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What is Colour?

Human retina has 3 types of cones.

Colour space is 3-dimensional (“trichromatic theory”).
Can mathematics help us understand colour?
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Colour Blindness

John Dalton (1766–1844).
Described his own c.b. in
lecture to M/cr Lit & Phil
Soc, 1794.
He was a deuteranope.
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Vector Space Model of Colour (1)
Model responses of the 3 cones as

ci =

∫ λmax

λmin

si(λ)f (λ)dλ, i = 1 : 3,

where f = spectral distrib. of light, si = sensitivity of i th
cone, [λmin, λmax] = wavelengths of visible spectrum.

Discretizing gives

c = ST f , c ∈ R3, S ∈ Rn×3, f ∈ Rn.

For standardized S, c is the tristimulus vector.
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Vector Space Model of Colour (2)

Let columns of P = [p1 p2 p3]︸ ︷︷ ︸
n×3

be colour primaries.

Assuming ST P is nonsingular,

ST f = ST P︸︷︷︸
3×3

·(ST P)−1ST f ≡ ST · Pa(f ),

where a(f ) = (ST P)−1ST f .
Colour of any spectrum f can be matched by primaries.

I Need ai ≥ 0⇒ not all visible spectra can be produced.
Compensate ai < 0 by adding |ai |pi to f ,

I There exist spectra f ,g, f 6= g, such that ST︸︷︷︸
3×n

f = ST g:
metamers. Both good and bad.
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R Matrix Theory of Cohen

Cohen (2001) stresses the importance of

R = S(ST S)−1ST = SS+,

the orthogonal projector on range(S).

Independent of the choice of primaries used for colour
matching (S ← SZ ).
F matrix defined as Q in the factorization S = QL
(Q ∈ Rn×3, QT Q = I, L ∈ R3×3 lower triangular).
Proposes use of tricolor coordinates F T f .
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A Nonlinear, Imperfect World

Limitations on how far the mathematical model can take us.

We all see colour slightly differently.

Our eyes do not behave linearly.

Brain processing of colour is complicated (colour temp,
opponent-process theory) and leads to various
illusions.

Most colours we see are artificially generated: camera,
screen, print, paints, . . . all these devices have
limitations.
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CMYK

All printing is done using four
colours: cyan, yellow,
magenta, and black.
C + M + Y = K = black .

One redundant coordinate. Why do we need K?

Printing 3 layers makes the paper very wet.
Black as 3 layers requires accurate registration.
C + M + Y will not give a true, deep black due to ink
imperfections.
Coloured ink is more expensive.

What order to lay down the inks?
CMYK or KCMY are standard. Note that

C + M + Y 6= M + C + Y .
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Complex Beauties Calendar [link]
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http://www.mathe.tu-freiberg.de/fakultaet/information/math-calendar-2017


CMYK vs RGB

CMYK produces a different range of colors than RGB.
Cannot produce some of the brilliant blues.
Whenever we print a document on a laser printer we view
a CMYK representation of the colors.

Original Print Scan of print
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CIE Chromacity Coordinates
Projective transformation of 3-dimensional colour space.

Nick Higham Mathematics and Colour 13 / 60



Projective Transformation
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Excursion into LAB Space

Change from RGB space to CIE L*a*b* (LAB, 1976):
L = lightness, A = green–magenta, B = blue–yellow.

Separates luminosity from colour.
More perceptually uniform.

Nick Higham Mathematics and Colour 15 / 60



Transformation XYZ→ LAB

Let Xn,Yn,Zn be tristimuli of white stimulus.

L = 116f (Y/Yn)− 16,

A = 500 [f (X/Xn)− f (Y/Yn)] ,

B = 200 [f (Y/Yn)− f (Z/Zn)] .

where

f (x) =

{
x1/3, x ≥ 0.008856,
7.787x + 16

116 , x ≤ 0.008856.

Range: 0 ≤ L ≤ 100.
A = B = 0⇒ no colour.
Euclidean distance used as colour difference metric.
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Dan Margulis on LAB (2006)
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Editing in LAB

LAB separates luminosity (L) from colour (A,B).

Colour noise can be handled by blurring the A, B
channels.

Much bigger space than sRGB with many imaginary
colours.

Good for boosting contrast, enhancing colours, and
sharpening.
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LAB Example: Original
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LAB Example: Via LAB
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LAB Example: Explanation

1 Convert from RGB to LAB.
2 Apply Image to itself in overlay mode:

L← f (L), A← f (A), B ← f (B), where

0 0.5 1
0

0.5

1

3 Apply Image: L← 75% old L + 25% new L.

4 Curves adjustment on L channel:
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Rainbow Colour Maps
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Rainbow Considered Harmful

Not perceptually uniform: colours change at different
rates.
Confusing: no natural ordering (ROYGBIV).
Introduces artefacts: sharp transitions between hues.
Loses information in grayscale.
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MATLAB Parula Colour Map (2014)
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MATLAB Parula Colour Map (2014)
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Adobe Photoshop

Photoshop 1.0 (Mac), 1990.
Market leader for commercial bitmap/image manipulation.
Supports RGB, LAB, CMYK.
Excels in non-destructive editing (layers).
“Adobe Photoshop software includes a counterfeit
deterrence system (CDS) that prevents the use of the
product to illegally duplicate banknotes.”
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JPEG

JPEG (1992) stores RGB images in compressed form.

It converts from RGB to YCbCr colour space where
Y = luminance, Cb = blue, Cr = red by Y

Cb

Cr

 =

 0.299 0.587 0.114
−0.1687 −0.3313 0.5

0.5 −0.4187 −0.0813

R
G
B

 .
Transformation must be inverted to display a JPEG
image.
Human vision more sensitive to luminance than colour,
so can more heavily compress Cb, Cr coordinates.
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Fingerprints—FBI
Digitized at 500dpi⇒ 10Mb. Compression >∼ 10:1 req’d.
Standardized on wavelet compression (1993).
Jpeg: resonance of 8-pixel tiling w/ 500dpi scans, many
edges.
Wavelets: gradual blurring as compression increased.
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Adobe DNG

XYZtoCamera matrix is n × 3, n = dim of camera colour
space, usually 3 or 4.

Translating Camera Neutral Coordinates to White Balance
xy Coordinates

1 Guess an xy value. Use that guess to find the
interpolation weighting factor between the color
calibration tags. Find the XYZtoCamera matrix as above.

2 Find a new xy value by computing:
XYZ = Inverse (XYZtoCamera) * CameraNeutral
(If the XYZtoCamera matrix is not square, then use the
pseudo inverse.)

3 Convert the resulting XYZ to a new xy value.
4 Iterate until the xy values converge to a solution.
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Rounding Errors

Every editing operation executes pij = round(fij(pij)).
Rounding errors can potentially cause deterioration.

Controversy over 8-bit vs. 16-bit editing.
Controversy over colour space: choice & conversions.
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Arithmetic on Images: Brightening

Simple arithmetic on images (+,∗,−,/) can be very effective!

Let R,G,B ∈ [0,1] with

black = (0,0,0), white = (1,1,1).

To brighten an image we need to increase the coordinates.
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Original
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Simple Brightening Transformation
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Better Brightening Transformation
Map each coordinate

x ← 1− (1− x)2.

Photoshop: Apply Image with Screen Blending Mode
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Pixel-Dependent Brightening
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Final Image
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Change Autumn into Summer
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Looking at the Numbers

Sample colours from photo.

Typical RGB values for green tree leaves:

(R,G,B) = (110,103,53), (50,55,12), (135,125,81).

Typical RGB values for yellow tree leaves:

(R,G,B) = (250,193,73), (152,88,90), (194,112,18).

Solution
Make R = G by copying the green coordinates into the red.
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It’s Summer
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Original
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With Mask to Protect Sky
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Repainting University Place
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RePainted
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Flip Sign of A Channel

UoM turquoise is (L,A,B) ≈ (85,−12,−3).

Convert to LAB then A← −A.

Now have (L,A,B) ≈ (85,12,−3).
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Mean
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Median
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Max
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Min
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Variance
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Summary

Maths intrinsic to modelling colour, and defining,
analyzing and exploiting colour spaces.

Can go a long way in manipulating the colour of
images with elementary maths.

All the maths needed to understand colour is covered in
the Manchester honours degree maths programme.

Talk, including references, available at
http://www.maths.manchester.ac.uk/~higham/talks/
digphot_long.pdf
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