
A Framework for Wait-Free Data Exchange
in Massively Threaded VR Systems

Patrick Lange, Rene Weller, Gabriel Zachmann
University of Bremen

{lange,weller,zach}@cs.uni-bremen.de

ABSTRACT
A central part of virtual reality systems and game engines is the generation, management and distribution of all
relevant world states. In modern interactive graphic software systems usually many independent software compo-
nents need to communicate and exchange data. Standard approaches suffer the n2 problem because the number
of interfaces grows quadratically with the number of component functionalities. Such many-to-many architectures
quickly become unmaintainable, not to mention latencies of standard concurrency control mechanisms. We present
a novel method to manage concurrent multithreaded access to shared data in virtual environments. Our highly ef-
ficient low-latency and lightweight architecture is based on a new wait-free hash map using key-value pairs. This
allows us to reduce the traditional many-to-many problem to a simple many-to-one approach. Our results show that
our framework outperforms by more than two orders of magnitude standard lock-based but also modern lock-free
methods significantly.

Keywords
Concurrent data structures, parallel programming, memory management, progress guarantee, map, dictionary

1 INTRODUCTION
Modern virtual environments (VEs) usually consist
of many different components such as graphics ren-
dering, sound, several input devices, haptic rendering,
physically-based simulation, etc. A similar situation
exists in many modern games. All these components
have to share and communicate some kind of data.
For instance, the physically-based simulation gathers
data from the input devices and passes its results to the
graphics, haptic and sound rendering. This requires
some kind of interface for the data exchange between
the components. That data can be extremely large, e.g.
think about a spacecraft simulation in the asteroid belt,
where the position of thousands of asteroids changes
continuously. All transformations have to be passed
from the simulation to the rendering component.

One of the standard approaches to describe and encode
virtual environments is the classic fields-and-routes-
based data flow paradigm, as for instance specified in
VRML and X3D. In that paradigm, we have to draw
"wires" between the in- and output fields of the compo-
nents and route the data through these wires.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Consequently, the number of interfaces grows quadrat-
ically with the number of components. This is manage-
able, as long as the number of components is relatively
small. However, modern virtual environments are of-
ten not restricted to a single user but may contain thou-
sands of users that are distributed over the whole world
and connected via a network. Additionally, adding new
components to the system requires changes to the in-
terfaces of many other components and the drawing of
new routes. This reduces the maintainability signif-
icantly and can affect the performance of the overall
system negatively.

A second major challenge for modern VR systems is
the data consistency: for instance, in multi-user VEs, all
users interact simultaneously but the system has to pro-
vide a consistent view on the VE to all users. This prob-
lem also arises in multithreaded single-user VEs, for in-
stance if a haptic rendering thread runs at 1000 Hz and
the graphical rendering requires only 30Hz. As a re-
sult, we need some method to synchronize the data ex-
change between the components. Classic VR systems
often use locks on shared data to avoid race conditions
and barriers for data synchronization. Unfortunately,
this decreases the performance of the whole system be-
cause components have to wait until all other compo-
nents have finished their operations. Consequently, it is
extremely complicated to guarantee time-critical access
to data for the components. In case of haptics this may
result in poor immersion or even damage of the expen-
sive devices.

Both challenges, the distribution and the synchroniza-
tion of the data, are closely related. However, clas-
sic VR systems usually handle them separately. In this
paper we present a new data pool-based approach that
solves both problems simultaneously and enables us to
overcome all the limitations.

In detail, our contributions in this paper are

1. a novel approach to data flow in massively parallel
VR systems that reduces the number of interfaces
from O(n2) to O(n) which benefits better maintain-
ability and lower synchronisation overhead.

2. a novel data structure for wait-free dictionaries with
no possible deadlocks, no thread starvation, and
high performance read and write operations.

The basic idea is very simple: first, we identify all kinds
of data that need to be shared between different com-
ponents, e.g. the transformations of the objects in the
scene. Instead of drawing a quadratic number of routes
between the components, we assign a single unique key-
value pair to each data packet. We register this key to a
global key-value pool and reserve memory for the data.

This global key-value pool holds the complete shared
world state of the VE. If any component wants to ac-
cess the data, it simply has to look up the key in the key-
value pool. Note that we actually do not require a full-
fledged database with SQL-like access, but a simple
dictionary, implemented as a hash-map, fulfills all our
requirements. Basically, we differentiate between con-
sumers that just read the data, e.g. the rendering thread
that reads the transformations of the 3D objects in the
scene, and producers that are allowed to write data, like
the physically-based simulation that changes the trans-
formations. A major advantage is that our global key-
value pool automatically reduces the many-to-many in-
terface of classic approaches to a simple many-to-one
interface. Additionally, this reduces the synchroniza-
tion overhead (see Figure 1).

In order to guarantee a wait-free write and read ac-
cess, we propose a double-buffering scheme for the
writing operations in our approach. Obviously, sev-
eral consumers can read the same key-value pair in
parallel, while one producer is allowed to change the
key-value pair. This avoids the waiting-times, known
from classical approaches using e.g. barriers. More-
over, adding new interfaces between existing compo-
nents of the software system or adding new components
to the system, is extremely simple and does not neces-
sarily require the introduction and implementation of
more interfaces between components: we only have to
introduce a new key-value pair to the pool.

Overall, we get a highly adaptable wait-free system
for massively-parallel access in large VEs. In the fol-
lowing we will describe our implementation of such a
data pool-based VR system and we will present results

of timings that show that our new system outperforms
classic approaches significantly.

Figure 1: Comparison of our approach (bottom) to the stan-
dard approach (top). While the standard fields-and-routes-
based data-flow for data exchange and communication in-
curs a quadratic number of communication interfaces, our ap-
proach reduces this significantly. Consequently, it improves
system performance and maintainability.

2 RELATED WORK
A complete overview of all data organization methods
in VR systems would exceed the scope of this section.
Hence, we will concentrate on modern system designs
that rely heavily on multithreaded access to shared sys-
tem resources and we will avoid classic methods that
where primarily designed for sequential access.
When introducing such a global key-value pool we will
immediately encounter the well-known problem of con-
current shared data structures and race conditions. The
pool is automatically becoming such a data structure as
all components simultaneously access it.
A basic distinction feature for concurrent data struc-
tures is whether they are blocking or non-blocking.
Blocking approaches usually allocate resources exclu-
sively by using various well-studied techniques such as
mutexes, semaphores or condition variables. Concur-
rent threads have to wait until a resource has been re-
leased. This may result in a loss of efficiency and paral-
lelization or even deadlocks. Many scenegraph systems
like OpenSG use blocking mechanisms for synchro-
nization. Non-blocking approaches avoid this exclu-
sive allocation of resources by introducing very smart
designs or by allowing changes only in a very small
critical section using atomic operations. These atomic
operations, like Compare-and-Swap (CAS), are usually
directly supported by the processor. Consequently, non-
blocking data structures avoid inconsistencies and dead-
locks.

Today, there exist efficient non-blocking implementa-
tions for almost any common data structure [Her91],
[Her05], [Fel13]. However, due to the restriction to
processor-supported primitive data types that allow
atomic operations, they can be hardly extended to VEs
that require more complex data structures, e.g. ma-
trices to store transformations. Additionally, memory
management has to be taken into account: the design
has to ensure that under no circumstances memory is
freed, which is still in use by a concurrent thread.

Actually, non-blocking approaches can be further clas-
sified into lock-free and wait-free methods. Lock-free
approaches do not use any locks and guarantee progress
of at least one of the threads accessing the shared data
structure. Lock-free approaches incorporate that some
threads can be delayed arbitrarily, in most cases the pro-
ducer, which waits until every reader (which is in most
cases wait-free) has finished its operations on the shared
data structure. This approach is vulnerable for dead-
locking the producer, however, statistically all threads
will make progress [Her91]. Wait-free approaches guar-
antee each thread access to the shared data structure in
a finite number of steps, regardless of other threads ac-
cessing the shared data structure [Her91].

Wait-free approaches have been developed for queues
[Stel09] or linked lists [Tim12]. Some lock-free solu-
tions have also addressed this challenge, including per-
thread timestamps [Bra13], [Har01], reference coun-
ters [Gid09], expensive compare-and-swap (CAS) ap-
proaches [Det01] or global pointers, such as [Her05]
and [Mic04]. They only support primitive data types
and they are not suited for random-access, which makes
them unsuitable for complex system architectures for
VEs. The main problem is that there are no atomic op-
erations on hash maps available, which retrieve the po-
sition of a given key inside a hash map and replace or
return the found value.

With regard to the overhead needed for synchronizing
the access of threads, wait-free approaches offer the
least overhead, while lock-free mechanisms incur more
overhead, and lock-based mechanism even more. Wait-
free approaches additionally support different thread
cycle times because no thread is blocked by another,
promising high performance when accessing a shared
data structure. Some of the above stated approaches had
been compared by Hart et al [Har07]. Hart summarizes,
that the reclamation overhead of non-blocking schemes
can dominate the overall execution time of these ap-
proaches, decreasing the performance boost with re-
spect to traditional blocking approaches. Hart also
concludes, that for accessing single data sets the haz-
ard pointer scheme performs very well, except when
these data sets have to be traversed as the scheme uses
atomic instructions. He further concludes, that it is de-
sirable to create a hazard pointer based scheme that

avoids per-element atomic instructions. Our approach
takes this into account and enhances the hazard pointer
scheme, which was previously introduced as a lock-free
approach for hash maps [Mic04]. Our scheme avoids
atomic per-element instructions and improves the man-
agement of thread-local hazard pointers by both wrap-
ping the access of the hash map and by defining the
key-value pairs as a pair with a special copy-on-write
mechanism.

3 OUR APPROACH
In this section we present our new wait-free hash map
that allows fast concurrent access for both read- and
write-operations. First, we will describe the basic con-
cepts of our key-value pool. Then we will give an
overview on our implementation.

3.1 Basic Concept
The core of our data structure is the pool. It stores all
data that can be accessed concurrently, either by the
consumer or producer components that we summarize
as entities. The shared data is stored in the pool in form
of key-value pairs. Basically, the key of such a key-
value pair is the identifier for the entities. There is no
global main loop required; each entity can access the
data, i.e. read or write, at any point in time.

The main challenge is to avoid inconsistencies, as the
pool has to ensure that no data that is currently read
by an entity will be overwritten by another entity that
concurrently writes the data. Moreover, all these access
operations should be performed without the necessity
to wait for any entity.

In order to guarantee the consistency of the data, we
propose a copy-on-write mechanism: if a producer asks
the pool for writing access to some key-value pair, we
simply update the original data and deliver a copy of
this original data to all consumer entities of the key-
value pair. All entities with reading access are not dis-
turbed, they can still read their old data. When the pro-
ducer has finished its writing operation, we simply de-
liver this new data to future entity queries for this key-
value pair. We call data that is currently written by a
producer the producer reference. Data that is accessed
by entities for reading is called consumer copy. The
overall value is therefore defined as a pair, with the first
element being the producer reference and the second
being the working copy.

Basically, this mechanism is somewhat similar to
double-buffering, known from graphical rendering. In
contrast to that, we have to ensure that old working
copies of the key-value pairs will be deleted if they are
not accessed by any entity anymore. In order to realize
this, we adopted the concept of hazard pointers.

If an entity asks for read access to a key-value pair, the
pool generates a hazard pointer that indicates that this
data is currently being read by an entity. The hazard

pointer will be released when the entity has finished the
access. All hazard pointers of all entities are managed
globally by the pool. After releasing a hazard pointer,
the key-value pool checks if there are other entities still
reading the same data. If this is not the case, and there
already exists a newer copy of the data that had been
produced meanwhile by a producer, the old data can be
safely freed.

In contrast to our approach, the original lock-free
scheme of Michael [Mic04] allows multiple producers,
but it only supports primitive data types. It also requires
the use of atomic instructions when updating values in
the hash map, which reduces the performance signifi-
cantly (see Section 5). Our copy-on-write mechanism
avoids these drawbacks and eliminates the expensive
atomic instructions. Additionally, we support complex
arbitrary data structures like lists, matrices, dynamic
arrays or vectors in the key-value pairs. Currently, the
price for these advantages is that only one producer
for each key-value pair with an arbitrary number of
consumers is supported.

3.2 Overview of the Implementation
Even if the basic concept is relatively simple, its actual
implementation holds some challenges. In the follow-
ing, we will describe these challenges and present so-
lutions. Figure 2 illustrates the basic concept of our ar-
chitecture and shows the main components as software
classes.

In the previous section we described the three main
components of our approach: the key-value pool, the
key-value pairs and the entities. Our implementation
contains a class for each of these components.

Entity

-virtual execute()

-put(std::string key, KVDataPair *value)

-get(std::string key, DBAccess access)

-release()

-std::vector<KVDataPair*> m_retiredPairs

-std::vector<HPRecPoint*> m_aquiredHazardPointers

KVDataPair

-virtual clone()

-KVDataPair(const &KVDataPair)

KeyValuePool

-std::map m_database;

-put(std::string key, KVDataPair *value): KVDataPair*

-get(std::string key, DBAccess access): KVDataPair*

-scan(HPRecPoint *head, std::vector<KVDataPair*> &retireList)

Figure 2: Overall system architecture, constituted
by the global pool named KeyValuePool, the entities
named Entity and the key-value pairs named KVDat-
aPair.

3.3 The KeyValuePool Class
The global key-value pool has to provide three core
functionalities:
• Putting values into the key-value pool
• Getting values from the key-value pool
• Release of unused memory

The putPool function is used to insert a key-value
pair into the key-value pool. If the key is not already
stored in the pool, it simply creates a new key-value
pair. Otherwise the existing key-value pair will be up-
dated. The value can be retrieved in constant time using
a simple hash function. Moreover, the putPool func-
tion contains the proposed copy-on-write mechanism:
when we update the value for a key, the consumer copy
of the value is updated by a clone of the producer refer-
ence. Note that the memory of the old consumer copy
is untouched and no memory is freed at this point, only
the pointer has been replaced.
The getPool function is used to retrieve an existing
key-value pair from the pool. However, we have to in-
dicate whether we have to return the producer reference
or the consumer copy. To do that, we additionally in-
clude a variable that indicates the access right.
Finally, the pool implements the scan function to
free allocated memory, based on Michaels approach
[Mic04]. The scan function checks whether the en-
tries of a given list of retired KVDataPairs (retired
key-value pairs, which are returned by a put function
call) are currently under use. More specifically, if there
is any hazard pointer from a concurrent thread pointing
towards a given entry. The memory of the key-value
pair will be freed if there is no intersection between
the list of a threads retired KVDataPairs and the
global hazard pointer list (see Michael [Mic04] for
more details).
Algorithm 1 KeyValuePool::putPool(key,value)

if key in map then
pair(KVDataPair) slot = map.getValue(key)
slot.producerreference = value
KVDataPair retired = slot.consumercopy
slot.consumercopy = value.copy()
return retired

else
map.insert(pair(key,value))

Algorithm 2 KeyValuePool::getPool(key,access)

if key not in map then
return empty

else
pair(KVDataPair) slot = map.getValue(key)
if access is producer then

return slot.producerreference
else

return slot.consumercopy

3.4 The Entity Class
Each software component that can access the central
key-value pool is considered as a thread with a main
loop running within an execute function. Inside the
main loop, the software component can access the cen-
tral pool. For arbitrary purposes we define an abstract
class called Entity. The class serves as a wrapper for
every software component that wants access to the cen-
tral key-value pool. It provides two wrapper functions
of the put and get function. These functions addition-
ally provide the management of the thread-local lists
of acquired hazard pointer as well as retired consumer
copies.

The putEntity wrapper calls the putPool func-
tion of the central key-value pool and retrieves the
retired KVDataPair, if available. The retired
KVDataPair is inserted into a thread-local list of
retired KVDataPairs, which is later used to free the
retired working copy.

Similar to the getEntity function of the central
key-value pool, the getPool wrapper function dis-
tinguishes whether the access is from the producer or
from a consumer of the key-value pair. If the producer
of the key-value pair access the pool, the corresponding
key-value pair (replaced consumer copy) is returned.
As there is only one producer for each key-value
pair no memory management is needed because the
producer works on the producer reference of the pool
record. If a consumer wants to access the pool, a
hazard pointer is created for the record and saved to a
thread-local list of used hazard pointers, indicating that
no other concurrent thread should free the memory of
the key-value pair.

The calling of several putEntity and getEntity
inside the main loop of a thread, inserts arbitrary
KVDataPairs (old consumer copies of threads,
produced by updating key-value pairs) and hazard
pointer (references to used key-value pairs) to the
thread-local lists. After finishing all operations in one
thread cycle, the release function is called at the end
of the thread’s main loop. The release function re-
leases all acquired hazard pointers from getEntity
calls, indicating other threads that the memory can be
safely freed. For producers that additionally call the
putEntity function, the second part of the release
function tries to free old consumer copies of the thread
produced key-value pairs, by calling the scan function
of the central key-value pool. This is similar to the
deletion of retired pairs from the KVDataPair list.

At the end of the main loop of each entity all used ref-
erences to key-value pairs are released. It may happen
that an arbitrary number of old consumer copies could
not be freed because some concurrent threads are still
using them. Due to the wait-free access of the central
key-value pool that guarantees progress of each thread,
every claimed memory of a key-value pair will be freed

after some time. The maximum time is defined by the
thread cycle time of the slowest key-value pair con-
sumer.
Algorithm 3 Entity::putEntity(key,value)

KVDataPair retired = pool.putPool(key,value)
if retired is not null then

retiredKVDataPairs.add(retired)

Algorithm 4 Entity::getEntity(key,access)

if access is consumer then
KVDataPair value = pool.getPool(key,consumer)
HazardPointer hp = value
acquiredHazardPointers.add(hp)
return value

return pool.getPool(key,producer)

Algorithm 5 Enity::release()

for all acquired hazard pointers hp of entity do
release hp

pool.scan(GlobalHazardPointers, RetiredPairs)

3.5 The KVDataPair Class
A key-value pair is represented by an abstract class
named KVDataPair. Each Entity has to define its
own pool records by defining member variables. These
member variables can be accessed via a key, which is
determined when the key-value pair is first stored in the
key-value pool. This allows us to generate an arbitrary
number of complex values for each key and it reduces
the amount of required key-value pairs. Moreover, it
avoids unnecessary calls of getEntity functions.

4 CASE STUDY
We applied our approach to a typically highly paral-
lelized VE environment for simulated space missions.
More precisely, we adopted our system to a simplified
version of ESAs ARCHEO-E2E system [Neg12] that
defines a reference architecture for spacecraft engineer-
ing feasibility studies. Instruments of the spacecraft,
as well as the environment, including the spacecraft’s
orbit and attitude, are simulated and defined as enti-
ties within the software architecture. The sensor input
for the instruments is synthesized from the simulated
environment. In our implementation, all this synthe-
sized data and the current world state (e.g. spacecraft
pose, positions of celestial bodies, sensor configura-
tions, scene nodes) are represented as key-value pairs
in our central key-value pool. The instruments and the
physically-based simulation read and write the entries
periodically. Consequently, this scenario has a large
amount of concurrent read- and write operations on our
key-value pool. Figure 3 illustrates the current simpli-
fied architecture.

Figure 4 shows a rendering of the simulation in which
a spacecraft travels through the main asteroid belt of

our solar system. You can see a simulated spacecraft
probe, while approaching a target asteroid for scientific
experiments.

Figure 3: Case study: Simplified architecture of an end-to-
end space mission simulator.

Figure 4: Case study: Simulated spacecraft rendezvous with
target asteroid.

5 RESULTS
We run our experiments on a machine with an Intel
Core i7 4-core processor with enabled Hyperthreading,
operated by Windows 7 64 bit and 4GB of RAM. Due
to the limitations of the competitive approaches we had
to limit the data pairs to basic primitives like doubles,
integers and pre-allocated lists with fixed size of 256
Bytes, in order to obtain a fair comparison with our
novel approach. We performed 50,000 read- and write-
operations for each test. Additionally, we repeated each
individual test 100 times and averaged the resulting tim-
ings. We performed the test for different numbers of
threads ranging from 2 to 128.

In our wait-free key-value pool test runs, we inserted
the keys for each test run at random positions in order
to prevent caching. The key size was set to 10 Bytes.

We compared the performance of our new approach
to two different existing methods. The first competi-
tor was a standard blocking hash map. We used the
well-known boost library that uses shared mutexes and
allows multiple readers and a single writer accessing
the complete hash map. Additionally, we adopted a

lock-free hash-map of the original hazard-pointer algo-
rithm that supports wait-free reading and lock-free writ-
ing from [Mic04].

Figure 5 and Figure 6 show a comparison of the per-
formance. You can see that our key-value pool outper-
forms both competitors for reading as well as writing
operations. More precisely, our method is more than
two orders of magnitude faster than the traditional lock-
based hash map for reading operations. Obviously, the
speedup increases with an increasing number of threads
because the concurrent thread access is limited by the
locks in the standard approach (see Figure 5).

Even more interesting is the comparison with the lock-
free hash map. Our new wait-free method, as well as the
lock-free method, support wait-free concurrent reading
access of the data. Consequently, both methods per-
form almost identically for reading operations (see Fig-
ure 5). However, our method also allows wait-free writ-
ing access using the copy-on-write mechanism instead
of CAS, used by the lock-free hash map. In that case
our method outperforms the lock-free competitor by an
increasing factor, depending on the number of threads.

Figure 5: Timings for reading key-value pairs.

Figure 6: Timings for writing key-value pairs.

Surprisingly, the lock-free hash map is even slower than
the traditional lock-based approach in writing opera-
tions. This is mainly because the lock-free method was
implemented with a spinlock-wait until it can CAS the
key-value pair between reading operations. The lock-
based approach was implemented using boost mutexes,
which do sleep-waiting, while claiming the writer-lock.
They allow other threads to continue with their opera-
tions, explaining these results.

Our approach is independent of the number of con-
current threads. Consequently, the performance boost,
compared to both competitors, increases with an in-
creasing number of threads (See Figures 7 and 8).

Figure 7 and 8 show how the concrete timings of the
approaches change, when using 4 or 32 threads. The
illustrations go along with our previous findings, indi-
cating the performance decrease of the lock-based and
lock-free approach, explaining the performance boost
of our framework.

The only bottleneck of our method is the copy-on-write
mechanism during write operations because we have
to clone the current data. Finally, Figure 9 shows that
our approach incurs only a very small performance de-
crease while the key-value pair size increases. It de-
creases very slow but it would be remarkable when us-
ing pairs with high memory demand (e.g. more than 10
kByte), as the clone call of the copy-on-write mecha-
nism mainly determines the access timing.

Figure 7: Timings compared to our approach for reading op-
erations.

Figure 8: Timings compared to our approach for writing op-
erations.

Figure 9: Dependency of the performance from the size of
the data packages with respect to the lock-free implementa-
tion.

6 CONCLUSION
We presented a new approach that allows wait-free data
exchange in massively threaded virtual environments.
Our new method guarantees both, wait-free writing and
reading access for concurrent threads. Moreover, we
allow, unlike most other wait-free approaches, arbitrary
data types to be written and read. Our method is easy to
implement and the software architecture is highly main-
tainable. Adding new components that share new data
with new and existing components is very simple and
straight forward.

Moreover, we have implemented our approach and ap-
plied it to real-world VEs, but we also made synthetic
benchmarks to compare it to other methods. Our case
study proves that our framework is perfectly suited for
real-time massively concurrent data exchange between
arbitrarily simulation entities acting as concurrent soft-
ware components inside an VR system with very low

latency. Our comparison results, based on synthetic
benchmarks, show that our new approach outperforms
traditional blocking and modern lock-free methods by
more than two orders of magnitude.

In summary we contributed

1. a wait-free design pattern for data exchange (writing
and reading) in massively threaded virtual environ-
ments in which no deadlocks or thread starvation can
occur.

2. our key-value pool which outperforms traditional
approaches by more than two orders of magnitude.

3. many-to-one communication in VR systems via
our key-value pool which supports arbitrary non-
blocking wait-free thread cycle times with a low
number of interfaces.

We are confident that our technique can be applied eas-
ily to many other VR systems, including game engines.
However, there are more avenues for future work. For
instance, we will carry out further research on thread
failures. In these cases it could happen that no mem-
ory could be released because the release function may
not have been called. Moreover, our approach currently
supports only a single producer for each key-value pair.
In the future we hope to overcome this limitation. An-
other improvement could be a distinct hazard pointer
list for each individual key-value pair, to facilitate key-
based hazard pointer lists for faster hazard pointer man-
agement.

7 REFERENCES
[Fel13] Steven Feldmann, Pierre LaBorde, Damian Dechev.

Concurrent Multi-level Arrays: Wait-free Extensible
Hash Maps. International Conference on Embedded
ComputEntityr Systems: Architectures, Modelling, and
Simulation (SAMOS XIII), 2013.

[Her91] Maurice Herlihy. Wait-free synchronization. ACM
Transactions on Programming Languages and Systems,
Volume 13, Issue 1, 1991.

[Her05] Maurice Herlihy, Victor Luchangco, Paul Martin,
Mark Moir. Nonblocking memory management support
for dynamic-sized data structures. ACM Transactions
on ComputEntityr Systems, Volume 23, Issue 2, 2005.

[Har01] Timothy L. Harris. A Pragmatic Implementation of
Non-blocking Linked-Lists. In Proceedings of the 15th
International Conference on Distributed Computing, p.
300-314, 2001.

[Gid09] Anders Gidenstam, Marina Papatriantafilou, Hakan
Sundell, Philippas Tsigas. Efficient and Reliable Lock-
Free Memory Reclamation Based on Reference Count-
ing. IEEE Transactions on Parallel and Distributed
Systems, Volume 20, Number 8, 2009.

[Det01] David L. Detlefs, Paul A. Martin, Mark Moir, Guy
L. Steele. Lock-Free Reference Counting. In Proceed-
ings of the 20th Annual ACM Symposium on Principles
of Distributed Computing, p. 190-199, 2001.

[Mic04] Maged M. Michael. Hazard Pointers: Safe Memory
Reclamation for Lock-Free Objects. IEEE Transactions
on Parallel and Distributed Systems, Volume 16, Issue
5, 2004.

[Har07] Thomas E. Hart, Paul E. McKenney, Angela Demke
Brown, Jonathan Walpole. Performance of memory
reclamation for lockless synchronization. Journal of
Parallel and Distributed Computing, Volume 67, Issue
12, 2007.

[Stel09] Philippe Stellwag, Alexander Ditter, Wolfgang
Schröder-Preikschat. A Wait-Free Queue for Multi-
ple Enqueuers and Multiple Dequeuers Using Local
Preferences and Pragmatic Extensions. In Proceedings
IEEE Symposium on Industrial Embedded Systems, p.
237-248, 2009.

[Tim12] Shahar Timnat, Anastasia Braginsky, Alex Kogan,
Erez Petrank. Wait-free linked-lists. In Proceedings of
the 17th ACM SIGPLAN symposium on Principles and
Practice of Parallel Programming, p. 309-310, 2012.

[Neg12] Cristina de Negueruela, Michele Scagliola, Da-
vide Giudici, Jose Moreno, Jorge Vicent, Adriano
Camps, Hyuk Park, Pierre Flamant, Raffaella Franco.
ARCHEO-E2E: A Reference Architecture for Earth
Observation end-to-end Mission Performance Simu-
lators. Simulation and EGSE facilities for Space Pro-
grammes, ESA ESTEC, 2012.

[Bra13] Anastasia Braginsky, Alex Kogan, Erez Petrank.
Drop the Anchor: Lightweight Memory Management
for Non-Blocking Data Structures. In Proceedings of
the 25th Annual ACM symposium on Parallelism in
algorithms and architectures, p. 33-42, 2013.

