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Introduction 
 
The introduction of modern GPUs such as the GeForce 256 and GeForce2 GTS has 
opened the door for creating stunningly photorealistc interactive 3D content.  While the 
realization of realtime computer-generated images indistinguishable from photographs 
remains as yet unreached, one piece of machinery that will play an important role in 
realising interactive photorealism is the notion of a Bi-directional Reflectance 
Distribution Function (BRDF) and BRDF-based lighting techniques.   
 
The purpose of this tutorial is to provide a working knowledge of the concepts and basic 
mathematics necessary to appreciate BRDFs and to provide some exposure to the 
terminology used when discussing BRDFs and BRDF-based lighting techniques.  If you 
are already familiar with BRDFs, this paper will be a review; however, if you are new to 
BRDFs, this paper will provide a good starting point for understanding many reflectance-
based lighting techniques. 
 
 
What is a BRDF? 
 
To understand the concept of a BRDF and how BRDFs can be used to improve realism in 
interactive computer graphics, we begin by discussing what we know about light and how 
light interacts with matter. 
 
In general, when light interacts with matter, a complicated light-matter dynamic occurs.  
This interaction depends on the physical characteristics of the light as well as the physical 
composition and characteristics of the matter.  For example, a rough opaque surface such 
as sandpaper will reflect light differently than a smooth reflective surface such as a 
mirror.  Figure 1 shows a typical light-matter interaction scenario. 
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Figure 1.  Light interactions. 
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From this figure, we make a couple of observations about light.  First, when light makes 
contact with a material, three types of interactions may occur: light reflection, light 
absorption, and light transmittance.  That is, some of the incident light is reflected, some 
of the light is transmitted, and another portion of the light is absorbed by the medium 
itself.  Because light is a form of energy, conservation of energy tells us that 
 

dtransmittelightabsorbedlightreflectedlightsurfaceatincidentlight ++=  
 
For opaque materials, the majority of incident light is transformed into reflected light and 
absorbed light.  As a result, when an observer views an illuminated surface, what is seen 
is reflected light, i.e. the light that is reflected towards the observer from all visible 
surface regions.  A BRDF describes how much light is reflected when light makes 
contact with a certain material.  Similarly, a BTDF (Bi-directional Transmission 
Distribution Function) describes how much light is transmitted when light makes contact 
with a certain material. 
 
In general, the degree to which light is reflected (or transmitted) depends on the viewer 
and light position relative to the surface normal and tangent.  Consider, for example, a 
shiny plastic teapot illuminated by a white point light source.  Since the teapot is made of 
plastic, some surface regions will show a shiny highlight when viewed by an observer.  If 
the observer moves (i.e. changes view direction), the position of the highlight shifts.  
Similarly, if the observer and teapot both remain fixed, but the light source is moved, the 
highlight shifts.  Since a BRDF measures how light is reflected, it must capture this view- 
and light- dependent nature of reflected light.  Consequently, a BRDF is a function of 
incoming (light) direction and outgoing (view) direction relative to a local orientation at 
the light interaction point.   
 
Additionally, when light interacts with a surface, different wavelengths (colors) of light 
may be absorbed, reflected, and transmitted to varying degrees depending upon the 
physical properties of the material itself.  This means that a BRDF is also a function of 
wavelength. 
 
Finally, light interacts differently with different regions of a surface.  This property, 
known as positional variance, is most noticeably observed in materials such as wood that 
reflect light in a manner that produces surface detail.  Both the ringing and striping 
patterns often found in wood are indications that the BRDF for wood varies with the 
surface spatial position.  Many materials exhibit this positional variance because they are 
not entirely composed of a single material.  Instead, most real world materials are 
heterogeneous and have unique material composition properties which vary with the 
density and stochastic characteristics of the sub-materials from which they are comprised. 
 
Considering the dependence of a BRDF on the incoming and outgoing directions, the 
wavelength of light under consideration, and the positional variance, a general BRDF in 
functional notation can be written as 
 



( )vuooii ,,,,,BRDF φθφθλ  
 
where λ is used to indicate that the BRDF depends on the wavelength under 
consideration, the parameters θi, φi, represent the incoming light direction in spherical 
coordinates, the parameters θo, φo represent the outgoing reflected direction in spherical 
coordinates, and u and v represent the surface position parameterized in texture space.  If 
you are unfamiliar with spherical coordinates, they are explained in the next section. 
 
Though a BRDF is truly a function of position, sometimes the positional variance is not 
included in a BRDF description.  Instead, it is common to see a BRDF written as a 
function of incoming and outgoing directions and wavelength only (i.e. 

( )ooii φθφθλ ,,,BRDF ).  Such BRDFs are often called position-invariant or shift-invariant 
BRDFs. When the spatial position is not included as a parameter to the function an 
assumption is made that the reflectance properties of a material do not vary with spatial 
position.  In general this is only valid for homogenous materials.  One way to introduce 
the positional variance is through the use of a detail texture.  By adding or modulating the 
result of a BRDF lookup with a texture, it is possibly to reasonably approximate a 
spatially variant BRDF.  
 
For the remainder of this tutorial, we will denote a position-invariant BRDF in functional 
notation as 
 

( )ooii φθφθλ ,,,BRDF  
 
where λ, θi, φi, θo, and φo have the same meaning as before. 
 
When describing a BRDF in this functional notation, it is sometimes convenient to omit 
the λ subscript for the sake of notation simplicity.  When this is done, keep in mind that 
the values produced by a BRDF do depend on the wavelength or color channel under 
consideration.  In practice what this means is that in terms of the RGB color convention, 
the value of the BRDF function must be determined separately for each color channel 
(i.e. R, G, and B separately).  For convenience, it’s usually preferred not to specify a 
particular color channel in the subscript.  The implicit assumption is that the programmer 
knows that a BRDF value must be determined for each color channel of interest 
separately.  Given this slightly abbreviated form, the position-invariant BRDF associated 
with a single color channel can be considered to be a function of 4 variables.  When the 
RGB color components are considered as a group, the BRDF is a three-component vector 
function. 



Spherical Coordinates 
 
Since BRDFs are a function of direction (both light and view), it’s often useful to talk 
about vectors in terms of spherical coordinates as opposed to cartesian coordinates.  This 
section presents a very brief review of spherical coordinates that may help you 
understand some of the concepts that will be introduced in the next section.  If you are 
already familiar with spherical coordinates, feel free to skip this section. 
 
Often times when we think of vectors, we think of cartesian-space vectors of the form 

( )zyx vvv ,,=v .  While this notation is useful for performing many types of computations, 
it can be a bit cumbersome when used to parameterize BRDFs.  Instead, the spherical 
coordinate representation of a vector is generally preferred.  In spherical coordinates, a 
vector is denoted by a magnitude, ρ, and a pair of angles, θ and φ, which express how far 
(angularly) the direction vector differs from two reference basis vectors.   Consider the 
cartesian and spherical coordinate system shown in figure 2.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  The relationship between 
cartesian and spherical coordinates. 
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Assuming a normalized direction vector, ( )zyx vvv ,,=v , with tail at the origin and head at 
an arbitrary position on the +z unit hemisphere, the relationship between the Cartesian 
coordinates (vx,vy,vz) and the spherical coordinates (θ, φ) is given by: 
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Because the vector being considered is assumed to be normalized, 

 
2221 zyx vvv ++=  

 
This means that we can represent a direction in spherical coordinates with only two 
parameters.  By using spherical coordinates to represent directions, a BRDF can be 
treated as a wavelength-dependent 4-dimensional function. 
 
 
Differential Solid Angles 
 
Since BRDFs measure how light reflects off a surface when viewed under various 
viewing positions, we must have a good understanding of how much light arrives at a 
surface element (or leaves a surface element) from a particular direction.  To this end, it 
is necessary to introduce the notion of a differential solid angle. 
 
When we talk about light arriving (or leaving) a surface from a certain direction, it’s 
more appropriate to speak in terms of the quantity of light arriving at or passing through a 
certain area of space.  The reason for this is that light is measured in terms of flow 
through an area.  That is, light is measured as energy per-unit surface area (i.e. 
Watts/meter2).  This means it doesn’t really make sense to talk about the amount light 
arriving from a single incoming direction – it’s more appropriate to talk about light 
coming from a small region of directions.  Figure 3 shows an incoming light direction as 
well as a small neighborhood of surrounding incoming directions.  By taking into account 
the amount of light passing through a small cross-sectional area surrounding a direction, 
such as that of figure 3, it’s possible to determine the amount of light arriving at a small 
surface element. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The concept of a differential solid angle is a bit theoretical and can be a little tricky to 
understand at first, but the simplest way to understand its definition is to think of it as the 
area of a small rectangular region on a unit sphere. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 shows a unit sphere and a unit vector positioned at the origin.  The pyramid 
region highlighted on the inside of the sphere represents a volume of directions. The 
portion of the unit sphere bounded by the intersection of the pyramid and the unit sphere 
form the boundary of a small patch on the sphere’s surface.  The differential solid angle 
is defined to be the area of this small patch.  Given a direction in spherical coordinates 

Figure 3.  Since light is measured in terms of energy per-
unit area, we must consider flow through a neighbor-

hood of directions when determining the amount of light 
that arrives at or leaves a surface. 

Figure 4.  The solid angle is the area of the small patch region on the 
surface of the sphere. 
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(θ,φ) and small differential angular changes denoted dθ, dφ, the differential solid angle, 
dw, is defined to be  

θ dθ dφdw
θ dφdθdw
widthheightdw
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))(sin(
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=
=
=

 

 
Since both the width and the height of the rectangular patch are measured in radians, the 
area quantity has units of radians squared (or steradians).  Steradians sounds like a fancy 
word, but really it’s not too bad.  If ever you find the term confusing, just think of it as 
“solid angle units” or “radians squared”.  The abbreviation for steradians is sr. 
 
In practice, it’s not always necessary to worry about the exact definition of the 
differential solid angle.  In many situations it’s reasonable to just think of it as the area of 
a small surface region uniquely defined for each direction.  In the next section and the 
remainder of this paper, we will consider a differential solid angle to be the small area on 
the unit sphere defined by a neighborhood surrounding a given direction. 
 
The Definition of a BRDF 
 
Up until this point, we haven’t really talked about the exact definition of a BRDF.  Now 
that we understand the notion of a differential solid angle, we can give a more concrete 
definition of a BRDF.  Suppose we are given an incoming light direction, wi, and an 
outgoing reflected direction, wo, each defined relative to a small surface element.  A 
BRDF is defined as the ratio of the quantity of reflected light in direction wo, to the 
amount of light that reaches the surface from direction wi.  To make this clear, let’s call 
the quantity of light reflected from the surface in direction wo, Lo, and the amount of light 
arriving from direction wi, Ei.  Then a BRDF is given by 
 

i

o

E
L

BRDF = . 

 
 
 
 
 
 
 
 
 
 
 
 
 
Now consider figure 5.  The figure shows a small surface element (i.e. a pixel/surface 
point) that is being illuminated by a point light source.  The amount of light arriving from 

Figure 5.  A surface element illuminated by a light source. 
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direction wi is proportional to the amount of light arriving at the differential solid angle.  
Suppose the light source in the figure has intensity Li .  Since the differential solid angle 
is small, it is essentially a flat region on the hemisphere.  As a result, the region is 
uniformly illuminated as the same quantity of light, Li, arrives for each position on the 
differential solid angle.  So the total amount of incoming light arriving through the region 
is ii dwL ∗ .  The only problem is that this amount of light is with respect to the 
differential solid angle and not the actual surface element under consideration.  To 
determine the amount of light with respect to the surface element, the incoming light 
must be “spread out” or projected onto the surface element.  This projection is similar to 
that which happens with diffuse Lambertian lighting and is accomplished by modulating 
that amount by ii wN ⋅=θcos .  This means iiii dwLE θcos= .  As a result, a BRDF is 
given by  
 

iii

o

dwL
L

BRDF
θcos

= . 

 
From this definition, observe two interesting results.  First, a BRDF is not bounded to the 
range [0,1] – a common misconception about BRDFs.  Although the ratio Lo to Li must 
be in [0,1], the division by the cosine term in the denominator implies that a BRDF may 
have values larger than 1.  Secondly, a BRDF is not a unit-less function.  Since the BRDF 
definition above includes a division by the solid angle (which has units steradians (sr)), 
the units of a BRDF are inverse steradians (sr-1). 
 
 
Classes and Properties of BRDFs 
 
There are two classes of BRDFs and two important properties.  BRDFs can be classified 
into two classes: isotropic BRDFs and anisotropic BRDFs.  The two important properties 
of BRDFs are reciprocity and conservation of energy. 
 
The term isotropic is used to describe BRDFs that represent reflectance properties that 
are invariant with respect to rotation of the surface around the surface normal vector.  
Consider a small relatively smooth surface element and fix the light and viewer positions. 
If we were to rotate the surface about its normal, the BRDF value (and consequently the 
resulting illumination) would remain unchanged.  Materials with this characteristic such 
as smooth plastics have isotropic BRDFs. 
 
Anisotropy, on the other hand, refers to BRDFs that describe reflectance properties that 
do exhibit change with respect to rotation of the surface around the surface normal 
vector.  Some examples of materials that have anisotropic BRDFs are brushed metal, 
satin, and hair.  In general, most real-world BRDFs are anisotropic to some degree, but 
the notion of isotropic BRDFs is useful because many classes of analytical BRDF models 
fall within this class.  In general, most real-world BRDFs are probably more isotropic 
than anisotropic though many real-world surfaces have subtle anisotropy.  Any material 
that exhibits even the slightest anisotropic reflection has a BRDF that is anisotropic. 



 
BRDFs based on physical laws and considered to be physically plausible have two 
properties: reciprocity and conservation of energy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The reciprocity property is illustrated in figure 6.  Basically it says that if the sense of the 
traveling light is reversed, the value of the BRDF remains unchanged.  That is, if the 
incoming and outgoing directions are swapped, the value of the BRDF does not change.  
Mathematically, this property is written as 
 

( ) ( )iiooooii φθφθφθφθ λλ ,,,BRDF,,,BRDF = . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The conservation of energy constraint has to do with the scattering of light during the 
light-matter interaction.  In general, this property states that when light from a single 
incoming direction makes contact with a surface and is reflected/scattered over the sphere 
of outgoing directions, the total quantity of light that is scattered cannot exceed the 
original quantity of light arriving at the surface.  Figure 7 illustrates this property.  For 
each one unit of light energy that arrives at a point, no more than one unit of light energy 
can be reflected in total to all possible outgoing directions.  By considering the definition 
of a BRDF (the ratio of the reflected light to incident light divided by the projected solid 

= 

Figure 6.  The Reciprocity Principle 
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Figure 7. Conservation of Energy- The 
quantity of light reflected must be less than 

or equal to the quantity of incident light. 



angle), this means the sum over all outgoing directions of the BRDF times the projected 
solid angle must be less than one in order for the ratio of the total amount of reflected 
light to the incident light to be less than one.  Mathematically, this is written as 
 

( ) 1cos,,,BRDF ≤∑
out

ooooii dwθφθφθλ . 

 
When considering the continuous hemisphere of all outgoing reflected directions, the sum 
becomes an integral and this conservation property becomes 
 

 ( ) 1cos,,,BRDF ≤∫
Ω

ooooii dwθφθφθλ . 

 

The symbol ∫
Ω

indicates an integral over a hemisphere of all directions. 

 
The BRDF Lighting Equation 
 
Now that we know the definition of a BRDF, we can define a general lighting equation 
that expresses how to use BRDFs for computing the illumination produced at a surface 
point. 
 
Suppose we have a scene and we are trying to determine the illumination of a surface 
point as seen by an observer.  In the real-world, the entire environment surrounding a 
surface in a scene contributes to the illumination of every surface point.  This observation 
can be verified experimentally by examining the appearance of a white sheet of paper 
when held next to a green sheet of paper.  The reason the color of the green paper appears 
to bleed onto the white paper is because the green paper reflects green light -- that light in 
turn serves as an illumination source for the white paper.  In general, any light that arrives 
at a surface point from the hemisphere of incoming directions contributes to resulting 
illumination.  
 
 
 
 
 
 
 
 
 
 
 
Figure 8 shows a surface point illuminated by light coming from the surrounding 
environment with an observer positioned at the point labeled E.  The quantity of light 
reflected in the direction of the observer, wo, is a function of all the incoming light and 
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E 

Figure 8.  Light arriving from all possible incoming directions 
contributes to the quantity of light reflected towards an observer 



the BRDF at the surface point.  Specifically, when considering the continuous space of 
incoming directions, the amount of light reflected in the outgoing direction is the integral 
of the amount of light reflected in the outgoing direction from each incoming direction.  
That is, the amount of outgoing light, Lo, is given by 
 

∫
Ω

= ioiioo dwwwLL ),(   todue   

 
where Lo due to i(wi,wo) represents the amount of light reflected in direction wo from 
direction wi and the symbol Ω represents the hemisphere of incoming light directions. 
 
It is often more convenient to think about things in a discrete space rather than in a 
continuous one.  In this case, the integral equation becomes a sum over a finite set of 
incoming directions and we have 
 

∑=
in

oiioo wwLL ),(   todue  . 

 
For each incoming direction, the amount of reflected light in the outgoing direction is 
defined in terms of the BRDF.  Suppose that Li is the light intensity incoming from a 
specific direction wi.  The intensity of the light reflected in the outgoing direction is 
defined by modulating the intensity of the light arriving at the surface point with the 
corresponding BRDF.  Specifically,  
 

iooiiio EBRDFL ),,,(   todue  φθφθ=  
 
where Ei is the amount of light arriving from direction wi.  To understand Ei, it’s 
necessary to think about the quantity of light that arrives at the surface element.  The 
quantity of light arriving at the surface element is the intensity of the light times the width 
of the cross sectional surface area on the unit sphere through which the light passes. The 
cross sectional area is the differential solid angle.  Again, in order to make the amount of 
light relative to the surface element (instead of relative to the differential solid angle) the 
light must be “spread out” or projected by modulating with ii wN ⋅=θcos .  As a result, 

iiii dwLE θcos= .  In practice, in the discrete case, the dwi term indicates that all 
incoming directions are equally weighted and iii LE θcos= .  This means the 
contribution from direction wi to the intensity of the light reflected towards the observer 
is 
 

iiooiiio LBRDFL θφθφθ cos),,,(   todue  = . 
 
Consequently, the light reflected in the outgoing direction is  
 

∑=
in

iiooiio LBRDFL θφθφθ cos),,,( . 

 



In general, interactive computer graphics tends not to consider the entire hemisphere of 
incoming directions when determining the illumination of a surface.  The reason for this 
is that the math required to compute the lighting equation above is too expensive to 
compute for more than just a small number of directions.  Instead, interactive applications 
tend to use a small number of individual point light sources to compute the illumination 
of a surface.  Rather than computing a sum of light contributions from many incoming 
light directions and summing these results to determine the final output color, the small 
number of individual point light sources define the set of incoming directions and light 
intensities to use in the evaluation of the lighting equation. 
 
For example, suppose that we wish to determine the illumination of a scene containing n 
light sources – light source 1 to light source n.  In this case, the local illumination of a 
surface is given by, 
 

∑
=

=
n

j

j
i

j
ioo
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j
io LBRDFL

1
cos),,,( θφθφθ . 

 
where Li

j is the intensity of the jth light source and wi
j = (θi

j,φi
j) is the direction to the jth 

light source.   
 
 For a single point light source, the light reflected in the direction of an observer is  
 

iiooiio LBRDFL θφθφθ cos),,,(= . 
 
This is the general BRDF lighting equation for a single point light source. 
 
 
The Phong Lighting Equation 
 
Based upon what we’ve learned about BRDFs, one question that often comes up concerns 
the relationship between the commonly used Phong lighting model and the general BRDF 
lighting equation discussed above.  To understand where Phong lighting fits in, it’s useful 
to examine the Phong expression itself.  Recall, that Phong lighting relates the amount of 
light reflected towards a viewer as:  
 

( ) ( )( )n
sdinout kkII VRNL •+•=  

 
where L is the direction to the light source, V is the direction to the viewer, N is the 
surface normal, and R is the principle reflection direction.  kd and ks are terms used to 
control the contribution of diffuse and specular components and n is a power term used to 
control the width of the specular highlight.  Often, the Phong lighting model includes an 
ambient term, which approximates global illumination, i.e. multiple inter-reflections of 
light before it interacts with the surface point in question.  Since this tutorial is concerned 
with direct illumination, the ambient term has been omitted. 
 



The Phong lighting model can be rewritten as 
 

( ) ( )( )n
sdio kkLL VRNL •+•=  

 
where Lo represents the intensity of light reflected towards the viewer and Li represents 
the incoming light from the light source.  By denoting the parenthetical quantity by 
Refl(L,V) we have, 
 

),Refl(LL io VL=  

 
L and V correspond to incoming direction (wi) and outgoing direction (wo) from the 
BRDF terminology, so we can rewrite the expression as  
 

),( oiio wwReflLL =  
 

ioio LwwReflL ),(=  
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Notice that this expression looks remarkably similar to the general BRDF lighting 
equation for a point light source.  If we consider the first fractional term to be a BRDF, 
then the Phong lighting model can be looked at as a special case of general BRDF based 
lighting. In practice, the Phong model is a computational convenient method to 
analytically approximate the reflectance properties of a small set of materials.  
Specifically, any materials with reflectance properties that are well approximated by an 
analytical function of the form 
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ii
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ooii dw

wwRefl
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can be simulated using the Phong model.  In general however, not too many materials 
have reflectance properties of this limited form. 
 
There are also a couple of other small issues with the standard Phong lighting model. 
While it’s possible to show that the Phong model is a special case of a BRDF, it is not 
actually physically plausible because the two physical properties of BRDFs mentioned 



earlier do not hold [5].  That is, the standard Phong lighting model is not necessarily 
energy conserving nor reciprocal.  This is not a major issue for local illumination such as 
what we are concerned with here, but for global lighting simulations the lack of physical 
validity is problematic. 
 
Analytical Models and Acquired BRDF Data 
 
One question that often arises has to do with computing BRDFs for use in the general 
BRDF lighting equation.  There are actually a couple of different ways to determine the 
value of a BRDF.  One way is to evaluate mathematical functions derived from analytical 
models.  The other is by resampling BRDF data acquired by empirical measurements of 
real-world surfaces. 
 
Analytical models can be thought of as simple mathematical functions where you plug in 
inputs (i.e. direction vectors (θi,φi) and (θo,φo) in addition to other parameters that control 
the reflectance properties of the material) and the function computes R, G, and B BRDF 
values based on the input parameters.  There are actually many simple models that have 
been developed that allow for a very wide range of visually interesting lighting effects.  
Some examples of these include, the Cook-Torrance model [2], the Modified Phong 
model [5], and Ward’s model [7].  In general, different models are useful for modeling 
the reflectance characteristics of different types of materials.  Ward’s model, for example, 
is good at modeling the reflectance properties for surfaces demonstrating a good deal of 
anisotropy, such as brushed metal and stringed Christmas tree ornaments.  The Cook-
Torrance model is effective at simulating many types of metals such as copper and gold.  
It can also be used for other interesting materials such as plastics with varying degrees of 
roughness.  In general it is effective for modeling view-dependent changes in color. 
 
In contrast to analytical models, BRDFs can be obtained through physical measurements 
made with BRDF measuring devices such as a gonioreflectometer – a device for 
measuring the BRDF of a material.  Data produced in this way is often referred to as 
acquired BRDF data.  The advantage of using acquired BRDF data is that many real-
world BRDFs cannot be modeled easily using mathematical models.  By using real data, 
there is no need to try to determine which analytical model to use to achieve a certain 
visual lighting effect.  Instead, it’s possible, for example, to measure car paint in the real-
world, and directly use the reflectance data in lighting calculations.  Several academic 
institutions as well as a few commercial companies offer libraries of measured BRDF 
data at little or no cost.  Additionally, some companies will actually measure specific data 
to meet individual customer needs. 
 
Summary/Conclusion 
 
This paper has presented some of the basic terminology and concepts about BRDFs and 
BRDF-based lighting.  While it has been somewhat theoretical at times, there are few 
pieces of key information that are important to understand for real-time implementations 
of BRDF-based lighting.  These key pieces of information are: 
 



1. Terminology (incoming/outgoing direction) 
2. Spherical Coordinates (how to move between coordinate spaces) 
3. Conceptual BRDF Definition (tells reflectance for incoming/outgoing directions) 
4. Properties of BRDFs (reciprocity and conservation) 
5. The dynamic range of BRDFs (BRDFs not necessarily limited to [0,1] range) 
6. The BRDF general lighting equation 
7. Phong Lighting (why it is limited and why general BRDF-based lighting is better) 
8. BRDF Models (the difference between analytical models and acquired data sets) 

 
Although it was not explicitly discussed in this tutorial, several practical techniques exist 
for doing real-time BRDF based lighting on NVIDIA hardware.  Stay tuned for future 
tutorials that explain how to use NVIDIA hardware (and other hardware too) to achieve 
cool BRDF lighting effects. 
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