
A Benchmarking Suite for Static Collision Detection
Algorithms

Sven Trenkel
TU Clausthal, Germany
trenkel@tu-clausthal.de

Rene Weller
TU Clausthal, Germany

weller@in.tu-clausthal.de

Gabriel Zachmann
TU Clausthal, Germany
zach@in.tu-clausthal.de

ABSTRACT

In this paper, we present a benchmarking suite that allows a systematic comparison of pairwise static collision detection
algorithms for rigid objects. The benchmark generates a number of positions and orientations for a predefined distance. We
implemented the benchmarking procedure and compared a wide number of freely available collision detection algorithms.

Keywords: Collision Detection, Benchmarking

1 INTRODUCTION

Fast algorithms for collision detection between polygo-
nal objects are needed in many fields of computer sci-
ence, e.g. in physically based simulations, computer
games, or robotics. In many of these applications, colli-
sion detection is the computational bottleneck. In order
to gain a maximum speed of applications, it is essential
to select the best suited algorithm.

There are a number of algorithms for collision de-
tection between rigid objects. Unfortunately, it is ex-
tremely difficult to evaluate and compare collision de-
tection algorithms, because in general they are very sen-
sitive to specific scenarios, i.e. to the relative size of the
two objects, the relative position to each other, the dis-
tance, etc.

The design of a standardized benchmarking suite
for collision detection would make fair comparisons
between algorithms much easier. Such a benchmark
must be designed with care, so that it includes a broad
spectrum of different and interesting contact scenarios.
However, there are no standard benchmarks available
to compare different algorithms. As a result, it is non-
trivial to compare two algorithms and their implemen-
tations.

In this paper, we propose a simple benchmark pro-
cedure which eliminates these effects. It has been kept
very simple so that other researchers can easily repro-
duce the results and compare their algorithms.

The user only has to specify a small number of pa-
rameters, namely: The objects he wants to test, the

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency - Science Press, Plzen, Czech Republic.

number of sample points, and, finally, a set of distances.
Our algorithm then generates the required number of
test positions and orientations by placing the object in
the given distances.

Our benchmarking suite is flexible, robust, and it
is easy to integrate other collision detection libraries.
Moreover, the benchmarking suite is freely available
and could be downloaded together with a set of objects
in different resolutions that cover a wide range of pos-
sible scenarios for collision detection algorithms, and a
set of precomputed test points for these objects 1.

2 RELATED WORK
There does not exist much work about special bench-
marking suites for collision detection algorithms. Most
authors simply choose some objects and test them in a
not further described way, or they restrict their explo-
rations just to some special scenarios. A first approach
for a comprehensive and objective benchmarking suite
was given by [Zac98]. The code for the benchmark is
freely available. However, it does not guarantee to pro-
duce results with practical relevance, because the ob-
jects interpenetrate heavily during the benchmark, but
collision detection is mostly used to avoid interpen-
etrations. In many simulations, objects are allowed
to collide only a little bit, and then the collision han-
dling resolves the collision by backtracking or a spring-
damping approach.

[OL03] chose a set of physically based simulations to
test their collision detection algorithms. This scenarios
are a torus falling down a spiral peg, a spoon in a cup,
and a soup of numbers in a bowl. [vdB97] positioned
two models by placing the origin of each model ran-
domly inside a cube. The probability of an intersection
is tuned by changing the size of the cube. The problem
here is that it is stochastic, and that a lot of large and
irrelevant distances are tested.

1 http://cg.in.tu-clausthal.de/research/colldet_benchmark/



[CRM02] presented a comparison with the special fo-
cus on motion planing. They used different scenes in
their probabilistic motion planner for the benchmark.
However, such a benchmarking suite compares the col-
lision detection algorithms only in a special scenario.
In this paper, we present a more flexible and general
benchmarking suite which produces more reliable com-
parisons.

3 THE BENCHMARKING ALGO-
RITHM

Nearly all collision detection libraries for static col-
lision detection between rigid objects are based on
bounding volume hierarchies (BVHs). If the bounding
volume (BV) of an object does not intersect a volume
higher in the tree, then it cannot intersect any object
below that node. So, they are all rejected very quickly.
If two objects overlap, the recursive traversal during the
collision check should quickly converge towards the
colliding polygon pair. So, it is most time consuming
if the BVHs overlap, but the objects do not.

Therefore, in most collision detection algorithms, the
testing time depends mainly on the configuration of the
two objects and their shapes, i.e. the positions, orien-
tations and distance, and to a lesser amount on their
complexity. Therefore, it seems to be reasonable for a
well-balanced benchmarking procedure to test as many
configurations for a given distance as possible.

3.1 The Search Space
Without loss of generality, it is sufficient to rotate only
one of the objects in order to get all possible configura-
tions, because we can simply transform one of the ob-
jects into the coordinate system of the other. This does
not change the relative position of the objects. There-
fore, our search space has 6 dimensions.

As even a 6D search space is too big to be tested, we
have to reduce it by sampling. In order to find a large
number of sampling points, we propose two different
methods in our benchmarking suite. We call them
sphere method and grid method. The sphere method is
faster, but could miss some interesting configurations,
while the grid method is more accurate. Both methods
start with a fixed rotation. After a cycle of method-
specific translations, the moving object is rotated and
the next cycle can start until a user specified number of
rotations is reached.
The Grid Method The first method uses a simple
axis-aligned grid to find the translations. The center of
the moving object is moved to the center of all cells.
For each of these, the object is moved towards the fixed
object until the required distance is reached. Then, the
configuration is stored. Unfortunately, it is not possi-
ble to know the number of configurations found by this
method in advance.

Figure 1: Our sphere-method uses a fixed rotation for
every cycle. The moving object is rotated around the
fixed object. After a cycle is finished, the rotation is
changed.

The Sphere-Method The main idea of this method is
to reduce the time for finding possible configurations.
To this end, the 3D search space is reduced to 2 dimen-
sions by using spherical coordinates. Nevertheless, it
might happen to miss some interesting configurations.
Within this method, we place the moving object on a
sphere around the fixed object. The sphere should be
bigger than the required distance. In the next step, we
move the object towards the fixed object on a straight
line through the center of the sphere until we reach the
required distance. Because there could be several points
that match the required distance on the straight line, it
is possible to miss some configurations. In addition to
the higher speed of this method, it is possible to de-
fine the number of located configurations in advance,
because every straight line leads to exactly one config-
uration (see Fig. 1).

At the end of this procedure, we have got a large
number of configurations for a user specified number of
object-object-distances. This has to be done only once
as preprocessing step, even if we add another collision
detection library to the set later, or if we move to other
platforms.

3.2 Benchmarking
The bulk of the work has been done in the previous step.
In order to actually perform the benchmark, we just
load the set of configurations. For each object-object
distance we start the clock, set the transformation ma-
trix of the moving object to all the configurations asso-
ciated with the distance, and perform a collision test for
each of them. After that, we can compute an average
collision detection time for this distance.

3.3 Distance Computing
One method to determine the distance between two ob-
jects is to use the collision detection algorithms itself.
We can build an offset object from the fixed object



where the offset equals the specified distance. Then,
we can conduct a binary search until we find a point
where the moving object is just touching the offset ob-
ject. However, offset objects can get very large for com-
plex objects.

That is why we propose another method: The PQP-
library offers the possibility to compute the distance be-
tween two objects by using swept spheres. With a given
distance, we can also do a binary search until we find a
point which matches the specified distance.

However, distance computing is more complicated
than collision detection. Thus, this method is more time
consuming. On the other hand, it is more accurate and
less memory intensive than the offset object method.
Therefore, we prefer this method for our benchmark.
Another advantage of this method is that we know the
exact distance between the objects during the binary
search. We can use this information to delete cells in
the grid method with a higher distance than the speci-
fied one. This accelerates the search for configurations.

Indeed, our benchmarking suite supports both meth-
ods for distance computing, because PQP is not Open
Source software and, therefore, it is not possible to de-
liver it directly with our benchmarking suite.

Another problem that arises during distance compu-
tation concerns numerical stability. Because we are
forced to floating point accuracy, it is not possible to
find configurations with an exact distance while doing
binary search. On account of this, we use an accuracy
of 0.001% relative to the size of the fixed object in our
benchmark. Of course, this accuracy can be changed by
the user.

4 IMPLEMENTATION
Most collision detection libraries use proprietary inter-
nal data structures for data representation. Therefore,
it is not possible to pass all kinds of objects directly to
the algorithms. We chose OpenSG, a freely available
scenegraph system for object management, because it
offers support for many file formats, it is portable to
many operating systems and, its data structures are well
documented and easy to use. We wrote a wrapper for
every collision detection library in order to convert the
OpenSG data to the specific required data structures of
the collision detection libraries. During initialization,
our benchmark simply checks if the dynamically linked
libraries are available and, if so, loads them.

We tested a wide variety of freely available collision
detection libraries, precisely:

V-Collide: V-Collide, proposed by [HLC+97], is a
wrapper with a simple interface for I-Collide and the
RAPID library. In a first step, a sweep-and-prune algo-
rithm is used to detect potentially overlapping pairs of
objects. In a second step, the RAPID library is used for
the exact pairwise test between a pair of objects. It uses

an oriented bounding box test to find possibly colliding
pairs of triangles.
PQP: PQP [GLM96] [LGLM99] is also based on
the RAPID library. As with RAPID, PQP uses oriented
bounding boxes. Furthermore, PQP is also able to com-
pute the distance between the closest pair of points. For
distance and tolerance queries, a different BV type, the
so-called swept spheres, is used.
FreeSolid: FreeSolid, developed by [vdB99], uses
axis-aligned bounding boxes (AABBs) for collision de-
tection. For a fast collision test between the AABB hi-
erarchies, the acceleration scheme described in [vdB97]
is used. FreeSolid could also handle deformations of
the geometry.
Opcode: Opcode, introduced by [Ter01], is a col-
lision detection library for pairwise collision tests. It
uses AABB hierarchies with a special focus on mem-
ory optimization. Therefore, it uses so-called no-leaf,
i.e., BVHs of which the leaf nodes have been removed.
For additionally acceleration it uses primitive-BV over-
lap tests during recursive traversal, whereas all other
libraries described in this paper only use primitive-
primitive-tests and BV-BV-tests. Like Freesolid, Op-
code also supports deformable meshes.
BoxTree: The BoxTree, described in [Zac95], is a
memory optimized version of the AABB trees. Instead
of storing 6 values for the extents of the boxes, only two
splitting planes are stored. For the acceleration of n-
body simulations, the libraries offers support for a grid.
Dop-Tree: The Dop-Tree [Zac98] uses discrete ori-
ented polytopes (k-DOPs, where k is the number of ori-
entations) as BVs. k-DOPs are a generalization of axis
aligned bounding boxes. The library supports different
numbers of orientations. In [Zac98] it is shown that
k = 24 guarantees the highest performance. Therefore,
we also chose this number for our measurements. The
set of orientations is fixed. This library also supports
n-body simulation via grids.

When running the configuration space exploration
(see section 3), the user simply specifies the objects he
wants to test, the size of the grid, if he wants to use
the grid-method or a step size for the spherical coordi-
nates of the sphere-method. Moreover, a step size for
the rotation of the moving object must be given and, fi-
nally, a distance. Then, our benchmark automatically
generates a set of sample points for these specified pa-
rameters and benchmarks all available algorithms. It
measures the times with an accuracy of 1 msec. More-
over, our benchmarking suite also offers scripts for the
automatical generation of diagrams to plot the results of
the benchmark.

5 RESULTS
Besides the distance between the objects, the perfor-
mance of collision detection libraries mainly depends
on the complexity and the shape of the objects. We used



Figure 2: Some of the objects we used to test the collision detection libraries: A model of a castle, a helicopter
and a laurel wreath

20 different objects in several resolutions in order to
cover a wide range of use cases. All of the objects are in
the public domain and can be accessed on our website.
In particular, we used models of the Apollo 13 capsule
and the Eagle space transporter, because they are nearly
convex but have a lot of small details on the surface. To
test the performance of the libraries on extremely con-
cave objects we chose models of a helicopter, a luster,
a chair, an ATST-walker and a set of pipes. Moreover,
we used a laurel wreath to test intricate geometries. A
Buddha model, a model of the Deep Space 9 space sta-
tion, a dragon, and the Stanford Bunny were tested as
examples of very large geometries. A model of a castle
consists of very small, but also very large triangles. We
used it to test the performance at unequal geometries.
Accurate models of a Ferrari, a Cobra, and a door lock
represent typical complex objects for industrial simula-
tions. Finally, synthetic models of a sphere, a grid, a
sponge, and a torus were used. Figures 2 and 3 show
some of these objects.

Within our benchmarks, we simply tested a model
against a copy of itself. However, our benchmark also
supports the use of two different objects, but the first
method is sufficient to make conclusions about the per-
formance of the libraries.

We tested the libraries on a Pentium D CPU with 3
GHz and 1 GB of DDR2-RAM running Linux. All
source code was compiled with gcc 4.0.2. We used the
sphere-method with PQP for distance computing. We
chose a step size of 15◦ for the spherical coordinates
and a step size of 60◦ per axis for the rotations of the
objects. With these values, we generated a set of 38000
sample configurations for every distance. We computed
sample configurations for distances up to 40% of the
object size in 1% steps, because in all example cases,
there was no significant time spent on collision detec-
tion for larger distances. All these configurations can
be downloaded from our web site2.

The first reasonable finding of our measurements is
that those algorithms, which use the same kind of BVH,
behave very similar. Our second finding is that all algo-

2 http://cg.in.tu-clausthal.de/research/colldet_benchmark/

rithms have their special strength and weakness in dif-
ferent scenarios. E.g., the AABB-based algorithms like
FreeSOLID, Opcode and the BoxTree were very well
suited for regular meshes like the grid or the lustre, but
also for meshes with very unequal triangle sizes, like
the castle (see Fig. 7). In these cases, they were up to
4 times faster than the OBB-based libraries or the Dop-
Tree. This is because in these test cases, AABBs fit
the objects very well and therefore, the algorithms can
benefit from their faster collision check algorithm.

When we used extremely concave and sparse ob-
jects, like the lustre or the ATST, or objects with lots
of small details, like the Apollo capsule, the situation
changed completely and the OBB-based algorithms,
namely PQP and V-Collide, performed much better
than the AABB-based libraries (see Fig. 5). This is,
because with these kinds of objects, a tight fitting BVH
seems to gain more than a fast BV test.

A special role played the Dop-Tree which combines
the fast BV tests of the AABB-based algorithms with
the tight BVs of the OBB-based libraries. As expected,
this BVH is placed between the other two kinds of al-
gorithms in most of the test scenarios.

Another interesting aspect we wanted to benchmark
is the dependency on the complexity of the objects.
Therefore, we tested all our models in different reso-
lutions. The surprising result was, that there was no
general dependency on the complexity for the algo-
rithms we tested. E.g., in the lustre scene, the times
increase nearly linearly with the number of polygons,
for the AABB-based libraries, whereas it is nearly con-
stant for the OBB-based algorithms. In the grid sce-
nario, the increase is about O(n logn) for all algorithms
(see Fig. 6). In the castle scene, the collision detec-
tion time seems to be independent from the complex-
ity and in the chair scene, the collision detection time
decreased for all algorithms with an increasing object
complexity (see Fig. 7).

Summarizing, there is no all-in-one device suitable
for every purpose. Every algorithms has its own
strength in special scenarios. Therefore, the users
should check their scenario carefully when choosing a
special collision detection algorithm. A good compro-



Figure 3: Some more of the test objects: A model of the Apollo 13 capsule, a set of pipes and a lustre.

so
op
vc

pqp
do
bx

Castle / 127131

distance

tim
e

/m
ill

is
ec

0.140.120.10.080.060.040.020

1.4

1.2

1

0.8

0.6

0.4

0.2

0

so
op
vc

pqp
do
bx

grid / 414720

distance

tim
e

/m
ill

is
ec

0.140.120.10.080.060.040.020

6

5

4

3

2

1

0

Figure 4: The results of the benchmark for the castle scenario in resolutions with 127 131 vertices and in the grid
scene with 414 720 vertices. The x-axis denotes the relative distance between the objects, where 1.0 is the size
of the object. Distance 0.0 means that the objects are almost touching but do not collide. The abbreviations for
the libraries are as follows: bx=BoxTree, do=Dop-Tree, pqp=PQP, vc=V-Collide, op=Opcode, so=FreeSOLID. The
AABB-based algorithms perform best in this kind of scenarios.

so
op
vc

pqp
do
bx

Apollo / 163198

distance

tim
e

/m
ill

is
ec

0.140.120.10.080.060.040.020

20

18

16

14

12

10

8

6

4

2

0

so
op
vc

pqp
do
bx

ATST / 20132

distance

tim
e

/m
ill

is
ec

0.140.120.10.080.060.040.020

3

2.5

2

1.5

1

0.5

0

Figure 5: The results of the benchmark for the Apollo capsule with 163 198 vertices and the ATST walker with
20132 vertices. In these test cases, the OBB-based algorithms are much faster than the AABB-based libraries.

so
op
vc

pqp
do
bx

Lustre / 0.010000

vertices/1000

tim
e

/m
ill

is
ec

140120100806040200

50

45

40

35

30

25

20

15

10

5

0

so
op
vc

pqp
do
bx

grid / 0.010000

vertices/1000

tim
e

/m
ill

is
ec

450400350300250200150100500

2.5

2

1.5

1

0.5

0

Figure 6: The results of the benchmark for the lustre scene and the grid scene for a distance of 1% relative to
the object size. The x-axis denotes the number of vertices divided by 1000. The time for collision detection in the
lustre scene increases nearly linearly for the AABB-based algorithms, whereas it seems to increase in O(n logn)
for all algorithms in the grid scene.



so
op
vc

pqp
do
bx

Castle / 0.010000

vertices/1000

tim
e

/m
ill

is
ec

140120100806040200

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

so
op
vc

pqp
do
bx

chair / 0.010000

vertices/1000

tim
e

/m
ill

is
ec

1201101009080706050403020

4

3.5

3

2.5

2

1.5

1

0.5

0

Figure 7: The dependency of the collision detection time from the complexity of the models in the castle and the
chair scenes. The distance is fixed to 1% of the object size. In the castle scene, the collision detection time seems
to be independent of the complexity, while in the chair scene, the time for collision detection even decreases with
increasing complexity.

mise seems to be the Dop-Tree, because it combines
tight BVs with fast BV tests. Moreover, in some
cases, it could be helpful to increase the complexity of
the model in order to decrease the time for collision
detection, but this does not work in all cases. However,
in nearly all test cases, all libraries are fast enough
to perform real time collision checks even for very
complex objects.

6 CONCLUSIONS
We presented an easy to use benchmarking method
and a representative suite for benchmarking objects for
static collision detection algorithms for rigid objects.
Our benchmark is robust, fast, flexible, and it is easy
to integrate other collision detection libraries. We used
our benchmarking suite to test several freely available
collision detection libraries with a wide variety of ob-
jects.

Our benchmarking suite is helpful for users to figure
out the best fitting collision detection scheme to meet
their specific requirements. The comparison of several
algorithms yields a simple rule for choosing the optimal
algorithm.

In the future, we plan to extend our benchmarking
suite also for penetrating objects. Therefore, we will
have to determine the penetration depth of a pair of ob-
jects. Another promising future project is the design of
a benchmarking suite for more than 2 objects and for
continuous collision detection algorithms. Moreover,
a standardized benchmarking suite for deformable ob-
jects is still missing and could be very helpful for users.

REFERENCES
[CRM02] Stefano Caselli, Monica Reggiani, and M. Mazzoli. Ex-

ploiting Advanced Collision Detection Libraries in a
Probabilistic Motion Planner. In WSCG, pages 103–110,
2002.

[GLM96] S. Gottschalk, M. C. Lin, and D. Manocha. OBBTree:
A Hierarchical Structure for Rapid Interference Detec-
tion. Computer Graphics, 30(Annual Conference Se-
ries):171–180, 1996.

[HLC+97] Thomas C. Hudson, Ming C. Lin, Jonathan Cohen, Ste-
fan Gottschalk, and Dinesh Manocha. V-COLLIDE: Ac-
celerated Collision Detection for VRML. In VRML 97:
Second Symposium on the Virtual Reality Modeling Lan-
guage, Rikk Carey and Paul Strauss, Eds. ACM Press,
New York City, NY, 1997.

[LGLM99] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha. Fast
proximity queries with swept sphere volumes. In Tech-
nical Report TR99-018, 1999.

[OL03] Miguel A. Otaduy, and Ming C. Lin. CLODs: Dual Hier-
archies for Multiresolution Collision Detection. In Sym-
posium on Geometry Processing, pages 94–101, 2003.

[Ter01] Pierre Terdiman. Memory-optimized bounding-volume
hierarchies. 2001. http://www.codercorner.
com/Opcode.htm.

[vdB97] Gino van den Bergen. Efficient Collision Detection of
Complex Deformable Models using AABB Trees. Jour-
nal of Graphics Tools: JGT, 2(4):1–14, 1997.

[vdB99] Gino van den Bergen. A Fast and Robust GJK Imple-
mentation for Collision Detection of Convex Objects.
Journal of Graphics Tools: JGT, 4(2):7–25, 1999.

[Zac95] G. Zachmann. The BoxTree: Exact and Fast Collision
Detection of Arbitrary Polyhedra. In SIVE Workshop,
pages 104–112, July 1995.

[Zac98] Gabriel Zachmann. Rapid Collision Detection by Dy-
namically Aligned DOP-Trees. In Proc. of IEEE Virtual
Reality Annual International Symposium; VRAIS ’98,
pages 90–97. Atlanta, Georgia, March 1998.


