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Motivation

e Small, affordable, RGB-D
cameras getting popular

Remote robot with
RGB-D camera
[Nencil4]

e Resolution increases

e Many applications:

e Robotics
e Computer vision

e Telepresence

e \VVR/AR

Mapped environment [Labbél14]
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Autonomous lamps [Teuberl7]

e Telepresence
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¥ Motivation

e Small, affordable, RGB-D
cameras getting popular

® Resolution increases
e Many applications:
e Robotics

e Computer vision

o Telepresence

e \VVR/AR

Virtual conference room [Wilson17]
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e Small, affordable, RGB-D
cameras getting popular

® Resolution increases
e Many applications:
e Robotics

e Computer vision

e Telepresence

e VR/AR

Virtual operation room [VIVATOP]
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¥ Motivation

e Efficient compression for real-time transmission
e Limited bandwidth (1 Gbit/s ethernet)

e One Kinect V2 RGB-D frame: 6.6 MB (1.6 Gbit/s @30 Hz)

Introduction Previous Work Overview Details Results

Conclusion



Bremen

¥ Motivation

e Efficient compression for real-time transmission
e Limited bandwidth (1 Gbit/s ethernet)

e One Kinect V2 RGB-D frame: 6.6 MB (1.6 Gbit/s @30 Hz)

e Standard image/video compression algorithms for color

Introduction Previous Work Overview Details Results

Conclusion



Bremen

¥ Motivation

e Efficient compression for real-time transmission
e Limited bandwidth (1 Gbit/s ethernet)

e One Kinect V2 RGB-D frame: 6.6 MB (1.6 Gbit/s @30 Hz)

e Standard image/video compression algorithms for color

e Depth has unique characteristics = > custom algorithms

e Homogeneous regions with abrupt depth-discontinuities

e Distributed regions of invalid (zero) pixels
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U Related Work

e Point cloud based [Thanoul6, Mekurial7] and mesh based methods
[Banno12 , Mekurial3] not real-time capable
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U Related Work

e Point cloud based [Thanoul6, Mekurial7] and mesh based methods
[Banno12 , Mekurial3] not real-time capable

e Methods based on adapted image and video codecs mostly lossy [Pecell,
Liul5, Zhangl5, Hamout19]

® Few real-time lossless solutions, e.g. [Mehrotrall]

e The RVL algorithm [Wilson17] is the most promising one
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Y RVL Recap

e Fast, efficient, lossless depth-image compression

e Accounts for unique depth image characteristics
® Run-length coding of zero pixels
e Variable-bit-length coding of nhon-zero pixels
e Depth-adapted intra-image prediction

e Only moderately high compression ratio
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W Our Contributions

® Novel real-time lossless depth-image compression algorithm
e |nspired by RVL, aimed at stronger compression
e |nter-frame delta computation
® Span-based adaptive prediction
e Bit reduction

o Multi-threading
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Our Contributions

® Novel real-time lossless depth-image compression algorithm
e |nspired by RVL, aimed at stronger compression
e |nter-frame delta computation
® Span-based adaptive prediction
e Bit reduction

o Multi-threading

® Empirical evaluation:
e Several lossless compression algorithms

e Multiple static and dynamic scenes with different cameras
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Y Compression Pipeline

Depth Ima} Frame Delta

® Pipeline is lossless

e |ndividual steps are multi-threaded

Span-Based

Adaptive
Prediction

e Analogous decompression
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W Inter-Frame Delta

e Pixel-wise differences of
consecutive images

e Uses temporal coherence
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Inter-Frame Delta

e Pixel-wise differences of
consecutive images

e Uses temporal coherence

e Optional: temporal filtering

e Skips update of pixels if
continually A < €

® Counters noisy depth readings

e Not lossless anymore
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Y Adaptive Prediction

e Adaptively switch between multiple predictors

e Use predictor with lowest residual r
for pixel p at position x

Grey indicates invalid (zero) pixels
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for pixel p at position x

e We use 4 simple but effective predictors:

® Previous valid: Predo(p) = px — pa
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Y Adaptive Prediction

e Adaptively switch between multiple predictors

e Use predictor with lowest residual r
for pixel p at position x

e We use 4 simple but effective predictors:
® Previous valid: Predo(p) = px — pa

* Up: Pred; (p) = px — ps
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Y Adaptive Prediction

e Adaptively switch between multiple predictors

e Use predictor with lowest residual r
for pixel p at position x

e We use 4 simple but effective predictors:

® Previous valid: Predo(p) = px — pa
o Up: Pred|(p) = px — pB
® Average: Pred>(p) = px s erpB
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Y Adaptive Prediction

e Adaptively switch between multiple predictors

e Use predictor with lowest residual r
for pixel p at position x

e We use 4 simple but effective predictors:

C|B
® Previous valid: Predy(p) = px — pa L L ARL
. Up: Pred; (p) = px — ps o o
e Average: Preds(p) = px £a ;rpB
® MED-like: Preds(p) = px — (pa+ P —pc) E.

Grey indicates depth

e Pixel-wise switching leads to high bit-overhead

Introduction Previous Work Overview Details Results Conclusion
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Y Span-Based Adaptive Prediction

e Dynamically segment image into
spans (1D blocks) of n valid pixels

e Best suited regarding current memory layout
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Y Span-Based Adaptive Prediction

® Dynamically segment image into

spans (1D blocks) of n valid pixels

e Best suited regarding current memory layout

e Adaptively switch predictor per span _

Grey indicates invalid (zero) pixels

e Evaluate all predictors for each pixel in span

® Choose and encode best predictor k per span S, k = argmin
based on minimal accumulated absolute error i€[0.3)
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Y Span-Based Adaptive Prediction

e Dynamically segment image into
spans (1D blocks) of n valid pixels

e Best suited regarding current memory layout

e Adaptively switch predictor per span _

Grey indicates invalid (zero) pixels

e Evaluate all predictors for each pixel in span

e Choose and encode best predictor k per span S, k= argmin{ Z \Predi(p)\}
based on minimal accumulated absolute error i€(0.3] - pevalid(s)

® Encode final residuals r, using k rp = Predi(p)

e Results in 2 bits for predictor ID per span

Introduction Previous Work Overview Details Results Conclusion
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U Bit Reduction

e RVL has lower limit of 4 bits per valid pixel
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U Bit Reduction

e RVL has lower limit of 4 bits per valid pixel

e \We additionally use Zstandard for further compression

e /standard combines dynamic dictionary-based and
ANS-based entropy compression
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W Parallelization

e Partition image in equal blocks

e Simultaneous processing by threads t,
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W Parallelization

e Partition image in equal blocks

e Simultaneous processing by threads t,

e Concatenation of results r; and relevant variables

t1
o
------------------------------------------------------- Variables| + ry + r, + rs + r,
t3
t4
Compressed data
Image
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W Parallelization

e Partition image in equal blocks

e Simultaneous processing by threads t,

e Concatenation of results r; and relevant variables

t1
o
------------------------------------------------------- Variables| + ry + r, + rs +
t3
t4
Compressed data
Image

e Applied on prediction, (cut-down) RVL, and Zstandard
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Y Result: Compression Ratio vs. Speed
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W Result: Frame Delta and Filtering
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Y Result: Speed Breakdown
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W Conclusion

® Novel real-time lossless depth-image compression algorithm
e Effective temporal delta computation
e Adaptive span-based prediction
® Bit reduction

e Multi-threaded implementation
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W Conclusion

® Novel real-time lossless depth-image compression algorithm
e Effective temporal delta computation
e Adaptive span-based prediction
e Bit reduction
e Multi-threaded implementation
e Significantly higher compression ratio than existing algorithms

e Factor 1.73x higher than original RVL, 1.3x higher than Zstandard

® Real-time capable
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W) Future Work

® General performance optimization

e SIMD
® /igzag encoding
e 2D block prediction

e Last image’s neighbor values for intra-image prediction
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