- Modern acquisition methods lead to modern object representations.
- Efficient rendering (splatting \& ray-tracing).
- Only little work on interaction.

Goals

- Fast collision detection between point clouds.
- No polygonal reconstruction.

Surface Definition

- Approximate surface by implicit function

$$
S=\left\{\mathrm{x}: f(\mathrm{x})=0, \mathrm{x} \in \mathbb{R}^{3}\right\}
$$

original surface

- Define $\mathrm{n}(\mathrm{x})$ by weighted least squares.
- Weight

$$
\begin{aligned}
& \theta(\mathbf{x}, \mathbf{p})=e^{-\frac{d(x, p)^{2}}{h^{2}}} \\
& d(\mathbf{x}, \mathbf{p})=\text { some distance measure }
\end{aligned}
$$

- $\quad f(\mathrm{x})=\mathrm{n}(\mathrm{x}) \cdot(\mathrm{a}(\mathrm{x})-\mathrm{x})$
- Which distance measure to use?
[Klein \& Zachmann, 2004]
- Geometric proximity graph:
- nodes = points
- edges = "neighboring" points

Sphere-of-Influence graph (SIG)

- Approximate geodesic distance by shortest path.
- Properties:
- Nice surface
- Efficient evaluation
- Implicit function throughout space
- Surface with boundaries allowed

Contributions

- Novel, fast intersection computation for point clouds
- Utilizes proximity graph
- Runtime $\mathrm{O}(\log \log \mathrm{N})$, if constant number of intersection points is sufficient.
- Quality/resolution of output is adjustable.
- Given two point clouds A and B (or subsets thereof),
- decide if there is an intersection
- construct a sampling of

$$
\mathcal{Z}=\left\{x \mid f_{A}(x)=f_{B}(x)=0\right\} .
$$

Overview

1. Bracket intersections by pairs of points.
2. Find approximate intersection point (AIP) by interpolation search.
3. Refine AIP by (randomized) sampling.

1. Root Bracketing

- Goal:
- The pairs should evenly sample the surface.
- The two points should not be too far apart.
- Do it without explicit spatial data structure!
- Task: construct a pairs of points (to be root brackets)
- Thought experiment:
- Assume surface is covered by a surfels.
- Cover each surfel with at least one point from A. (candidate points for root brackets)
- For each point: try to find another point from A lying on the other side of B. (completing the brackets)

Covering the Surfels

Avoid spatial data structure \rightarrow pursue probabilistic approach: occupy all a surfels with high probability!

- Assumption: A is uniformly sampled.
- Lemma from paper \rightarrow

draw $O(a \ln a)$ random and independent points from $A \cap \operatorname{Vol}(A \cap B)$.
Proof: see paper.

Premise: number of intersection points should be bounded by a constant.
Consequence: choose a constant, or choose a depending on surfels size and surface area

- Use $f_{B}\left(p_{i}\right) \cdot f_{B}\left(p_{j}\right)<0$ as an indicator.
- Test only points p_{j} that
- belong to the randomly chosen points
- are close to each other

- Solution: SIG

Finding brackets:
$\mathrm{O}(\mathrm{a} \ln \mathrm{a}$ * d),
where d = max. out-degree;
average-ase: $\mathrm{O}(1)$

2. Interpolation Search

HEINZ NIXDORF INSTITUTE

- Find $\hat{\mathbf{p}} \in A$ along shortest path $\overline{p_{i} p_{j}}$ in the geometric proximity graph, such that $\left|f_{B}(\widehat{\mathbf{p}})\right|$ is minimal.
- Utilize interpolation search! $\rightarrow \mathrm{O}(\log \log m), \quad \mathrm{m}=\#$ elements

Interpolation Search

- Assumptions:
- Shortest path are precomputed and stored in LUT.
- f_{B} is monotone along shortest path.

$$
\begin{aligned}
& \begin{array}{l|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{P}_{1} & \mathrm{P}_{2} & \mathrm{P}_{3} & \mathrm{P}_{4} & \mathrm{P}_{5} & \mathrm{P}_{6} & \mathrm{P}_{7} & \mathrm{P}_{8} & \mathrm{P}_{9} & \mathrm{P}_{10} \mid \mathrm{P}_{11} \\
\uparrow l=1 & P_{i} \in A \\
\uparrow r=11
\end{array} \\
& \uparrow l
\end{aligned}
$$

- Interpolation parameter: $x=l+\left\lceil\frac{-f_{B}\left(P_{l}\right)}{f_{B}\left(P_{r}\right)-f_{B}\left(P_{l}\right)}(r-l)\right\rceil$
- Large point clouds:
- Memory consumption could be too high.
\rightarrow compute paths on-the-fly.
- In practice: runtime still behaves sublinear.

3. Precise Intersection Points

- Refine approximate intersection point.
\rightarrow Details: see paper...

Runtime: $\mathrm{O}(\mathrm{a} \ln \mathrm{a})$

Complexity Considerations

- constant number of brackets, as a is constant
- Interpolation search: $\mathrm{O}(\mathrm{a} \ln \mathrm{a} \log \log m)=\mathrm{O}(\log \log N)$ ($m=$ length of paths, is not constant!)
- Precise intersection points: $\mathrm{O}(\mathrm{a} \ln a)=\mathrm{O}(1)$.
- $\quad f(x)$ can be evaluated in $O(1)$.

Overall runtime: $O(\log \log N)$

- Objects are scaled uniformly \rightarrow cube size 2^{3}
- Perform a full tumbling turn by a fixed, large number (5000) of small steps.
- Average collision detection time for a complete revolution.

Minimal Bracket Density

- If number of surfels is too small \rightarrow influencing spheres in the graph are too large

$$
\rightarrow \text { likelihood increases that }
$$ $n(x)$ flips its sign without x changing sides.

- Use boolean collision queries to measure error.

- Theoretical complexity: $O(\log \log N)$.
- Experimental complexity:

- Benchmarking old vs. new method:
- Old (RST) = brute-force sampling [EG'04]
- iSearch = new

Conclusion

- Technique:
- utilizes a proximity graph for collision detection and surface definition.
- needs no BV hierarchies and no spatial partitioning data structure.
- any BV hierarchy can be augmented by new technique to increase performence.
- Runtime:
- fast (approximate) collision detection
- overall runtime: $\mathrm{O}(\log \log N)$ in average case.
- speedup of factor 5-10 compared to "old" technique.
- Quality/resolution of output (intersection points) can be adjusted (\rightarrow surfel radius)

Future Work

- Deformable point clouds, SIG can be updated in $O\left(\log ^{3} N\right)$.
- More rigorous estimation of minimal bracket density.
- Consistency of $\mathrm{n}(\mathrm{x})$.
- Out-of-core collision detection.

Thank you!

Jan Klein
Heinz Nixdorf Institute and Institute of Computer Science University of Paderborn, Germany
janklein@uni-paderborn.de

Dr. Gabriel Zachmann

Dept. of Computer Graphics and Virtual Reality
University of Bonn, Germany
zach@cs.uni-bonn.de

