
A Volumetric Penetration Measure for 6-DOF Haptic Rendering of
Streaming Point Clouds

Maximilian Kaluschke1, René Weller1 and Gabriel Zachmann1

Abstract— We present a novel method to define the penetra-
tion volume between a surface point cloud and arbitrary 3D
CAD objects. Moreover, we have developed a massively-parallel
algorithm to compute this penetration measure efficiently on the
GPU. The main idea is to represent the CAD object’s volume
by an inner bounding volume hierarchy while the point cloud
does not require any additional data structures. Consequently,
our algorithm is perfectly suited for streaming point clouds that
can be gathered online via depth sensors like the Kinect. We
have tested our algorithm in several demanding scenarios and
our results show that our algorithm is fast enough to be applied
to 6-DOF haptic rendering while computing continuous forces
and torques.

I. INTRODUCTION

Haptic rendering for CAD objects, like triangle meshes,
is a well studied field. However, today, virtual environments
that we interact with, often do not only consist of pre-
modelled CAD objects, but often contain highly dynamic
parts that are generated online via novel input sensor like the
full body tracking of the Kinect or hand tracking with the
Leap Motion. The output of these devices is typically not
a CAD mesh but an unstructured point cloud. Performing
haptic rendering directly on this kind of data is a relatively
new field of research.

Obviously, we could simply reconstruct 3D meshes from
the point cloud data and then apply the classical haptic
rendering techniques like [1]. Unfortunately, mesh recon-
struction is time consuming [2] and moreover, these methods
often require additional time consuming pre-processing that
can be hardly performed in real time, not to speak about
frequencies required for haptic rendering, i.e. 1000 Hz.
Consequently, it is necessary to perform the haptic rendering
directly on the point cloud data.

Haptic rendering usually consist of two parts: first, we
have to find collision between colliding objects, and second,
we have to resolve them by applying appropriate forces and
torques. Due to the high frequencies in haptics, penalty-based
approaches are typically preferred. Obviously, resolving col-
lisions requires additional information about the amount of
interpenetration. Basically, there exist three kinds of contact
information: We can try to find the exact time of impact
between two consecutive simulation steps. This is compu-
tationally very expensive. Or we can define a minimum
translational vector to separate the objects. This is also hard

*This work was not supported by any organization
1Maximilian Kaluschke, René Weller and Gabriel Zach-

mann are with Faculty of Mathematics and Computer
Science, University of Bremen, 28359 Bremen, Germany
{mxkl,weller,zach}@cs.uni-bremen.de

to compute and even worse, it may lead to discontinuities
in case of heavy interpenetrations. Finally, we can use the
complete penetration volume. This penetration measure has
been called ”the most complicated yet accurate method” [3]
to define the extend of interpenetration for a pair of objects.

While general collision detection has been a research
topic since more than three decades, the first algorithms to
compute the penetration volume for arbitrary CAD objects
were developed just a few years ago [4], [5]. However, they
support only collision detection between pairs of watertight
3D CAD objects that must have a certain volume and do not
support point clouds until now.

In this paper, we present a novel method for collision
detection and resolution between unstructured point cloud
data and arbitrary 3D CAD objects. The only pre-condition
is that the CAD models have to be watertight and that the
points in the point cloud represent a surface. In detail we
contribute the following novel ideas to the field of collision
detection:

• a volumetric penetration measure for point clouds and
CAD models

• a massively-parallel algorithm that computes this pene-
tration volume efficiently on the GPU

• a novel penalty-based collision response method relying
on our volumetric penetration measure that computes
forces as well as torques for full 6-DOF haptic render-
ing.

The main idea is to represent the volume of the CAD
object by a polydisperse sphere packing (similar to [5]) and
distinguish between parts of those spheres that are inside
and outside of the point cloud, based on surface normal
information. To do that we propose a novel neighborhood
graph to identify spheres that are completely located behind
the point cloud. The application of traditional data structures
for CAD vs CAD collision detection, has several advantages:
First, the re-usage of well known technology simplifies the
implementation and reduces errors and second, it is straight
forward to add multiple CAD objects to the same scene that
can interact with each other in a physically-plausible way,
without the need to maintain different data structures for
CAD vs CAD and CAD vs point cloud tests.

Our algorithms is easy to implement and handles multiple
contacts automatically. The results show that our algorithm
can perform collision queries at haptic rates for reasonable
point cloud sizes that are gathered live via a Kinect.

Fig. 1: The penetration volume: Blue parts represent volume that is
considered penetrated. Red spheres are outside.

II. RELATED WORK

Generally, collision detection is used in haptic rendering
but also in related fields like physically-based simulations,
robotics, or VR and today, there exists a large amount of
publications on this topic. Most work on collision detection
concentrates on CAD vs CAD collision detection. In this
case various bounding volume hierarchies have shown to
give efficient results. However, these methods usually support
only simple boolean queries.

Especially in haptics more information about the contacts
is required to apply appropriate forces and torques. Usually,
a minimum vector that defines the minimum translation to
separate the objects is used. There also exist generalized
formulations that consider general minimum transformations
instead of simple translation vectors [6], [7]. However, to our
knowledge, none of these approaches can be easily extended
to point cloud vs CAD objects.

Another method to define the amount of extend for a
a pair of intersecting objects is the penetration volume.
There exist only very few methods that approximate the
penetration volume. Hasegawa et al. [8] explicitly compute
the penetration volume for convey polytopes. Faure et al. [4]
used layered depth images on the GPU. Their approach
supports deformable objects. The approach by Weller et al.
[5] is restricted to rigid objects. They use a sphere packing to
represent the objects’ volume and build a bounding volume
hierarchy on top of these inner spheres to accelerate collision
queries.

Compared to CAD object representations, the literature
on collision detection for point clouds is relatively sparse.
Most of the approaches that were presented so far work only
for static point clouds. [9] use a CSG representation for the
virtual tool and manage to render 10k points. [10] surround
each point by an axis aligned box and test against a single
point probe. [11] describe a stochastic traversal of a bounding
volume hierarchy. In addition to simple boolean collision
tests, they support the computation of minimum distances
[12]. However, non of these approaches operate on streaming
point clouds.

Closely related to point cloud collision detection algo-
rithms is the classic 6-DOF haptic rendering approach – the
Voxmap pointshell (VPS) algorithm [13]. The main idea is
to divide the virtual environment into a dynamic object, that
is allowed to move freely through the virtual space and static
objects that are fixed in the world. The static environment is
discretized into a set of voxels, whereas the dynamic object

Fig. 2: Penetration volume for multiple contacts. Multiple contacts are
automatically handled without need for special handling.

is described by a set of points that represents its surface.
During query time, for each of these points it is determined
with a simple boolean test, whether it is located in a filled
volume element or not. Many extension for the classical VPS
algorithms have been proposed [14], [15], [16].

[17] started by extending the classic proxy-method to work
on streaming point clouds, but in this first version they
supported only 3-DOF haptic rendering because the haptic
probe was represented by a single point. The same author
later introduced a method for 6-DOF haptic rendering on
streaming point clouds [18] that relies on the classic VPS
algorithm. The running time relies on the number of points
in the pointshell. Most implementations are available only for
the CPU and hence, the number of supported points in the
pointshell is restricted. Moreover, none of these extensions
was able to overcome the huge memory-footprint of the
voxmap and the need for different data structures for moving
and fixed objects. Additionally, the resulting forces and
torques are very noisy [19].

III. OUR VOLUMETRIC PENETRATION MEASURE

The core of our approach is our volumetric penetration
measure. As pre-conditions, it is required that the 3D CAD
object is watertight and that each point in the point cloud ad-
ditionally has a normalized normal pointing into the outside
direction1

In order to define to the penetration volume for a point
cloud, we represent the volume of the CAD object by a
polydisperse sphere packing. Such sphere packings can be
easily pre-computed by the Protosphere algorithm [20]. This
algorithm produces space-filling sphere packings for almost
any 3D object representation, including polygonal meshes,
CSG and NURBS.

A point cloud that intersects such a sphere packing basi-
cally divides the spheres into different parts:
• Boundary: Spheres intersected by at least one point.
• Outside: Spheres outside of the implicit surface gener-

ated by the point cloud.
• Inside: Spheres located completely inside the point

cloud surface.
The penetration volume consists of the volume of all

inside spheres and the inside part of all boundary spheres. In
case of a single intersecting point in a boundary sphere, the

1Please note, in case of sensor generated point clouds, such normals are
often not automatically available. In Section V we will describe an algorithm
to compute consistent normals for an actual Kinect image.

(a) The original mesh as ground
truth.

(b) The sphere packing as volume
representation.

(c) The bounding volume hierar-
chy for acceleration.

Fig. 3: A polygonal mesh and it’s inner sphere tree representation.

intersection volume is simply the spherical cap defined by the
plane consisting of the point p, its normal n and the boundary
sphere s with radius r. The volume of the spherical cap is
V = 1

3πh
2(3r − h) where h is the height of the spherical

cap, i.e. h = r− d with d being the distance of the plane to
the center c of s with d = |n× (c− p)|, assuming that n is
normalized (see Figure 1).

In case that several different points pi, i = 1, ...N hit the
same boundary sphere, we simply compute the normalized
average normal ns and the appropriate total volume Vs per
sphere s:

ns =

N∑
i=0

npi

N
Vs =

N∑
i=0

Vpi

N

where ni are the normals of the points pi.
In order to define the inside spheres, we present the notion

of our novel sphere graph. The idea is to construct a graph
data structure based on the spheres in the sphere packing.
The nodes of the graph are the spheres. We create an edge
between two spheres if they are touching. This creates a
connected undirected graph.

Inside spheres are the direct neighbours of the boundary
spheres that are located into the opposite directions of the
normals, we will call them entry spheres and additionally, the
neighbours of these spheres. Entry spheres are completely
behind the plane spanned by the normal ns and the center
of the boundary sphere and they are touching s. Moreover,
we recursively count all adjacent spheres of the entry spheres
as inside spheres if they are not boundary spheres. Note, the
latter inside spheres are not necessarily located behind the
planes spanned by the normals. The total penetration volume
V is:

Vtotal =
∑

Boundary spheres si

Vsi +
∑

Inside spheres sj

Vsj

In the next section we will present our algorithm to compute
this penetration volume efficiently on the GPU.

IV. OUR COLLISION DETECTION ALGORITHM

The definition from the previous section draw two chal-
lenges: First, finding the boundary spheres and second,
computing the inside spheres. In this section we will present
algorithms to solve these challenges. We will start with the
identification of the boundary spheres.

(a) The original mesh representation. (b) A low-resolution sphere graph.

Fig. 4: An object and the corresponding connected graph.

A. Boundary Spheres

This task is closely related to traditional collision detection
methods. Hence, we use a very similar approach. In a pre-
processing step we compute a sphere packing according to
[20]. Additionally, we create a wrapped Inner Sphere Tree
hierarchy based on this sphere packing to accelerate collision
queries, similar to [5] (see Figure 3).

We use a typical recursive traversal scheme to find the
boundary spheres (see Algorithm 1). This can be easily
performed for all spheres in parallel, similar to distance
computations described in [21]. Obviously, in addition to
simply marking the spheres we can directly sum up the
volume and additional data required for collision response
calculations.

Algorithm 1: traverseIST(sphere s, point p)

if s is leaf then
mark s as boundary sphere

forall children sj of s do
if p inside sj then

traverseIST(sj , p)

B. Inside Spheres

In order to identify the inside spheres, we need a sphere
graph as described in Section III. This can be easily com-
puted in a pre-processing step after the computation of the
initial sphere packing. However, the spheres created by Pro-
tosphere are not always connected. Hence, we consider two
spheres as connected if their distance is smaller than a chosen
ε (in our experiments we used ε = 1

10r where r is the radius
of the smallest sphere). In order to guarantee the connectivity
of the graph, we connect unconnected components with the
shortest edge using the Euclidean distance. Figure 4 shows
an example of the edges of such a sphere graph.

After we have found the boundary spheres, we perform for
each of them a graph traversal on the sphere graph in order to

Algorithm 2: traverseGraph(sphere s)

if s is not marked and not a boundary sphere then
mark s as inside sphere

forall edges (s, si) do
traverseGraph(si)

Range data Point Cloud Surface normals

Haptic state Collision Detection Penetration Depth Haptic feedback

Fig. 5: Our haptic rendering pipeline.

mark the inside spheres and sum up the volume using atomic
operations. To do that we use a recursive depth-first search.
We stop the search if we find either a boundary sphere or a
sphere that we already marked as inside (see Algorithm 2).
Obviously, we traverse those edges pointing away from the
normal of the respective boundary sphere. The traversal can
be easily parallelized by traversing all boundary spheres in
parallel. Moreover, we added CUDA’s dynamic parallelism
in our implementation to further optimize the parallelization.

C. Forces and Torques

For an appropriate collision response we do not only
require the penetration volume, but also forces and torques.
Actually, we can directly use the penetration volume to define
the magnitude of the force per sphere for both, boundary and
inside spheres. Obviously, the direction and the magnitude
of the forces changes continuously as long as the points and
the object move continuously. For the inside spheres we set
the magnitude again with respect to the penetration volume,
i.e. to the volume of the complete sphere. The normals are
interpolated accordingly during the traversal.

Similarly we compute the torques τ . For each boundary
sphere s that is intersected by points pi, i = 1, ..., N , with
force f = vn where v is the interpolated volume and n the
interpolated normal we set the interpolated contact point p
and the torque τ as

p =

N∑
i=0

pi

N
τ = (C − p)× f

where C is the center of mass of the object. For the inside
spheres we simply use their centers as contact point.

The forces and torques are defined per sphere. Hence, to
get the total force ftotal and torque τtotal acting on the object
we can simply sum them up:

ftotal =
∑
si∈S

fi τtotal =
∑
si∈S

τi

where fi and τi are the individual forces and torques of
the spheres si, i = 1, ..., N in a sphere packing S. The per
sphere definition of forces and torques also explains, why
our approach automatically handles multiple contacts (see
Figure 2).

V. POINT CLOUD NORMALS

Usually, depth sensors like the Kinect do not provide
normals for the points in the point cloud. In this section we
will shortly sketch our idea to generate consistent normals

Fig. 6: Our real-world test case: The point cloud is captured from a Kinect.
It shows a mannequin and its background. The virtual tool is represented
by a twisted torus.

from a depth image. It relies on the simple observation, that
we have knowledge about the viewing direction of the sensor
and about the neighbourhood of points in the depth image.

Basically, we use a method that relies on fitting a plane
through neighboring points using principal component anal-
ysis. More precisely, to compute the normal np for point p,
we consider its 7× 7-neighborhood of points Q by defining
the matrix:

Mp =
∑
pi∈Q

pi −
∑

pj∈Q
pj

|Q|

pi −

∑
pj∈Q

pj

|Q|

T

and computing that eigenvector np of Mp that corresponds
to the smallest eigenvalue. Actually, the plane can have two
different normals, so we take the one that points towards
the origin since a camera can only see surfaces that point
towards it.

np :=

{
−np , if np · p > 0
np , otherwise

This algorithm can be easily parallelized by simply starting
a thread for each point.

VI. RESULTS

A. Haptic Rendering

We have implemented the whole pipeline of our haptic ren-
dering method for streaming point clouds, i.e. the collision
detection, the collison response and the normal calculation
for the point cloud (see Figure 5).

The forces and torques are not directly rendered to the
device. Instead we use a virtual coupling [22] to improve
the stability.

We tested our implementation on a computer running 64bit
Windows 10 with an Intel Xeon E5620 CPU, 32GB DDR3
RAM and a NVIDIA GeForce GTX 1080. We performed
synthetic as well as real-world experiments to measure the
computational time but also the quality of the generated
forces and torques. The synthetic tests consist of synthe-
sized point clouds and pre-recorded path. Additionally, we
included data generated with our use case scenario described
above, i.e. real haptic interaction with real-time generated
depth images by a Kinect. However, we captured the depth
images and recorded a path in a single-run haptic session

0

0.5

1

1.5

2

2000 4000 6000 8000 10000 12000 14000 16000

A
ve

ra
ge

fr
am

e
tim

e
[m

s]

Sphere packing resolution [Number of spheres]

Graph Traversal
Collision Detection

0

0.5

1

1.5

2

2000 4000 6000 8000 10000 12000 14000 16000

Fig. 7: Performance with respect to the number of spheres. Times are aver-
aged over all the frames. The times are taken from real-world interactions
with an average penetration depth of about 5% of the virtual tool’s volume.

and replayed it for the timing. This allows a fair comparison
for different sphere resolutions.

The synthetic benchmarks contain situations of heavy
interpenetrations (for instance objects passing completely
through walls) that hardly happen in real-world applications.
In these artificial benchmarks we restricted the the degrees
of freedom of the motion. More precisely, we included only
translations into a single direction. This allows a better
investigation of the quality of the forces and torques.

B. Performance

In the real-world test scenario, the point cloud consists of
300k points according to the resolution of a Kinect depth
image. We used a complicated convex object for the haptic
tool. The pre-recorded path contains medium to heavy inter-
penetrations of 5% to nearly 10% of the volume of the
haptic tool. We tested several sphere resolutions of up to 17k
spheres. Figure 9 shows the time per frame for 1k spheres.
Our algorithm is able to compute forces and torques in less
than 1ms, even in case of deep inter-penetrations of nearly
10%.

Figure 7 shows the performance of our algorithm with
respect to the number of spheres. Additionally, the timings
are divided into the search for boundary spheres, i.e. the
IST traversal and the search for inside spheres, i.e. the graph
traversal. Most of the time is spent for the graph traversal.
This also means that the influence of the number of points
in the point cloud is relatively small.

Actually, larger sphere packings of up to 14k spheres
exceed the 1ms interval required for haptics. It turns out,
that larger sphere packings do not necessarily produce better
forces (see next section). Actually, the distance between two
points is a lower bound for a reasonable minimum sphere
size. In real-world applications the minimum sphere size
should be even larger in order to avoid noises produced by
fast movements of the spheres. However, a theoretical basis
for finding the best sphere packing is still an open question
that we will further investigate in the future.

C. Quality

Figure 8 shows the force magnitude for different sphere
resolutions in the real-world test case described above. The
forces are continuous. However, most of the penetration
volume is already discovered when we use only 1k spheres.

0

2.5

5

7.5

10

0 2 4 6 8 10 12

Pe
ne

tr
at

io
n

vo
lu

m
e

[%
]

Simulation time [s]

1k spheres
17k spheres

Fig. 8: Penetration volume profile for the real-world benchmark.

Adding over 10k spheres does not change the volume sig-
nificantly. Actually, we have even observed more noise in
the signal of large sphere packings. Consequently, relatively
small amounts of spheres are sufficient to produce realistic
volumetric forces. This is an advantage of our algorithm,
because the number of spheres (and hence, the memory foot-
print) can be kept small compared to voxel-based approaches
or methods the rely in the polygon resolution of the object.

Additionally, we tested artificial test scenarios with syn-
thetic point clouds. We used simple objects that allow an
analytic investigation of the expected overlap volumes as
ground truth. We added some noise to the point clouds
as presented in [23] in order to simulate the noise found
in captured depth images. We used three simple objects (a
cube, a tetrahedron and an octahedron). The movement was
restricted to translation in z-direction. We synthesized two
different point clouds (a plain wall and an inverted sphere).

Figure 10 show the resulting force magnitudes for the
sphere scenario. As expected, the cube generates a linearly
increasing volume for the plane. Those of the tetrahedron
and octahedron are steeper in the middle because of their
larger cross section. In case of the inverted sphere point cloud
we see a similar behaviour. However, in all cases the results
show that our algorithm computes continuous forces for both,
direction and magnitude. The torque was, as expected, close
to zero in all our test cases.

VII. CONCLUSION AND FUTURE WORK

We have presented a novel method to define the penetra-
tion volume for a point cloud and arbitrary watertight 3D
CAD objects. This definition enabled us to develop a new
algorithm to compute this penetration measure completely
on the GPU. Even more, we used the penetration measure
to define continuous forces and torques. In practice, the

0

0.25

0.5

0.75

1

0 2 4 6 8 10 12

Fr
am

e
tim

e
[m

s]

Simulation time [s]

Time for 1k spheres

Fig. 9: Time per frame in the real-world test.

0

25

50

75

100

0 2 4 6 8 10

Pe
ne

tr
at

io
n

vo
lu

m
e

[%
]

Simulation time [s]

Cube
Tetrahedron
Octahedron
Ideal Cube

Fig. 10: Magnitude of the force produced by different virtual tools
penetrating and passing through a noisy wall.

(a) Noisy wall with octahe-
dron.

(b) Noisy inverted sphere
with tetrahedron.

(c) Noisy inverted sphere
with regular cube.

Fig. 11: The synthetic point clouds and virtual tools used in our test-
cases.

results of our benchmarks show that our algorithm is able
to compute the penetration volume for large point clouds
at haptic rates. Due to the volume representation by sphere
packings, our algorithm is independent of the CAD object’s
complexity, e.g. the polygon count.

Finally, we applied our algorithm to a practical relevant
use case; the real-time haptic interaction with streaming point
clouds. The results show that our algorithm works well in
this scenario by computing continuous forces and torques
within less than one millisecond, even in complex multiple
contact situations.

However, our novel penetration measure and algorithm
open up several avenues for future work. For instance, further
optimizations could support even larger point clouds. One
idea would be to use acceleration data structures like uniform
grids for the point cloud. Moreover, we would like to use
temporal coherence between the frame, e.g. by tracking the
boundary and the inside spheres. Another interesting feature
would be the support of deformable CAD objects.

REFERENCES

[1] M. A. Otaduy and M. C. Lin, “A modular haptic rendering algorithm
for stable and transparent 6-dof manipulation,” IEEE Transactions on
Robotics, vol. 22, no. 4, pp. 751–762, Aug 2006.

[2] Z. C. Marton, R. B. Rusu, and M. Beetz, “On fast surface reconstruc-
tion methods for large and noisy datasets,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2009.

[3] S. Fisher and M. Lin, “Fast penetration depth estimation for elastic
bodies using deformed distance fields,” in Proc. International Conf.
on Intelligent Robots and Systems (IROS), 2001, pp. 330–336.

[4] F. Faure, S. Barbier, J. Allard, and F. Falipou, “Image-based col-
lision detection and response between arbitrary volumetric objects,”
in ACM Siggraph/Eurographics Symposium on Computer Animation,
SCA 2008, July, 2008, Dublin, Irlande, July 2008.

[5] R. Weller and G. Zachmann, “A unified approach for physically-
based simulations and haptic rendering,” in Sandbox 2009: ACM
SIGGRAPH Video Game Proceedings. New Orleans, LA, USA:
ACM Press, Aug. 2009.

[6] L. Zhang, Y. J. Kim, and D. Manocha, “C-dist: Efficient distance
computation for rigid and articulated models in configuration space,”
in Proceedings of the 2007 ACM Symposium on Solid and Physical
Modeling, ser. SPM ’07. New York, NY, USA: ACM, 2007, pp.
159–169.

[7] ——, “A fast and practical algorithm for generalized penetration depth
computation,” in Robotics: Science and Systems Conference (RSS07),
year = 2007, 2007.

[8] S. Hasegawa, N. Fujii, K. Akahane, Y. Koike, and M. Sato, “Real-time
rigid body simulation for haptic interactions based on contact volume
of polygonal objects,” Transactions of the Society of Instrument and
Control Engineers, vol. 40, no. 2, pp. 122–131, 2004.

[9] S. Ho, S. Sarma, and Y. Adachi, “Real-time interference analysis
between a tool and an environment,” CAD Computer Aided Design,
vol. 33, no. 13, pp. 935–947, 11 2001.

[10] N. R. El-Far, N. D. Georganas, and A. E. Saddik, “Collision detection
and force response in highly-detailed point-based hapto-visual virtual
environments,” in Proceedings of the 11th IEEE International
Symposium on Distributed Simulation and Real-Time Applications,
ser. DS-RT ’07. Washington, DC, USA: IEEE Computer Society,
2007, pp. 15–22.

[11] J. Pan, S. Chitta, and D. Manocha, “Probabilistic collision
detection between noisy point clouds using robust classification,” in
International Symposium on Robotics Research, Flagstaff, Arizona,
08/2011 2011.

[12] ——, “Proximity computations between noisy point clouds using
robust classification,” in RGB-D: Advanced Reasoning with Depth
Cameras, Los Angeles, California, 06/2012 2012.

[13] W. A. McNeely, K. D. Puterbaugh, and J. J. Troy, “Six degrees-of-
freedom haptic rendering using voxel sampling,” ACM Transactions
on Graphics (SIGGRAPH 1999), vol. 18, no. 3, pp. 401–408, 1999.

[14] ——, “Advances in voxel-based 6-dof haptic rendering,” in ACM
SIGGRAPH 2005 Courses, ser. SIGGRAPH ’05. New York, NY,
USA: ACM, 2005.

[15] A. Prior and K. Haines, “The use of a proximity agent in
a collaborative virtual environment with 6 degrees-of-freedom
voxel-based haptic rendering,” in Proceedings of the First Joint
Eurohaptics Conference and Symposium on Haptic Interfaces for
Virtual Environment and Teleoperator Systems, ser. WHC ’05.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 631–632.

[16] M. Renz, C. Preusche, M. Potke, H.-P. Kriegel, and G. Hirzinger,
“Stable haptic interaction with virtual environments using an adapted
voxmap-pointshell algorithm,” in In Proc. Eurohaptics, 2001, pp. 149–
154.

[17] F. Rydn, S. N. Kosari, and H. J. Chizeck, “Proxy method for fast
haptic rendering from time varying point clouds,” in 2011 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Sept
2011, pp. 2614–2619.

[18] F. Rydn and H. J. Chizeck, “A method for constraint-based six degree-
of-freedom haptic interaction with streaming point clouds,” in Robotics
and Automation (ICRA), 2013 IEEE International Conference on, May
2013, pp. 2353–2359.

[19] R. Weller, D. Mainzer, M. Sagardia, T. Hulin, G. Zachmann, and
C. Preusche, “A benchmarking suite for 6-dof real time collision
response algorithms,” in Proceedings of the 17th ACM Symposium
on Virtual Reality Software and Technology, ser. VRST ’10. New
York, NY, USA: ACM, 2010, pp. 63–70.

[20] R. Weller and G. Zachmann, “Protosphere: A gpu-assisted prototype
guided sphere packing algorithm for arbitrary objects,” in ACM
SIGGRAPH ASIA 2010 Sketches. New York, NY, USA: ACM, Dec.
2010, pp. 8:1–8:2.

[21] M. Kaluschke, U. Zimmermann, M. Danzer, G. Zachmann, and
R. Weller, “Massively-parallel proximity queries for point clouds,”
in Virtual Reality Interactions and Physical Simulations (VRIPhys).
Bremen, Germany: Eurographics Association, Sept. 2014.

[22] R. J. Adams and B. Hannaford, “Stable haptic interaction with vir-
tual environments,” IEEE Transactions on Robotics and Automation,
vol. 15, no. 3, pp. 465–474, Jun 1999.

[23] C. V. Nguyen, S. Izadi, and D. Lovell, “Modeling kinect sensor noise
for improved 3d reconstruction and tracking,” in 2012 Second Interna-
tional Conference on 3D Imaging, Modeling, Processing, Visualization
Transmission, Oct 2012, pp. 524–530.

