
CDFC: Collision Detection Based on Fuzzy Clustering for
Deformable Objects on GPU’s

David Mainzer
Clausthal University of Technology

Julius-Albert-Straße 4
38678 Clausthal-Zellerfeld, Germany

dm@tu-clausthal.de

Gabriel Zachmann
University of Bremen

Bibliothekstraße 1
28359 Bremen, Germany

zach@informatik.uni-bremen.de

ABSTRACT
We present a novel Collision Detection Based on Fuzzy Clustering for Deformable Objects on GPU’s (CDFC)
technique to perform collision queries between rigid and/or deformable models. Our method can handle arbitrary
deformations and even discontinuous ones. With our approach, we subdivide the scene into connected but totally
independent parts by fuzzy clustering, and therefore, the algorithm is especially well-suited to GPU’s. Our collision
detection algorithm processes all computations without the need of a bounding volume hierarchy or any other
acceleration data structure. One great advantage of this is that our method can handle the broad phase as well as
the narrow phase within one single framework. We can compute inter-object and intra-object collisions of rigid and
deformable objects consisting of many tens of thousands of triangles in a few milliseconds on a modern computer.
We have evaluated its performance by common benchmarks. In practice, our approach is faster than earlier CPU-
and/or GPU-based approaches and as fast as state-of-the-art techniques but even more scalable.

Keywords
collision detection, fuzzy clustering, physics based animation, computer animation, cloth simulation

1 INTRODUCTION
Collision detection between rigid, and/or soft bodies is
important for many fields of computer science . The
underlying collision detection needs to check if colli-
sions occur between a pair of objects as well as self-
collisions among deformable objects. In many appli-
cations, an additional requirement is that the collision
detection has to be calculated within milliseconds.

There exist various approaches that propose spatial sub-
division for collision detection or approximate the sur-
face of rigid and soft bodies. These algorithms employ
axis-aligned bounding boxes (AABB), oriented bound-
ing boxes (OBB) or Inner Sphere Trees (IST) [8] to re-
duce the computation time.

Most of the earlier efficient collision detection algo-
rithms were sequential ones, which are perfect for de-
vices that can execute only one instruction at a time.
The current trend in computer architecture focuses on
multi-core CPUs and many-core GPU’s, and so many
parallel collision detection algorithms have been pro-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

posed in the last years. The collision detection algo-
rithm we present in this paper is a fast, fully GPU-based
algorithm that can exploit data and thread-level paral-
lelism.

1.1 Our Contributions

Our novel Collision Detection Based on Fuzzy Clus-
tering for Deformable Objects on GPU’s (CDFC) al-
gorithm is designed for interactive and exact collision
detection in complex environments and can handle ob-
jects movement and deformation at the same time. To
achieve these features, our algorithm subdivides the
whole scene into independent, overlapping parts in the
first step. For the segmentation process, we use a GPU-
based clustering algorithm called fuzzy C-means. For
all clusters, we can execute the collision detection steps
independently, and this offers the possibility to dis-
tribute the collision detection computation for the clus-
ters to different GPU’s.

Our novel approach is as fast as state-of-the-art colli-
sion detection algorithms but with the additional ad-
vantage that our collision detection can be distributed
easily to more than only one GPU; thus it scales very
well with the number of GPU’s. Also, our collision de-
tection algorithm works directly on all primitives of the
whole scene, which results in a simpler implementation
and can be implemented much more easily by other ap-
plications.

2 PREVIOUS WORK
In this section, we focus on those approaches that can
handle collisions between deformable objects.

2.1 Approaches Using Bounding Volume
Hierarchies

Using Bounding Volume Hierarchies (BVH) is the most
common approach to speed up collision detection of
rigid and deformable objects. A GPU-based linear
BVH (LBVH) approach was presented by Lauterbach
et al. [4]. Updating these LBVH over more than one
GPU is difficult and leads to a huge communication
overhead.

2.2 GPU-based Collision Detection
Most modern collision detection algorithms using BVH
are GPU based. However, there are some approaches
which use e.g. distance fields or space subdivision to
improve their performance. A hybrid CPU/GPU col-
lision detection technique based on spatial subdivision
was presented by Pabst et al. [5]. They prune away non-
colliding parts of the scene by using an adapted highly
parallel spatial subdivision method.

3 SWEEP-PLANE TECHNIQUE USING
PCA

Due to the fact that, our collision detection approach
treats all objects in a scene at the same time, we make
no differences between individual objects in the rest of
this paper.

During the collision detection process we use an
adapted version of the standard Sweep and Prune
approach, a 1D version, hereafter referred to as Sweep-
Plane technique. We compute the bounding box for
every triangle. Each bounding box spans an interval
[Si,Ei] for each triangle Ti on the x-axis. Sorting all
intervals along the x-axis provides information about
possible colliding bounding boxes.

There exists a downside of using bounding volumes,
like AABB’s or OBB’s. If, for example, primitives are
moving then in a significant amount of cases a huge
number of false positives may occur, when we choose
any of the fixed world coordinate axes as sweep direc-
tion. In our case, the best sweep direction is the one,
that allows projection to separate the primitives as much
as possible. In order to achieve the best sweep direc-
tion, even if the primitives move through 3D spaces, we
compute the principal component analysis (PCA) [2] in
every frame, because the direction of the first principal
component maximizes the variance of primitives, after
projection.

Therefore, we move the direction of the first princi-
pal component on the x-axis. Now we compute the

Figure 1: Examples of some high-detail objects, par-
titioned by fuzzy C-means into two (left column) and
16 clusters, respectively. From top to bottom: Cloth on
Ball (92k) and Model of the Female Pelvis (200k).

bounding box intervals [Si,Ei] and use the x-axis, more
specifically the direction of the first component of the
principal component analysis, respectively, as sweep
direction. As a consequence, combining Sweep-Plane
and PCA reduces the number of primitive pairs tested
for intersection.

4 OBJECT SUBDIVISION USING
FUZZY C-MEANS

Using the first principal component as sweep direction
only, will nevertheless produce false positives, because
of the dimensional reduction in the Sweep-Plane step.
The Sweep-Plane technique, used to separate the prim-
itives, projects all 3D bounding volumes to 1D points.

To eliminate this kind of false positives we subdivide
the scene (see Figure 1 for some examples) into con-
nected components using fuzzy C-means (FCM) algo-
rithm [1]. We use a fuzzy clustering algorithm because
the triangles, which are located on the border between
two clusters, have to be in both clusters. If adjoining
clusters are not connected, then in some cases collisions
across the border of the clusters would not be taken into
account.

The FCM algorithm is a soft, or fuzzy, version of the
well-know k-means clustering algorithm. The algo-
rithm tries to minimize the total error, which is the sum
of the squared distances of each data point to each clus-
ter center, if we use the euclidean distance, weighted by
the membership of the data point to each cluster, for all
data points.

5 GPU-BASED COLLISION DETEC-
TION

In this section we show how our method combines all
previously introduced techniques. Algorithm 1 pro-
vides a short overview of the pipeline of our collision
detection approach with the main procedures.

Algorithm 1 GPU-based Collision Detection
A line represents a massively parallel computation kernel

Input: triangles of all objects
Output: intersecting triangle pairs
1: subdivide scene into c clusters using fuzzy C-means
2: for all clusters do in parallel
3: compute PCA and apply PCA
4: compute AABBs and sort AABBs along x-axis
5: collect all overlapping intervals
6: for all overlapping intervals do in parallel
7: if AABB intersect along y-axis then
8: do triangle-triangle intersection test
9: end if
10: end for
11: end for

First of all, we subdivide the whole scene into indepen-
dent, overlapping parts by fuzzy clustering. Thus, we
use the centroid of all triangles to decide to what clus-
ter a triangle belongs to.

Now we can do the following steps for every cluster
independently. As described in Section 3, we do a prin-
cipal component analysis using the centroid of the tri-
angles of the cluster. The result of the PCA is applied to
the triangles of the cluster, which means that the direc-
tion of the first component of the principal component
analysis points along the x-axis (step “Clustering and
PCA” in Figure 3 and 4).

We are now using the x-axis as sweep plane direc-
tion because this direction maximizes the variance of
primitives after projection. Therefore, we compute the
bounding box of all triangles of this cluster (step “Com-
pute AABBs” in Figure 3 and 4).

After computing the bounding boxes for all triangles
of this cluster, we sort them along the x-axis using a
highly-tuned Radix Sort algorithm from the Thrust1 li-
brary.

The next challenge is to collect all bounding box inter-
vals which intersects in the x-dimension. In order to
avoid counting overlapping bounding boxes twice, we
only consider the start point (Si) of a bounding box in-
terval. In order to receive the required memory and the
position where to put all possible colliding pairs, we use
the prefix sum algorithm from the Thrust library. This
step, see “Collect overlapping intervals” in Figure 3 and
4, takes up the most computation time in our collision
detection algorithm. The problem is that it is not possi-
ble to access the memory completely coalesced, which
slows down the computation process.

After collecting all possible colliding pairs, we verify
whether the bounding boxes of both triangles overlaps
in the y-dimension or not. We omit an bounding box
overlap test for the z-dimension, because it takes more

1 http://thrust.github.com/

Figure 2: The upper row shows the frames 10 and 60 of
the Cloth on Ball benchmark. The lower row shows the
frames 125 and 375 of the Funnel benchmark.

time to read the bounding box information from mem-
ory and to compare the values, than using the triangles
vertices, which may potentially needed further in the
case both triangles intersect, to test if the triangles over-
lap in the z-dimension. If that is the case, and both
triangles overlap in all three dimensions, the algorithm
performs a triangle-triangle intersection test.

Our collision detection algorithm compute all colliding
triangle pairs and, if needed, the intersection point or
line, respectively.

5.1 Accuracy & Limitations
Our collision detection algorithm will recognize every
intersection between all triangles. Therefore, our ap-
proach perform bounding box intersection tests with
all triangles of a cluster, to detect all colliding triangle
pairs. However, in the case of significant differences in
the size of the triangles, it could happen that a triangle
is completely assigned to one cluster, but collides with
a triangle which is completely assigned to an adjoining
cluster. The reason for this is that, our approach use
the centroid, which represents a triangle, for the clus-
tering process. To prevent this, we have to decrease the
membership value in the clustering step. This results in
a higher degree of overlap between adjoining clusters.
The size of the overlap has to be at least as large as the
overall maximum distance from triangle’s centroid to
one of its vertices:

max
i=1,2,...,n

(max
k=0,1,2

(‖Ci− vertexi,k‖2)) (1)

6 RESULTS
We have implemented our collision detection algorithm
on a NVIDIA GeForce GTX 480. Therefore, we used
the CUDA toolkit 5.0 as development environment. For
sorting and prefix computation steps we used Thrust, a
parallel algorithms library.

6.1 Benchmarking
To evaluate the performance of our collision detection
algorithm in different situations, we choose some often

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90

tim
e/

m
ill

is
ec

frame number

Complete collision detection
Tri-Tri intersection

Collect overlapping intervals
Sort AABBs

Compute AABBs
Clustering and PCA

Figure 3: Collision detection time needed for Cloth on
Ball (92k triangles) Benchmark.

used collision detection benchmarks to compare our re-
sults against other approaches.

In Table 1 we show the average collision detection time
needed for all benchmarks compared with state-of-the-
art collision detection algorithms.

Bench. Our CSt. Pab. HP MC
Cl. on Ball 20.24 18.6 36.6 23.2 32.5
Funnel 6.53 4.4 6.7 – –

Table 1: Timings (in ms) include both external and self-
collision detection; CSt.[6], Pab.[5], HP[3], MC[7]

6.1.1 Cloth on Ball
In this benchmark a cloth (92k triangles) drops down on
a rotating ball (760 triangles) (see Figure 2 upper row).
Thereby the cloth has a huge number of self-collisions.

Figure 3 shows that the collision detection time needed
to compute all collisions from frame 60 onwards in-
crease because the number of self-collisions increase
heavily like you can see on the Figure 2 (upper row).
Our collision detection algorithm needs more time to
collect all possible colliding triangles and has to do
more intersection tests between them.

6.1.2 Funnel
A cloth (14.4k triangles) falls into a funnel (2k trian-
gles) and passes through it, due to the force applied by
a ball (1.7k triangles), who slowly increased in volume
over the time (see Figure 2 lower row).

Figure 4 depicts that the collision detection time needed
to compute all collisions increase slightly between
frame 150 and frame 345. In these frames the cloth hit
the funnel and slides a little bit into the funnel. From
frame 345 onwards the ball push the cloth trough the
funnel, and produces a huge number of self-collisions
which results in an higher computation time needed for
collision detection.

7 CONCLUSIONS
We presented a novel, accurate and fast collision
detection algorithm which is completely GPU-based
and needs no additional communication between host

0

5

10

15

20

25

30

0 50 100 150 200 250 300 350 400 450

tim
e/

m
ill

is
ec

frame number

Complete collision detection
Tri-Tri intersection

Collect overlapping intervals
Sort AABBs

Compute AABBs
Clustering and PCA

Figure 4: Collision detection time needed for Funnel
(18.5k triangles) Benchmark.

(CPU) and device (GPU) is necessary. Our Collision
Detection Based on Fuzzy Clustering for Deformable
Objects on GPU’s technique can perform collision
queries between rigid and/or deformable models
consisting of many tens of thousands of triangles in
a few milliseconds. Our results show that our colli-
sion detection algorithm is as fast as state-of-the-art
approaches.

8 REFERENCES
[1] J.C. Bezdek. Pattern recognition with fuzzy ob-

jective function algorithms. Kluwer Academic
Publishers, 1981.

[2] I. Jolliffe. Principal component analysis. Wiley
Online Library, 2005.

[3] D. Kim, J.P. Heo, J. Huh, J. Kim, and S. Yoon.
Hpccd: Hybrid parallel continuous collision detec-
tion using cpus and gpus. In Computer Graphics
Forum, volume 28, pages 1791–1800. Wiley On-
line Library, 2009.

[4] C. Lauterbach, Q. Mo, and D. Manocha. gproxim-
ity: Hierarchical gpu-based operations for collision
and distance queries. In Computer Graphics Fo-
rum, volume 29, pages 419–428. Wiley Online
Library, 2010.

[5] S. Pabst, A. Koch, and W. Straßer. Fast and scal-
able cpu/gpu collision detection for rigid and de-
formable surfaces. In Computer Graphics Forum,
volume 29, pages 1605–1612. Wiley Online Li-
brary, 2010.

[6] M. Tang, D. Manocha, J. Lin, and R. Tong.
Collision-streams: fast gpu-based collision detec-
tion for deformable models. In Symposium on
Interactive 3D Graphics and Games, pages 63–70.
ACM, 2011.

[7] Min Tang, Dinesh Manocha, and Ruofeng Tong.
Mccd: Multi-core collision detection between de-
formable models using front-based decomposition.
Graphical Models, 72(2):7–23, 2010.

[8] Rene Weller and Gabriel Zachmann. Inner sphere
trees for proximity and penetration queries. In
Robotics: Science and Systems Conference (RSS),
Seattle, WA, USA, June/July 2009.

	Introduction
	Our Contributions

	Previous Work
	Approaches Using Bounding Volume Hierarchies
	GPU-based Collision Detection

	Sweep-Plane Technique Using PCA
	Object Subdivision Using Fuzzy C-Means
	GPU-based Collision Detection
	Accuracy & Limitations

	Results
	Benchmarking
	Cloth on Ball
	Funnel

	Conclusions
	REFERENCES

