University of Bremen
School of Computer Science
CGVR Group
April 23, 2025

Prof. G. Zachmann
H. Meiflenhelter
T. Hudcovic

Summer Semester 2025

Assignment on Advanced Computer Graphics - Sheet 1

Due Date 08.05.2025

Exercise 1 (Raytracing Basics)

n this exercise, you have to complete the RaytracingFramework, which you can download from our
CGVR website. To set up the development environment so that you can work on the project, follow
the instructions in the slides of the first tutorial, also available on the CGVR website.

Figure 1: Raytraced images of the A Sphere and Planes, the Metal Spheres and the Glass Spheres
scene when implemented correctly.

Overview of the framework

Let’s start with the important math class Vec4f, that is used in many places in the framework. The
class stores four float values x, y, z and w and implements basic vector operations like addition,
subtraction, scaling, but also the dot product and cross product. This class is used to store points,
vectors as well as colors as a variable:

e Point or Vector: For points and vectors, the x, y and z values store the coordinates. In case of
a point, the w value is w = 1.0 and for vectors, the w value is w = 0.0. Also note this when
creating a vector or point and set the w value accordingly. Please refer to the documentation
in Vec4f.h (e.g. the constructor with three parameters sets the fourth w-value to 1.0 and thus
creates a point).

e Colors: For colors, the x, y, and z values store the red (x), green (y), and blue (z) values.



The core class is called Raytracer, which contains the basic functionality for raytracing. The impor-
tant functions are:

e render(): generates a ray for each pixel of the image. This ray is then traced using the traceRay
function.

e traceRay(): traces the ray through the scene and recursively calls traceRay for secondary rays.

e shade(): This function computes the local (Phong) shading for a point in the scene. Moreover,
it should test whether or not the point is in the shadow.

The Camera class implements a simple pinhole camera. The function generateRay() generates a
ray from the eye point through the pixel (x,y) in the image plane.

The Ray class represents a ray that is defined by an origin point and a direction vector. Moreover,
the class includes functions to compute a reflected and refracted ray.

The Surface class is the base class for every geometric object. All derived classes implement their own
intersect () function that computes the intersection between the objects and a ray. The derived
classes Plane, Sphere and Checkerboard are fully implemented.

The Shader class implements a simple Phong Shader that is fully implemented and can be used to
calculate the color of an intersection point by using the shade function.

The PointLight class defines a simple point light and is fully implemented.

Your tasks are:

a) Implement the function Plane::intersect() in the file Plane.cpp. For this purpose check if
there is an intersection between the given ray and the plane and return it.

b) Implement the function Raytracer::shade() in the file Raytracer.cpp. In this function, you
should apply phong shading for every light source if the point lies not in the shadow (s. "Ray-
tracing” lecture, ”A Local Lighting Model”).

c¢) In order to realize a real raytracer, we have to trace also reflected rays. To do that, you should
implement the function Ray: :reflectedRay() in Ray.cpp (s. "Raytracing” lecture, "Generation
of Secondary Rays” & ”Specular Reflection”).
Moreover, you have to use this function in Raytracer: :traceRay() to recursively compute the
reflected color (that has to be added to the current color value).

d) Finally, we also want to include refractions into our raytracer. Therefore, you have to implement
the function Ray: :refractedRay() in Ray.cpp. It should, depending on the refraction parameter
of the material, return the refracted ray (s. "Raytracing” lecture, "The Refracted Ray”).

As in the previous part, you also have to trace the refracted ray recursively through the scene in
Raytracer: :traceRay() to compute the appropriate amount of color.

Note: It’s normal that the Metaball scenes don’t show anything.



