A Framework for Safe Execution of User-Uploaded Algorithms

Benchmark as an Online Service (BOS)

Toni Tan, René Weller, Gabriel Zachmann
Computer Graphics and Virtual Reality Research Lab
University of Bremen, Germany

Web3D, 2-4 November 2022
Benchmarks are Important for Scientific Progress

• Replication Crisis
 • Lack of instructions, missing data/codes, incompatible hardware/software, etc
 • In computer graphics [Bonneel et al, 2020] :
 • 374 papers from SIGGRAPH 2014, 2016, and 2018
 • 151 software packages available (133 source codes, 18 pre-compiled softwares),
 • 68 source codes need modification to work, 19 technical issues, and 5 hardware issues
 • Open Benchmark for reproducible and comparable results
Open Benchmark - Requirements

• Reproducible and comparable results
 • Same hardware and software environment

• Easy-to-use

• Sustainability
 • New hardware or software

Benchmark as an Online Service (BOS)

For collision detection algorithms, i.e., OpenCollBench [Tan et al. 2019]
BOS: OpenCollBench

Motivation

Open Benchmark

Challenge

Contribution

OpenCollBench - Extended

Result

Conclusion & Future Work
BOS Challenge: Integration of New Algorithms

• New algorithms as wrapper *Dynamic Link Library* (DLL)

• Risk of running unknown user-uploaded code
 • Analyzing and validating code is not trivial

• Manual integration is time-consuming & problematic
 • e.g., in work-in-progress development or non-disclosure agreements.
Our Contribution

Guarantee security as well as reproducibility and comparability of BOS by executing user-uploaded algorithms in virtualization environment.
OpenCollBench: Extended System Overview

Back end (native OS)

Hyper-V

WebSocket Server

3d Heatmap Generation Pipeline

Exporter

Request Handler

Benchmark results

Object + Benchmark parameters

3d heatmap

Front end

User

3d heatmap + Benchmark results

Object + Benchmark parameters

Benchmark results

Start / stop VM

Back end (native OS)

Virtual Machine

Static Collision Benchmarking Suite

3d Heatmap Generation Pipeline

Exporter

Request Handler

Benchmark results

Object + Benchmark parameters

3d heatmap

Front end

User

3d heatmap + Benchmark results

Object + Benchmark parameters

Benchmark results

Motivation

Open Benchmark

Challenge

Contribution

OpenCollBench - Extended

Result

Conclusion & Future Work
OpenCollBench: Extended System Overview

- Hyper-V supports SIMD (AVX-512) and GPU passthrough
 - Required by CD algorithms, i.e., simdop
- Run 1 VM at one time
 - Comparability
 - Avoid users from overloading host system
- VM always start from initial state
 - Prevent system changes by OS or previous algorithms
OpenCollBench: Demo

Motivation
Open Benchmark
Challenge
Contribution
OpenCollBench - Extended
Result
Conclusion & Future Work
Benchmark Results: Reliability

Is the benchmark results reliable?
Benchmark Setup

- Benchmark in native and vm
- Objects with various polygon count from 10k to 120k
- Ca 200k different configurations at distance 0.0
 - Up to 20 minutes to finish
- Common CD algorithms, e.g., doptree, boxtree, pqp, vcollide, and simdop
Results: Native vs VM (Different CPUs)

Motivation
Open Benchmark
Challange
Contribution
OpenCollBench - Extended
Result
Conclusion & Future Work
Results: SIMD (AVX-512) Performance In SIMDop

![Graphs showing performance comparison between native and VM with polygon counts and time in milliseconds. The graphs display time improvements of 3.4 – 5.3% and 4.1 – 5.2%.]
Result: VM with Different CPU Cores

Motivation

Open Benchmark

Challange

Contribution

OpenCollBench - Extended

Result

Conclusion & Future Work
Result: Heatmap Comparison (Boxtree & Vcollide)

<table>
<thead>
<tr>
<th>Boxtree (native)</th>
<th>Boxtree (vm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vcollide (native)</th>
<th>Vcollide (vm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

• A framework for the secure execution of user-uploaded algorithms in virtualization environment for BOS

• The entire process is automated and implemented on top of existing BOS Framework, i.e., OpenCollBench

• Benchmark results are reliable

• Future work:
 • Implementation of REST endpoint
 • Automatic benchmark within continuous integration pipeline, or
 • As a plugin for IDE to directly assess effects of change in algorithms during development
Thank You!

Toni Tan, René Weller, Gabriel Zachmann

{toni, weller, zach}@cs.uni-bremen.de
References