested micropolygon area). There are four
primary factors that cause this over-tessellation:

Non-Uniform Edge Lengths in a Single Grid Our simple Loop
subdivision system cannot adapt to varying edge lengths
within a single grid. Large variation in edge lengths can be
caused by highly elongated triangles in the initial mesh, or by
pairing a small triangle with a large triangle in the base grid.
As a result, a single grid may have many edges that are much
shorter than the maximum length edge which drives tessella-
tion.

Subdivision Occurs in Discrete Steps Each iteration of our sub-
division scheme reduces edge lengths by about a factor of two
and triangle area by about a factor of four. This discretiza-
tion is too coarse to precisely target a desired maximum edge
length.

Shading-Grid Scales are Discrete For the two-level intersection
scheme, a ray requires geometry grids for the two discrete
scales that bracket the continuous scale that the ray actually
wants. One of these geometry grids is tessellated at a finer
scale than is strictly necessary for the continuous scale wanted
by the ray.

Viewing Angle We use an isotropic world-space scale metric to
control tessellation. Rays that strike surfaces at shallow angles
may request geometry that is over-tessellated with respect to
projected area.

The first two causes could be largely eliminated with a more sophis-
ticated subdivision surface system capable of tessellating at varying
rates in each parametric direction. Such a system could also ame-
liorate the third cause. If the subdivision system can consistently
generate discrete scale levels which differ by a factor of two in
area rather than four, then the system’s discrete scale values can
be set correspondingly, and the finer-level geometry needed by the
ray will similarly be off by a factor between one and two rather
than between one and four. We believe that this third cause can also
be ameliorated by adjustments to the mechanism for breaking rays
into segments. The fourth and final cause (viewing angle) is signif-
icantly more difficult to address, as the isotropic world-space scale
metric is a basic component of the architecture.

We have measured the separate impact of each of these causes for
the courtyard scene at a requested tessellation rate of one pixel
per triangle. The breakdown is as follows: non-uniform edges =
3.47x, subdivision discretization = 2.26x, grid-scale discretization
= 2.19x, and off-axis viewing = 1.84x. Combining these four mea-
surements yields 31.6x over-tessellation, which closely matches our
observed total deviation from the ideal. For this scene, at least, the
breakdown of the various causes of over-tessellation indicates that

8

University of Texas at Austin, Dept. of Computer Sciences Technical Report #TR-06-21

we can eliminate much of the tessellation problem with more im-
plementation work – the first three causes combined account for
17.2x over-tessellation and can be largely eliminated.

5.2 Memory Consumption

Because of the over-tessellation the prototype implementation suf-
fers from high memory consumption at the desired shading rates.
As an interim measure, we use a workaround that takes advantage
of the fact that the system computes most data structures on de-
mand. We set a maximum memory consumption level and when
that level is hit all data structures other than the persistent top-
level scene graph are simply discarded. Rendering continues, with
needed portions of the data structure being built or re-built on de-
mand. This scheme is a primitive version of a caching scheme that
we plan to implement later; the discard operation is equivalent to a
complete cache flush.

For the courtyard scene rendering described above, at the finest tes-
sellation setting, this memory flush operation occurs 11 times dur-
ing the course of the frame. This cost is included in the times shown
in figure 7; i.e. the total rendering time at the finest setting was ap-
proximately 100 seconds, and the aggregate kD-tree build time was
approximately 10 seconds, even though the kD-tree and all tessel-
lated and/or shaded geometry was simply thrown away eleven times
during the course of the frame. It is difficult to precisely measure
the impact of this flushing, but our best estimate is that the impact
on total run time is less than 10%. This estimate is based on ex-
periments where we varied both the tessellation settings and the
memory flush thresholds.

The minimal performance impact of this crude mechanism indi-
cates that a more sophisticated software caching scheme is likely to
be very effective. A variant of this mechanism would also provide
a simple but efficient coarse-grained parallelism technique. Rather
than dealing with the synchronization issues inherent in the lazy
construction of the data structures, each thread would simply build
its own data structures.

6 Related work

Our work builds on five major foundations: 1) The basic principles
of ray tracing and distribution ray tracing [Appel ; Whitted 1980;
Cook et al. 1984; Igehy 1999], summarized nicely in [Pharr and
Humpreys 2004]; 2) The REYES system for efficient, high-quality
rendering of eye rays [Cook et al. 1987]; 3) Work on multiresolu-
tion ray tracing [Christensen et al. 2003] and related data structures
[Wiley et al. 1997]; 4) Work on efficient ray tracing acceleration
structures [Havran and Bittner 2002; Reshetov et al. 2005; Wald
et al. 2001]; 5) Work on subdivision surface representations [Loop
1987; Hoppe et al. 1994; DeRose et al. 1998].

In this section we compare various aspects of our system design to
alternative approaches.

6.1 Caching schemes for shading, irradiance, and
radiance

Razor’s mechanism for partially decoupling shading from visibility
has two characteristics: First, it interpolates values computed at
nearby points on the surface. Second, these values computed at
nearby points are computed on demand and reused; that is, they
are cached. Razor currently caches and interpolates just material

properties (i.e. the BRDF), although the architecture would easily
support caching of irradiance [Ward et al. 1988; Ward and Heckbert
1992] or a compact representation of radiance [Arikan et al. 2005],
and we plan to implement this capability in the near future.

Our caching and interpolation mechanism was inspired by REYES
[Cook et al. 1987]. REYES assumes a single viewing-ray direc-
tion, and thus can evaluate, cache, and interpolate the entire shad-
ing computation rather than just the BRDF. Both Razor and REYES
cache samples on a grid associated with the surface and use regu-
lar data interpolation. This explicit association of samples with a
surface neighborhood has the potential to facilitate a large class of
interesting optimizations. REYES explicitly generates and caches
results for just a single resolution of each surface, whereas Razor
can cache results for several several different resolutions of a single
surface. In both systems, each cached sample is associated with a
particular resolution and may thus be pre-filtered.

Irradiance caching [Ward et al. 1988; Ward and Heckbert 1992;
Tabellion and Lamorlette 2004] and radiance caching [Arikan et al.
2005] systems cache just irradiance or radiance, rather than caching
the results of the full shading computation. Photon mapping sys-
tems [Wann Jensen 2001] behave similarly. All of these systems
typically cache data as individual points in a global 3-D data struc-
ture such as an octree or kD-tree, and thus do not explicitly asso-
ciate cached points with a particular 2-D surface. This has both
the advantage and disadvantage that points from nearby surfaces or
from nearby patches on the same surface may be accessed during
retrieval, which is not done in our system. These systems also use
scattered data interpolation rather than regular interpolation, and
treat each sample as a true point rather than as a filtered sample
associated with a particular surface resolution as Razor does.

6.2 Ray tracing dynamic scenes

A variety of techniques have been proposed for ray tracing dynamic
scenes. We discuss these techniques in turn and compare them to
our approach.

For the special case of rigid objects, it is possible to pre-build an ac-
celeration structure for each object and transform rays into the ob-
ject coordinate system during ray tracing [Lext and Akenine-Moller
2001; Wald et al. 2003]. A top-level acceleration structure is still
required; some systems use a bounding volume hierarchy, and oth-
ers rebuild a complete top-level kD-tree every frame [Wald et al.
2003].

It is more difficult to efficiently support unstructured motion (also
referred to as non-rigid motion). Several systems rely on building
a complete kD-tree for these objects [Wald et al. 2003], but this
approach performs unnecessary work for occluded objects. It is
also possible to directly trace rays through the scene graph since
it is a bounding volume hierarchy, which may be used directly as
an acceleration structure [Rubin and Whitted 1980]. However, this
approach is less efficient than using a kD-tree for ray tracing accel-
eration.

Several systems [Torres 1990; Chrysanthou and Slater 1992; Rein-
hard et al. 2000; Luque et al. 2005] dynamically update an acceler-
ation structure rather than lazily rebuilding it each frame as we do.
However, we believe that it is simpler and more efficient to lazily
re-build the tree, especially since it appears to be difficult to guar-
antee that a kD-tree remains optimized for traversal cost [Havran
and Bittner 2002] when it is incrementally modified.

9

University of Texas at Austin, Dept. of Computer Sciences Technical Report #TR-06-21

6.3 Interface between scene graph and ray tracer

Our system closely couples the scene graph to the ray tracing ac-
celeration structure, as proposed by [Mark and Fussell 2005]. This
system organization enables the system to lazily build the accel-
eration structure every frame. This organization is very different
from the classical one in which the two data structures are sepa-
rated by an API layer such as OpenGL [OpenGL Architectural Re-
view Board 2003] (for Z-buffers) or OpenRT [Dietrich et al. 2003]
(for ray tracers), and has implications for the design of ray tracing
hardware which are discussed in [Mark and Fussell 2005].

7 Discussion and Future Work

Razor’s high-level system architecture and algorithms are explicitly
designed for future interactive use, even though the performance of
our current implementation is multiple orders of magnitude away
from interactive performance for our target imagery. As with any
complex new system design, we expect a rapid ramp in performance
as we address issues that we have identified in the first working im-
plementation. As our performance results show, most of our exe-
cution time is spent in parts of our system that are unoptimized and
whose execution time grows linearly with micropolygon count. By
addressing issues with over-tessellation and by aggressively tuning
all aspects of system performance, we believe that we can improve
performance by 10-20x. An additional 5x or more in performance
should be possible by parallelizing our system for multi-threaded,
multi-core processors, even using the simple scheme mentioned
above. Thus, we believe that our system will soon be 50-100x
faster on commonplace desktop hardware without any fundamen-
tal changes to the system architecture.

Our experimental implementation current lacks several features that
the overall system architecture would easily support. Displacement
mapping and depth-of-field would be easy to add and virtually free,
just as they are in REYES. For diffuse surfaces, it would be simple
to cast hemisphere-sampling secondary rays in phase one of shad-
ing, yielding a capability similar to irradiance caching.

Our experimental system also lacks some useful features that would
require more effort to support, including motion blur and more ag-
gressive topology-modifying LOD.

Working within our system feels qualitatively different from work-
ing within any other ray tracing framework we’ve used. In particu-
lar, the notion that almost all operations are performed with respect
to a specific spatial scale is very powerful. For example, most “ep-
silon” values within our system are set relative to the current scale,
rather than to fixed global values.

8 Conclusion

We have presented a new software architecture for a dynamic-scene
ray tracer. The architecture represents surfaces at multiple resolu-
tions, integrates scene management with ray tracing, builds most of
its per-frame data structures lazily, and partially decouples shading
computations from visibility computations. The architecture is de-
signed to efficiently support the needs of distribution ray tracing,
including future interactive systems.

We believe that the goal of building an efficient distribution ray
tracer for dynamic scenes leads almost inevitably to a design using
principles similar to ours. Efficient support for distribution-sampled

secondary rays requires multiresolution surfaces, and efficient sup-
port for multiresolution surfaces requires a lazily-built acceleration
structure. Allowing shading operations to be performed on surface
neighborhoods is in many respects more natural than performing
them at intersection points and will likely prove to be more effi-
cient in an optimized implementation.

The experimental system that we have built is not a product-quality
system, and in its current form leaves some important questions
unanswered. However, our implementation clearly illustrates the
potential of our system architecture by successfully integrating a
complex set of ideas into a working system with powerful new ca-
pabilities.

We believe that many of the principles used in our system will be
important to the design of future interactive rendering systems, and
we hope that others in the graphics community can benefit from
learning about our ideas and the results from our experimental sys-
tem.

9 Acknowledgments

Removed for review.

References

AKENINE-MOLLER, T., AND HAINES, E. 2002. Real-Time Ren-
dering, 2nd ed. AK Peters.

APPEL, A. Some techniques for shading machine renderings of
solids. In AFIPS 1968 spring joint computer conf., vol. 32, 37–
45.

AR, S., MONTAG, G., AND TAL, A. 2002. Deferred, self-
organizing bsp trees. In Eurographics 2002.

ARIKAN, O., FORSYTH, D. A., AND O’BRIEN, J. F. 2005. Fast
and detailed approximate global illumination by irradiance de-
composition. ACM Trans. Graph. 24, 3, 1108–1114.

ARVO, J., AND KIRK, D. 1987. Fast raytracing by ray classifica-
tion. SIGGRAPH 87 21, 4 (July), 55–64.

CATMULL, E., AND CLARK, J., 1978. Recursively generated B-
spline surfaces on arbitrary topological meshes.

CHRISTENSEN, P. H., LAUR, D. M., FONG, J., WOOTEN, W. L.,
AND BATALI, D. 2003. Ray differentials and multiresolution
geometry caching for distribution ray tracing in complex scenes.
In Eurographics 2003.

CHRYSANTHOU, Y., AND SLATER, M. 1992. Computing dynamic
changes to BSP trees. In Proc. of Eurographics 1992.

COOK, R. L., PORTER, T., AND CARPENTER, L. 1984. Dis-
tributed ray tracing. In SIGGRAPH ’84: Proceedings of the 11th
annual conference on Computer graphics and interactive tech-
niques, ACM Press, New York, NY, USA, 137–145.

COOK, R. L., CARPENTER, L., AND CATMULL, E. 1987. The
REYES image rendering architecture. SIGGRAPH 87 21, 4
(July), 95–102.

DEROSE, T., KASS, M., AND TRUONG, T. 1998. Subdivision sur-
faces in character animation. In SIGGRAPH ’98: Proceedings
of the 25th annual conference on Computer graphics and inter-
active techniques, ACM Press, New York, NY, USA, 85–94.

10

University of Texas at Austin, Dept. of Computer Sciences Technical Report #TR-06-21

DIETRICH, A., WALD, I., BENTHIN, C., AND SLUSALLEK, P.
2003. The OpenRT application programming interface – towards
a common API for interactive ray tracing.

GRITZ, L., AND HAHN, J. K. 1996. BMRT: A global illumination
implementation of the RenderMan standard. Journal of Graphics
Tools 1, 3, 29–47.

HAVRAN, V., AND BITTNER, J. 2002. On improving KD-trees for
ray shooting. In Proc. of WSCG 2002 Conference.

HOPPE, H., DEROSE, T., DUCHAMP, T., HALSTEAD, M., JIN,
H., MCDONALD, J., SCHWEITZER, J., AND STUETZLE, W.
1994. Piecewise smooth surface reconstruction. In SIGGRAPH
’94: Proceedings of the 21st annual conference on Computer
graphics and interactive techniques, ACM Press, New York, NY,
USA, 295–302.

IGEHY, H. 1999. Tracing ray differentials. In Proceedings of
SIGGRAPH 99, Computer Graphics Proceedings, Annual Con-
ference Series, 179–186.

KOBBELT, L. 1998. Tight bounding volumes for subdivision sur-
faces. In PG ’98: Proceedings of the 6th Pacific Conference on
Computer Graphics and Applications, IEEE Computer Society,
Washington, DC, USA, 17.

LEXT, J., AND AKENINE-MOLLER, T. 2001. Towards rapid re-
construction for animated ray tracing. In Eurographics 2001.

LOOP, C. T., 1987. Smooth subdivision surfaces based on triangles.

LUEBKE, D., REDDY, M., COHEN, J., VARSHNEY, A., WATSON,
B., AND HUEBNER, R. 2003. Level of Detail for 3D Graphics.
Morgan Kaufmann.

LUQUE, R. G., COMBA, J. L. D., AND FREITAS, C. M. D. S.
2005. Broad-phase collision detection using semi-adjusting
BSP-trees. In Proc. of 2005 Conf. on Interactive 3D graphics.

MARK, W. R., AND FUSSELL, D. 2005. Real-time rendering
systems in 2010. UT-Austin Computer Sciences Technical Report
TR-05-18 (May).

OPENGL ARCHITECTURAL REVIEW BOARD. 2003. OpenGL 1.5
specification.

OWENS, J. D., KHAILANY, B., TOWLES, B., AND DALLY, W. J.
2002. Comparing Reyes and OpenGL on a stream architec-
ture. In 2002 SIGGRAPH / Eurographics Workshop on Graphics
Hardware, 47–56.

PARKER, S., MARTIN, W., SLOAN, P.-P. J., SHIRLEY, P., SMITS,
B., AND HANSEN, C. 1999. Interactive ray tracing. In Sympo-
sium on interactive 3D graphics.

PHARR, M., AND HANRAHAN, P. 1996. Geometry caching for
ray-tracing displacement maps. In 1996 Eurographics workshop
on rendering.

PHARR, M., AND HUMPREYS, G. 2004. Physically Based Ren-
dering: From Theory to Implementation. Morgan Kaufmann.

PIXAR. 2000. The RenderMan interface version 3.2, July.

PULLI, K., AND SEGAL, M. 1996. Fast rendering of subdivision
surfaces. In Proc. of Eurographics Rendering Workshop.

REINHARD, E., SMITS, B., AND HANSEN, C. 2000. Dynamic
acceleration structures for interactive ray tracing. In Proceedings
of the 11th Eurographics Workshop on Rendering, Eurographics
Association, 299–306.

RESHETOV, A., SOUPIKOV, A., AND HURLEY, J. 2005. Multi-
level ray tracing algorithm. In SIGGRAPH ’05: Proceedings of
the 32nd annual conference on Computer graphics and interac-
tive techniques, ACM Press, New York, NY, USA.

RUBIN, S. M., AND WHITTED, T. 1980. A 3-dimensional repre-
sentation for fast rendering of complex scenes. In SIGGRAPH
’80: Proceedings of the 7th annual conference on Computer
graphics and interactive techniques, ACM Press, New York, NY,
USA, 110–116.

SCHLICK, C. An inexpensive BRDF model for physically-based
rendering. Computer graphics forum 13, 3, 233–246.

SMITS, B. 1998. Efficiency issues for ray tracing. J. Graph. Tools
3, 2, 1–14.

SUYKENS, F., AND WILLEMS, Y. 2001. Path differentials and
applications. In Rendering Techniques 2001: 12th Eurographics
Workshop on Rendering, 257–268.

TABELLION, E., AND LAMORLETTE, A. 2004. An approximate
global illumination system for computer generated films. ACM
Transactions on Graphics 23, 3, 469–476.

TORRES, E. 1990. Optimization of the binary space partition algo-
rithm (BSP) for the visualization of dynamic scenes. In Proc. of
Eurographics 1990.

WALD, I., SLUSALLEK, P., BENTHIN, C., AND WAGNER, M.
2001. Interactive rendering with coherent ray tracing. In Proc.
of Eurographics 2001.

WALD, I., BENTHIN, C., AND SLUSALLEK, P. 2003. Distributed
interactive ray tracing of dynamic scenes. In Proc. IEEE symp.
on parallel and large-data visualization and graphics.

WANN JENSEN, H. 2001. Realistic image synthesis using photon
mapping. AK Peters.

WARD, G. J., AND HECKBERT, P. 1992. irradiance gradients. In
Proc. 3rd Eurographics Workshop on Rendering, 85–98.

WARD, G. J., RUBINSTEIN, F. M., AND CLEAR, R. D. 1988.
A ray tracing solution for diffuse interreflection. In SIGGRAPH
’88: Proceedings of the 15th annual conference on Computer
graphics and interactive techniques, ACM Press, New York, NY,
USA, 85–92.

WHITTED, T. 1980. An improved illumination model for shaded
display. Communications of the ACM 23, 6 (June), 343–349.

WILEY, C., A. T. CAMPBELL, I., SZYGENDA, S., FUSSELL, D.,
AND HUDSON, F. 1997. Multiresolution bsp trees applied to
terrain, transparency, and general objects. In Proceedings of
the conference on Graphics interface ’97, Canadian Information
Processing Society, Toronto, Ont., Canada, Canada, 88–96.

WOOP, S., SCHMITTLER, J., AND SLUSALLEK, P. 2005. RPU: a
programmable ray processing engine. In SIGGRAPH ’05: Pro-
ceedings of the 32nd annual conference on Computer graphics
and interactive techniques, ACM Press, New York, NY, USA.

11

University of Texas at Austin, Dept. of Computer Sciences Technical Report #TR-06-21

Figure 8: The key data structures in our system. The multi-scale kD-tree is closely coupled to the scene graph by “lazy” pointers. Regular
(non-lazy) leaf nodes of the kD-tree point to a grid of geometry called an igrid.

Figure 9: An igrid holds vertices for a pair of discrete scales. One set of vertices comes from a finer scale of geometry and the other set of
vertices comes from a coarser scale of geometry. The igrid contains information associating each fine-scale vertex with a point on a coarse-
scale triangle. The information in the igrid is used to generate interpolated triangles (shown in green) that are customized for particular rays.
The igrid also contains (not pictured) a simple bounding volume acceleration structure based on the structure of the tessellation.

12

Cache-Efficient Layouts of Bounding Volume Hierarchies
Sung-Eui Yoon1 Dinesh Manocha2

1Lawrence Livermore National Laboratory 2University of North Carolina at Chapel Hill

LLNL Tech. Report: UCRL-ABS-219070-DRAFT
Feb - 16, 2006

{sungeui,dm}@cs.unc.edu

Abstract

We present a novel algorithm to compute cache-efficient layouts of
bounding volume hierarchies (BVHs) of large polygonal models.
Our approach works well with various types of BVHs and does not
make any assumptions about the cache parameters or block sizes of
the memory hierarchy. We introduce a new probabilistic model to
predict the runtime access patterns of a BVH. Our layout computa-
tion algorithm utilizes parent-child and spatial localities between the
accessed nodes to reduce both the number of cache misses and the
size of working set. We use our algorithm to compute layouts of
BVHs of large models composed of millions of triangles. We also
compare our cache-efficient layouts with other layouts in the context
of collision detection and ray tracing. In practice, our layouts can im-
prove the performance of these applications by 15%–400% without
any modification of the underlying algorithms or runtime applica-
tions.

1 Introduction

Bounding volume hierarchies (BVHs) are widely used to accelerate
the performance of geometric processing and interactive graphics ap-
plications. The applications include ray tracing, visibility culling,
collision detection, and geometric computations on large datasets.
Most of these algorithms precompute a BVH and traverse the hierar-
chy at runtime to perform intersection tests or culling.

The leaf nodes of a BVH correspond to the triangles of the origi-
nal model. The intermediate nodes are the bounding volumes (BVs)
such as spheres, axis-aligned bounding boxes (AABBs), oriented
bounding boxes (OBBs), and convex polytopes. The memory re-
quirements of BVHs can be high for large datasets. For example, the
storage cost of a hierarchy of OBBs, i.e., OBB-tree, is approximately
64 bytes per node. As a result, BVHs of large datasets composed of
tens of millions of triangles can require gigabytes of space.

Our goal is to compute cache-efficient layouts of BVHs to reduce
the number of cache misses and improve the performance of BVH-
based algorithms. As the gap between the processor speed and main
memory speed widens, system designers increasingly use caches and
memory hierarchies to reduce memory latency. The access times of
different levels of a memory hierarchy vary by orders of magnitude.
As a result, the running time of an algorithm varies as a function of its
cache access pattern. We would like to use data layout optimization
techniques to place the nodes of a BVH in the memory and reduce
the number of cache misses at runtime.

Many mesh representations and algorithms have been proposed to
improve the cache access patterns of geometric models for specific
applications. These representations and algorithms include rendering
sequences (e.g., triangle strips), processing sequences (e.g., stream-
ing meshes), layouts computed using space filling curves, and mini-
mum linear arrangement (MLA). However, these representations and
algorithms are not general enough to handle all the kinds of BVHs
that are used in various geometric applications.

Main Results: We present a novel algorithm to compute cache-

efficient layouts of BVHs of large models. Our approach is cache-
oblivious as it does not require any knowledge of cache parameters
or block sizes of the memory hierarchy and is applicable to all kinds
of BVHs that can be represented as a tree. We represent a BVH as
two separate linear sequences of BVs and triangles. Then, our prob-
lem reduces to computing cache-efficient layouts of the BVs and the
triangles. We introduce a new probabilistic model to predict the run-
time access patterns of BVHs based on localities. Specifically, we
utilize two types of localities during traversal of a BVH: parent-child
and spatial localities between the accessed nodes. Our algorithm
also uses a tree decomposition algorithm [GI99] and cache-oblivious
mesh layout [YLPM05] to compute a layout that reduces the number
of cache misses and the size of the working set.

We use our algorithm to compute layouts of OBB trees and kd-
trees of large models composed of millions of triangles. Based on
these layouts, we accelerate the performance of collision detection
and ray tracing without any modifications to the underlying algo-
rithms or runtime application. We also compare the performance of
our layouts with other layouts including depth-first layout, breadth
first layout, van Emde Boas layout, cache-oblivious mesh layout,
and cache-aware layouts. We have observed up to a 4 times improve-
ment in performance based on our cache-efficient layouts. Moreover,
performance of our cache-oblivious layouts is comparable to that of
cache-aware layouts. Overall, our approach offers the following ben-
efits:

1. Generality: Our algorithm is general and applicable to a wide
range of BVHs. It does not require any knowledge of cache
parameters or block sizes of a memory hierarchy.

2. Applicability: Our algorithm does not require any modifica-
tion of BVH-based algorithms or the runtime application. We
simply compute efficient layouts of BVHs and the same appli-
cation can run on our layouts.

3. Improved performance: Our layouts reduce the number of
cache misses during traversals of BVHs. We are able to im-
prove the performance of standard collision detection and ray
tracing algorithms.

Organization: The rest of the paper is organized in the following
manner. We give a brief survey of related work in Section 2 and give
an overview of memory hierarchies and BVHs in Section 3. Section
4 describes the localities that are used by our algorithm. We present
a novel probabilistic model to predict the runtime access patterns of
BVHs in Section 5 and describe our layout algorithm in Section 6.
We highlights its performance in Section 7 and compare its perfor-
mance with prior approaches in Section 8.

2 Related Work

We give a brief overview of the related work on cache-efficient al-
gorithms and layouts of bounding volume hierarchies and geometric
models.

Figure 1: Ray Tracing the Lucy model: We apply a standard kd-tree based
ray tracing algorithm to the Lucy model consisting of 28 million triangles. A reflective
plane is placed behind the Lucy model and the scene also has shadows. We compute a
cache-efficient layout of the kd-tree of the Lucy model using our algorithm. Our layout
improves the performance of ray tracing by up to two times over tested layouts, without
any change to the underlying algorithm.

2.1 Cache-Efficient Algorithms

Cache-efficient algorithms have received considerable attention over
last two decades in the theoretical computer science and compiler
literature. These algorithms include theoretical models of cache be-
havior [Vit01, SCD02] , and compiler optimizations based on tiling,
strip-mining, and loop interchanging to minimize cache misses
[CM95].

At a high level, cache-efficient algorithms can be classified as ei-
ther cache-aware or cache-oblivious. Cache-aware algorithms utilize
knowledge of cache parameters, such as cache block size [Vit01]. On
the other hand, cache-oblivious algorithms do not assume any knowl-
edge of cache parameters [FLPR99]. There is considerable literature
on developing cache-efficient algorithms for specific problems and
applications [ABF04, Vit01].

2.2 Layouts of BVHs

The impact of different layouts of tree structures has been widely
studied. There is considerable work on cache-coherent layouts of
tree-based representations including work on accelerating search
queries. Given the cache parameters, Gil and Itai [GI99] cast cache-
coherent layout computation as an optimization problem. They pro-
pose a dynamic programming algorithm to minimize the number of
cache misses during traversals of search queries. However, the com-
puted layout may not be storage efficient. Alstrup et al. [ABFC�03]
propose a method to compute cache-oblivious layouts of search trees
by recursively partitioning the trees.

There is relatively less work on cache-coherent layouts of BVHs.
Opcode1 uses a blocking method that merges several bounding vol-
umes nodes together to reduce the number of cache misses. The
blocking is based on van Emde Boas layout of complete trees
[vEB77]. However, it is not clear whether van Emde Boas layouts
can minimize the number of cache misses during traversal of general
BVHs. Havran analyzes various layouts of BVHs in the context of
ray tracing and improves the performance by using a compact layout
representation of BVHs [Hav97]. Yoon et al. [YLPM05] propose a

1http://www.codercorner.com/Opcode.htm

cache-oblivious mesh layout algorithm to compute layouts of geo-
metric meshes and bounding volume hierarchies. We compare our
approach with these algorithms in Section 8.2.
Layouts of geometric meshes: Many algorithms and represen-
tations have been proposed to compute coherent layouts for spe-
cialized applications. Rendering sequences (e.g., triangle strips)
[Dee95, Hop99] are used to improve rendering throughput by op-
timizing the vertex cache hits in the GPU. Isenburg and Gumhold
[IG03] propose processing sequences, including streaming meshes
[IL04], as an extension of rendering sequences for large-data pro-
cessing. In these cases, global mesh access is restricted to a fixed
traversal order. Many algorithms use space filling curves [Sag94] to
compute cache-friendly layouts of volumetric grids or height fields.
These layouts are widely used to improve performance of image pro-
cessing [VG91] and terrain or volume visualization [PF01, LP01].
However, it is unclear whether space filling curves would extend
to compute layouts of unstructured models and their hierarchies.
In graph theory, minimum linear arrangement (MLA) [DPS02] has
been widely researched to minimize the sum of edge lengths of all
the edges in a graph layout. However, there may be no direct rela-
tionship between reducing the sum of edge lengths and minimizing
the number of cache misses.

3 Memory Hierarchies and BVH Layouts

In this section, we give an overview of memory hierarchies, BVHs,
and their layouts. We also introduce some of the terminology used
in the rest of the paper.

3.1 Memory Hierarchy and Caches

Most modern computer architectures use hierarchies of memory lev-
els, where each level of memory serves as a cache for the next level.
The memory hierarchies have two main characteristics [AV88]. First,
higher levels in the hierarchy are larger in size, farther away from the
processor, and have slower access times. Second, data is moved in
large blocks between different memory levels. The BVH layout is
initially stored in the highest memory level, typically the disk. The
portion of the layout accessed by the application is transferred in
large blocks into the next lower level, such as main memory. A trans-
fer is performed whenever there is a cache miss between two adja-
cent levels of the memory hierarchy. The number of cache misses
depends on the layout of the BVH in memory and the access pat-
terns of the application. If nodes of BVHs are packed in blocks in a
cache-coherent manner, the number of cache misses can be reduced.

3.2 Bounding Volume Hierarchies

BVHs are widely used in various applications to accelerate the per-
formance of intersection or culling tests. The leaf node of a BVH
corresponds to the triangulated primitives and the intermediate nodes
are the bounding volumes (BVs). Each BV encloses its children
nodes and their descendants. In the rest of this paper, we use col-
lision or intersection queries as the driving application to explain the
concepts behind computing cache-efficient layouts of BVHs. These
algorithms typically take two inputs: two 3D objects or one 3D ob-
ject and a ray. The runtime algorithm traverses the BVHs of each ob-
ject using a depth-first or a breadth-first order. The depth-first order
is typically used when we need to check for ray-object intersection
or to check whether two objects overlap. The breadth-first traversal
order is preferred when the runtime algorithm can be interrupted and
may return approximate results, e.g. time-critical computations or
constant frame-rate rendering of large models.

Extensive work has been done on evaluating the performance of
different BVHs for ray-tracing and proximity queries. These in-
clude the cost equations for ray-tracing [WHG84] and collision de-

tection [GLM96, KHM�98]. These cost equations take into account
the tightness of fit for a BV and the relative cost of computing inter-
sections or overlaps with those BVs based on the traversal pattern.
However, these formulations do not take into account the cost of
memory accesses or cache misses while traversing the BVHs. If the
underlying model and its BVH cannot fit into the main memory, the
cost of memory accesses and cache misses can become a significant
factor.

3.3 Layout of BVH

We use the following notation to represent the BVs of a BVH. We
define n1

i as the ith BV node at the leaf level of the hierarchy and
nk

i as a BV node at the kth level of the hierarchy. We also define
Left(nk

i) and Right(nk
i) to be the left and right child nodes of the

nk
i . A parent node and a grandparent node of the nk

i are denoted by
using Parent(nk

i) and Grand(nk
i).

Formally speaking, a BVH is a directed acyclic graph, G(N, A),
where N is a set of BV nodes, nk

i , and A is a set of di-
rected edges from a node, nk

i , to each child node, Left(nk
i) and

Right(nk
i), in the BVH. A layout of a BVH is composed of two

parts: a BV layout and a triangle layout. A BV layout of a BVH,
G(N, A), is a one-to-one mapping of BVs to positions in the layout,
ϕ : N → {1, . . . , |N |}. Our goal is to compute a mapping, ϕ, that
minimizes the number of cache misses and the size of working set
during the traversal of the BVH at runtime. Similarly, we also com-
pute a triangle layout to minimize both cache misses and the working
set size during BVH traversals.

4 Localities in BVH Traversal

In this section, we define two localities that are used to compute a
cache-efficient layout of a BVH. We also give a brief overview of
prior work on packing trees and cache-oblivious mesh layout algo-
rithms, which are used by our layout algorithm.

4.1 Access Patterns during BVH Traversal

Collision queries traverse BVHs as long as each query between two
BVs reports a collision between them. Our goal is to minimize the
number of cache misses and the size of working set during the traver-
sal.

We decompose the access pattern during a traversal into a set of
search queries. We define a search query, S(nk

i), to be the traver-
sal from the root node of the BVH to the node, nk

i , which can
be either a leaf or an intermediate node. Let us assume that the
traversal of a collision query starts from the root node and ends
at nodes, n

k(1)

i(1)
, . . . , n

k(m)

i(m)
(= BV1, . . . , BVm). In this case, the

nodes, (BV1, . . . , BVm), define a front of the BVH for this traversal.
We represent this traversal as the union of traversals of m different
search queries, S(BVj). An example of an access pattern between
two colliding objects is shown in Fig. 2. In frame i, the collision
query ends at n3

1 and n3

5 starting from the root node, n4

1, of the BVH
of object 1. We can represent the access patterns of this collision
query with two search queries ending at n3

1 and n3

5.
There are two different localities, parent-child locality and spatial

locality, which arise during the traversal.

1. Parent-child locality: Once a node of a hierarchy is accessed
by a search query, it is likely that its child nodes will be ac-
cessed soon. For example, in frame i of Fig. 2, if the root node
of the BVH is accessed, its two child nodes, n3

1 and n3

5, are
likely to be accessed soon. Moreover, after n3

1 is accessed dur-
ing frame i, its child nodes are likely to be accessed in the next
frame.

n
4

1

n
2

1

n
3

1

n
1

1
n

1

1n
1

1
n

1

2

n
2

3

n
1

3 n
1

4

n
2

5

n
3

5

n
1

5
n

1

6

n
2

7

n
1

7
n

1

8

n
2

1

n
2

3
n

2

7

n
2

5

n
4

1

n
2

1

n
3

1

n
1

1
n

1

1n
1

1
n

1

2

n
2

3

n
1

3 n
1

4

n
2

5

n
3

5

n
1

5
n

1

6

n
2

7

n
1

7
n

1

8

n
2

1

n
2

3
n

2

7

n
2

5

Obj 1

Obj 2

Frame i

Frame i + 1

Parent-child locality

A BVH of Obj 1

Spatial locality

Obj 1

Obj 2

Figure 2: Two localities within BVHs: We show two successive
frames from a dynamic simulation and the change in access patterns
(shown with blue arrows) of a BVH. In this simulation, object 2 drops
on object 1, as shown on the left. The access pattern of the BVH of
object 1 during each frame is shown on the right. The BVs from the
2nd level in the BVH are shown within object 1 on the left. We also
illustrate the front traversed within each BVH during each frame in
green. The top BVH shows the parent-child locality, when the root
node, n4

1, of the BVH of object 1 collides with the BVs of objects
2. During frame i + 1, object 2 is colliding with object 1. In this
configuration, the BVs n2

3 and n2

7 (and their sub-nodes) are accessed
due to their close spatial locality.

2. Spatial locality: Whenever a node is accessed by a search
query, other nodes in close proximity are also highly likely to
be accessed by other search queries. For example, collisions or
contacts between two objects occur in small localized regions
of a mesh. Therefore, if a node of a BVH is accessed, other
nearby nodes are either colliding or are in close proximity and
may be accessed soon. In frame i + 1 of Fig. 2, if one of two
nodes, n1

4 and n1

7, is accessed, the other node is also likely to
be accessed during that frame or subsequent frames.

We separately consider each of these two localities and use them to
compute the layout of a BVH. In the remainder of this section, we
briefly summarize several known results related to these localities.

4.2 Parent-Child Locality

We use several results presented by Gil and Itai [GI99] to compute
a cache-coherent layout of a BVH. Gil and Itai address the problem
of computing a good layout for search queries on a tree. They define
two different measures for the cache-coherence of a layout of a tree.
The two measure are:

1. The number of cache misses (or page faults): PF 1(BVi) is
defined as the number of cache misses, given a cache that can
hold only single cache block during the traversal of a search
query ending at BVi.

2. The size of working set: The working set during the traversal
of the search query is a set of different cache blocks that are
accessed. WS(BVi) is defined as the size of the working set.

Intuitively speaking, PF 1(BVi) measures the number of times that
accessing BVs crosses boundaries of cache blocks of the layout dur-
ing the traversal. Moreover, [GI99] introduces a virtual probability
function, Pr(BVi), that can measure how many times BVi is ac-
cessed during any search query on the tree. The expected size of

working set, WS, of the layout can be formulated as:

WS =
∑

BVi ∈ BVH
Pr(BVi)WS(BVi),

for all nodes BVi in the hierarchy. Similarly, we can define the ex-
pected number of cache misses, PF 1, of a layout by multiplying
Pr(BVi) with PF 1(BVi) for all nodes BVi in the tree. If a tree
layout is optimal given the PF 1 or WS measure, the tree layout is
defined as PF 1-optimal or WS-optimal, respectively.
Lemma 1 (Convexity): If a layout of a tree is PF 1-optimal or WS-
optimal, the layout is convex [GI99].
The layout of a tree is convex if all the intermediate BVs between
BV0 and BVk are stored in the same block when a node BV0 and its
descendant BVk are stored in the same cache block.
Lemma 2 (Equivalence): A layout of a tree is PF 1-optimal if and
only if it is WS-optimal [GI99].
Lemma 3 (NP-Completeness): Computing a layout of a tree that is
a WS-optimal with a minimum storage is NP-Complete [GI99].

We use these properties and lemmas to design our layout al-
gorithm that considers parent-child locality during the traversal of
search queries.

4.3 Spatial Locality

We use the layout technique proposed by Yoon et al. [YLPM05] to
compute cache-oblivious layouts of geometric meshes. They con-
struct an undirected graph to represent cache-coherent access pat-
terns. Each vertex of the graph represents a data element (e.g. a
vertex of the mesh) that an application accesses. An edge exists be-
tween two vertices of the graph if their representative data elements
are likely to be accessed sequentially by the application at runtime.
Depending on the spatial locality between two elements, an edge
connecting two vertices is created with a weight that is inversely
proportional to the spatial locality. This method will be used as a
part of our layout algorithm with our probabilistic model to compute
weights.

5 Probability Model

In this section we present our probability model that is used to predict
the runtime access patterns on BVHs. We derive our formulation
based on the geometric relationship between the nodes of BVHs.

We assign a probability, Pr(nk
i), to a BV, nk

i , that the node would
be accessed during the traversal as part of a search query. Suppose
the parent node, Parent(nk

i), of a node, nk
i , of an object collides

with a BV node, BVObj2, of another object. In this case, the two
children of Parent(nk

i) are fetched and tested to further localize the
colliding region. Therefore, Pr(nk

i) can be computed by multiply-
ing two factors: 1) the probability that Parent(nk

i) is accessed, and
2) the probability that Parent(nk

i) collides with BVObj2. If there is
a collision between the two nodes, each node is further refined with
its two child nodes. Thus, the second probability can be computed
by assuming that there was also a collision between Grand(nk

i) and
BVObj2. The probability that nk

i is accessed during the traversal can
be recursively formulated as following:

Pr(nk
i) = Pr(Parent(nk

i))Pr(nk
i , Xp = 1|Xg = 1), (1)

where Xp and Xg are two binary random variables indicating
whether there are collisions between a Parent(nk

i) and BVObj2 and
between Grand(nk

i) and BVObj2, respectively.

5.1 Probability Computation

Our goal is to efficiently compute Pr(nk
i , Xp = 1|Xg = 1) given

the recursive probability formulation presented in Eq. (1). Since
we compute probabilities for nodes of the BVH as a preprocess,
we do not know anything about the size or BV type of BVObj2,
a BV node of another object. Instead of assuming any particu-
lar BV for BVObj2, we enumerate all possible configurations of
BVs for BVObj2 and compute the probability. Let Sg(n

k
i) be the

set that represent all possible configurations of BVObj2 that collide
with Grand(nk

i). We can similarly define Sp(n
k
i). For example,

if BVObj2 is a sphere, Sp(n
k
i) can be constructed by Minkowski

sum: Sp(n
k
i , r) = Parent(nk

i)
⊕

Sphere(r) where Sphere(r)
is a sphere with a radius, r ∈ [0,∞) and

⊕
is the Minkowski sum

operator. In the more general case, BVObj2 would correspond to
a box or a convex shape and can have arbitrary orientation. As a
result, both Sg(n

k
i) and Sp(n

k
i) can be represented as high dimen-

sional configuration-space. Given the formulation of Sp(n
k
i) and

Sg(n
k
i), Pr(nk

i , Xp = 1|Xg = 1) can be defined as:

Pr(nk
i , Xp = 1|Xg = 1) =

Pr(Xp = 1 ∩ Xg = 1)

Pr(Xg)

=
V ol(Sp(n

k
i) ∩ Sg(n

k
i))

V ol(Sg(nk
i))

(2)

where V ol(A) represents the volume of A. Intuitively speaking, the
probability is the ratio of the volume of the intersected space between
Sp(n

k
i) and Sg(n

k
i) to the volume of Sg(n

k
i). We refer to the inter-

sected volume ratio between Sp(n
k
i) and Sg(n

k
i), Vintersected(n

k
i).

It is, however, complex and expensive to construct the Minkowski
sum or the configuration space in general [DHKS93]. The combina-
torial complexity is high and the resulting algorithms are susceptible
to degeneracies and robustness problems. As a result, exact compu-
tation of Pr(nk

i) is non-trivial.

5.2 Approximate Probability Computation

We propose a simple method to approximate the probability func-
tion described in Eq. (2). We observe that the intersected volume
ratio computed when BVObj2 is considered to a point–therefore,
BVObj2 has zero extent–is a good approximation of the probabil-
ity, which is the intersected volume ratio, Vintersected(n

k
i), between

Sp(n
k
i) and Sg(n

k
i). In other words, we use an intersected volume

ratio, Vintersected(n
k
i , 0), between Parent(nk

i)(= Sp(n
k
i , 0)) and

Grand(nk
i)(= Sg(n

k
i , 0)) as the probability defined in Eq. 2. This

approximation is based on the following observations:

• Relative importance of probabilities during layout compu-
tation: Suppose that our layout algorithm considers two nodes,
n1 and n2, to decide which node should be ordered first. Our
layout algorithm will choose a node that has a higher probabil-
ity.

• Importance of Sp(n
k
i , 0) and Sg(n

k
i , 0) for probability

computation: Suppose that an intersected volume ratio,
Vintersected(n1, 0), between Parent(n1) and Grand(n1)
is bigger than its counterpart, Vintersected(n2, 0), of
Parent(n2) and Grand(n2) when r is zero. Then, it is
likely that the intersected volume ratio, Vintersected(n1, r), be-
tween Sp(n1, r) and Sg(n1, r) is also bigger than its counter-
part, Vintersected(n2, r), of n2 when r is non-zero. Therefore,
we can approximate the relative importance between the in-
tersected volume ratio, Vintersected(n

k
i), between Sp(n

k
i) and

Sg(n
k
i) as the relative importance between the intersected vol-

ume ratio, Vintersected(n
k
i , 0), between BVs of Parent(nk

i)
and Grand(nk

i).

0

1

2

3 4 6 7

5

8

9

10 11

12

13 14

0

2

3

4 5

6

7 8

1

12 9

13 14 11 10

4 4

2 2 2 2

1 1 1 1 1 1 1 1

8

Depth-first layout Cache-oblivious layoutClustering and undirected graph

Edges representing
spatial locality

Figure 3: Layout computation of a BVH: A depth-first layout of a BVH is shown in the leftmost figure and a cache-oblivious layout of the
same tree is shown in the rightmost figure. The number within each BV node in the leftmost and the rightmost figures is an index of the ordering
of BVs in the layout. The middle figure shows the output of the clustering step. The topmost cluster is the root cluster and the rest are child
clusters. Edges (shown in blue) are drawn between the root BVs of the child clusters that are nearby according to spatial relationships shown
in Fig. 2.

In order to quantitatively verify our approximation, we selected
two nodes, n1 and n2, during layout computation of the dragon
model and measured Vintersected(n1, r) and Vintersected(n2, r)
as r geometrically increases from zero. We observed that less
than 5% of relative importance between Vintersected(n1, 0) and
Vintersected(n22, 0) is reversed as compared to Vintersected(n1, r)
and Vintersected(n2, r), when we used a higher radius on BVObj2 as
a sphere.
Discretization: In order to approximate the volume ratio of the inter-
sected area between Parent(nk

i) and Grand(nk
i) to Grand(nk

i),
we overlay a uniform grid on the BV of Grand(nk

i) and measure
the number of cells of the grid that are contained in the BV of
Parent(nk

i). We generate a sample point in each cell to perform
this containment test. In practice, we found that using 64 samples to
compute the probability is sufficient.

6 Layout Computation

In this section, we present a simple greedy algorithm to compute a
cache-efficient layout of a BVH. Our layout is designed to reduce
the number of cache misses at runtime. We use the properties, lem-
mas, and the probability model described in the previous sections to
compute cache-efficient layouts of BVHs.

6.1 Overall Algorithm

At the top level, our algorithm decomposes a BVH into clusters. The
goal is to compute clusters whose size is the same as the cache block.
If we knew the cache parameters and the block size, we can compute
how many BV nodes fit into the cache block. Given this information,
we could decompose the BVH into a set of clusters, such that the size
of each cluster is equal to the size of the cache block. However, our
algorithm does not assume any particular cache size and constructs a
layout that works well with any cache parameter. In order to achieve
this goal, we recursively compute the clusters. We first decompose
the BVH into a set of clusters and recursively decompose each clus-
ter. In this case, the cache block boundaries can lie anywhere within
a layout that corresponds the nodes of these clusters. Therefore, we
need to compute a cache-efficient ordering of the clusters computed
at each level of recursion.

Our algorithm has two different components that separately han-
dle parent-child and spatial localities. In particular, the first part of
the algorithm decomposes a BVH into a set of clusters that mini-
mizes the cache misses for parent-child locality. The clusters are
classified as a root cluster and child clusters. The root cluster con-
tains the root node of the BVH and child clusters are created for
each node outside the root cluster whose parent node is in the root
cluster (See the middle image in Fig. 3). The second part of the
algorithm computes an ordering of the clusters and stores the root

cluster at the beginning of the ordering. The ordering of child clus-
ters is computed by considering their spatial locality and relying on
the cache-oblivious mesh layout algorithm described in [YLPM05].
We recursively apply this two-fold procedure to compute an ordering
of all the BVs in the BVH.
Cluster size: For each level of recursion, we decompose the BVH
into a set of clusters that have approximately the same number of
BV nodes. Suppose that a root cluster has B BV nodes. Then, the
root cluster has B + 1 child clusters and we decompose the BVH
into B + 2 clusters. Assuming that each cluster is reasonably bal-
anced in terms of the number of BV nodes belonging to each cluster,
B × (B + 2) should be bigger than n, the number of nodes in the
BVH, to contain all the nodes in the BVH. Therefore, B is set to be
d

√

n + 1− 1e.

6.2 Cluster Decomposition

Before computing clusters from the BVH, we first compute and as-
sign a probability, Pr(nk

i), to a BV, nk
i , as described in the previous

section. Then, we partition the BVH into B +2 clusters, where B is
the number of nodes in the root cluster.

Our goal in this step is to store the BV nodes, which are accessed
together due to the parent-child locality, into the same cluster in order
to minimize the number of cache misses. According to our probabil-
ity model shown in Eq. (1), the probability assigned to each node can
also be considered the probability that the node is accessed, given
that a root node of a cluster is accessed. Therefore, we can achieve
our goal by maximizing the sum of probabilities of BVs belonging
to the root cluster. Moreover, maximizing this sum to the root cluster
also minimizes the probability to access the nodes belonging to the
child clusters. This formulation also minimizes the number of times
that a search query accesses the data across the boundaries of cache
blocks of the layout, which is quantified by PF 1 measure. Accord-
ing to Lemma 2, computing an optimal layout for the PF 1 metric
is equivalent to computing an optimal layout that minimizes the ex-
pected size of working set, WS. Therefore, maximizing the sum
of probabilities of BVs belonging to the root cluster minimizes the
expected size of the working set during collision queries in the end.

However, computing a layout minimizing the working set and the
number of cache misses for all possible search queries with minimum
space of a layout is NP-complete (as per Lemma 3). As a result, we
employ a greedy algorithm to efficiently compute a cache-oblivious
layout of the BVH. Our algorithm greedily traverses the BVH and
merges nodes from the root node of the BVH into the root cluster
by locally choosing a node that has the highest probability. Once the
root cluster has B nodes, we stop merging the nodes into the root
cluster. Then, each child node of the nodes inside the root cluster
whose child nodes are outside the root cluster consists of a child
cluster containing all the nodes of its sub-tree. The layout computed
by this greedy approach also maintains the convexity of the layout as

Figure 4: Dynamic Simulation between Dragon and Turbine
Models: This image sequence shows discrete positions from our dy-
namic simulation between dragon and CAD turbine models. We are
able to achieve 17%–319% performance improvement in collision
detection by using our cache-efficient layouts of the OBBTree over
other tested layouts.

defined by Lemma 1.

6.3 Layouts of Clusters

Given the computed clusters at each level of recursion, we compute
a cache-oblivious ordering of the clusters by considering their spatial
locality. During each recursive step of the algorithm, the number of
BV nodes belonging to each cluster roughly reduces by a factor of
B+2, based on our cluster computation algorithm. This causes con-
siderable differences between the sizes of clusters created during the
previous level of the recursion and the current level of the recursion.
Therefore, it is important to compute a cache-coherent ordering of
the clusters in order to further reduce the cache misses. This is be-
cause there is high likelihood that the size of a cache block may lie
between the cluster size of the previous level and the current level of
recursion.

We place the root cluster at the beginning of the ordering of clus-
ters since the traversal typically starts at the root node of the BVH. In
order to compute an ordering of child clusters, we construct an undi-
rected graph with the child clusters as the nodes of the graph. We
construct an edge between two clusters if they are in close proximity,
that is, if their BVs overlap. Then, we compute a probability that a
BV of a cluster has collided given that a BV of another cluster has
collided based on the probability formulation described in Eq. 2. An
example of an undirected graph between two child clusters is shown
in the middle BVH of Fig. 3.

Once the graph is computed, we compute a cache-oblivious layout
from the graph that represents the access patterns between the child
clusters. This is performed using the cache-oblivious mesh layout
algorithm [YLPM05]. An example of a cache-oblivious layout of a
complete tree is shown in the rightmost figure of Fig. 3.

6.4 Triangle Layout

Once a set of BV pairs is computed during the runtime traversal of
the BVHs of two objects, exact query computation based on the tri-
angles of leaf nodes is performed. We extract a triangle layout from
the BV layout of the BVH for efficient layout computation. If we
encounter leaf nodes of the BVH during layout computation, we
sequentially order the triangles stored in the BVs into the triangle
layout since we perform the overlap tests at runtime in a sequential
manner based on the stored order of the triangles within a leaf node.

Model Triangles Size of BVH Avg. and std Comp.
(M) (MB) of depth of leaves time (min)

Bunny 0.06 4 17, 0.8 0.06

Dragon 0.8 54 21, 1.6 0.88

Turbine 1.7 110 22, 0.7 2

Lucy 28 4, 811 37, 3.4 34

Table 1: Benchmark Models: Model complexity, sizes of BVHs,
avg. and standard deviation(std) of depth of leaf nodes, and compu-
tation time to compute cache-oblivious layouts are shown.

7 Implementation and Performance

In this section we describe our implementation and highlight the per-
formance of cache-oblivious layouts on different BVHs. These in-
clude the kd-tree used by a ray tracing algorithm and OBBTree used
to perform collision queries in a dynamic simulation.

7.1 Implementation

We have implemented our cache-oblivious layout computation algo-
rithm as well as the two applications on a 2.4GHz Pentium-IV PC
with 1GB of RAM. All our implementations can handle very large
datasets in an out-of-core manner. Our system runs on Windows
XP and uses the operating system’s virtual memory through memory
mapped files. Windows XP imposes a 2GB limitation for mapping a
file to user-addressable address space. We overcome this limitation
by mapping a 1MB portion of the file at a time and remapping when
data are required from outside this range. We also use OpenCCL li-
brary 2 to compute a cache-oblivious layout between child clusters
during our layout algorithm.

7.2 Benchmark Models

Our algorithm has been applied to different polygonal models. These
include the Lucy model composed of more than 28 million polygons
(Fig. 1), the CAD turbine model consisting of a single object with
1.7 million triangles (Fig. 4), the dragon model consisting of 800K
polygons, and the Stanford bunny model consisting of 67K polygons
(Fig. 6). The details of these models are shown in Table 1.

7.3 Performances

We applied our out-of-core algorithm to compute cache-oblivious
layouts of BVHs of the models. Table. 1 presents the layout time
for each model. An unoptimized implementation of our out-of-core
algorithm can process 14K triangles per second.

7.3.1 Collision Detection

We have implemented an impulse based rigid body simulation
[MC95] for dynamic simulation. We use OBBTrees [GLM96] to
perform collision queries. We compute cache-efficient layouts of the
OBBTrees of different models and use these layouts with the same
underlying algorithm, i.e. RAPID [GLM96], to perform collision
queries.

We compared the performance of our cache-oblivious layout of
BVHs (COLBVH) with different layouts including depth-first lay-
out(DFL) of the BVH, breadth-first layout(BFL), van Emde Boas
layout (VEB) [vEB77], and cache-oblivious mesh layout (COML)
[YLPM05], and cache-aware layout obtained by explicitly setting
cache size into our cache-oblivious layout algorithm (CALBVH).
The OBBs are precomputed and only the ordering of the hierarchy

2http://gamma.cs.unc.edu/COL/OpenCCL

0
500

1000
1500
2000
2500
3000
3500
4000

CALBVH COLBVH VEB BFL COML DFL

0

1000

2000

3000

4000

5000

6000

7000

CALBVH COLBVH VEB BFL COML DFL

Working set size (KB)

Collision time (ms/100)

Benchmark2

Benchmark1

Figure 5: Performance of Collision Detection: Average collision
query time and the size of working set for collision detection in the
two benchmarks. We highlight the performance of other layouts (i.e.
VEB, DFL and BFL) and compare them with our layouts (COLBVH
and CALBVH). VEB is the van Emde Boas layout, DFL and BFL are
the depth-first and breadth-first layouts, respectively. The top and
bottom graphs correspond to the first and second benchmarks, re-
spectively. We obtain 13%–468% improvement in the performance
of collision queries based on reduced working set size and fewer
cache misses. Moreover, the performance of cache-oblivious lay-
out (COLBVH) is comparable to that of cache-aware layouts (CAL-
BVH).

is modified. The COML, explained in Sec. 4.3, is computed by con-
structing an undirected graph. This is accomplished by generating
edges between parent and child nodes and between nearby nodes on
the same level of the BVH. The VEB layout is computed recursively.
The tree is partitioned with a horizontal line so that the maximum
height of the tree is divided into half. The resulting sub-trees are
linearly stored by first placing the root sub-tree followed by other
sub-trees from leftmost to rightmost. This process is applied recur-
sively until it reaches a single node of the tree.

We have tested the performance of the OBBTree collision detec-
tion algorithm with our layouts in a rigid body simulation with two
different benchmarks:

1. Bunny and Dragon: A bunny moves towards a dragon (Fig.
6).

2. Dragon and Turbine: A dragon drops onto the CAD turbine
model(Fig. 4). This benchmark has much larger contacting
area compared to the first benchmark

We collected timing data after making sure that there is no loaded
data in main memory. Moreover, we also made sure there is no file
fragmentations since the fragmentations can slow down the perfor-
mance of I/O accesses. Dynamic simulations of the two benchmarks
are shown in the accompanying video. In this case, we are able to
achieve a 13%–468% improvement in the performance of collision
queries by using COLBVHs over other layouts on our benchmarks.
This improvement is achieved by reducing the working set during
collision queries and fewer cache misses. Moreover, the performance
of cache-oblivious layout is comparable to that of cache-aware lay-
out. In Fig. 5, we report the average collision query times and work-
ing set size in the two benchmarks.

In the two benchmarks, VEB layout has slightly worse perfor-
mance over our layouts. This is mainly because the OBBTrees
are almost balanced trees and the ordering of child clusters from
left to right during VEB layout computation maintains reasonably

Figure 6: Dynamic Simulation between Bunny and Dragon Mod-
els: This image sequence shows discrete positions from our dy-
namic simulation between bunny and dragon models. We are able to
achieve 13%–468% performance improvement by using our cache-
oblivious layouts of OBBTrees as compared to other layouts. More-
over, the cache-oblivious layout has only 10% lower performance as
compared to the cache-aware layout.

good cache-coherence. Another thing to note is that BFL layout has
smaller working set size compared to VEB in the second benchmark,
which has much larger contact area as compared to the first bench-
mark. Therefore, BFL is more suitable in that case.

7.3.2 Ray Tracing

We implemented an interactive ray tracer based on kd-trees [Wal04].
We applied our layout algorithm to compute cache-oblivious lay-
outs of kd-trees. Since the BV of each kd-node is fully contained
in its parent BV and some BVs can have zero volumes, we use
the surface areas of BVs as the volume for probability computation.
Such techniques have also been used by kd-tree construction algo-
rithms [MB90]. We compute the probability based on the ratio of
surface areas and use our layouts of kd-trees without any modifica-
tion of runtime ray tracer.

We tested different layouts of the Lucy model consisting of 28
million triangles. Please note that the kd-tree of the Lucy model is
somewhat unbalanced since the standard deviation of depth of leaf
nodes is about 3, which is almost 10% of the average depth of the
tree. We also ensure that there is no fragmentations in the data files.

We are able to achieve 77%–180% improvement in the perfor-
mance of ray tracing and able to achieve 7%–55% reduction in the
size of working set compared to other layouts. In this case, the per-
formance improvement cannot be directly measured by reduction in
the working set size since the I/O access time is also affected by
other factors including disk I/O sequential prefetching. Since the
cache-oblivious layout stores coherent data in spatially close region
on the disk, it is likely that its layout is well suited to reducing disk
I/O access times. We report the rendering time and the working set
size in Fig. 7. The ray tracing traverses the kd-tree in the depth-first
order and performs intersection tests between the BVs of kd-tree and
the rays. Moreover, there is no overlap between BVs of kd-nodes
that are not descendant to each other. Therefore, depth-first layout is
likely to be more coherent to the runtime traversal compared to van
Emde Boas (VEB) layout and the breadth-first layout (BFL). Our
experimental results also support this conjecture.

8 Analysis and Limitation

In this section, we analyze the performance of our algorithm and
discuss some of its limitations.

0

200

400

600

800

1000

1200

COLBVH VEB BFL DFL

Working set size (MB)

Rendering time (sec)

Figure 7: Performance of Ray Tracing: Average render time and the size
of working set during ray tracing of the Lucy model with 28 million triangles are shown
with different layouts. We are able to achieve 77%–180% improvement in the perfor-
mance of ray tracing and reduce the working set size by 7%–55%.

8.1 Performance Analysis

Our layout algorithm computes cache-efficient layouts of BVHs to
reduce cache misses during runtime applications. Since many current
caching architectures employ a block fetching mechanism [AV88],
we can get performance improvement by storing related data into one
block. Moreover, the performance of the cache-oblivious layouts of
BVHs strongly depends on the size of each BV as compared to the
size of cache block. We observe higher performance improvement
when we have many disk I/O accesses with block size of 4KB. On
the other hand, we do not achieve significant improvement in terms
of reducing L1/L2 cache misses, which have block size of 64 bytes.
In the extreme case, when the block size is exactly same as the size
of each element used in the layout computation, there is very little
improvement based on our layouts.

8.2 Comparison with Cache-Oblivious Mesh Lay-
outs

Yoon et al. [YLPM05] presented a cache-oblivious mesh layout
(COML) to minimize the number of cache misses during runtime
accesses on the mesh. They compute the layouts by representing ac-
cess patterns of applications as an undirected graph and deriving a
cache-oblivious metric which decides whether a local permutation
would decrease cache misses or not. We were able to achieve 50%–
200% increased performance over the cache-oblivious mesh layout
(COML). We attribute the improvement of our new algorithm to the
following reasons:

• Clustering method: The COML method uses a graph parti-
tioning to compute layouts for any graph that may correspond
to a polygonal mesh or a BVH. However, there is no guarantee
that the clustering outputs of the graph partitioning on the input
graph satisfy the convexity property, which is very important to
compute cache-coherent layouts of trees. Therefore, the con-
structed layout of the BVH may be far from the optimal layout
that minimizes the size of the working set during traversal of
collision queries. Instead, our layout algorithm optimized for
BVHs always guarantees that the clustering output satisfies the
convexity property. At the same time, our layout maximizes
the probabilities that BVs, which are accessed together due to
parent-child locality, are stored in the same cluster.

• Probability computation: In order to construct an input graph
for the COML algorithm, edges should be created to represent
access patterns of traversals of collision queries. However, it
is difficult to consistently compute weights of edges that rep-
resent parent-child or spatial localities in the graph. The edge
creation methods for BVHs described in [YLPM05] do not ade-
quately represent access patterns of the traversals. On the other
hand, our algorithm (COLBVHs) considers the two different
localities separately and quantifies the probability that a node

is accessed during runtime traversal based on the geometric re-
lationship between the BVs. As a result, we are able to compute
more accurate weights for layout computation.

8.3 Limitations

Our algorithm works well in our current set of benchmarks. How-
ever, it has certain limitations. Our greedy algorithm is based on sev-
eral heuristics to compute cache-coherent layouts based on parent-
child locality. Therefore, there is no guarantee that our cache-
oblivious layouts of BVHs always reduce the number of cache misses
or the size of the working set. Moreover, our current layout algorithm
assumes that traversals of collision queries start from the root node of
the BVH. However, some implementations of collision queries (e.g.
front-tracking) may take advantage of temporal coherence and start
from the front of BV nodes from the previous frame as opposed to
the root.

9 Conclusion and Future Work

We have presented a novel algorithm to compute cache-efficient lay-
outs of BVHs. We do not make assumptions about the cache param-
eters or the memory hierarchy and take advantage of coherent data
access patterns on BVHs. We describe a new probabilistic model
to predict the runtime access patterns of applications on BVHs. We
decompose the access patterns during the traversal of BVHs into a
set of search queries and utilize parent-child and spatial localities
between the accessed nodes. Our layout algorithm separately con-
siders these two localities and reduces the number of cache misses
and the size of working set. We have applied our cache-oblivious
layouts of BVHs to collision detection between complex models and
ray tracing of massive models. We were able to achieve 15%–400%
improvements on the performance over different layouts.

There are several areas for future work. We would like to ex-
tend our probability formulation that predicts runtime data access
patterns of collision queries to consider other proximity queries such
as minimum separation distance. We also would like to compute
cache-coherent layouts of other hierarchical representations such as
multiresolution meshes (e.g. vertex hierarchies) by extending our
layout algorithm. Finally, we would like to design layout algorithms
for deformable models.

References
ARGE L., BRODAL G., FAGERBERG R.: Cache oblivious data structures. Handbook

on Data Structures and Applications (2004).

ALSTRUP S., BENDE M. A., FARACH-COLTON E. D. D. . M., RAUHE T., THORUP
M.: Efficient tree layout in a multilevel memory hierarchy. Computing Research
Repository (CoRR) (2003).

AGGARWAL A., VITTER J. S.: The input/output complexity of sorting and related
problems. Commun. ACM 31 (1988), 1116–1127.

COLEMAN S., MCKINLEY K.: Tile size selection using cache organization and data
layout. SIGPLAN Conference on Programming Language Design and Implementa-
tion (1995), 279–290.

DEERING M. F.: Geometry compression. In SIGGRAPH 95 Conference Proceedings
(Aug. 1995), Cook R., (Ed.), Annual Conference Series, ACM SIGGRAPH, Addison
Wesley, pp. 13–20. held in Los Angeles, California, 06-11 August 1995.

DOBKIN D., HERSHBERGER J., KIRKPATRICK D., SURI S.: Computing the
intersection-depth of polyhedra. Algorithmica 9 (1993), 518–533.

DIAZ J., PETIT J., SERNA M.: A survey of graph layout problems. ACM Computing
Surveys 34, 3 (2002), 313–356.

FRIGO M., LEISERSON C., PROKOP H., RAMACHANDRAN S.: Cache-oblivious algo-
rithms. Symposium on Foundations of Computer Science (1999).

GIL J., ITAI A.: How to pack trees. Journal of Algorithms (1999).

GOTTSCHALK S., LIN M., MANOCHA D.: OBB-Tree: A hierarchical structure for
rapid interference detection. Proc. of ACM Siggraph’96 (1996), 171–180.

HAVRAN V.: Cache sensitive representation for the bsp tree. Proc. of Compugraphics
(1997).

HOPPE H.: Optimization of mesh locality for transparent vertex caching. Proc. of ACM
SIGGRAPH (1999), 269–276.

ISENBURG M., GUMHOLD S.: Out-of-core compression for gigantic polygon meshes.
In ACM Trans. on Graphics (Proc. of ACM SIGGRAPH) (2003), vol. 22, pp. 935–
942.

ISENBURG M., LINDSTROM P.: Streaming Meshes. Tech. Rep. UCRL-CONF-201992,
LLNL, 2004.

KLOSOWSKI J., HELD M., MITCHELL J., SOWIZRAL H., ZIKAN K.: Efficient colli-
sion detection using bounding volume hierarchies of k-dops. IEEE Trans. on Visual-
ization and Computer Graphics 4, 1 (1998), 21–37.

LINDSTROM P., PASCUCCI V.: Visualization of large terrains made easy. IEEE Visual-
ization (2001).

MACDONALD J. D., BOOTH K. S.: Heuristics for ray tracing using space subdivision.
Visual Computer (1990).

MIRTICH B., CANNY J.: Impulse-based simulation of rigid bodies. In Proc. of ACM
Interactive 3D Graphics (Monterey, CA, 1995).

PASCUCCI V., FRANK R. J.: Global static indexing for real-time exploration of very
large regular grids. Super Computing (2001).

SAGAN H.: Space-Filling Curves. Springer-Verlag, 1994.

SEN S., CHATTERJEE S., DUMIR N.: Towards a theory of cache-efficient algorithms.
Journal of the ACM 49 (2002), 828–858.

VAN EMDE BOAS P.: Preserving order in a forest in less than logarithmic time and linear
space. Inf. Process. Lett. (1977).

VELHO L., GOMES J. D.: Digital halftoning with space filling curves. In Computer
Graphics (SIGGRAPH ’91 Proceedings) (July 1991), Sederberg T. W., (Ed.), vol. 25,
pp. 81–90.

VITTER J.: External memory algorithms and data structures: Dealing with massive data.
ACM Computing Surveys (2001), 209–271.

WALD I.: Realtime Ray Tracing and Interactive Global Illumination. PhD thesis, Com-
puter Graphics Group, Saarland University, 2004.

WEGHORST H., HOOPER G., GREENBERG D.: Improved computational methods for
ray tracing. ACM Transactions on Graphics (1984), 52–69.

YOON S.-E., LINDSTROM P., PASCUCCI V., MANOCHA D.: Cache-Oblivious Mesh
Layouts. Proc. of ACM SIGGRAPH (2005).

R-LODs: Fast LOD-based Ray Tracing of Massive Models

Sung-Eui Yoon1 Christian Lauterbach2 Dinesh Manocha2
1Lawrence Livermore National Laboratory 2University of North Carolina at Chapel Hill

{sungeui,cl,dm}@cs.unc.edu
http://gamma.cs.unc.edu/RAY

UNC Tech. Report: T06-009, Jan 2006

Abstract

We present a novel LOD (level-of-detail) algorithm to ac-
celerate ray tracing of massive models. Our approach com-
putes drastic simplifications of the model and the LODs are
well integrated with the kd-tree data structure. We introduce
a simple and efficient LOD metric to bound the error for pri-
mary and secondary rays. The LOD representation has small
runtime overhead and our algorithm can be combined with
ray coherence techniques and cache-coherent layouts to im-
prove the performance. In practice, the use of LODs can al-
leviate aliasing artifacts and improve memory coherence. We
implement our algorithm on both 32bit and 64bit machines
and able to achieve up to 2–20 times improvement in frame
rate of rendering models consisting of tens or hundreds of mil-
lions of triangles with little loss in image quality.

1 Introduction
In recent years, there has been a renewed interest in real-time
ray tracing for interactive applications. This is due to many
factors: firstly, processor speed has continued to rise at expo-
nential rates as predicted by Moore’s Law and is approach-
ing the raw computational power needed for interactive ray
tracing. Secondly, ray tracing algorithms can be parallelized
on shared memory and distributed memory systems. There-
fore, the current hardware trend towards desktop systems with
multi-core CPUs and programmable GPUs can be used to ac-
celerate ray tracing. Finally, recent algorithmic improvements
that exploit ray coherence can achieve a significant improve-
ment in rendering time [22, 31].

Our goal is to perform interactive ray tracing of massive
models consisting of tens or hundreds of millions of triangles
on current desktop systems. Such gigabyte-sized models are
the result of advances in model acquisition, computer-aided
design (CAD), and simulation technologies and their com-
plexity makes interactive visualization and walk-throughs a
challenging task. In the context of rendering massive models,
ray tracing has an important property: its asymptotic perfor-
mance is logarithmic in the number of primitives for a given
resolution. This is due to the use of hierarchical data struc-
tures such as bounding volume hierarchies or kd-trees. The
asymptotic complexity makes ray tracing an attractive choice,
especially for rendering of massive models.

The logarithmic growth, however, continues only as long as
the system has sufficient main memory to contain the entire

Figure 1. St. Matthew Model: We use our LOD-based
algorithm to accelerate ray tracing of the St. Matthew model
with shadows and reflections. We render the 128M triangle
model at 512 × 512 resolution with 2 × 2 anti-aliasing and
pixels-of-error (PoE) = 4. We are able to achieve 2−3 frames
per second on two dual-core Xeon processors with 4GB of
memory. We observe a 2− 20 times increase in the frame rate
due to R-LODs with very little loss in image quality.

model and hierarchical data structures. As models grow much
larger, the size of the hierarchical structure also increases lin-
early and the underlying ray tracer performs its computations
in an out-of-core manner, slowing down drastically. A ma-
jor trend in computing hardware has been the increasing gap
between processor speed and memory speed. Moreover, disk
I/O accesses are in general more than three orders of magni-
tude slower than main memory accesses. Because of these
gaps, hardware advances are not expected to provide an effi-
cient solution to the problem of ray tracing massive models.

Main Contributions: We present a new algorithm to accel-
erate ray tracing of massive models using geometric levels-
of-detail (LODs). Our approach computes simple and drastic
simplifications, called R-LODs, of the polygonal model. The
R-LODs have a compact representation and are tightly inte-
grated with the kd-tree. We present a simple and efficient
LOD error metric to bound the error for primary and sec-
ondary rays. Additionally, we use techniques based on ray
coherence and cache-oblivious layouts to improve the perfor-

mance of our LOD based ray tracing algorithm. R-LODs also
alleviate the temporal aliasing that can arise during rendering
of highly tessellated models.

We have implemented and tested our system on two ma-
chines running Windows XP 32-bit and 64-bit with two dual-
core Xeon CPUs and have evaluated its performance on dif-
ferent kinds of models with 20− 128M triangles. The perfor-
mance gain of our LOD based ray tracer is proportional to the
reduction in the working set size and the number of intersec-
tion tests. The frame rate improvement varies from 2 times on
models with small working set size to almost 20 − 50 times
on models with very large working set size.

Our ray tracing algorithm offers the following benefits:

1. Simplicity: R-LODs are very easy to implement and
their representation has small runtime overhead. Our al-
gorithm maintains the simplicity, coherence, and perfor-
mance of the kd-tree data structure.

2. Interactivity: The LOD based ray tracer provides a
framework for interactive ray tracing due to the fact that
we can trade off image quality for improved frame rate.

3. Front size: R-LODs reduce the size of the front tra-
versed in the kd-tree. This results in fewer ray intersec-
tion tests and decreases the size of the working set.

4. Coherence: R-LODs make memory accesses more co-
herent and reduce the number of L1/L2 cache misses and
page faults. Furthermore, they can also improve the per-
formance of ray coherence techniques.

5. Generality: Our algorithm is applicable to a wide va-
riety of polygonal models, including scanned and CAD
models.

Organization: The rest of the paper is organized in the fol-
lowing manner: section 2 gives a brief summary of prior work
in interactive rendering. We give an overview of our approach
in Section 3 and present the R-LOD representation and com-
putation algorithm in Section 4. Section 5 shows accelera-
tion techniques based on cache-coherent layouts and ray co-
herence. We describe the implementation of our ray tracer
and analyze its performance on different models in Section
6. Finally, section 7 compares our algorithm with other ap-
proaches.

2 Related work
In this section, we give a short overview of interactive ray
tracing and the use of LODs for interactive rendering.

2.1 Interactive Ray Tracing
Ray tracing was introduced by Appel [3] and Whitted [36]
and is a very well studied field. In this section, we just briefly
survey some recent techniques used to accelerate ray tracing,
but a detailed description is available in [27]. At a broad level,
we classify prior approaches into four categories:
Exploiting ray coherence: The underlying idea here is not
to trace each ray by itself, but to utilize the fact that neighbor-
ing rays exhibit spatial coherence. Earlier attempts to exploit
this concept were beam tracing [11], pencil tracing [26] and
cone tracing [2]. More recently, Wald et al. [31] group rays
into bundles and use them to accelerate traversal and inter-
section with primitives for all rays simultaneously by taking
advantage of SIMD instructions. Reshetov et al. [22] propose
an algorithm to integrate beam tracing with the kd-tree spatial
structure and were able to further exploit ray coherence.

Hardware acceleration: Another trend has been to use hard-
ware support to accelerate ray tracing. Purcell et al. [21] show
that ray tracing could be adapted to the streaming model of
current programmable GPUs, which are mainly designed for
rasterization. Schmittler et al. [25] and Woop et al. [38]
present prototypes for a complete and programmable ray trac-
ing hardware architecture to run at interactive rates.
Parallel computing: Ray tracing is easily parallelizable due
to the fact that all rays can be traced independently. Parker
et al. [19], DeMarle at al. [7], and Dietrich et al. [8] de-
scribe an interactive ray tracer for rendering large scientific or
CAD datasets running on shared memory or distributed archi-
tectures. Wald et al. [34] built a ray tracer to run on clusters
of commodity hardware machines and were able to achieve
interactive frame rates for large architectural and CAD mod-
els. Both of these systems are mainly intended for models that
could be kept in the main memory of a shared memory system
or of PCs used in the cluster.
Large datasets: Many algorithms have been presented to
improve the performance of ray tracing on large datasets
[7, 10, 20, 32]. Our approach is complimentary to these meth-
ods and can be combined with them to further improve the
performance.

2.2 Interactive Rendering using LODs and Out-of-Core
Techniques

LODs have been widely used to accelerate rasterization of
large polygonal datasets [16]. At a broad level, prior al-
gorithms can be classified into static LODs, view-dependent
simplification, image-based representations and hybrid com-
binations of geometric and image-based representations. Out-
of-core algorithms are an active area in computer graphics and
visualization with the goal to efficiently handle large datasets
[4]. LOD algorithms can be combined with out-of-core tech-
niques to rasterize large polygonal datasets composed of tens
or hundreds of millions of polygons at interactive rates on
commodity PCs [23, 6, 41, 9].

LOD-based based algorithms can also be applied to ac-
celerate ray tracing. Christensen et al. [5] introduce a LOD
approach for an offline ray tracer based on ray differentials
[12]. Wand and Straßer [35] propose an algorithm for multi-
resolution ray tracing of point-sampled geometry based on
ray-differentials. Another approach is to integrate the LODs
into the hierarchical structure [37]. Recently, Stoll et al. [28]
proposed a novel architecture for dynamic multiresolution ray
tracing. They proposed a watertight multiresolution method
by interpolating between discrete LODs for each ray. Their
discrete LODs are computed from choosing proper tessella-
tion levels for subdivision meshes. Also, efficient algorithms
based on depth images can be used to accelerate ray tracing
[15, 1].

3 Overview
In this section, we discuss many issues that govern the perfor-
mance of ray tracing and give an overview of our approach.

3.1 Ray tracing of massive models
In this paper, we restrict ourselves to triangulated models,
though our approach can also be extended to other primitives
such as point clouds. All efficient ray tracers employ hier-
archical data structures to avoid testing each ray with every
primitive. We use the kd-tree, which is a special case of the
general BSP tree and has recently become a popular choice

R-LODs: Fast LOD-Based Ray Tracing of Massive Models (UNC Tech. Report: TR06-009) Page 2 of 10

Figure 2. Double Eagle Tanker: The deck of the Double
Eagle tanker with shadows is shown using ray tracing. We are
able to achieve 1-3fps at 512 by 512 image resolution with
2x2 super-sampling and PoE = 4 on a dual Xeon workstation.
In this model, the working set of the ray tracer is low and we
are able to achieve up to 2 times improvement in the frame
rate.

due to its simplicity and performance [10, 27]. Each node
of the kd-tree represents one subdivision of the parent’s space
and contains information about the axis-aligned plane used for
the split as well as pointers to its child nodes. We use the opti-
mized representation proposed by Wald et al. [30] and extend
it to efficiently handle LODs.
Out-of-core ray tracing: Ray tracers taking advantage of hi-
erarchical data structures should exhibit a logarithmic growth
rate as a function of the model complexity [31]. We mea-
sured the performance of a coherent ray tracer during render-
ing different simplification levels of the St. Matthew model,
as shown in Fig. 3. Our experiment indicates that ray trac-
ing performance increases as a logarithmic function of model
complexity as long as the kd-tree and primitives of a model
can fit in the main memory. However, once the model size and
the working set size of the kd-tree exceeds the available main
memory of the machine, the disk I/O significantly affects the
performance of the ray tracer.
Ray coherence: Recent approaches that exploit spatial and
ray coherence decrease the number of memory accesses and
therefore also the number of disk accesses for large models
[31, 22]. These algorithms perform traversals and intersec-
tions for multiple spatially-coherent rays in a group at the
same time. In general, rays in a group exhibit higher coher-
ence at the higher levels of the kd-tree (that usually are in
main memory) because each ray in the group is likely to fol-
low same path in the tree as other rays. However, accesses
to the nodes deeper in the tree are incoherent and, thus, result
in disk cache misses, especially when dealing with massive
models, since bounding box of those nodes become smaller
compared to width of the ray group. Therefore, in order to ac-
celerate out-of-core ray tracing, we need to reduce the number
of accesses made to the nodes deeper in the tree.

3.2 Our Approach
We mainly address the problem of ray tracing massive models.
If models have high depth complexity, current traversal algo-
rithms based on kd-trees can efficiently handle such kinds of

1 2 4 8 16 32 64 128 256

0.5
1

10

100

1000
2000

Model complexity (M tri.) - log scale

R
en

de
r

tim
e

(s
ec

)
-

lo
g

sc
al

e

Render time w/o R-LODs
Render time w/ R-LODs + CO-layout

1 2 4 8 16 32 64 128 256
0

1000

2000

3000

Model complexity (M tri.) - log scale

S
iz

e
of

 w
or

ki
ng

 s
et

(M
B

)

Working set size w/o R-LODs
Working set size w/ R-LODs + CO-layout

Figure 3. Performance of Ray Tracing: We precompute
simplified versions of the St. Matthew model and ray trace
each simplification separately from the same viewpoint. We
measure the frame time and working set size of the ray-tracer,
with and without R-LODs by using different simplified mod-
els on a 64-bit machine with 2GB RAM. Notice the big jump
in frame time for ray tracing without R-LODs, as the work-
ing set of ray tracing with massive models exceeds the avail-
able RAM. On the other hand, our R-LOD based ray tracing
combined with cache-oblivious layouts (CO-layout) achieves
near-constant performance in terms of frame rate and the
working size.

models. In this case, the working set size is proportional to the
number of visible primitives from the primary and secondary
rays. Therefore, we primarily deal with the problem of fast
ray tracing when the number of visible primitives is high.

We assume that each ray or ray bundle is represented by a
pyramidal beam or frustum. As described in the multi-level
ray tracing of Reshetov et al. [22], during traversal the frus-
tum is checked for intersection with the bounding box of the
current kd-tree node by using an inverse frustum culling ap-
proach. This results in two interesting cases:
1. Models with large primitives: If the bounding box of the
node is larger than the frustum, it is likely that the node inter-
sects with the whole beam, i.e. we can exploit spatial coher-
ence. Typically, architectural models or CAD models result
in such cases whenever the model is coarsely tessellated, has
large planar primitives or is viewed at close range.
2. Highly tessellated models: In this case, the bounding box
is much smaller than the frustum. This implies that the beam
needs to be split into smaller sub-beams. However, if the beam
represents just one ray, then further subdivision is not possi-
ble, even though the sub-tree represented by the node has a
high number of descendants and, thus, there is high local geo-
metric complexity. Therefore, ray coherence approaches like
multi-level ray tracing and ray packet tracing fall back to nor-
mal ray tracing and may not offer much benefit. For example,
consider ray tracing a St.Matthew model consisting of 128M
triangles at a resolution of 10242 primary rays. Assume that
every ray hits the model and half of the model’s triangles are
visible to the eye. In this case, fewer than 1% of the actual
triangles are hit by one of the rays. Moreover, each of these
triangles is sampled as a representative of several triangles in
the subtree. This has two consequences: first, the memory

R-LODs: Fast LOD-Based Ray Tracing of Massive Models (UNC Tech. Report: TR06-009) Page 3 of 10

accesses may be incoherent because each triangle may lie in
a different part of memory. Secondly, temporal aliasing can
occur between frames since it is likely that a different triangle
will be chosen in successive frames.

Our novel LOD-based ray tracing algorithm handles this
second case by choosing our precomputed R-LOD representa-
tion when traversal determines that a LOD metric is satisfied.
This means that traversal can stop before reaching the deep
levels of the tree, reducing the number of incoherent accesses
and the size of the working set, while maintaining ray coher-
ence so that related techniques still work well. As a result, we
obtain significant improvements in rendering speed.

4 LOD Based Ray Tracing
In this section we present the R-LODs that are used to accel-
erate ray tracing. We first describe our R-LOD representation
and the modified traversal algorithm. Then we present our
LOD error metric and the R-LOD construction algorithm.
4.1 R-LOD Representation for Ray Tracing
Our goal for interactive ray tracing is to design a LOD rep-
resentation that retains the benefits of kd-tree based acceler-
ation algorithms, i.e. simplicity, efficiency and low runtime
overhead.

A R-LOD consists of a plane with material attributes (e.g.
color), which is a drastic simplification of the descendant tri-
angles contained in an inner node of the kd-tree, as shown in
Fig. 5. Each R-LOD is also associated with a surface devia-
tion error which is used to quantify the projected screen-space
error at runtime.

Let us assume that the original tree has height h, where
h ≈ log2(n), and n is the number of triangles in the original
model. The R-LOD associated with a kd-tree node at height k
is a simplification into a plane of the 2k descendant triangles.
Our choice to use such a representation is motivated by the
following goals:
Simple and efficient LOD representation: Current ray ob-
ject intersection algorithms based on the kd-tree are highly
optimized for interactive ray tracing. We use simple represen-
tations for LODs to minimize storage and traversal overhead.
Each R-LOD adds 4 bytes to an inner node of the kd-tree. We
also use a simple and fast LOD selection algorithm to reduce
the traversal overhead.
Drastic model simplification: The computational workload
of ray tracing is a logarithmic function of the model complex-
ity. If the model size is reduced by a factor of m, the tree
traversal overhead reduces by only log(m). As a result, m
has to be a significant number, say 23or 24.
High quality rendering: Ray tracing is primarily used to
generate high-quality rendering. Since the R-LODs are a dras-
tic simplification of the original model, their use can result in
visual artifacts. In order to control the errors caused by R-
LODs, we associate a deviation error metric and compute a
screen-space projection in terms of pixels-of-error (PoE) de-
viation. Also, we assume that our drastically simplified LOD
representations are mainly used given small PoE values (e.g.,
1–4 pixels at image resolution 1024 × 1024) for high-quality
rendering.
4.2 Runtime Traversal with R-LODs
Our new traversal algorithm is a modification of the efficient
traversal algorithm described in Wald’s thesis [30] and [29].
We recursively traverse the kd-tree from the root node or the
entry-point that is computed using multi-level ray tracing.

normal

intersection

no intersection

rays

plane

Valid extent

of the plane

Figure 5. LOD Representation: A R-LOD consists of a
plane with material attributes. It serves as a drastic simpli-
fication of triangle primitives contained in the bounding box
of the subtree of a kd-tree node. Its extent is implicitly given
by its containing kd-node. The plane representation makes the
intersection between a ray and a R-LOD very efficiently and
results in a compact representation.

When we reach an intermediate node associated with a R-
LOD, we check whether we can use the R-LOD based on our
LOD error metric. If the current R-LOD satisfies the LOD er-
ror metric, we perform an intersection test between a R-LOD
and the ray. If there is an intersection, we stop the traver-
sal and return the intersection data of the R-LOD to compute
shading and shoot secondary rays, if necessary. If there is no
intersection, the algorithm does not traverse the child nodes
of the intermediate node associated with the R-LOD. Each R-
LOD is bounded by a kd-node and therefore, the extent of the
plane of the R-LOD is implicitly bounded by the kd-node dur-
ing tree traversal. The implicit extent of the plane results in a
compact R-LOD representation.
4.3 LOD Error Metric Evaluation
We use a projection-based algorithm integrated with surface
deviation error to select appropriate LODs for ray tracing.
Conservative projection algorithm: We use a projection
method to efficiently compare the screen-space area of the
R-LOD after the perspective projection with the PoE in the
screen-space. Conceptually, we position a projection plane at
the intersection between the ray and the kd-tree node. The
plane is set to be orthogonal to the ray, as shown in Fig. 6.
We enclose the R-LOD (and its corresponding simplified ge-
ometry) in a sphere. The area of the R-LOD projected onto
the projection plane is conservatively measured by computing
πR2, where R is the radius of the sphere. Let Rp be the ra-
dius of a sphere inscribed in a rectangular shape pixel of the
image screen. In this case, Rp is simply half of the width of
the pixel. Then, the projected area of a pixel in the projection
plane satisfies the following relationship:

dnear

Rp

=
dmin

R̂p

⇒ R̂p = dmin

Rp

dnear

= dminC, (1)

where R̂p is the projected radius of Rp, dnear is the distance
from the viewer to the image plane, and dmin is the distance
from the viewer to the intersection point between the ray and
the kd-node. Since Rp

dnear

(= C) is a constant, the projected

radius, R̂p, is a simple linear function of the distance, dmin,
along the ray from the eye to the intersecting node. We select
an R-LOD if R̂p, is bigger than the radius, R, associated with
the R-LOD. Our LOD metric is very efficient as it requires
only one multiplication and dmin is already known during the

R-LODs: Fast LOD-Based Ray Tracing of Massive Models (UNC Tech. Report: TR06-009) Page 4 of 10

(a) No LOD (b) PoE = 4

Figure 4. Forest Model: We render the forest model consisting of 32 million triangles with shadow rays using PoE = 0
and PoE = 4. The image resolutions are 512×512 without anti-aliasing to highlight image quality differences. We are able
to render the model given the viewpoint at the 1.6 frames per second and achieve 5 times improvement by using R-LODs.

tree traversal.

Surface deviation: The error metric described above conser-
vatively measures the projected screen-space area of the R-
LOD. We augment the metric to take into account the surface
deviation of a R-LOD. For this we first measure the surface
deviation between the plane of the R-LOD and all the con-
tained triangles. We combine the surface deviation and the
projected screen-space area of the R-LOD in the following ge-
ometric formulation. We compute the volume of the surface
deviation along the plane and add this volume to the volume
of the sphere enclosing the R-LOD. We then treat the summed
volume as a volume of an imaginary sphere and use its radius
as the error bound of the R-LOD. In this geometric formula-
tion, these two seeming different error bounds can be treated
in a uniform manner.

Error quantization: The exact representation of the plane
and associated materials takes 32 bytes. Instead of directly
associating this information with each node of the kd-tree, we
quantize the error bounds associated with the R-LODs and
store the quantized error bound as well as an R-LOD index
in a 4 byte structure as the part of the kd-node in order to
reduce the working set size during traversals. Therefore, only
if the error bound of an R-LOD is satisfied within the PoE
bound, we load the exact R-LOD representation by using the
R-LOD index. When considering a path from a leaf node of
the kd-tree to the root node, the error bounds associated with
the nodes increase as a geometric series. Therefore, we use
a geometric distribution equation to quantize the error values
associated with the R-LODs. We found that 5 bits are enough
(i.e. 10%–20% quantization error) to conservatively quantize
the error bound of the R-LODs in our benchmarks; therefore,
each R-LOD index is stored in 27 bits, which are enough to
indicate all the R-LODs in our tested models.

Secondary rays: Our LOD metric based on conservative
projection also extends to secondary rays. These include re-
flection (in which a ray reflects at an intersection point with a
reflective triangle) and shadow rays. This is mainly because
these secondary rays can be expressed as a linear transfor-
mation [11]. In the case of reflection, the radius, Rp, of the
sphere inscribed in the pixels of the image space increases
linearly based on the sum of the distance from the viewer to
an intersecting reflective triangle, and to another intersecting
object along the primary or reflective secondary rays. Simi-
larly, our metric also works well for shadow rays and again
we use a linear transformation. One issue with using LODs
for shadow rays is that they can result in self-shadowing arti-
facts when different versions of the R-LODs are selected by
the primary ray and the shadow ray. We overcome this prob-
lem by ignoring the intersections between the shadow ray and
the primitives that are within the LOD error bounds associated
with the R-LOD selected by the primary ray.

Our projection-based method does not work with refrac-
tion, since refraction is not a linear transformation [11]. In
this case, we use a more general, but expensive method based
on ray differentials [12], to decide whether an R-LOD satisfies
the PoE bound after refraction.

4.4 R-LOD Construction

Our goal is to compute a plane that approximates the triangles
that are contained in the subtree of an intermediate kd-node
and also their material properties. If a triangle contained in
the subtree is not fully contained in the bounding box of the
node, we clip the triangle against the box and do not consider
the clipped portion of the triangle. We use principal compo-
nent analysis (PCA [13]), to compute the plane. PCA com-
putes the eigenvectors that provide a statistical description of
input points. We perform PCA computation based on the ver-
tices of the triangles, but also take into account the size of the

R-LODs: Fast LOD-Based Ray Tracing of Massive Models (UNC Tech. Report: TR06-009) Page 5 of 10

pixel inscribed spere with
(Rp)

projection plane

kd-node

center

R̂ ≤ R

R
R̂p

Sphere enclosing
the kd-node

Figure 6. Projection-based LOD Metric: We place a pro-
jection plane at the intersection point between a ray and the
kd-node. The plane is orthogonal to the ray. Based on this
projection plane, we conservatively check whether the R-LOD
satisfies the error metric.

triangles by associating the area of the triangle as a weight for
each vertex. The plane is computed based on the eigenvec-
tor associated with the largest eigenvalue and this eigenvec-
tor represents the normal to the plane1. We compute material
properties that are mean values of the contained triangles and
associate them with the R-LOD. The surface deviation of the
plane against the geometric primitives is computed based on
the smallest eigenvalue, which corresponds to a variance of
geometry along the normal of the plane.
Hierarchical R-LOD computation: We can compute the R-
LODs associated with each node of the tree in a bottom-up
manner. However, a naive algorithm would compute the R-
LOD for each node independently and this can result in a
O(n log n) algorithm.

Instead, we present a R-LOD computation algorithm that
has linear time complexity and is well suited for out-of-core
computation. Each element, σij , of (i, j)th component of a
covariance matrix for PCA is defined as the following:

σij =
n∑

k=1

(V k
i − µi)(V

k
j − µj), (2)

where V k
i is the ith component (e.g. x, y, and z) of kth vertex

data, µi is the mean of V k
i , and n is the number of vertices.

This equation can be reformulated as:

σi,j =

n∑
k=1

V k
i V k

j −
2

n

n∑
k=1

V k
i

n∑
k=1

V k
j +

1

n2

n∑
k=1

V k
i

n∑
k=1

V k
j ,

(3)

It follows that if we can compute and store the sums of V k
i ,

V k
j , V k

i V k
j , and n, we can compute the covariance with these

sums and n for any intermediate node. In order to compute
the covariance matrix of a parent node, we simply add these
variables as a weighted sum of the number of vertices con-
tained in each child node. This property is particularly useful
to compute the R-LODs of inner nodes in the kd-tree in an
out-of-core manner. Our algorithm has linear time complex-
ity and its memory overhead is a function of the height of the
tree. In practice, the memory overhead in our benchmarks is
less than 1MB.

1The direction of the normal is chosen to be closer to the average normal
of triangles.

Figure 7. C0 Discontinuity: The left image shows the Stan-
ford dragon model as rendered by our approach with PoE = 0,
i.e. using original triangles. The top right image was ac-
quired by setting PoE = 5 at 512× 512 image resolution with
no expansion of R-LODs. As can be seen in the area of the
dragon’s eye, there is a hole caused by C0 discontinuity of
our LOD representation. By allowing a small amount of ex-
pansion of R-LODs, we can avoid having holes in the final
image as shown in the bottom right image. Close-ups of the
eye are shown in boxes with yellow borders.

4.5 C0 Discontinuity between R-LODs

Our LOD computation algorithm computes a drastic simplifi-
cation. Therefore, if the underlying triangles have high curva-
ture, the PCA-based approximation can have high surface de-
viation. In this case, it is possible that our algorithm does not
maintain C0 continuity between R-LODs, which can result
in some holes in the resulting image (see Fig. 7). This kind
of problem has been well-studied in the LOD and point-based
rendering literature. Particularly, many techniques in the LOD
literature have been proposed to patch these holes using pre-
computed data structures or runtime algorithms [6, 41]. How-
ever, those approaches can increase the storage and runtime
overhead of ray tracing algorithms. In our implementation,
we do not use any patching techniques.

Instead, we ameliorate this problem through our R-LOD
selection algorithm. A very low PoE bound should be used
to limit the error introduced by the R-LODs. The low PoE
bound also minimizes temporal popping that can arise when
we switch between the R-LODs of parent and children nodes
during successive frames. Moreover, we assign higher weight
to surface deviation computation as part of the error metric
computation; therefore, higher resolutions are used in the re-
gion with high curvature.

Expansion of R-LODs: In addition to these two heuristics,
we also expand the extents of R-LODs to remove holes caused
by C0 discontinuity between R-LODs. Please note that as
the surface deviation increases, it is likely that gaps become
larger. Therefore, we increase the extent of a R-LOD as a
function of the surface deviation associated with the R-LOD.
This expansion is efficiently considered during the plane and
ray intersection as an additional numerical tolerance. In prac-
tice, we found that combining these heuristics work well to
remove holes caused by C0 discontinuity without introducing
any noticeable visual artifact given low PoE error bounds (see
Fig. 7).

R-LODs: Fast LOD-Based Ray Tracing of Massive Models (UNC Tech. Report: TR06-009) Page 6 of 10

5 Utilizing Coherences
In this section, we describe approaches to improve the perfor-
mance of our ray tracing algorithm using ray coherence and
cache-coherent layouts.

5.1 Ray Coherence
We define ray coherence as the coherence of rays in tree
traversal and intersection, i.e. rays may take a similar path
in the tree and may hit the same triangles. For primary rays,
our ray tracer starts out by assuming there is ray coherence
and shoots a beam using the algorithm presented in [22]. We
compute a common entry point in the tree for all rays in the
beam, at which the beam is split into either sub-beams or ray
packets depending on its size. For the latter case, we use the
coherent ray tracing algorithm [31] which works on a 2 × 2
packet of rays in parallel using current processors’ SIMD in-
structions. During all traversal, we check whether we need
to use R-LODs that have appropriate resolution based on our
LOD metric. If so, we stop traversal of that subtree and in-
tersect with the simplified representation. If the given model
is highly tessellated, beam tracing and the use of SIMD in-
structions may not work well and can even lead to a decrease
in performance (as explained in Section 3.2). However, we
found that the use of R-LODs alleviates this problem, as we
generally do not traverse as deep into the tree and therefore
execute less overhead intersections. Secondary rays can be
also handled in a similar manner.

5.2 Cache Coherence
It is highly desirable to maintain cache coherence during run-
time tree traversals to help to achieve good performance. We
apply the cache-oblivious mesh layout algorithm [39] to com-
pute cache-coherent layouts of the kd-nodes. We interpret the
kd-tree as a graph that can represent the expected runtime ac-
cess patterns. The quality of the layout depends on the struc-
ture of the input graph. In order to predict the runtime behav-
ior of tree traversal by the graph, we use a simple method to
compute the probability that a node will be accessed given that
its parent node has been accessed before, based on their geo-
metric relationship [40]. The ray tracing algorithm traverses
the child nodes from the parent node when there is an intersec-
tion between a ray and the bounding box of the parent node.
Therefore, we estimate that the probability that the child node
is accessed increases as its surface area compared to its par-
ent node increases. This property is already well exploited by
the kd-tree construction algorithms by using the surface areas
of the bounding boxes of the kd-nodes [17]. The layouts can
increase the performance of the ray tracer by 10 − 60% on
massive models. This is in addition to the speedups obtained
by R-LODs.

6 Implementation and Results
In this section, we describe our implementation and highlight
the performance of our ray tracer on different benchmarks.

6.1 Implementation
We have implemented our R-LOD construction algorithm and
ray tracer on both 32-bit and 64-bit machines that have two
dual-core Xeon processors running 32-bit and 64-bit Win-
dows XP, respectively. For runtime ray tracing, we use mem-
ory mapped files to efficiently access large files of geometry
and kd-tree. However, in the 32-bit OS, we can only map up
to 3GB total memory. To deal with larger data, we have im-
plemented explicit out-of-core memory access management.

Model Vert. Tri. Node Size R-LOD
(M) (M) (M) (GB) Comp. (min)

Forest 19 32 105 4.1 10
Double eagle 77.7 81.7 173 9.1 32
St. Matthew 128 256 378 26 124

Table 1. Benchmark models
Model complexity, the number of kd-nodes, the total size of kd-tree,
geometry, and R-LODs, and the construction time of R-LODs are

shown.

This is not necessary in the 64-bit OS where we just use im-
plicit OS memory mapping functionality.

In order to construct the kd-tree for a model that does not
fit into main memory, we first subdivide the model into voxels
in an out-of-core manner and then build the kd-tree for each
of these voxels individually in core [41]. This step can also be
performed in parallel on different voxels for speeding up the
construction. Afterwards, the kd-tree for each voxel is merged
into the global tree, which is used for ray tracing.

Since we have found that the quality of the kd-tree is the
most important factor for fast ray tracing, we build the kd-
tree using the surface-area heuristic [17, 10] and some further
improvements as presented by [22]. Especially important is
to introduce extra splits for empty areas in order to bound the
geometry more tightly for our R-LOD representation.
6.2 Results
Benchmarks: We have applied our LOD-based ray tracing
algorithm to different benchmarks as shown in Table 1. We
computed different paths through these models and measured
the performance of the ray tracer with and without LODs us-
ing a small PoE metric. We use a resolution of 512× 512 pix-
els for interactive rendering. We also use 2×2 super-sampling
per pixel; therefore, we effectively shoot 1K × 1K rays from
the eye for each frame. We are able to render most of these
models at 5− 12 frames a second with primary rays and 1− 8
frames a second when we include reflections and shadow rays.
These results are shown in the video.
Preprocessing: We only compute R-LODs for a subset of
the nodes in the kd-tree to avoid excessive memory overhead.
Our current implementation selects every third node on the
path from the root node to the leaf node. Our unoptimized
R-LOD construction implementation can process 2–3 million
triangles per minute; most of the processing time is spent on
reading data from the disk. The size of R-LODs associated
with each node takes less than 10% of the total storage. How-
ever, if we consider the additional 4 bytes for R-LOD index
and quantized error bound in the kd-nodes, total storage over-
head of our R-LOD nodes is roughly 33% compared to the
optimized kd-tree representation[30].
Performance variation as a function of PoE: We vary the
PoE metric for the St. Matthew model (256M triangles) and
measure its benefit on the rendering time, average number of
processed nodes per ray, and size of working set per frame.
The working set is measured at a granularity of 4KB. In order
to show the relative benefit, we linearly scale each value into
[0, 1] by scaling the maximum value of each item to 1. The
min and max values of each item are as follows: rendering
time (ms)(160, 11914), size of the working set(MB) (2, 1565),
and average number of processed nodes per ray (13.6, 22.42).
As can be seen in Fig. 9, the performance of the ray tracer
increases drastically as we linearly increase the PoE values.

R-LODs: Fast LOD-Based Ray Tracing of Massive Models (UNC Tech. Report: TR06-009) Page 7 of 10

(a) No LOD (b) PoE = 2.5 (c) PoE = 5

Figure 8. Images of the St. Matthew model with different PoE values are shown at 512 × 512 image resolutions. We do not use
anti-aliasing to highlight image quality difference. Please note that the original St. Matthew model has many holes. The use of R-LODs
can alleviate aliasing artifacts and improve the performance of massive models.

0 5 10 15 20
0

0.5

1

Pixels-of-Error(PoE)

R
el

at
iv

e
va

lu
es

(E

ac
h

m
ax

 v
al

ue
 is

lin

ea
rly

 s
ca

le
d

to
 1

) # of intersected nodes per ray
Size of working set
Render time

Figure 9. Performance variation as a function of PoE:
We show the relative benefit of R-LODs on different aspects
of overall performance of ray tracing St. Matthew model. We
measured the rendering time, average number of processed
node per ray, and size of working set on a 32-bit Xeon ma-
chine with 2GB RAM. All these values are shown in a scale-
invariant manner by linearly scaling their maximum values
to 1. The performance of our LOD-based ray tracer dras-
tically decreases as we linearly increase the PoE. Moreover,
the graph indicates that there is high correlation between the
performance of the ray tracer and the size of working set. Im-
age shots generated by tested PoE values can be seen in Fig.
8.

Runtime performance: The benefit of LODs varies with the
reduction in the working set size. For a highly tessellated St.
Matthew model with 128M triangles, we achieve more than
one order of magnitude reduction in the size of the working
set and almost two orders of magnitude improvement in the
frame rate. This model has low depth complexity and more
than half the primitives are visible from the eye. We show
the frame rates obtained during rendering of the St. Matthew
model with and without R-LODs and cache-oblivious layouts
in Fig. 10. Moreover, we are able to achieve 2.6 frames per
second while rendering the model with shadow and reflection
with little loss of image quality (see. Fig. 1). For the forest
model shown in Fig. 4, we are able to achieve more than five
times improvement by using R-LODs.

In the case of the Double Eagle tanker, we get 10%–200%
improvement. This model has high depth complexity and is
not highly tessellated. As a result, the performance improve-
ment due to LODs is limited. An image of the tanker with

shadows is shown in Fig. 2.

7 Analysis and Comparison
In this section, we analyze the performance of our ray trac-
ing algorithm and also compare its performance to prior ap-
proaches. We also discuss some limitations of our approach.
7.1 Analysis
We first examine different aspects of our R-LOD representa-
tion.
R-LOD overhead: Our algorithm introduces 4 bytes of ad-
ditional storage for each kd-node. We measure the additional
computational overhead of evaluating our LOD metric during
traversal by comparing the runtime performance on the Stan-
ford scanned dragon model (870K triangles) of the standard
ray tracer using 8 byte sized kd-nodes and of our ray tracer,
which uses 12 byte-sized nodes with stored R-LODs. In order
to measure the overhead of R-LODs, we set our PoE metric to
0 during LOD tree traversal; consequently, the image quality
is the same in both cases. We found that the R-LOD overhead
for storage and traversal reduces the performance by 2%–5%,
as compared to ray tracing as described in [30].
Performance gains: The use of R-LODs reduces both com-
putational workload and memory requirements. A major ben-
efit of R-LODs is the reduction of the working set size and
cache miss ratios of the runtime algorithm. This size de-
creases almost as a exponential function of the PoE as shown
in Fig. 9. As a result, we get fewer L1/L2 cache misses and
page faults and our new ray tracing algorithm is more cache
coherent.
7.2 Comparison to other approaches
Our algorithm integrates R-LODs with the kd-tree representa-
tion for ray tracing. The idea of using an integrated hierarchi-
cal representation for traversal, visibility and simplification
has been used by other algorithms for interactive rendering.
These include the QSplat system [23], which uses a hierar-
chy of spheres and a screen space PoE metric to stop the tree
traversal at a node. However, QSplat is mainly designed for
point datasets or dense meshes arising from scanned models.
Moreover, our LOD computation and error metric evaluation
algorithms are different from QSplat as we take into account
primary and secondary rays. The Quick-VDR system [41]

R-LODs: Fast LOD-Based Ray Tracing of Massive Models (UNC Tech. Report: TR06-009) Page 8 of 10

uses a two-level multiresolution hierarchy called CHPM for
view-dependent simplification and visibility culling of large
polygonal models. However, the CHPM representation has
a high memory overhead and does not lend itself well to ray
tracing.

Several other ray tracing algorithms based on LODs have
been proposed. The algorithm that is closest to our approach
is the out-of-core ray tracer described in [32]. While we use
R-LODs to perform fewer node and triangle intersections,
Wald et al. use a simplified version only when the data is
not in main memory in order to hide the latency incurred by
loading data from the disk. This approach works well when
the working set is smaller than main memory. Our LOD based
algorithm is complimentary to their work and uses a different
representation to reduce the size of the working set and per-
form fewer ray intersections.

Pharr et al. [20] describe an algorithm to optimize mem-
ory coherence in ray tracing. In their approach, the rays are
reordered so that they access the scene data in a coherent
manner. Their prime application was accelerating ray trac-
ing for offline rendering. Our LOD based approach is quite
complimentary to their algorithm. The LOD-based renderer
described by Christensen et al.[5] differs from ours in two re-
spects. Firstly, it uses subdivision meshes. Therefore, it is
primarily useful for computing appropriate tessellation levels
from the coarsest resolution. On the other hand, we compute
the R-LODs from the original mesh. Secondly, Christensen
et al. use ray differentials, which is expensive for real-time
ray tracing. In contrast, our LOD metric is very efficient and
optimized for interactive rendering.

7.3 Limitations
Our approach has certain limitations. First of all, any LOD-
based acceleration technique can result in visual artifacts. We
minimize these artifacts by using a low PoE bound and com-
bining the projected screen-space error and surface deviation
error of an R-LOD. If we use a high PoE bound, the R-
LODs may result in holes on the simplified representation.
This visual artifact can be removed by employing implicit
surfaces[33, 14] as a LOD and thereby sacrificing some of the
efficiency of our LOD representation. Moreover, our current
R-LOD representation is a drastic simplification of the under-
lying geometric primitives and their material properties. As a
result, the R-LOD representation may not provide high qual-
ity simplification for surfaces that have highly varying BRDF.
One possibility is to use a more complex reflectance represen-
tation [18] in such cases. Also, our LOD metric does not give
guarantees on the errors in the path traced by the secondary
rays and the illumination computed at each pixel. However,
we indirectly reduce the differences by reducing errors associ-
ated with the R-LODs. Finally, our efficient projection-based
LOD error metric can currently handle planar reflections and
shadow rays, but not refraction nor non-planar reflection.

8 Conclusion and Future Work
We have presented a novel LOD-based ray tracing algorithm
to improve the performance of ray tracing massive models.
We use the R-LOD representation as a drastic simplification
of geometric primitives contained in the subtree of a kd-node
and select the LODs based on our projection-based LOD error
metric. We have described a hierarchical R-LOD construction
algorithm that has linear time complexity and is well suited for
out-of-core computation. The use of R-LODs results in fewer

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

Frame number

R
en

de
r

tim
e(

se
c) Render time w/o R-LODs

Render time w/ R-LODs + CO-layout

Figure 10. Frame time with and without R-LODs: The
graphs shows frame times while rendering the 128M St.
Matthew model with/without R-LODs and cache-oblivious
(CO) layout. We measure frame time when we approach the
model starting from the viewpoint shown in Fig. 8. The path
is also shown in the video.

intersection tests and can significantly improve the memory
coherence of the ray tracing algorithm. We have observed
more than an order of magnitude speedup on massive models,
and most of these gains are due to improved memory coher-
ence and fewer cache misses.

There are many avenues for future work. In addition to
addressing current limitations of our approaches, we would
like to extend our current R-LOD representation to support
smooth implicit surfaces to improve the rendering quality, and
still have a compact representation. Moreover, we would like
to extend our approach to handle other kinds of input model
types such as point clouds [24] and higher order primitives.
It might be useful to integrate approximate visibility crite-
ria within our efficient LOD metric to further improve the
performance ray tracing on massive models with high depth
complexity. Also, we would like to consider visibility issues
during construction of R-LODs in order to have better visual
quality. Furthermore, we are interested in evaluating our ray
tracer on other complex datasets and measuring the perfor-
mance benefit. LODs could also be potentially useful in the
context of designing future hardware for interactive ray trac-
ing.

Acknowledgments
We would like to thank Matt Pharr, Ingo Wald, Eric Haines,
and David Kasik for providing helpful feedback on an earlier
draft of this paper. The St. Matthew statue are courtesy of the
Digital Michelangelo Project at Stanford University. the Dou-
ble Eagle tanker is courtesy of Newport News Shipbuilding.
Simplified St. Matthew models are computed by a streaming
simplification tool provided by Peter Lindstrom. This work
was supported in part by ARO Contracts DAAD19-02-1-0390
and W911NF-04-1-0088, NSF awards 0400134 and 0118743,
ONR Contract N00014-01-1-0496, DARPA/RDECOM Con-
tract N61339-04-C-0043 and Intel. Some of the work was per-
formed under the auspices of the U.S. Department of Energy
by the University of California, Lawrence Livermore National
Laboratory.

References
[1] M. Agrawala, R. Ramamoorthi, and A. Moll. Efficient image-

based methods for rendering soft shadows. In ACM SIG-
GRAPH, pages 375–384, 2000.

[2] J. Amanatides. Ray tracing with cones. In Computer Graph-
ics (SIGGRAPH ’84 Proceedings), volume 18, pages 129–135,
July 1984.

R-LODs: Fast LOD-Based Ray Tracing of Massive Models (UNC Tech. Report: TR06-009) Page 9 of 10

[3] A. Appel. Some techniques for shading machine renderings
of solids. In AFIPS 1968 Spring Joint Computer Conf., vol-
ume 32, pages 37–45, 1968.

[4] Y.-J. Chiang, J. El-Sana, P. Lindstrom, R. Pajarola, and C. T.
Silva. Out-of-core algorithms for scientific visualization and
computer graphics. IEEE Visualization 2003 Course Notes,
2003.

[5] P. H. Christensen, D. M. Laur, J. Fong, W. L. Wooten, and
D. Batali. Ray differentials and multiresolution geometry
caching for distribution ray tracing in complex scenes. Com-
puter Graphics Forum, 22(3):543–552, Sept. 2003.

[6] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio,
and R. Scopigno. Adaptive tetrapuzzles: efficient out-of-
core construction and visualization of gigantic multiresolution
polygonal models. ACM Trans. Graph., 23(3):796–803, 2004.

[7] D. E. DeMarle, C. P. Gribble, and S. G. Parker. Memory-savvy
distributed interactive ray tracing. In EGPGV, pages 93–100,
2004.

[8] A. Dietrich, I. Wald, and P. Slusallek. Large-Scale CAD
Model Visualization on a Scalable Shared-Memory Architec-
ture. In Proceedings of 10th International Fall Workshop -
Vision, Modeling, and Visualization (VMV) 2005, pages 303–
310, 2005.

[9] E. Gobbetti and F. Marton. Far voxels: A multiresolution
framework for interactive rendering of huge complex 3D mod-
els on commodity graphics platforms. ACM Trans. Graph.,
24(3):878–885, 2005.

[10] V. Havran. Heuristic Ray Shooting Algorithms. PhD thesis,
Department of Computer Science and Engineering, Faculty of
Electrical Engineering, Czech Technical University in Prague,
November 2000.

[11] P. S. Heckbert and P. Hanrahan. Beam tracing polygonal ob-
jects. In SIGGRAPH ’84: Proceedings of the 11th annual
conference on Computer graphics and interactive techniques,
pages 119–127, New York, NY, USA, 1984. ACM Press.

[12] H. Igehy. Tracing ray differentials. In ACM SIGGRAPH, pages
179–186, 1999.

[13] I. Jolliffe. Principle component analysis. In Springer-Veriag,
1986.

[14] D. Levin. Mesh-independent surface interpolation. In Geomet-
ric Modeling for Scientific Visualization, pages 37–49, 2003.

[15] D. Lischinski and A. Rappoport. Image-based rendering
for non-diffuse synthetic scenes. In Eurographics Rendering
Workshop 98, pages 301–314, 1998.

[16] D. Luebke, M. Reddy, J. Cohen, A. Varshney, B. Watson,
and R. Huebner. Level of Detail for 3D Graphics. Morgan-
Kaufmann, 2002.

[17] J. D. MacDonald and K. S. Booth. Heuristics for ray tracing
using space subdivision. Visual Computer, 1990.

[18] F. Neyret. Modeling, animating, and rendering complex scenes
using volumetric textures. IEEE Transactions on Visualization
and Computer Graphics, 1998.

[19] S. Parker, W. Martin, P. Sloan, P. Shirley, B. Smits, and
C. Hansen. Interactive ray tracing. Symposium on Interactive
3D Graphics, 1999.

[20] M. Pharr, C. Kolb, R. Gershbein, and P. Hanrahan. Rendering
complex scenes with memory-coherent ray tracing. In Proc. of
ACM SIGGRAPH, pages 101–108, 1997.

[21] T. Purcell, I. Buck, W. Mark, and P. Hanrahan. Ray tracing on
programmable graphics hardware. ACM Trans. on Graphics
(Proc. of SIGGRAPH’02), 21(3):703–712, 2002.

[22] A. Reshetov, A. Soupikov, and J. Hurley. Multi-level ray trac-
ing algorithm. ACM Trans. Graph., 24(3):1176–1185, 2005.

[23] S. Rusinkiewicz and M. Levoy. Qsplat: A multiresolution
point rendering system for large meshes. Proc. of ACM SIG-
GRAPH, pages 343–352, 2000.

[24] G. Schaufler and H. W. Jensen. Ray tracing point sampled
geometry. In Rendering Techniques, pages 319–328, 2000.

[25] J. Schmittler, S. Woop, D. Wagner, W. J. Paul, and
P. Slusallek. Realtime ray tracing of dynamic scenes on an
FPGA chip. In HWWS ’04: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware,
pages 95–106, New York, NY, USA, 2004. ACM Press.

[26] M. Shinya, T. Takahashi, and S. Naito. Principles and appli-
cations of pencil tracing. In Computer Graphics (SIGGRAPH
’87 Proceedings), volume 21, pages 45–54, July 1987.

[27] P. Shirley, P. Slusallek, B. Mark, G. Stoll, and I. Wald. In-
troduction to real-time ray tracing. SIGGRAPH Course Notes,
2005.

[28] G. Stoll, W. R. Mark, P. Djeu, R. Wang, and I. Elhassan. Ra-
zor: An Architecture for Dynamic Multiresolution Ray Trac-
ing. Technical Report TR-06-21, Dept of Computer Sciences,
University of Texas, 2006.

[29] K. Sung and P. Shirley. Ray tracing with the BSP tree. Graph-
ics Gems III, pages 271–274, 1992.

[30] I. Wald. Realtime Ray Tracing and Interactive Global Illu-
mination. PhD thesis, Computer Graphics Group, Saarland
University, 2004.

[31] I. Wald, C. Benthin, M. Wagner, and P. Slusallek. Interactive
rendering with coherent ray tracing. In A. Chalmers and T.-
M. Rhyne, editors, Computer Graphics Forum (Proceedings of
EUROGRAPHICS 2001), volume 20, pages 153–164. Black-
well Publishers, Oxford, 2001.

[32] I. Wald, A. Dietrich, and P. Slusallek. An Interactive Out-of-
Core Rendering Framework for Visualizing Massively Com-
plex Models. In Proceedings of the Eurographics Symposium
on Rendering, 2004.

[33] I. Wald and H.-P. Seidel. Interactive Ray Tracing of Point
Based Models. In Proceedings of 2005 Symposium on Point
Based Graphics, 2005.

[34] I. Wald, P. Slusallek, and C. Benthin. Interactive distributed
ray tracing of highly complex models. In S.J.Gortler and
K.Myszkowski, editors, Rendering Techniques 2001 (Proceed-
ings of the 12th EUROGRAPHICS Workshop on Rendering,
pages 277–288. Springer, 2001.

[35] M. Wand and W. Straßer. Multi-resolution point-sampled ray-
tracing. In Graphics Interface, 2003.

[36] T. Whitted. An improved illumination model for shaded dis-
play. Commun. ACM, 23(6):343–349, 1980.

[37] C. Wiley, I. A.T. Campbell, S. Szygenda, D. Fussell, and
F. Hudson. Multiresolution BSP trees applied to terrain, trans-
parency, and general objects. In W. Davis, M. Mantei, and
V. Klassen, editors, Graphics Interface, pages 88–96, May
1997.

[38] S. Woop, J. Schmittler, and P. Slusallek. RPU: a programmable
ray processing unit for realtime ray tracing. ACM Trans.
Graph., 24(3):434–444, 2005.

[39] S.-E. Yoon, P. Lindstrom, V. Pascucci, and D. Manocha.
Cache-Oblivious Mesh Layouts. Proc. of ACM SIGGRAPH,
2005.

[40] S.-E. Yoon and D. Manocha. Cache-Efficient Layouts of
Bounding Volume Hierarchies. In Computer Graphics Forum
(Eurographics), 2006. Conditionally accepted.

[41] S.-E. Yoon, B. Salomon, R. Gayle, and D. Manocha. Quick-
VDR: Interactive View-dependent Rendering of Massive Mod-
els. IEEE Visualization, pages 131–138, 2004.

R-LODs: Fast LOD-Based Ray Tracing of Massive Models (UNC Tech. Report: TR06-009) Page 10 of 10

RT-DEFORM: Interactive Ray Tracing of Dynamic Scenes
using BVHs

Christian Lauterbach1 Sung-Eui Yoon2 David Tuft1 Dinesh Manocha1

1 University of North Carolina at Chapel Hill 2 Lawrence Livermore National Laboratory
http://gamma.cs.unc.edu/BVH

UNC Tech. Report: T06-010
March 2006

Abstract
We present an efficient approach for interactive ray tracing of deformable or animated models. Unlike many of the
recent approaches for ray tracing static scenes, we use bounding volume hierarchies (BVHs) instead of kd-trees
as the underlying acceleration structure. Our algorithm makes no assumptions about the simulation or the motion
of objects in the scene and dynamically updates or recomputes the BVHs. We also describe a method to detect
BVH quality degradation during the simulation in order to determine when the hierarchy needs to be rebuilt.
Furthermore, we show that the ray coherence techniques introduced for kd-trees can be naturally extended to
BVHs and yield similar improvements. Our algorithm has been applied to different scenarios composed of tens
of thousands to a million triangles arising in animation and simulation. In practice, our algorithm can ray trace
these models at 4-20 frames a second on a dual-core Xeon PC.

1. Introduction

Ray tracing is a classic problem in computer graphics and
has been studied in the literature for more than three decades.
Most of the earlier ray tracing algorithms were used to gen-
erate high quality images for offline rendering. Over the last
few years, there has been renewed interest in real-time ray
tracing. At a broad level, most of the work in real-time ray
tracing algorithms can be classified into three main cate-
gories: improved techniques to compute acceleration struc-
tures, exploiting ray coherence, and parallel algorithms on
shared memory or distributed memory systems.

Most current interactive ray tracing algorithms use kd-
trees as an acceleration data structure [RSH05, Wal04]. In
practice, kd-trees are simple to implement, can be stored in a
compact manner, and are used for efficient tree traversal dur-
ing ray intersections. However, one of the the main disadvan-
tages of kd-trees is the high construction time; current algo-
rithms can take many seconds even on models composed of
tens of thousands of triangles [Hav00,WH06]. Furthermore,
no simple and fast algorithms are known for incrementally
updating the kd-tree hierarchy, even when the primitives un-
dergo a simple deformation. As a result, current algorithms
for interactive ray tracing are mainly limited to static scenes.

Main results: In this paper, we present a simple and efficient
algorithm for interactive ray tracing of dynamic scenes. We
analyze many issues with respect to computation and incre-
mental updates of hierarchies. Our algorithm uses bounding

volume hierarchies (BVHs) of axis-aligned bounding boxes
(AABBs), for which we describe efficient techniques to re-
compute or update these hierarchies during each frame. In
practice, rebuilding of BVHs can be expensive, so we mini-
mize these computations by measuring BVH quality degra-
dation between successive frames. We also apply the ray co-
herence techniques developed for kd-trees to BVHs and ob-
tain similar speedups. Finally, we describe techniques to par-
allelize these computations on multi-core architectures and
improve the cache efficiency of the resulting algorithms. We
have implemented our algorithm and highlight its perfor-
mance on several dynamic scenes. Our system can render
these datasets with secondary and shadow rays at 4 − 20
frames per second on a dual-core 2.8GHz Xeon PC with
2GB of memory.

Overall, our approach offers the following advantages:

1. Simplicity: Our algorithm is very simple and easy to im-
plement.

2. Interactivity: We are able to handle dynamic scenes with
up to a million triangles at interactive rates on current
desktop PCs.

3. Generality: Our algorithms make no assumptions about
the motion of the objects or the underlying simulation or
animation.

The rest of the paper is organized in the following manner:
We give a brief overview of previous methods in Section 2.
We present our BVH hierarchy computation algorithm and

1

Figure 1: Princess Model: Four different images of a 220 step sequence from a dynamic cloth simulation consisting of 40K
triangles. By computing and updating the AABB hierarchy of the deforming model, we are able to achieve 16 frames per second
on dual Xeon processors.

evaluate its features with other approaches in Section 3. Sec-
tion 4 describes our ray tracing algorithm for dynamic scenes
based on BVHs and addresses the issue of utilizing multi-
core architectures. Finally, we show the results obtained by
our approach on several benchmarks in section 5.

2. Previous Work

In this section, we give a brief overview of prior work in
interactive ray tracing and dynamic scenes.

Interactive ray tracing: Since its early introduction in
[App68, Whi80], the ray tracing algorithm has been very
well studied in computer graphics due to its generality and
high rendering quality. Recently, several systems have been
presented that are capable of generating ray traced images
at interactive speeds. A recent survey is given in [SSM∗05].
Parker et al. [PMS∗99] present a real-time ray tracing al-
gorithm on a shared-memory supercomputer. Several ap-
proaches use ray coherence to improve performance and
achieve interactive performance on commodity desktop sys-
tems for large static datasets, such as coherent rat tracing
[WBWS01, Wal04]. More recently, MLRT [RSH05] inte-
grates kd-tree traversal with beam tracing to further improve
performance.

Dynamic Scenes: There is relatively less work on ray trac-
ing dynamic scenes. Reinhard et al. [RSH00] use a grid
structure that can be updated efficiently for any type of an-
imation. Lext et al. [LAAM01] present a general purpose
framework and benchmarks for ray tracing animated scenes.
They also propose an algorithm that uses oriented bound-
ing boxes along with regular grids [LAM01b]. Wald et al.
[WBS03] describe a distributed system for dynamic scenes
that differentiates between transformations and unstructured
movement in the scene. Recently, Ingo et al. [WIK∗06] pro-
posed coherent grid traversal algorithm to handle dynamic
models.

Bounding volume hierarchies: BVHs have been widely
used to accelerate the performance of ray tracing algo-
rithms [RW80, Smi98]. In the case of static scenes, algo-
rithms based on kd-trees and nested grids seem to outper-
form BVH-based algorithms [Hav00]. Larsson and Akenine-
Möller [LAM01a] present a lazy evaluation and hybrid up-
date method to efficiently update BVHs in collision detec-
tion. They also use the algorithm to ray trace models com-
posed of tens of thousands of polygons [LAM03]. BVHs
have also been used to accelerate the performance of col-
lision detection algorithms for deformable models [vdB97,
TKH∗05].

3. BVHs for dynamic scenes

In this section, we analyze the problem of ray tracing using
BVHs. We show that BVHs can offer better performance
than kd-trees on dynamic environments and present opti-
mizations to speed up rendering.

3.1. Choice of Hierarchies

A BVH is a tree of bounding volumes. Each inner node
of the tree corresponds to a bounding volume (BV) con-
taining its children and each leaf node consists of one or
more primitives. Common choices for BVs include spheres,
AABBs, oriented bounding boxes (OBBs) or k-DOPs (dis-
cretely oriented polytopes). Many efficient algorithms have
been proposed to compute sphere-trees [Hub93], OBB-trees
[GLM96], and k-DOP-trees [KHM∗98]. However, we use
AABBs as the BV as they provide a good balance between
the tightness of fit and computation cost. We also use effi-
cient algorithms for ray-box intersection [SM03,WBMS05].

3.2. AABB hierarchies vs. kd-trees

In this section, we evaluate some features of BVHs based
on AABBs and compare them with kd-trees for ray tracing.

2

Recently, many efficient and optimized ray tracing systems
have been proposed based on kd-trees [Wal04]. As far as
static scenes are concerned, analysis has shown that opti-
mized algorithms based on kd-trees will outperform BVH-
based algorithms [Hav00]. There are multiple reasons to
explain this behavior: First, even the most optimized ray-
AABB intersection test (e.g. from [WBMS05]) is more ex-
pensive than split plane intersection for kd-trees. This is due
to the fact that in the worst case (i.e. no early rejection) up
to 6 ray-plane intersections need to be computed for AABB
trees, as opposed to just one for a kd-tree node. Another im-
portant aspect is that a BVH does not provide real front-to-
back ordering during traversal. As a result, when if a primi-
tive intersects the ray, the algorithm cannot terminate (as is
the case for a kd-tree), but needs to continue the traversal to
find all other intersections. Furthermore, kd-tree nodes can
be stored more efficiently (8 bytes per node [WDS04]) than
an AABB possibly could. On the other hand, we found that
BVHs often need fewer nodes overall to represent the scene
as compared to a kd-tree (please see Table 1). This is mainly
due to the fact that primitives are referenced only once in the
hierarchy, whereas kd-trees usually have multiple references
because no better split plane could be found. In addition,
AABBs have the advantage of providing a tighter fit to the
geometric primitives with fewer levels in the tree, e.g. kd-
trees need multiple subdivisions in order to discard empty
space. Most importantly, the major benefit of BVHs is that
the trees can be easily updated in linear time using incremen-
tal techniques. No similar algorithms are known for updating
kd-trees.

3.3. BVH Construction

We construct an AABB hierarchy in a top-down manner by
recursively dividing an input set of primitive into two subsets
until each subset has the predetermined number of primi-
tives. We have found that subdividing until each leaf just
contains one primitive yields the best results at the cost of
a deeper hierarchy, as – similar to kd-trees – node intersec-
tion is comparably cheaper to primitive intersection. Dur-
ing hierarchy construction, the most important operation is
to find a divider for the two subsets that will optimize the
performance of runtime ray hierarchy traversal. One of the
best known heuristics for tree construction for ray tracing
is the surface-area heuristic (SAH) [GS87], which has been
shown to yield higher ray tracing performance. However, it
also has a much higher construction cost, which can take
a significant fraction of a frame time for dynamic environ-
ments. Because of this, we use the midpoint of one of the
dimensions and sort the primitives into the child nodes de-
pending on their location with respect to the midpoint. We
observe that the midpoint heuristic provides good render-
ing performance and is very fast to compute. Note that even
though we just split along one dimension, the bounding box
will still be tight along all the three dimensions. As this
method will often distribute a similar number of primitives

Figure 2: Cloth on Bunny Simulation: Two shots of a 315
step dynamic simulation of cloth dropping on the Stanford
bunny. We achieve 19 frames per second on average during
ray tracing of this deforming model.

to both children, the resulting tree will likely be nearly bal-
anced. As we are storing just one primitive per leaf, it is also
easy to see that the total number of nodes in the tree for n
primitives will always be 2n−1, which allows us to allocate
the space needed for any subtree during construction.

Regardless of the heuristic for finding a split, the time
complexity, T (n), of the recursive AABB hierarchy con-
struction algorithm, given an input model consisting of n
primitives, satisfies T (n) = kT (n

k) +O(n) due to its recur-
sive formulation, where k is the number of children of each
node. Therefore, the time complexity is O(n logk(n)).

3.4. Updating the hierarchy

The main advantage of using BVHs for ray tracing is that
animated or deforming primitives can be handled by updat-
ing the BVs associated with each node in the tree. Our algo-
rithm makes no assumptions about the underlying motion or
simulation. In order to efficiently update the hierarchy, we
recursively update the BVHs by using a postorder traversal.
We initially traverse down to leaves from the root nodes. As
we encounter a leaf node, we efficiently compute a new BV
that has the tightest fit to the underlying deformed geometry.
As we traverse from the leaf node in a bottom-up manner,
we initialize the BV of an intermediate node with a BV of
the leftmost node and expand it with the BVs of the rest of
the sibling nodes.

The time complexity of this approach is O(n), which is
lower than the construction method. This is reflected by fast
update times (see Table 1), which can be one order of mag-
nitude lower than rebuilding the tree for models with hun-
dreds of thousands of polygons. Therefore, we rely on hier-
archy update operations to maintain interactive performance
for dynamic environments.

3

3.5. BVHs for deformable scenes

We initially build an AABB tree of a given scene. As the
model deforms or some objects in the scene undergo motion,
the BVH needs to be updated or rebuilt. Updating the BVH
is to recompute the bounds of each BV node, and rebuild-
ing the BVH is to recompute the entire BVH from scratch
and re-clustering the primitives. At runtime, we traverse the
BVH to compute the intersections between the rays and the
primitives.

If the algorithm only updates the BVH between succes-
sive frames, the runtime performance of BVHs can degrade
over the animation sequence because the grouping of the
primitives and structure of the hierarchy does not change. As
a result, the BVs may not provide a tight fit to the underlying
geometric primitives. This is often characterized by growing
and increasingly overlapping BVs, which subsequently dete-
riorate the quality of the BVH for fast runtime BVH traver-
sal and by adding more intersections between the ray and
AABBs. In such cases, rebuilding the AABB tree or parts of
it is desirable.

We found that updating the BVH works well with rela-
tively small changes to the scene or structured movement to
groups of primitives. When primitives move independently,
however, for example in different directions, changes to the
actual tree structure may be necessary to reflect the new
positions of the deforming geometry. Still, rebuilding the
BVH can be considerably more expensive than updating the
BVH. As a result, we want to minimize the number of times
rebuilding is performed. Therefore, we need to efficiently
decide when updating the BVH is sufficient or rebuilding
the BVH is required. This is non-trivial because the actual
degradation of a BVH depends on many factors, such as the
speed with which primitives move and the general charac-
teristics of the motion of objects in the scene. Simple ap-
proaches such as rebuilding the tree every t frames have the
disadvantage of not being adaptable to different characteris-
tics over the animation and need to be chosen a priori. Con-
servatively choosing t means adding a lot of rebuilding over-
head, which is especially unwanted in an interactive context.
In order to efficiently detect when updating tree or rebuilding
tree is required, we use a simple heuristic that is described
in the next section.

3.6. Rebuilding criterion

We assume that BVH quality degradation is marked by
bounding box growth that is not caused by actual primitive
size, but by distribution of primitives or subtrees in the box.
For example, consider two primitives moving in opposite di-
rections. The parent node containing them will have to grow
to accommodate for the movement, resulting in a bounding
box that is relatively large, but mostly empty. Since the prob-
ability that a box will be intersected by a ray rises with its
surface area, we want to rebuild a subtree to find a more

advantageous tree topology. To find these cases and pre-
vent them from impacting performance, we need to measure
BVH degradation during each frame by using a simple and
inexpensive heuristic.

Our heuristic is based on the idea that we can find nodes
that are large relative to their children by comparing their
surface area. In order to have a relative metric independent
of scale, we measure the ratio of each parent node’s surface
area to the sum of the area of its two children. The larger
the ratio becomes, the more imbalance exists in the sizes.
We first compute the ratio during tree construction and store
it in a field of the optimized AABB data structure (see next
section). Whenever the tree is updated, the changed surface
areas are automatically computed as and each inner node can
easily calculate its new ratio. Since we assume that the ratio
stored from the construction is as good as we can do, we find
the difference between the new and old ratio and add them
to a global accumulation value. Once the bottom-up update
reaches the root, we have computed the sum of all the differ-
ences. To assure that this value can be tested independently
of the tree size, we normalize it by dividing by the number of
nodes that contribute to the sum, i.e. the sum of inner nodes,
which is always n− 1. This yields a relative value describ-
ing the overhead incurred by updating the BVH instead of
rebuilding it. This value is then simply compared to a prede-
fined threshold value and the tree is rebuilt if the threshold is
exceeded.

This approach has several advantages: it will detect a
good time to rebuild regardless of the actual frame rate and
without any scene-specific settings. Furthermore, in scenes
where there is little to no degradation, the heuristic will never
need to initiate a rebuild. It is also possible to use the method
to just rebuild subtrees, but we found that this cannot fully
replace a complete rebuild since degradations in the upper
levels of the hierarchy typically have the highest impact on
the performance of ray tracing.

4. Ray Tracing with BVHs

In this section we describe our runtime BVH traversal algo-
rithm. Also, we present techniques to extend the algorithm
to multi-core architectures.

4.1. Traversal and Intersection with BVHs

We use a simple algorithm to compute the intersection of
a ray and the scene primitives using the BVH. The ray is
checked for intersections with the children of the current
node starting at the root of the tree. If it intersects the child
BV, the algorithm is applied recursively to that child, other-
wise that child is discarded. Whenever a leaf node is reached,
the ray is intersected with the primitives contained in that
node. For most rays, the goal is to find the first hit point on
the ray, so even if a ray-primitive intersection is found, the

4

Figure 3: Bunny blowing up : Two images show frames
from a 113 step animation of a deforming Stanford bunny.
We achieve 8 frames per second on average during ray trac-
ing this deforming model with shadow and reflection rays.

algorithm has to search the other sub-trees for potential in-
tersections. An exception to this are shadow rays, where (at
least for directional or point lights) any single hit is consid-
ered sufficient and traversal can stop.

BVH traversal optimizations: Experience with kd-trees
has shown that front-to-back ordering is a major advantage
for ray tracing. Although BVHs do not provide a strict or-
dering, we found that storing the axis of maximum distance
between children for each AABB and using that informa-
tion during traversal together with the ray direction to deter-
mine a ’near’ and ’far’ child improves the traversal speed,
especially for scenes with a high depth complexity. An-
other issue is cache coherence during traversal: similar to
the compact kd-tree representations [WDS04], we can opti-
mize the AABB representation to fit within 32 bytes of data,
which also includes the information that is needed to rebuild
the tree. Our profiling shows that BVH traversal using our
AABBs has the same cache efficiency as the kd-tree traver-
sal.

Use of ray coherence techniques: One of the main tech-
niques used in current real-time ray tracers is to exploit ray
coherence to reduce the number of traversal steps and prim-
itive intersections per ray. Those algorithms were originally
designed for the kd-tree acceleration structure. It is relatively
straightforward to extend them to work with BVHs as well.
In order to use coherent ray tracing [WBWS01] the BVH
traversal has to be changed so that a node is traversed if any
of the rays in the packet hits it and skipped if all of the rays
miss it. A hit mask is maintained throughout the traversal to
keep track of which rays have already hit an object and their
distance. However, the traversal does no longer require that
the rays have the same direction signs because unlike kd-
trees the traversal order does not determine the correctness
for a BVH. We have implemented ray packet traversal for
2x2 ray bundles and found that it yields a speedup of about

2 to 3, which is even above the improvement obtained for
kd-trees. Adapting the MLRT algorithm [RSH05] to BVHs
is also straightforward.

4.2. Multi-Core Architectures

One of major features of current computing trends is
that there are multi-cores and hyper-threading functionality
available on commodity architectures. Therefore, it is desir-
able to design our hierarchy construction, update, and run-
time traversal such that they take advantage of available par-
allelism.

Hierarchy construction: There are no good and optimal al-
gorithms that can easily parallelize hierarchy construction.
Since ray tracing scales well with multiple processors, it is
desirable to speed up construction by distributing the work
over several threads and cores. To achieve this, we first di-
vide a set of triangles and vertices up to four sets by using
one thread. Then, we assign each thread to construct a sub-
BVH for each divided set. In general, this may not achieve
high load balancing. However, we found that this simple
method works well with our benchmarks since BVHs of our
benchmarks are well balanced.

Update: Our update method takes advantage of multi-core
processors by using a bottom-up update method. Given the
number of available threads, n, we decompose an input BVH
into n sub-BVHs. For this, we simply compute n different
children by traversing the tree from the root in the breadth-
first manner. Then, each thread performs a bottom-up up-
date from one of the computed nodes in parallel. After all
the threads are done, we then sequentially update the upper
portion of the n nodes. We particularly choose the bottom-
up approach since it is well suited to parallel processing. For
example, we do not require any expensive synchronization
for each thread since data that are accessed by threads are
mutually exclusive to each other. Table 1 shows the timings
for our results. Since our current BVHs are relatively well
balanced, this simple scheme provides reasonably good load
balancing in practice.

Runtime traversal: We employ image-space partitioning to
allocate coherent regions to each thread. Also, in order to
achieve reasonably good load balancing, we first decompose
image-space into small tiles (e.g., 16× 16) and, then, allo-
cate each tile to each thread. After a thread finishes its com-
putation, it continues to process another tile. We found that
this approach works well with our benchmarks.

5. Implementation and Results

In this section, we describe our implementation and high-
light the results of our ray tracer on different benchmarks.

5

5.1. Implementation

We have implemented our interactive ray tracer for de-
formable models using BVHs in a dual Intel Xeon machine
at 2.8 GHz. To compare the performance of BVHs with
previous interactive ray tracing work for rendering static
scenes, we also implemented kd-tree rendering(without ani-
mation capability). Both acceleration structures support ray
packet traversal using the SSE SIMD instruction set on In-
tel processors. For efficiency reasons, we only support trian-
gles as primitives. To speed up rendering, we employ multi-
threaded rendering and hierarchy updates using OpenMP.

5.2. Results

We have tested our system on four animated scenes of vary-
ing complexity as well as one more complex static model to
measure performance of our approach (see Table 1). In gen-
eral, building a BVH tree using the naive midpoint method
is much faster than the optimized surface-area heuristic kd-
tree construction. In most cases, both structures have a simi-
lar memory footprint, but kd-trees need more nodes because
primitives can be located in multiple nodes.

Benchmarks: We show five different test cases (Refer Ta-
ble 1): Scene 1 (shown in Fig. 2) and Scene 3 (shown in
Fig. 1) in the respective rows of the table demonstrate per-
formance on a typical animation including simulated cloth at
different complexity, both rendered including shadow rays.
Even though most of the mesh is moving, BVH updates turn
out to be sufficient to maintain the quality of the structure.
Scene 4 (shown in Fig. 3) applies a non-rigid deformation to
the Stanford bunny model with reflection and shadow rays.
To maintain BVH quality, some parts of the tree have to be
rebuilt. Scene 2 (shown in Fig. 4) is a part of the BART an-
imated ray tracing benchmark [LAAM01] and shows a set
of triangles with mostly unstructured, random movement.
Since it has high depth complexity and overlapping primi-
tives, this scene is one of the worst cases for BVH rendering
as well as hierarchy update. For the former, we have found
that the ordering approach for BVHs ameliorates the effects
of depth complexity. Additionally, the independent move-
ment of each triangle leads to extreme degradation in BVH
quality, so that our heuristic rebuilds parts of the tree quite
often. Finally, we demonstrate a more complex static scene
of 1M Buddha (Scene 5) to show that BVH ray tracing can
compete with kd-trees even for larger models. Unfortunately,
the update time grows linearly with model size, so a more ef-
ficient update scheme would be needed to be able to render
this or any larger model at high frame rates.

We tested our heuristic for tree rebuilding on the test mod-
els and found that in all cases except the BART model, just
hierarchy updates can be efficient enough for rendering. The
unstructured, random movement of triangles in the BART
scene makes several tree rebuilds necessary, however. With-
out doing that, we found that frame rates will decrease by

over an order of magnitude in just a few frames. To test
how well the rebuild times are chosen, we benchmarked
the animation while rebuilding only via heuristic (with the
threshold set to 0.4) as well as rebuilding the hierarchy ev-
ery frame. We found that even when looking just at pure ren-
dering time without counting rebuilding and updating, the
animation rendered with new hierarchy in each frame was
only 20% faster than rendering using our heuristic. The latter
needed only a few rebuilds, so the total overhead incurred by
updates and rebuilds was only 2s over the whole sequence,
as compared to 15s for rebuilding.

6. Future Work and Conclusion

We have proposed an algorithm for interactive ray tracing
of deformable, animated models. We used BVH hierarchies
as an acceleration data structure of the deformable models
and showed optimizations that will result in performance
competitive or even exceeding rendering using kd-trees. We
were also able to integrate efficient ray coherence techniques
for kd-trees to our BVHs. We do not make any assumptions
about the possible deformation or motion of objects and dy-
namically update or rebuild the hierarchy depending on our
simple heuristic.

There are many interesting directions for future work. Our
current algorithm is mainly designed for small to intermedi-
ate model complexity. We would like to extend our algo-
rithm to handle larger deforming models, which would re-
quire more efficient or localized update methods. Another
interesting problem is the better use of multiprocessor archi-
tectures in the context of hierarchy construction and updates.
We plan to extend our current methods to be more general
and flexible for these applications. We found that there is
concurrent work on ray tracing of dynamic models based
BVHs [WBS06] with ours. We would like to perform a de-
tailed comparison of our algorithm with theirs.

References

[App68] APPEL A.: Some techniques for shading machine
renderings of solids. In AFIPS 1968 Spring Joint Com-
puter Conf. (1968), vol. 32, pp. 37–45.

[GLM96] GOTTSCHALK S., LIN M., MANOCHA D.:
OBB-Tree: A hierarchical structure for rapid interference
detection. Proc. of ACM Siggraph’96 (1996), 171–180.

[GS87] GOLDSMITH J., SALMON J.: Automatic cre-
ation of object hierarchies for ray tracing. IEEE Comput.
Graph. Appl. 7, 5 (1987), 14–20.

[Hav00] HAVRAN V.: Heuristic Ray Shooting Algorithms.
PhD thesis, Department of Computer Science and Engi-
neering, Faculty of Electrical Engineering, Czech Techni-
cal University in Prague, November 2000.

[Hub93] HUBBARD P. M.: Interactive collision detection.
In Proceedings of IEEE Symposium on Research Frontiers
in Virtual Reality (October 1993).

6

Scene Triangles BVH:nodes memory build time update time fps
1) Cloth on bunny 16K 31923 997 KB 98 ms 4ms 19
2) BART model 16K 32767 1024 KB 96 ms 5ms 12
3) Cloth model 40K 80059 2501 KB 224 ms 8ms 16
4) Bunny 69K 138901 4340 KB 395 ms 11ms 8
5) Buddha 1M 2175431 67982 KB 7593 ms 167ms 4

Scene Triangles kd-tree:nodes memory build time
1) Cloth on bunny 16K 64137 859 KB 1487ms
2) BART model 16K 11075 1426 KB 1902ms
3) Cloth model 40K 218845 2778 KB 5s
4) Bunny 69K 442347 5072 KB 10s
5) Buddha 1M 2989439 33225 KB 80s

Table 1: Benchmarks and Timings: Results for BVH ray tracing of several scenes. The benchmark configuration for each of the
scenes is described in section 5. The top table shows the performance for a BVH. The bottom table shows the tree computation
time and memory overhead for a kd-tree of the same model (for comparison). All benchmarks were performed at 5122 resolution
on a dual Xeon machine at 2.8 GHz using 2x2 ray packet traversal. Both hierarchies were built using a single thread only.

Figure 4: BART Randomly Moving Triangles: Two image
shots from 170 steps of a randomly deforming model from
the BART deforming data benchmark. We are able to achieve
12 frames per second on average during ray tracing this
model with shadow rays.

[KHM∗98] KLOSOWSKI J., HELD M., MITCHELL J.,
SOWIZRAL H., ZIKAN K.: Efficient collision detec-
tion using bounding volume hierarchies of k-dops. IEEE
Trans. on Visualization and Computer Graphics 4, 1
(1998), 21–37.

[LAAM01] LEXT J., ASSARSSON U., AKENINE-
MÖLLER T.: A benchmark for animated ray tracing. In
IEEE Computer Graphics and Applications (2001).

[LAM01a] LARSSON T., AKENINE-MÖLLER T.: Colli-
sion detection for continuously deforming bodies. In Eu-
rographics (2001), pp. 325–333.

[LAM01b] LEXT J., AKENINE-MÖLLER T.: Towards
rapid reconstruction for animated ray tracing. In Euro-
graphics 2001, short presentation (2001).

[LAM03] LARSSON T., AKENINE-MÖLLER T.: Strate-

gies for Bounding Volume Hierarchy Updates for Ray
Tracing of Deformable Models. Tech. rep., 2003.

[PMS∗99] PARKER S. G., MARTIN W., SLOAN P.-P. J.,
SHIRLEY P., SMITS B. E., HANSEN C. D.: Interactive
ray tracing. In SI3D (1999), pp. 119–126.

[RSH00] REINHARD E., SMITS B., HANSEN C.: Dy-
namic acceleration structures for interactive ray tracing.
In Proceedings Eurographics Workshop on Rendering
(June 2000), pp. 299–306.

[RSH05] RESHETOV A., SOUPIKOV A., HURLEY J.:
Multi-level ray tracing algorithm. ACM Trans. Graph. 24,
3 (2005), 1176–1185.

[RW80] RUBIN S. M., WHITTED T.: A 3-dimensional
representation for fast rendering of complex scenes. Com-
puter Graphics 14, 3 (July 1980), 110–116.

[SM03] SHIRELY P., MORLEY R. K.: Realistic Ray Trac-
ing, second ed. AK Peters Limited, 2003.

[Smi98] SMITS B.: Efficiency issues for ray tracing. Jour-
nal of Graphics Tools: JGT 3, 2 (1998), 1–14.

[SSM∗05] SHIRLEY P., SLUSALLEK P., MARK B.,
STOLL G., WALD I.: Introduction to real-time ray trac-
ing. SIGGRAPH Course Notes (2005).

[TKH∗05] TESCHNER M., KIMMERLE S., HEIDEL-
BERGER B., ZACHMANN G., RAGHUPATHI L.,
FUHRMANN A., CANI M.-P., FAURE F., MAGNENAT-
THALMANN N., STRASSER W., VOLINO P.: Collision
detection for deformable objects. Computer Graphics
Forum 19, 1 (2005), 61–81.

[vdB97] VAN DEN BERGEN G.: Efficient collision detec-
tion of complex deformable models using AABB trees.
Journal of Graphics Tools 2, 4 (1997), 1–14.

[Wal04] WALD I.: Realtime Ray Tracing and Interac-
tive Global Illumination. PhD thesis, Computer Graphics
Group, Saarland University, 2004.

7

[WBMS05] WILLIAMS A., BARRUS S., MORLEY R. K.,
SHIRLEY P.: An efficient and robust ray-box intersection
algorithm. Journal of Graphics Tools: JGT 10, 1 (2005),
49–54.

[WBS03] WALD I., BENTHIN C., SLUSALLEK P.: Dis-
tributed Interactive Ray Tracing of Dynamic Scenes. In
Proceedings of the IEEE Symposium on Parallel and
Large-Data Visualization and Graphics (PVG) (2003).

[WBS06] WALD I., BOULOS S., SHIRLEY P.: Ray Trac-
ing Deformable Scenes using Dynamic Bounding Volume
Hierarchies. Technical Report, SCI Institute, University
of Utah, No UUSCI-2005-014 (conditionally accepted at
ACM Transactions on Graphics) (2006).

[WBWS01] WALD I., BENTHIN C., WAGNER M.,
SLUSALLEK P.: Interactive rendering with coherent
ray tracing. In Computer Graphics Forum (Proceed-
ings of EUROGRAPHICS 2001) (2001), Chalmers A.,
Rhyne T.-M., (Eds.), vol. 20, Blackwell Publishers, Ox-
ford, pp. 153–164.

[WDS04] WALD I., DIETRICH A., SLUSALLEK P.: An
Interactive Out-of-Core Rendering Framework for Visu-
alizing Massively Complex Models. In Proceedings of
the Eurographics Symposium on Rendering (2004). (to
appear).

[WH06] WALD I., HAVRAN V.: On building fast kd-Trees
for Ray Tracing, and on doing that in O(N log N). SCI
Institute Technical Report UUSCI-2006-009, University
of Utah, 2006.

[Whi80] WHITTED T.: An improved illumination model
for shaded display. Commun. ACM 23, 6 (1980), 343–349.

[WIK∗06] WALD I., IZE T., KENSLER A., KNOLL A.,
PARKER S. G.: Ray Tracing Animated Scenes using Co-
herent Grid Traversal. Technical Report, SCI Institute,
University of Utah, No UUSCI-2005-014 (conditionally
accepted at ACM SIGGRAPH 2006) (2006).

8

	course4.pdf
	mlrta-1.pdf
	1 Introduction
	1.1 MLRTA Overview
	2 Related Work
	3 Basic Concepts
	3.1 Acceleration Structures
	3.2 Grouping Rays Together
	3.3 Frustum Culling

	4 Tracing Rays at Multiple Levels
	4.1 Finding Ideal Entry Points for Groups of Rays
	4.2 Tile Splitting
	4.3 Interval Traversal Algorithm

	5 Results and Discussion
	6 Limitations of MLRTA and Future Work
	7 Summary
	Acknowledgments
	References

