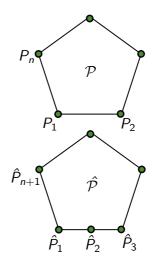


Erweiterung auf nicht-konvexe Gebiete

Lemma (ohne Beweis): Sei ein konvexes Polygon \mathcal{P} gegeben. Bezeichne die baryzentr. Koord. eines Punktes X bzgl. \mathcal{P} mit w_i , i=1...n. ${\mathcal P}$ werde nun durch Einfügen eines Punktes verfeinert. Bezeichne dieses verfeinerte Polygon mit $\hat{\mathcal{P}}$. Bezeichne die baryzentr. Koord. von X bzgl. $\hat{\mathcal{P}}$ mit \hat{w}_i , i=1...n+1. Es gilt:

$$\sum_{i=1}^{n+1} \hat{w_i} = \sum_{i=1}^{n} w_i$$



• Konsequenz: damit sind auch die $\lambda's$ für $\hat{\mathcal{P}}$ wohl definiert

G. Zachmann Computer-Graphik 2 – SS 10

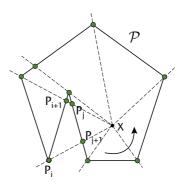
Verallgemeinerte baryzentrische Koordinaten 21

Satz:

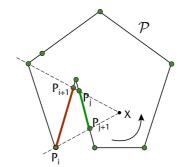
Sei \mathcal{P} ein beliebiges, einfaches Polygon. Für alle X, die nicht auf dem Rand des Polygons ${\mathcal P}$ liegen, ist

$$\sum w_i(X)\neq 0$$

- Beweis:
 - ullet Annahme: X im Inneren von ${\mathcal P}$
 - Zeichne Strahlen von X durch die Ecken von ${\mathcal P}$ Verfeinerung von ${\mathcal P}$
 - ullet Nenne die Verfeinerung wieder ${\mathcal P}$, und dessen Ecken $P_1,...,P_n$.



- Klassifiziere Kanten in "Entry-Kante" (rot) oder "Exit-Kante" (grün)
 - Entweder gemäß Umlaufsinn; oder gemäß Strahl von X aus
- Beobachtung: Zu jeder Entry-Kante gibt es eine (näher gelegene) Exit-Kante



■ Definiere für jede Kante P_iP_{i+1} den Wert

$$k_i = \left(\frac{1}{r_i} + \frac{1}{r_i + 1}\right) \tan \frac{\alpha_i}{2}$$

wobei die Winkel α_i mit Vorzeichen gemäß Umlaufsinn behaftet sind.

G. Zachmann Computer-Graphik 2 – SS 10

Verallgemeinerte baryzentrische Koordinaten 23

• Man sieht sofort: $\sum k_i = \frac{1}{2} \sum w_i$

(Die Summanden sind nur etwas anders zusammengefasst, und es fehlt der Faktor 1/2 bei den r_i.)

Klar ist: falls die Kante P_iP_{i+1} Exit-Kante $\rightarrow k_i > 0$

Entry-Kante $\rightarrow k_i < 0$

- Sei P_iP_{i+1} eine Entry-Kante
- Dann existiert dazu eine Exit-Kante P_iP_{j+1} , die näher an X liegt
- Für deren Winkel gilt $\alpha_i = -\alpha_i$
- Für die Abstände gilt:

$$r_j \leq r_{i+1} \ \land \ r_{j+1} < r_i \quad \text{oder} \quad r_j < r_{i+1} \ \land \ r_{j+1} \leq r_i$$

G. Zachmann Computer-Graphik 2 – SS 10

Damit gilt

$$k_j = \left(rac{1}{r_j} + rac{1}{r_{j+1}}
ight) anrac{lpha_j}{2} \quad > \quad \left(rac{1}{r_i} + rac{1}{r_{i+1}}
ight) anrac{-lpha_i}{2} = -k_i$$

- D.h.: zu jedem k_i einer Entry-Kante gibt es ein k_i einer Exit-Kante, so dass $k_i + k_i > 0$
- $\sum k_i > 0$ Also ist

 $\sum w_i > 0$ und damit auch

für alle X im Inneren von $\,\mathcal{P}\,$

G. Zachmann Computer-Graphik 2 – SS 10

Verallgemeinerte baryzentrische Koordinaten 25

- Auch für nicht-konvexe Polygone kann man weiterhin zeigen, daß die mean value coordinates die Eigenschaft haben, daß:
 - λ_i auch für X auf dem Rand des Polygons wohl-definiert sind;
 - $\lambda_i(P_j) = \delta_{ij}$;
 - $\lambda_i \in \mathcal{C}^\infty$, außer an den P $_j$; dort sind sie nur \mathcal{C}^0

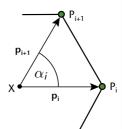
Implementierung

• Praktische Berechnung des $\tan\left(\frac{\alpha_i}{2}\right)$:

$$\tan\frac{\alpha_i}{2} = \frac{1 - \cos\alpha_i}{\sin\alpha_i}$$

$$\cos \alpha_i = \frac{\mathbf{p}_i \cdot \mathbf{p}_{i+1}}{|\mathbf{p}_i| \cdot |\mathbf{p}_{i+1}|}$$

$$\tan \frac{\alpha_i}{2} = \frac{1 - \cos \alpha_i}{\sin \alpha_i}$$
$$\cos \alpha_i = \frac{\mathbf{p}_i \cdot \mathbf{p}_{i+1}}{|\mathbf{p}_i| \cdot |\mathbf{p}_{i+1}|} \qquad \sin \alpha_i = \frac{|\mathbf{p}_i \times \mathbf{p}_{i+1}|}{|\mathbf{p}_i| \cdot |\mathbf{p}_{i+1}|}$$



Also:
$$\tan \frac{\alpha_i}{2} = \frac{|\mathbf{p}_i| \cdot |\mathbf{p}_{i+1}| - \mathbf{p}_i \cdot \mathbf{p}_{i+1}}{|\mathbf{p}_i \times \mathbf{p}_{i+1}|}$$

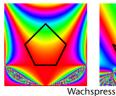
- Falls $|\mathbf{p}_i \times \mathbf{p}_{i+1}| = 0$, dann liegt X auf der Kante; → Spezialbehandlung:
 - 1. $X = P_i$ oder $X = P_{i+1}$
 - 2. Sonst: linear zwischen P_i und P_{i+1} interpolieren

G. Zachmann Computer-Graphik 2 – SS 10

Verallgemeinerte baryzentrische Koordinaten 27

Anwendung: Interpolation von Farben

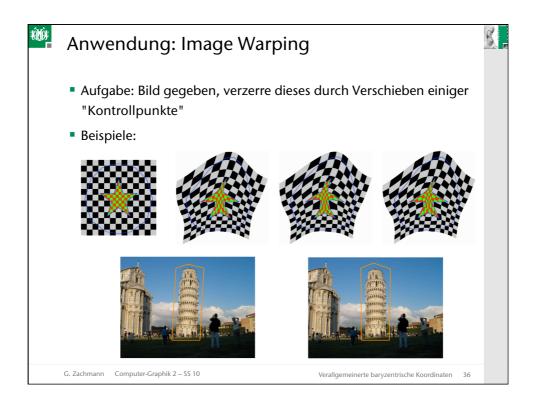
- Gegeben:
 - Ein einfaches Polygon (nicht notwendigerweise konvex)
 - An jeder Ecke eine Farbe
- Aufgabe: das Innere des Polygons mit "schönen" Farbverläufen einfärben (häufige Aufgabe z.B. in Zeichen-Software)
- Lösung:
 - Berechne für jedes Pixel im Inneren dessen baryzentrische Koordinaten bzgl. des gegebenen Polygons
 - Interpoliere die Farben der Ecken mittels dieser baryzentrischen Koord.

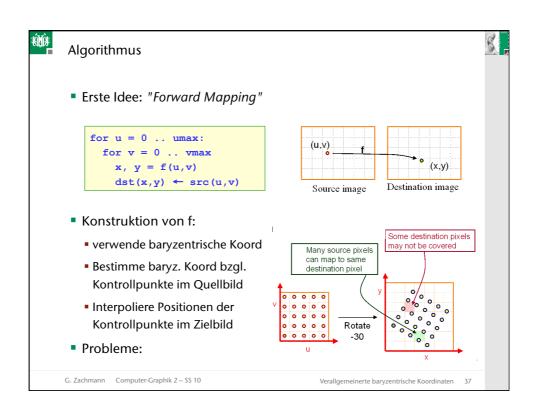


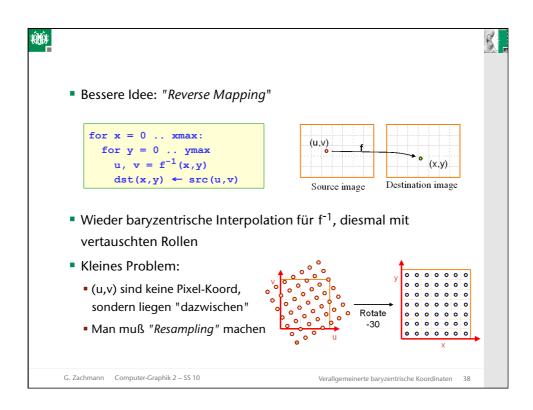
Mean Value Coordinates

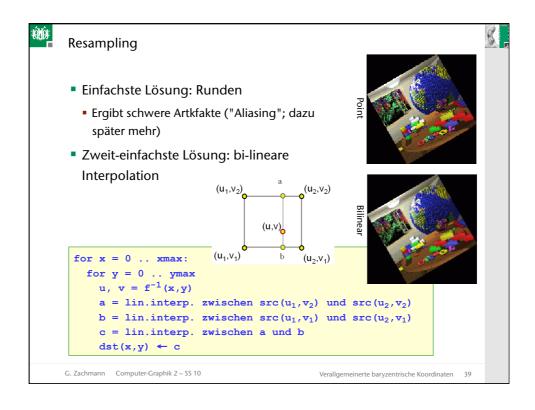
Verallgemeinerte baryzentrische Koordinaten

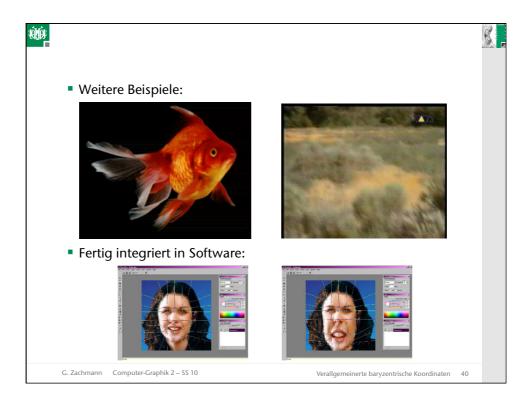
4



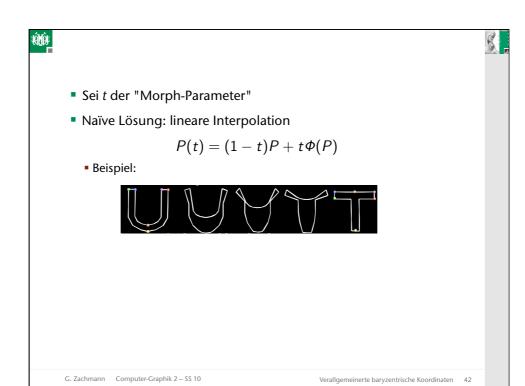


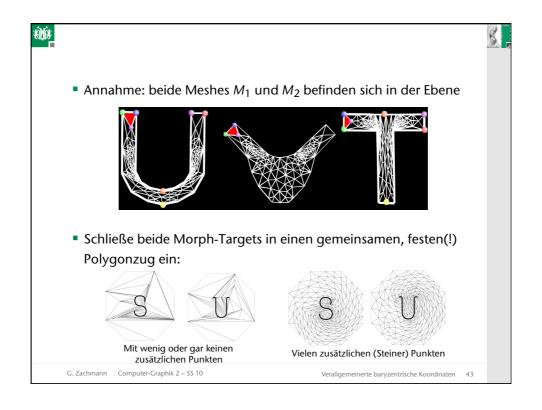






Anwendung: Morphing [2004] • Gegeben: zwei Dreiecks-Meshes M_1 und M_2 mit ... • genau gleich vielen Vertices und gleich vielen Dreiecken; und ullet einer Korrespondenz $oldsymbol{\phi}:\ V_1 o V_2$ so, daß P, Q, R ist ein Dreieck in $M_1 \Leftrightarrow$ $\Phi(P)$, $\Phi(Q)$, $\Phi(R)$ ist ein Dreieck in M_2 ■ Aufgabe: eine gleichmäßige "Verformung" von Mesh M_1 in M_2 • Wegen der Korrespondenz genügt es, die Koordinaten der Vertices von V_1 gleichmäßig (z.B. über 1000 Zeitschritte hinweg) so zu verändern, daß am Ende V_2 entsteht • Terminologie: M_1 und M_2 heißen auch "morph targets", oder "source" und "target" G. Zachmann Computer-Graphik 2 – SS 10 Verallgemeinerte baryzentrische Koordinaten





- Bezeichnungen:

 - Innere Vertices $V_I=\{P_i\mid i=1\dots n\}$ Rand-Punkte $V_B=\{P_i\mid i=n+1\dots n+k\}$
 - N = n + k
 - E = Menge der Kanten
- Stelle mittels verallgemeinerter baryzentr. Koordinaten ein LGS für alle Vertices auf (jeweils für M_1 und M_2):
 - Für jedes $P_i \in V_I$, $i = 1 \dots n$ bestimme $\lambda_{ij} > 0 \ \forall (i,j) \in E$ und setze $\lambda_{ij} = 0 \ \forall (i,j) \notin E$

G. Zachmann Computer-Graphik 2 – SS 10

Verallgemeinerte baryzentrische Koordinaten 44

Damit ist

$$P_i = \sum_{i=1}^N \lambda_{ij} P_j$$
, $i = 1 \dots n$

Etwas anders aufgeschrieben:

$$P_i - \sum_{i=1}^n \lambda_{ij} P_j = \sum_{i=n+1}^{n+k} \lambda_{ij} P_j$$
, $i = 1 \dots n$

• Mit $P_i = (x_i, y_i, z_i)$ ergeben sich also 3 LGSe:

$$\underbrace{\begin{pmatrix} 1 & -\lambda_{12} & \cdots & -\lambda_{1n} \\ -\lambda_{21} & 1 & \cdots & \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix}}_{\mathbf{A}} \underbrace{\begin{pmatrix} x_1 \\ x_2 \\ \vdots \end{pmatrix}}_{\mathbf{x}} = \underbrace{\begin{pmatrix} \lambda_{1,n+1} x_{n+1} + \cdots + \lambda_{1,n+k} x_{n+k} \\ \vdots \\ \vdots \end{pmatrix}}_{\mathbf{x}}$$

- Analog für y und z

- Die (simple) Idee:
 - 1. Interpoliere die λ 's:

$$\lambda_{ij}^{(t)} = (1-t)\lambda_{ij}^{(1)} + t\lambda_{ij}^{(2)}$$

- 2. Löse für jedes t die 3 LGSe
- Etwas weniger simple Idee ("intrinsisches Morphing"):
 - 1. Interpoliere die α 's und r's:

$$\alpha_{ij}^{(t)} = (1-t)\alpha_{ij}^{(1)} + t\alpha_{ij}^{(2)} \qquad r_{ij}^{(t)} = (1-t)r_{ij}^{(1)} + tr_{ij}^{(2)}$$

- 2. Berechne daraus $\lambda(t)$'s
- 3. Löse die 3 LGSe
- Übungsaufgabe: wieviele Parameter werden in den 3 Varianten interpoliert? (für ein bestimmtes t)

G. Zachmann Computer-Graphik 2 – SS 10

Verallgemeinerte baryzentrische Koordinaten 46

Zur Implementierung

- Bemerkung:
 - Die Matrix A ist nicht notw. symmetrisch
 - Sie ist dünn besetzt
 - Sie ist größtenteils diagonal dominiert, aber keine Bandmatrix
- Verwende einen iterativen Solver
- Starte mit der Matrix von t-1

G. Zachmann Computer-Graphik 2 – SS 10

Verallgemeinerte baryzentrische Koordinaten

47

