

Algorithms for

Rendering Depth of Field Effects

in Computer Graphics

Brian A. Barsky
1,2

 and Todd J. Kosloff
1

1
Computer Science Division

2
School of Optometry

University of California, Berkeley

Berkeley, California 94720-1776

USA

barsky@cs.berkeley.edu koslofto@cs.berkeley.edu

http://www.cs.berkeley.edu/~barsky

Abstract: Computer generated images by default render the entire scene in perfect focus. Both camera optics

and the human visual system have limited depth of field, due to the finite aperture or pupil of the optical

system. For more realistic computer graphics as well as to enable artistic control over what is and what is not in

focus, it is desirable to add depth of field blurring. Starting with the work of Potmesil and Chakravarty[33][34],

there have been numerous approaches to adding depth of field effects to computer graphics. Published work in

depth of field for computer graphics has been previously surveyed by Barsky [2][3]. Later, interactive depth of

field techniques were surveyed by Demers [12]. Subsequent to these surveys, however, there have been

important developments. This paper surveys depth of field approaches in computer graphics, from its

introduction to the current state of the art.

Keywords: - depth of field, blur, postprocess, distributed ray tracing, lens, focus, light field.

Figure 1: (left) Image before and after depth of field has been added via postprocessing (courtesy of Indranil

Chakravarty [33]). (right) A dragon scene rendered with a distributed ray tracing approach (courtesy of

Magnus Strengert [23]).

1 Introduction
Computer generated images by default render the

entire scene in perfect focus. Both camera optics and

the human visual system have limited depth of field,

due to the finite aperture or pupil of the optical

system. For more realistic computer graphics as well

as to enable artistic control over what is and what is

not in focus, it is desirable to add depth of field

blurring. Starting with the work of Potmesil and

Chakravarty[33][34], there have been numerous

approaches to adding depth of field effects to

computer graphics. Published work in depth of field

for computer graphics has been previously surveyed

by Barsky [2][3]. Later, interactive depth of field

techniques were surveyed by Demers [12].

Subsequent to these surveys, however, there have

been important developments. This paper surveys

approaches to depth of field approaches in computer

graphics, from its introduction to the current state of

the art.

mailto:barsky@cs.berkeley.edu

2 Optics
An image is formed in an optical system when light

enters, is refracted by the lens, and impinges on the

image capture device (which may be film, a digital

sensor, or a retina). To capture adequate light to form

an image, the optical system must include an aperture

of sufficient size. The light originating from a given

point in the scene thus converges at only one depth

behind the lens, and this depth is not necessarily that

of the sensor (Figure 2). Therefore images have

limited depth of field; that is, objects that are not

sufficiently near the focus depth will appear blurred.

Points on objects at a given depth will appear spread

over a region in the image known as the circle of

confusion (CoC). To see how to compute the size of

the diameter of the CoC using a thin lens model, the

reader is referred to Barsky [2].

A thorough treatment of optics can be found in [8].

Computer graphics methods for rendering 3D scenes

typically use a pinhole camera model, leading to

rendering the entire scene in perfect focus. Extra

effort is required to simulate limited depth of field

and an aperture that has a finite size.

Figure 2: A point in the scene (left) images as a disc

on the image plane (right), leading to depth of field

effects (image courtesy of Pat Hanrahan [25]).

3 Overview
We can categorize depth of field methods in

computer graphics in several ways.

First, we can differentiate between object space and

image space methods. Object space methods operate

on a 3D scene representation, and build depth of field

effects directly into the rendering pipeline. Image

space methods, also known as postprocess methods,

operate on images that were rendered with everything

in perfect focus. The images are blurred with the aid

of a depth map. The depth map is used along with a

camera model to determine how blurred each pixel

should be. In general, object space methods generate

more realistic results and suffer fewer artifacts than

image space methods. However, image space

methods are much faster.

Object space methods can be further subdivided into

those based on geometric optics, and those based on

wave optics. Most work in computer graphics uses

geometric optics, which is sufficiently accurate for

many purposes. However, diffraction and interference

do play a role in the appearance of defocused images.

Wave-propagation approaches have therefore been

investigated, as a very direct way to simulate such

effects.

Image space methods can be further subdivided into

methods primarily suitable for computer generated

images, and those applicable to computational

photography. Traditional postprocess methods require

an accurate depth map to know where and how much

to blur, but such a depth map is difficult to acquire

for a real-world photograph. Light fields, on the

other hand, allow digital refocusing, without the need

for a depth map. Light fields require specialized

equipment to capture as well as substantial storage,

but the algorithms involved are straightforward,

produce good images, and can represent scenes of

arbitrary complexity.

4 Object-Space Approaches
4.1 Distributed ray tracing
Geometric optics can be directly simulated by

distributed ray tracing [11]. Rather than tracing one

ray per pixel, which simulates a pinhole camera,

several rays are traced per pixel, to sample a finite

aperture. For a given pixel, each ray originates at the

same point on the image plane, but is directed

towards a different point on the lens. Each ray is

refracted by the lens, and then enters the scene. Since

distributed ray tracing accurately simulates the way

an image is actually formed (ignoring wave effects),

images generated this way appear quite realistic, and

they serve as the “gold standard” by which we can

evaluate postprocess methods. Unfortunately, a great

many rays per pixel are required for large blurs,

making distributed ray tracing a very time consuming

process. When insufficiently many rays are used, the

images contain artifacts in the form of noise. Images

with depth of field generated by distributed ray

tracing are shown in Figure 1 (right) and Figure 4.

4.2 Realistic camera models
Cook originally used distributed ray tracing with a

thin lens camera model, and Kolb et al. [25] later

extended this method to model specific real-world

lenses. First, lens specifications are obtained from

the manufacturer of the lens that is to be simulated.

Often, camera lenses take the form of a series of

spherical lenses with various radii, interspersed with

stops (Figure 3). Next, the exit pupil is determined,

as this determines the disc on the back of the lens that

must be sampled. Finally, distributed ray tracing is

performed by tracing rays from points on the image

plane to points on the exit pupil. These rays are

refracted by each lens of the assembly before entering

the scene. This process accurately takes into account

both the depth of field properties of the lens as well

as the perspective projection, including distortions.

Examples can be seen in Figure 4.

Figure 3: An assembly of lenses, as found in a typical

camera (image courtesy of Pat Hanrahan [25]).

Figure 4: Three different lens assemblies, and the

resulting images. Notice the barrel distortion in the

top image, and notice the effect of varying focal

length in the middle and bottom image. (Images

courtesy of Pat Hanrahan [25].)

4.3 Accumulation Buffer
It is possible to use the accumulation buffer [17]

found on standard rasterization hardware to render

depth of field effects by sampling the aperture. A

collection of pinhole-based images is rendered, and

the accumulation buffer is used to average those

images. Each pinhole-based image is rendered with a

slightly different projection matrix that places the

pinhole at a different location on the aperture. In

principle, this method is very similar to distributed

ray tracing insofar as many samples per pixel are

taken and averaged. However, the accumulation

buffer method is faster because rasterization hardware

is quite fast compared to ray tracing. Distributed ray

tracing, however, enables adaptive control over the

number and distribution of samples per pixel, leading

to higher accuracy with fewer rays, compared to

uniform sampling. But the accumulation buffer must

render an entire pinhole-based image at a time,

because rasterization hardware is optimized for

rendering entire images, rather than individual pixels.

The accumulation buffer method must thus use the

same number and distribution of samples for each

pixel.

4.4 Wave-Propagation Methods
Both distributed ray tracing and the accumulation

buffer assume geometric optics, meaning that

diffraction and interference are ignored. If we treat

our scene as a large collection of point light sources,

each emitting a wave front of appropriate wavelength,

the propagation of these wave fronts can be tracked

through space [42][43]. An image plane is placed at

a particular location, and the contributions from all

the wave fronts are summed, then the amplitude is

taken to determine pixel values. This process is

generally carried out in the frequency domain, so that

Fast Fourier Transforms [14] can provide a speedup.

As this method directly simulates light waves,

diffraction and interference are automatically

included.

4.5 Splatting
When the amount of detail in a scene is sufficiently

high, it sometimes makes sense to describe the scene

not as a collection of geometric primitives with

texture maps, but rather as a dense collection of point

samples. A standard way to render point-based

scenes is elliptical weighted average splatting [44],

which renders each point as an elliptical Gaussian.

The point samples are stored in a tree, and points are

drawn from appropriate levels of the tree to achieve

automatic level of detail.

Although DoF effects in point based scenes could be

rendered using the accumulation buffer, it is more

efficient instead to modify the splatting method, as

Krivanek et al. showed in [24]. Each point sample is

convolved with the appropriate PSF, before splatting.

In the case of a Gaussian PSF, the result is simply to

increase the standard deviation of the Gaussian splat.

Therefore, DoF blurring fits naturally into the

splatting pipeline. A resulting image can be seen in

Figure 5. This method is accelerated by drawing

from coarser levels of the point sample tree, when the

blur is large (Figure 6). The method is faster due to

fewer points being rendered, but it still maintains

accuracy because the lost detail would have been

blurred anyway.

Figure 5: A complex point-sampled object with

depth of field (image courtesy of Jaroslav

Krivanek [24]).

Figure 6: (left) Point-sampled chessboard,

rendered using splatting. (right) Illustration of

the decreased point density used in highly

blurred regions (image courtesy of Jaroslav

Krivanek [24]).

4.6 Analytical Visibility
Catmull describes an analytical hidden surface

removal algorithm for rendering polygonal scenes,

based on clipping polygons against one another [10].

Catmull solves the aliasing problem analytically as

well, by integrating the visible polygons across the

entire width of each pixel. Given this framework, he

shows how it is straightforward to add depth of field

effects (or motion blur) simply by increasing the

width of the anti aliasing filter for polygons that

ought to be blurred. This method has the advantage

of generating precise, noise-free images, in constrast

to sampling methods such as distributed ray tracing

and the accumulation buffer, which can suffer from

noise or ghosting even when very large numbers of

samples are used.

5 Image-Space Approaches
The ideal post-process method would satisfy all of

the following criteria:

Choice of point spread function
The appearance of blur can be defined by considering

the point spread function (PSF), which shows how a

single point of light appears after having been

blurred. Since different optical systems have different

PSFs, a good DoF postprocess method should allow

for the use of a wide variety of PSFs.

Per-pixel blur level control
At each pixel, the amount of blur depends on depth.

Since objects can have complex shape, each pixel can

have a different depth and hence a different amount

of blur. Some postprocess methods use pyramids or

Fourier transforms, which operate at specific blur

levels over entire images. Ideally, however, a

postprocess method should have complete per-pixel

control over the amount of blur.

Lack of intensity leakage
A blurred background will never blur on top of an in-

focus foreground in a real image. However, this

property is not respected by the simple linear filters

sometimes used for DoF postprocessing. Therefore

such methods suffer from intensity leakage artifacts,

which detract from the realism of the resulting

images.

Lack of depth discontinuity artifacts
In real images, the silhouette of a blurred foreground

object will be soft, even if the background is in focus.

Unfortunately, in this case, simple linear filters

sometimes lead to the blurred object having a sharp

silhouette. This artifact occurs where the depth map

of an image changes abruptly, so we refer to this as a

depth discontinuity artifact.

Proper simulation of partial occlusion
In real images, blurred foreground objects have soft

edges at which some portions of the background are

visible. We refer to this as partial occlusion, since

the background is only partially blocked by the

foreground. These visible parts of the background

would not be visible in the case of a pinhole image of

the same scene. The geometry of partial occlusion is

illustrated in Figure 5. Since a postprocess method

starts with a single pinhole image as input, it is

difficult in this case to correctly simulate partial

occlusion. Generally, background colors must be

interpolated from the colors that are known.

Figure 5: Partial Occlusion (image from Barsky [2]).

High performance
Directly filtering an image in the spatial domain has a

cost proportional to the area of the PSF. For large

PSFs, the blurring process can take several minutes.

Ideally we would like interactive or real time

performance, motivating some of the more recent

work in the field.

No post-process method satisfies all these criteria; a

full solution is still an open problem at this time.

5.1 Linear Filtering
Potmesil and Chakravarty described the first method

for adding depth of field to computer generated

images [33][33]. Their method is a postprocess

method, using a spatially variant linear filter and a

depth-dependent PSF. Their filter operates directly in

the spatial domain, and thus has a cost proportional to

the area of the PSFs being used. The linear filter can

be expressed by the following formula:

),(),,,(),(jiSjiyxpsfyxB
i j



where B is the blurred image, psf is the filter kernel,

which depends on the point spread function, x and y

are coordinates in the blurred image, S is the input

(sharp) image, and i and j are coordinates in the input

image. Results from this method are shown in Figure

6. Potmesil and Chakravarty used PSFs derived from

physical optics, incorporating diffraction off the edge

of the aperture, and interference on the image plane.

This method did not attempt to mitigate intensity

leakage or depth discontinuity artifacts.

Figure 6: Image blurred using a linear filtering

approach, with the focus at different depths (images

courtesy of Indranil Chakravarty [33]).

5.2 Ray Distribution Buffer
Shinya proposed a replacement for the previous linear

filtering method that explicitly handles visibility,

thereby eliminating intensity leakage [39]. Rather

than directly create a blurred image, Shinya first

creates a ray distribution buffer, or RDB, for each

pixel. The RDB contains one z-buffered entry for

each of several discretized positions on the lens from

which light can arrive. By decomposing each pixel in

this way, complex visibility relationships can be

easily handled via the z-buffer. After the RDBs have

been created, the elements of each RDB are averaged

to produce the blurred pixel color. The RDB method

handles visibility quite well, at the cost of additional

time and memory compared to a straightforward

linear filter. It is interesting to note that the set of

RDBs constitute the camera-lens light field of the

scene. Light fields and their connection to DoF will

be discussed later in this paper.

5.3 Layered Depth of Field
Scofield shows how Fast Fourier Transforms can be

used to efficiently perform depth of field post-

processing for the special case of layered planar,

screen-aligned objects [38]. Each layer is blurred by

a different amount, using frequency domain

convolution. Then, the blurred layers are composited

with alpha blending [32]. The FFT allows any point

spread function to be efficiently used, and there is no

additional cost for using large PSFs. The use of

layers and alpha blending provides a good simulation

of partial occlusion, and completely eliminates

intensity leakage. Scofield's method is simple to

implement, but the FFT convolution requires that

each layer have only a single level of blur. Thus,

there can be no depth variation within a layer.

5.4 Occlusion and Discretization
The restriction to planar, screen-aligned layers is

severe. This is addressed by the method described in

Barsky [4][6] where objects are made to span layers,

even though each layer is blurred using a single

convolution. First, layers are placed at various

depths. The layers are placed uniformly in diopters,

because the appearance of blur is linear in diopters.

Next, each pixel from the input image is placed in the

layer whose depth is nearest to that pixel’s depth. If

each layer were simply blurred and composited as-is,

then the resulting image would suffer from

discretization artifacts, in the form of black or

transparent bands where one layer transitions into

another (Figure 7, top). This method solves this using

object identification. Entire objects are found, using

either edge detection or an adjacent pixel difference

technique. Wherever part of an object appears in a

layer, the layer is extended to include the entire

object, thus eliminating the discretization artifacts

(Figure 7, bottom).

Another concern addressed by this method is partial

occlusion. The input is a single image, so when a

foreground object is blurred, no information is

available as to the colors of disoccluded background

pixels. This method mitigates this problem by

extending background layers to approximate the

missing information, using a carefully chosen

Gaussian kernel.

5.5 Vision Realistic Rendering
Most depth of field methods attempt to simulate

either a generic thin lens camera model or particular

camera lenses, as is the case of Kolb et al. [25].

However, the optics of the human eye are more

difficult to simulate because the cornea and lens of

the eye cannot be adequately described as a small set

of spherical lens elements in the way that cameras

can. In vision realistic rendering, proposed in Barsky

[5], data from a wavefront aberrometer instrument is

used to perform depth of field postprocessing such

that the blur corresponds directly to the optical

Figure 7: Pixar’s tin-toy scene blurred by Barsky’s

discrete depth method. Black bands occur at layer

boundaries (top) unless object identification is

utilized (bottom) (images from Barsky [4]).

characteristics of the eyes of a particular person. A

wavefront measurement is taken from a human

subject, and that wavefront is then sampled to create a

set of PSFs, corresponding to different depths. This

set of PSFs is then used with the layered scheme

described in the previous section, where the PSFs are

convolved with the layers and composited. An

example is shown in Figure 8.

Figure 8: Vision realistic rendering. This image was

generated using wavefront data from a patient with

kerataconus (image from Barsky [5]).

5.6 Importance Ordering
Fearing showed that the performance of depth of field

rendering can be improved by exploiting temporal

coherence [13]. The pixels are ranked according to an

importance ordering. Pixels that have not changed

significantly from the previous frame have low

importance, whereas pixels that are completely

different have a high importance. For the new image,

DoF is applied to the more important pixels first. The

processing can be interrupted early, and the time

spent will have been spent primarily on the most

important pixels. Therefore, a reasonable

approximation is obtained in the limited time allotted.

5.7 Perceptual Hybrid Method
Mulder and van Lier observe that, due to perceptual

considerations, the center of an image is more

important than the periphery [29]. Exploiting this

observation, they create a hybrid depth of field

postprocess method that is accurate and slow at the

center, but approximate and fast at the periphery. For

the fast approximation, they create a Gaussian

pyramid from the input image, pick a level based on

the desired amount of blur, and up sample that level

by pushing it through the pyramid. The fast

approximation results in a blurred image that suffers

from some degree of blocky artifacts. The periphery

is blurred in a more direct and slow, but higher

quality fashion using circular PSFs.

5.8 Repeated Convolution
Rokita aimed to improve the speed of depth of field

postprocessing such that it would be suitable for

interactive applications such as virtual reality. This

approach uses graphics hardware that can efficiently

convolve an image with a 3x3 kernel [35]. Large

blurs can be achieved by using this hardware to

repeatedly execute 3x3 convolutions. Although this

method is faster than direct filtering, it becomes

slower as blur size increases and the PSF is restricted

to be a Gaussian.

5.9 Depth of Field on the GPU

Scheueremann and Tatarchuk developed a DoF

method implemented as a GPU pixel shader that runs

at interactive rates and largely mitigates intensity

leakage [36][37]. For each pixel, the size of the CoC

is determined using an approximation to the thin lens

model. Next, Poisson-distributed samples are taken

within the circle of confusion, and averaged. For a

large CoC, a great many samples would be needed to

eliminate noise. To avoid this, a 1/16th scaled down

sampled version of the image is used when sampling

a large CoC. In this manner, fewer samples are

needed since a single pixel in the down sampled

image represents numerous pixels in the input image.

To reduce intensity leakage, sample depths are

compared to the depth of the pixel at the center of the

CoC. If the sample lies behind the center pixel, then

that sample is discarded. Unfortunately, depth

discontinuity artifacts are not addressed in this

method.

5.10 Summed Area Table Method
As an alternative to sampling the CoC, the average

over a region of the image can be computed using a

summed area table [16]. The SAT has the advantage

that a fixed (small) amount of computation is

required, no matter how large the blur, and there is no

need to distribute sample points or create a down

sampled image. The SAT was originally developed

for anti-aliasing texture maps. However, Hensley

showed how the SAT can be used for depth of field

postprocessing [20] and furthermore that this method

can be accelerated by a GPU, using a recursive

doubling technique to generate a new SAT for every

frame. Unfortunately, the SAT method does not

address the intensity leakage or depth discontinuity

issues.

5.11 Pyramidal Method
Kraus and Strengert show how to combine a carefully

constructed GPU-enabled pyramidal blur method

with a layering approach somewhat similar to Barsky

[5], to achieve real time DoF postprocessing while

eliminating many instances of intensity leakage and

depth discontinuity artifacts [24].

First, the scene is distributed into layers, based on

depth. Rather than binning each pixel entirely into

the nearest layer, pixels are distributed proportionally

to several adjacent layers, according to a carefully

chosen distribution function. This proportional

distribution serves to mitigate discretization artifacts

at the layer boundaries. Second, background pixels,

which may become disoccluded, are interpolated, also

using a pyramid method. Next, each layer is blurred

by down sampling to an appropriate pyramid level,

and up sampling. The weights used during the up

sampling and down sampling are carefully controlled

to reduce the block artifacts that occur with simpler

pyramid methods. Finally, the blurred layers are

composited using alpha-blending. An example is

shown in Figure 9. This method is faster than

previous layer-based methods based on FFTs but is

only applicable to the limited class of PSFs to which

pyramids can efficiently apply.

Figure 9: A dragon scene blurred using pyramidal

methods on the GPU (image courtesy of Magnus

Strengert [23]).

5.12 Separable Blur
Just as blur can be applied efficiently for Gaussian-

like PSFs using pyramids or for rectangular regions

using SATs, separable PSFs can also be applied

efficiently. Zhou showed how a separable blur can be

used for depth of field postprocessing, with

elimination of intensity leakage [41]. The method is

simple to describe and implement: First the rows of

the image are blurred. Then, the columns of the

resulting image are blurred. Separable blur has a cost

proportional to the diameter of the PSF; this is a

significant improvement over direct filtering which

has a cost proportional to the area of the PSF. Zhou

also shows how to eliminate intensity leakage by

appropriately ignoring pixels while blurring the rows

and columns. The entire method is implemented on a

GPU, and runs at interactive rates for moderate PSF

sizes.

5.13 Approaches Based on Simulated Heat

Diffusion
Heat diffusion is a natural physical process that

exhibits blurring despite being unrelated to optics.

Specifically, if a thermally conductive object has an

uneven distribution of heat, then that distribution will

progressively become more even, or blurred, over

time. The differential equations of heat diffusion [9]

provide an alternative mathematical framework from

which to derive blurring algorithms. We consider an

image as a conductive surface, with intensity

variation encoded as heat variation. Bertalmio et al.

[7] showed how simulation of heat diffusion on a

GPU could be used to simulate depth of field effects

in real time for moderate blur sizes. Kass et al. [22]

showed that plausible depth of field postprocessing

can be achieved in real time, even for arbitrarily large

sized blurs, by using the alternating directions

implicit method to solve the heat equations.

5.14 Generalized and Semantic DoF
Most methods for simulating depth of field naturally

aim to accurately simulate real-world optics.

However, depth of field is also an artistic tool, not

merely an artifact of the image formation process. As

an artistic tool in computer graphics, we do not

necessarily have to be limited by the types of lenses

we know how to build. Specifically, it may be

desirable to have regions in focus that have unusual

shape, such as spheres or cylinders, while blurring

everything else. Alternatively, we may wish to select

a handful of discontiguous people from a crowd, by

focusing on them and blurring the others. Kosara

refers to this usage of blur as semantic depth of field,

and presented the first work describing how it might

be implemented by blurring each object independent

of the others [26]. The authors [27] later showed how

to use simulated heat diffusion to provide more fine-

grained control, allowing the blur amount to be a

continuously varying field located within the space of

the scene. Figure 10 shows an example of

generalized depth of field.

Figure 10. Generalized depth of field. A plus-sign

shaped region is in focus (image from Kosloff and

Barsky [27]).

5.15 Light Fields

5.15.1 Introduction to Light Fields

Light fields [28] and lumigraphs [15] were originally

introduced as a means for capturing and representing

the appearance of a scene from many different points

of view, so that the scene can later be viewed at

interactive rates, regardless of the complexity of the

scene. The two-plane parameterization is a standard

way to encode light fields, and is particularly relevant

to depth of field. To represent a light field using this

parameterization, two parallel planes are first

arbitrarily chosen. A ray can be described by giving

a point on each plane; the ray is along the line

connecting those two points. If we assume that

radiance does not change along a ray, then we can

associate one color with each ray, thereby encoding

the light field as a four-dimensional data set.

There exists an inherent light field within ordinary

cameras, which has a natural two-plane

parameterization. We consider light that enters the

lens, and impinges on the film/sensor plane of the

camera. Each light ray can be described by

specifying where the ray entered on the lens and

where it stopped on the film/sensor, and this

engenders the two-plane parameterization. A typical

camera effectively sums all the light hitting a given

point on the film/sensor, no matter from which part of

the lens it emanates. Therefore, if we have a

film/sensor-lens light field, we can perform an

integration step to create an image with DoF effects.

Given a light field, we can go further, and either

decrease the aperture size, or even change the

location of the focus plane, during the integration step

[31]. Decreasing the aperture size is a simple matter

of decreasing the range of lens coordinates over

which we integrate. Changing the focus plane can be

performed directly, by treating the light field as a set

of rays, moving the location of the film plane, and

then integrating, in the style of distributed ray tracing.

Alternatively, refocusing can be performed more

efficiently in the frequency domain, using 4D FFTs,

as shown in Ng [31].

Isaksen [21] showed how we can extend the focus

plane into a focus surface by dynamically

reparameterizing a light field such that a variety of

different depths can be in focus in a single image.

5.15.2 Realistic Camera Models with Light

Fields

Light fields can be easily acquired for computer

generated scenes by repeatedly rendering the scene

from different points of view. Rasterization hardware

can be used to accomplish this rendering efficiently.

Heidrich showed how the effects of different types of

lenses can be achieved by manipulating such a light

field [19]. Distortion, for example, can be accurately

simulated by distorting 2D slices of the light field

appropriately. This image-based approach achieves

lens effects similar to those that were done using

raytracing in Kolb et al. [25], but this approach does

so more efficiently due to the use of rasterization

hardware.

5.15.3 Light-Field Camera

Ng et al. built a camera that captures the lens-

film/sensor light field in a single photographic

exposure [30]. An array of micro-lenses is placed in

front of the film/sensor, to separate the light arriving

from different directions. The light that would be

summed together at a single point on the film/sensor

in a normal camera is instead spread out to different

locations on the film. Thus, the camera directly

captures a light field. This light field can be used

after the exposure has been taken to refocus and to

change the aperture size. Ng et al. also analyze the

captured light field to determine theoretically how

much information is being captured.

5.15.4 Dappled Photography

Ng's camera requires a micro-lens array, and the

resulting light field suffers from low resolution.

Although the underlying sensor in the camera may

capture images of high resolution, much of that

resolution is used to store directional samples. Higher

resolution sensors may resolve this problem.

Veeraghavan et al. describe dappled photography as

an alternative way of capturing a light field in a

single photographic exposure that mitigates the

aforementioned limitations [40]. Rather than adding

an array of micro-lenses, a semi-transparent mask is

placed in the camera, and used to modulate the

incoming light according to a known pattern. By

rearranging the resulting image and taking an inverse

Fourier transform, the light field can be recovered.

Additionally, the modulation can be removed,

resulting in a full-resolution image.

5.15.5 Defocus Magnification
It is desirable to manipulate the depth of field in an

ordinary photograph, in cases where no light field is

available. This is a challenging task, as photographs

do not typically have a depth map. Bae and Durand

[1] show how we can increase the amount of blur in a

photograph, for cases where the out-of-focus regions

are insufficiently blurred. Rather than recovering

depth, this method estimates the amount of blur at

each pixel in the photograph. The amount of blur

already present is used as a guide for determining

how much blur to add. Since it is not possible to

determine the amount of blur in regions without

texture, Bae and Durand calculate blur at edges in the

image, and then propagate this information into the

rest of the image. An example of the defocus

magnification process is shown in Figure 11.

Figure 11. Defocus magnification. Top: Original

photograph. Bottom: The defocus has been

magnified. Notice how the background of the bottom

image is more blurred than in the top image (courtesy

of Fredo Durand [1]).

5.16 Automatically Setting the Focus Depth
One application for computer generated DoF is to

improve the realism of virtual reality walkthroughs

and video games. To use DoF for this purpose

requires a way to determine where the focus plane

should be. Hillaire et al. [18] describe a method for

doing so, similar in principle to the autofocus found

on modern cameras. Using the idea that the objects

that should be in focus are in the center, a rectangular

region is placed at the center of the image. A single

depth, at which to set the focus, is computed as a

weighted average of the depths of all the pixels

within that central region, where the weight for each

pixel is the product of a spatial weight based on a

Gaussian centered at the center of the image and a

semantic weight function which applies greater

weights to objects that are considered important.

That way, important pixels will be focused on even if

they represent only a small fraction of the pixels.

Hillaire goes on to describe how the focus depth can

be slowly varied over time, using a low pass filter, to

approximate the way that the human eye undergoes

accommodation. Furthermore, Hillaire presents a

user study to validate the notion that adding depth of

field to an interactive environment is worthwhile.

6 Conclusion
In this paper, we described a variety of methods for

adding and manipulating depth of field effects for

computer generated images and computational

photography. Some of these methods operate in

object space, and are modifications to the underlying

rendering process. Others are postprocess methods,

operating on images or light fields, adding or

manipulating depth of field after the images have

been created. We also described the challenging

issues and artifacts with which depth of field

postprocess methods must contend. At this time,

there still does not exist any method for rendering

photographic quality depth of field effects in real

time, so this remains an important area of future

work. Furthermore, a great deal of additional work

remains to be done in computer vision, so that high

quality depth maps can be reliably constructed from

photographs, to enable depth of field postprocessing

on existing photographs.

References:
[1] Bae, Soonmin, Durand, Fredo. Defocus

Magnification. Computer Graphics Forum.
V. 26, I.3. (Proc. of Eurographics 2007).
2007.

[2] Barsky, Brian A., Horn, Daniel R., Klein,
Stanley A., Pang, Jeffrey A., Yu, Meng.:
Camera models and optical systems used in
computer graphics: Part ii, image based
techniques. In: Proceedings of the 2003
International Conference on Computational
Science and its Applications (ICCSA’03). pp
256–265. 2003.

[3] Barsky, Brian A., Horn, Daniel R., Klein,
Stanley .A., Pang, Jeffrey A., Yu, Meng:
Camera models and optical systems used in
computer graphics: Part i, object based
techniques. In: Proceedings of the 2003
International Conference on Computational
Science and its Applications (ICCSA’03). pp.
246–255. 2003.

[4] Barsky, Brian A., Tobias, Michael J., Horn,
Daniel R., Chu, Derrick P.: Investigating
occlusion and discretization problems in
image space blurring techniques. In: First
International Conference on Vision, Video,
and Graphics. pp. 97–102. 2003.

[5] Barsky, Brian A.: Vision-realistic rendering:
simulation of the scanned foveal image from
wave-front data of human subjects. In:
Proceedings of the 1st Symposium on Applied
perception in graphics and visualization,
ACM, pp. 73–81. 2004.

[6] Barsky, Brian A., Tobias, Michael J., Chu,
Derrick P., Horn, Daniel R.: Elimination of
artifacts due to occlusion and discretization
problems in image space blurring techniques.
Graphical Models 67(6) pp. 584–599. 2005.

[7] Bertalmio, Marcelo, Fort, Pere, Sanchez-
Crespo, Daniel: Real-time, accurate depth of
field using anisotropic diffusion and
programmable graphics cards. In: IEEE

Second International Symposium on 3DPVT,
IEEE (2004)

[8] Born, Max, Wolf, Emil. Principles of Optics.
Cambridge University Press. 1980.

[9] Carslaw, H.S. Jeager, J.C. Conduction of Heat
In Solids, 2

nd
 edition. Oxford University

Press.1959.
[10] Catmull, Edwin. An analytic visible surface

algorithm for independent pixel processing,
SIGGRAPH 1984 Conference Proceedings,
pp. 109-115, 1984.

[11] Cook, Robert L., Porter, Thomas, Carpenter,
Loren.: Distributed ray tracing. In: ACM
SIGGRAPH 1984 Conference Proceedings,
ACM pp. 137–145. 1984.

[12] Demers, Joe. Depth of field: A survey of
techniques. In: GPU Gems. pp. 375–390.
2004.

[13] Fearing, Paul Importance Ordering for Real-
Time Depth of Field Proceedings of the
Third International Computer Science
Conference on Image Analysis Applications
and Computer Graphics, Springer-Verlag
Lecture Notes in Computer Science; Vol.
1024, pp 372-380, 1995.

[14] Frigo, Matteo, Johnson, Steven. The Design
and Implementation of FFTW3 Proceedings
of the IEEE 93 (2) Special Issue on Program
Generation, Optimization, and Platform
Adaptation, pp 216-231, 2005.

[15] Gortler, Steven, Grzeszczuk, Radek.
Szeliski, Richard, Cohen, Michael. The
lumigraph. SIGGRAPH 1996, pp 43-54.
1996.

[16] Crow, Frank C. Summed-Area Tables for
Texture-Mapping. SIGGRAPH 1984
Conference Proceedings, pp. 207-212, 1984.

[17] Haeberli, Paul, Akeley, Kurt.: The
accumulation buffer: hardware support for
high-quality rendering. In: ACM SIGGRAPH
1990 Conference Proceedings, ACM (1990)
309–318.

[18] Hillaire, Sebastien., Lecuyer, Anatole.
Cozot, Remi., Casiez, Gery. Depth-of-Field
Blur Effects for First-Person Navigation in
Virtual Enviornments. Proceedings of VRST
2007. 2007.

[19] Heidrich, Wolfgang. Slusallek, Philipp,
Seidel, Hans-Peter. An image-based model
for realistic lens systems in interactive
computer graphics. Graphics Interface 1997,
pp. 68-75. 1997.

[20] Hensley,Justin, Scheueremann, Thorsten,
Coombe, Greg, Singh Montek, Lastra,
Anselmo: Fast Summed-Area Table
Generation and its Applications Proceedings
of Eurographics 2005.

[21] Isaksen, Aaron., McMillan, Leonard. and
Gortler, Steven J. Dynamically
reparameterized light fields. SIGGRAPH
2000. 2000

[22] Kass, Michael, Aaron Lefohn, and John
Owens. Interactive Depth of Field Using
Simulated Diffusion on a GPU. Technical
report. Pixar Animation Studios. 2006.
Available online at
http://graphics.pixar.com/DepthOfField/paper
.pdf.

[23] Kraus, Martin, and Strengert, Magnus.
Depth of Field Rendering by Pyramidal

Image Processing, Computer Graphics
Forum, 26(3), Euographics 2007.

[24] Krivanek, Jaroslav, Zara, Jiri, Bouatouch,
Kad.: Fast depth of field rendering with
surface splatting. In: Computer Graphics
International 2003. 2003

[25] Kolb, Craig, Mitchell, Don, Hanrahan, Pat:
A realistic camera model for computer
graphics. In: ACM SIGGRAPH 1995
Conference Proceedings, ACM, pp. 317–
324. 1995.

[26] Kosara, Robert, Miksch, Silvia, Hauser,
Helwig, Schrammel, Johann, Giller, Verena,
Tscheligi, Manfred. Useful Properties of
Semantic Depth of Field for Better F+C
Visualization Proceedings of the 4th Joint
IEEE TCVG - EUROGRAPHICS Symposium
on Visualization (VisSym 2002), May 27-29,
2002, in Barcelona, Spain, pp. 205-210.
2002.

[27] Kosloff, Todd J., Barsky, Brian A.: An
Algorithm for Rendering Generalized Depth
of Field Effects Based On Simulated Heat
Diffusion. Technical Report No. UCB/EECS-
2007-19. Available online at
http://www.eecs.berkeley.edu/Pubs/TechRpts
/2007/EECS-2007-19.pdf. 2007.

[28] Levoy, Marc., Hanrahan, Pat. Light field
rendering. SIGGRAPH 1996, pp 31-42. 1996.

[29] Mulder, Jurriaan D., van Lier, Robert: Fast
Perception-Based Depth of Field Rendering.
Proceedings of the ACM symposium on
Virtual reality software and technology, pp.
129-133, 2000.

[30] Ng, Ren, Levoy, Marc. Bredif, Mathieu.
Duval, Gene. Horowitz, Mark. Hanrahan,
Pat. Light Field Photography With a Hand-
Held Plenoptic Camera. Stanford Tech
Report CTSR 2005-02. 2005.

[31] Ng, Ren, Fourier Slice Photography. In
Proceedings of SIGGRAPH 2005 2005..

[32] Porter, Thomas, Duff, Tom. Compositing
digital images. In: ACM SIGGRAPH 1984
Conference Proceedings. 253–259. 1984

[33] Potmesil, Michael, and Indranil Chakravarty.
A Lens and Aperture Camera Model for
Synthetic Image Generation. In Proceedings
of the 8th Annual Conference on Computer
Graphics and Interactive Techniques, pp.
297–305. 1981.

[34] Potmesil, Michael, Chakravarty, Indranil:
Synthetic image generation with a lens and
aperture camera model. ACM Transactions
on Graphics 1(2), 85–108. 1982.

[35] Rokita, Przemyslaw: Generating depth of
field effects in virtual reality applications.
IEEE Computer Graphics and Applications
16(2) 18–21. 1996.

[36] Scheueremann, Thorsten. Advanced Depth
of Field. Presentation at Game Developer
Conference 2004.

[37] Scheueremann, Thorsten. and Tatarchuk,
Natalya. Advanced Depth of Field
Rendering. ShaderX3: Advanced Rendering
with DirectX and OpenGL. Charles River
Media, Cambridge, MA. 2004.

[38] Scofield, Cary.: 2 1/2-d depth of field
simulation for computer animation. In:
Graphics Gems III, Morgan Kaufmann 1994.

[39] Shinya, Mikio.: Post-filtering for depth of
field simulation with ray distribution buffer.
In:Proceedings of Graphics Interface ’94,
Canadian Information Processing Society
(1994) 59–66

[40] Veeraghavan, Ashok, Raskar, Ramesh.
Agrawal, Amit, Mohan, Ankit, Tumblin,
Jack. Dappled Photography: Mask Enhanced
Cameras for Hetereodyned Light Fields and
Coded Aperture Refocusing. ACM
SIGGRAPH 2007. 2007.

[41] Zhou, Tianshu, Chen, Jim X., Pullen, Mark.
Accurate Depth of Field Simulation in Real
Time, In Computer Graphics Forum 26(1),
pp 15-23. 2007.

[42] Ziegler, Remo., Croci, Simone, Gross,
Markus. Lighting and Occlusion in a Wave-
Based Framework Eurographics 2008.

[43] Ziegler, Remo., Kaufmann, Peter., Gross,
Markus. A Framework for Holographic
Scene Representation and Image Synthesis
IEEE TVCG 2007.

[44] Zwicker, Matthias., Pfister, Hanspeter., van
Baar, Jeroen, Gross, Markus. EWA splatting.
IEEE Transactions on Visualization and
Computer Graphics. Vol (8). I(3). pp 223-
238. 2002.

