
Prof. G. Zachmann
R. Fischer

N. M. Jadid

University of Bremen
School of Computer Science

CGVR Group
May 23, 2024

Summer Semester 2024

Assignment on Advanced Computer Graphics - Sheet 4

Due Date 05.06.2024

Exercise 1 (Separating Planes, 10 Credits)

Figure 1: The correct results of the separating planes algorithm. Left: The result for SUBDIVISIONS=1
and OtherBodyDim=0. Right: The result for SUBDIVISIONS=4 and OtherBodyDim=4.

In this assignment we want to implement an acceleration algorithm that uses spatio-temporal coher-
ence to accelerate the broad-phase of collision detection between convex objects.

The algorithm is the separating planes algorithm that was presented in the lecture on Collision
Detection. The algorithm maintains a plane for each object pair such that it cleanly separates them,
without intersecting either object, if possible. For collision detection, this means an object with a
valid separating plane can not intersect, and cosequently, do not need to be considered in the narrow
phase.

Use the provided framework CollisionDetectionFramework. Implement the algorithm in
PlaneCube::updateSeparatingPlanes according to the lecture notes (s. slides 19-22 from lecture
Collision Detection). Each Body in Scene::oribitingBodies should be tested against Scene::centerObject,
which is also a Body. In main.cpp, you can adjust the number of oribiting bodies by setting Oth-

erBodyDim to a value between 0 and 4; it will create k3 (k=OtherBodyDim) many orbiting bodies.
Each of those k bodies should update its separating plane in the fastest time possible. You can store
the separating plane as a homogenous 4D vector in Body::m_sepPlane and the flag for its validity
in Body::m_sepPlaneValid. That means the flag is false if the objects (potentially) collide and no
separating plane can be constructed, and true otherwise.

Note: Make sure that you transform the vertices and planes to a common space. The rendering
portion of the framework expects the planes in world space, I suggest you stay with this convention.

1



Therefore, you need to transform a vertex vModel in model space to world space vWorld, by using
HW←M=Body::getModelToWorld() like vWorld = HW←M ·vModel with the fourth component 1 for
points and 0 for vectors.

You can modify the application settings at the beginning of main.cpp. Test your implementation
with the settings SUBDIVISIONS=1 and OtherBodyDim=0 to verify correct behaviour. Afterwards,
accelerate your algorithm and benchmark with SUBDIVISIONS=4 and OtherBodyDim=4. For reference,
the sample solution completes the benchmark setting in around 500µs.

Spatio-temporal coherence involves using the most recent separating plane for the Body-pair as the
starting candidate, as well as using steepest descent to quickly determine the next ”offending” vertex
(”offending”meaning that when a vertex is on the wrong side of the plane and thus forces an update
of the plane to be valid)

2


