
A Framework for Safe Execution of User-Uploaded Algorithms
Toni Tan

toni@cs.uni-bremen.de
University of Bremen

Germany

René Weller
weller@cs.uni-bremen.de
University of Bremen

Germany

Gabriel Zachmann
zach@cs.uni-bremen.de
University of Bremen

Germany

ABSTRACT
In recent years, a trend has existed for an open benchmark aiming
for reproducible and comparable benchmarking results. The best
reproducibility can be achieved when performing the benchmarks
in the same hard- and software environment. This can be offered as
a web service. One challenge of such a web service is the integration
of new algorithms into the existing benchmarking tool due to secu-
rity concerns. In this paper, we present a framework that allows the
safe execution of user-uploaded algorithms in such a benchmark-as-
a-service web tool. To guarantee security as well as reproducibility
and comparability of the service, we extend an existing system
architecture to allow the execution of user-uploaded algorithms
in a virtualization environment. Our results show that although
the results from the virtualization environment are slightly slower
by around 3.7% to 4.7% compared with the native environment,
the results are consistent across all scenarios with different algo-
rithms, object shapes, and object complexity. Moreover, we have
automated the entire process from turning on/off a virtual machine,
starting benchmark with intended parameters to communicating
with the backend server when the benchmark has finished. Our
implementation is based on Microsoft Hyper-V that allows us to
benchmark algorithms that use Single Instruction, Multiple Data
(SIMD) instruction sets as well as access to the Graphics Processing
Unit (GPU).

CCS CONCEPTS
• Computing methodologies→ Collision detection.

KEYWORDS
benchmark as web-service, open benchmark
ACM Reference Format:
Toni Tan, René Weller, and Gabriel Zachmann. 2022. A Framework for
Safe Execution of User-Uploaded Algorithms. In The 27th International
Conference on 3D Web Technology (Web3D ’22), November 2–4, 2022, Evry-
Courcouronnes, France. ACM, New York, NY, USA, 5 pages. https://doi.org/
10.1145/3564533.3564560

1 INTRODUCTION
In a computer-based application like collision detection or object de-
tection, the benchmark is essential to measure the effectiveness and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Web3D ’22, November 2–4, 2022, Evry-Courcouronnes, France
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9914-2/22/11. . . $15.00
https://doi.org/10.1145/3564533.3564560

efficiency of proposed algorithms. Unlike object detection, which
focuses on algorithms’ accuracy, collision detection, on the other
hand, focuses on both accuracy and performance. In object detec-
tion, only dataset and ground truth are needed for benchmarking,
which makes it relatively non-problematic when it comes to bench-
marking. On the other hand, since the existing benchmarking tools
for collision detection are usually available as a standalone pro-
gram [Trenkel et al. 2007][Woulfe and Manzke 2009][Wang et al.
2021][Weller et al. 2010], it needs to integrate the proposed algo-
rithms into existing benchmarking tools, which could be problem-
atic as the implementation, for instance, into bullet [Woulfe and
Manzke 2009] is not always easy. Besides that, we might need to
integrate existing algorithms that we want to compare with, as
in most cases, they are probably not integrated yet into existing
benchmarking tools. Re-implementing existing algorithms might
not always be easy as different optimization could influence the
performance. Besides that, the user will need to get used to the
benchmarking programs, which is not always easy due to the com-
plicated benchmark parameters. Not to mention the hardware con-
straints while benchmarking algorithms that use special hardware,
i.e., Advanced Vector Extensions (AVX-512).

An attempt to solve this is to offer benchmarking tools as web-
service that is based on the benchmark proposed by [Trenkel et al.
2007]. Such an online service was proposed in [Tan et al. 2020] and
can be accessed online at http://opencollbench.com. It allows users
to choose between a set of pre-defined geometries or even upload
their own 3D objects and compare the performance of different
built-in collision detection algorithms. The results can be visualized
in easy-to-understand diagrams.

In this paper, we extend the framework to allow users also to
upload their own collision detection libraries and benchmark them
against competitors directly and anonymously. However, this, on
the other hand, becomes a security concern due to running un-
known code. In order to guarantee the security of such a scenario,
we shift the execution of user-uploaded algorithms into a virtualiza-
tion environment. Additionally, we have implementedWebSocket
as a communication protocol to communicate with the Virtual Ma-
chine (VM) when the benchmark process is finished.

Moreover, the entire benchmarking process, from turning on/off
VM, starting benchmark with intended parameters, to communicat-
ing with the backend server, is automated within our framework.
Our implementation is based on Microsoft Hyper-V, which allows
us to create VM that support SIMD Instruction Sets and use GPU
passthrough to access the GPU of the host system directly. This
allows us to support algorithms that make use of SIMD Instruction
Sets and GPU, such as SIMDop [Tan et al. 2019].

https://orcid.org/0000-0003-2448-5295
https://orcid.org/0000-0001-8155-1127
https://doi.org/10.1145/3564533.3564560
https://doi.org/10.1145/3564533.3564560
https://doi.org/10.1145/3564533.3564560
http://opencollbench.com

Web3D ’22, November 2–4, 2022, Evry-Courcouronnes, France Toni Tan, René Weller, and Gabriel Zachmann

2 RELATEDWORK
In computer-based applications, the process and goal of benchmark-
ing vary across fields, i.e., object detection compared algorithms
accuracy against ground truth annotated by a human [Tu et al.
2022]. Ray tracing compared the accuracy and running time by
benchmarking against a set of predefined scenarios, e.g., the Bench-
mark for Animated Ray Tracing (BART) [Lext et al. 2001]. The
proposed algorithms are evaluated against existing algorithms in
terms of accuracy and running time in collision detection.

Benchmarking tools are typically provided as standalone pro-
grams. This is sufficient in object detection or ray tracing due to
the simplicity of benchmarking results needed. On the other hand,
collision detection is more complicated since the algorithms run-
ning time could be influenced by object shapes, object complexity,
and even relative distance or rotation between objects. Usually,
authors define a specific scenario on their own to test their algo-
rithms [Otaduy and Lin 2003; van den Bergen 1998]. A comparison
between algorithms could yield different results under a different
scenario. There exist attempts to generalize the benchmarking pro-
cedure especially for rigid bodies collision detection [Diktas and
Sahiner 2008; Trenkel et al. 2007; Weller et al. 2010]. Moreover, in
some cases, authors do not make their proposed algorithms pub-
licly available. An attempt to reinvent the algorithms could yield
a different running time due to optimization. Not to mention the
availability of hardware like SIMD Instructions Sets or GPU could
make it impossible to benchmark algorithms like SIMDop [Tan et al.
2019].

An attempt to solve this is to offer benchmarking tool as web
service [Tan et al. 2020].

3 OUR FRAMEWORK
Running unknown user-uploaded algorithms will always pose a
risk, i.e., Remote Code Execution (RCE). Directly analyzing and val-
idating the code is not trivial, not to mention authors might not
want to disclose their algorithms in some cases. Hence, it does
make sense to run user-uploaded algorithms in case of doubt in
an environment where it can not cause any damage. This could be
done on another physical computer accessible over the network and
that does not have access to critical systems and does not contain
sensitive data. However, the fact that the machine is connected to
other computers in a network is already a risk. It is also challenging
to identify whether this system is compromised.

This is where the use of hardware virtualization comes in handy.
Here, access to the physical machine’s hardware is regulated by
a so-called hypervisor. This can be an Operating System (OS) that
runs natively on the hardware (Type 1), e.g., Microsoft Hyper-V,
VMWare ESXi or software that runs on an operating system and
simulates hardware access (Type 2), e.g., Microsoft Virtual PC, Ora-
cle Virtual Box, VMware Workstation. A virtual machine (VM) can
be started via the hypervisor, which operates completely isolated
from the underlying systems. In addition, a virtual network can be
configured with the hypervisor, to which only the host system and
the virtual operating system have access. This means the virtual
system has no access to external networks to which the host system
is connected. On top of that, many hypervisor implementations
offer a so-called Snapshot function that can save the state of the

virtual machine at a specific point in time and restore it if necessary.
This resets all data changed over the runtime, both on the virtual
storage medium and the data in the virtual main memory. Since the
backend server of OpenCollBench is running under windows, we
chose to use Microsoft Hyper-V to implement our framework. This
also has another advantage, as the virtualization API can be easily
accessed usingWindows PowerShell, i.e., getting the IP address of
VM, creating new VM, turning on/off VM, and resetting VM, which
makes it convenient for automating the benchmarking process in
VM.

In this paper, we extend the capabilities of OpenCollBench to
allow benchmarking of user-uploaded algorithms into a virtualiza-
tion environment. Currently, new algorithms must be integrated by
the administrator, which can be problematic in work-in-progress
developments or due to non-disclosure agreements.

With our framework, it is sufficient for users to compile and
upload their proposed algorithms as wrapper Dynamic-Link Library
(DLL) specified by OpenCollBench. This keeps the user-uploaded
algorithms confidential, and results are comparable with other
publicly available algorithms as well as easy-to-understand visual
diagrams provided by OpenCollBench.

3.1 Benchmarking in VM
In order to automate the process of running benchmarking tools in
VM, we have implemented an additional service to listen for an in-
coming connection from the backend server and, on request, to start
the benchmarking with the supplied parameters. The benchmark-
ing result will be sent back to the backend server when finished.
Since the benchmarking can take several minutes, a typical Hyper-
text Transfer Protocol (HTTP) connections would time out without
a response from the server for such a long time. Web sockets [Mel-
nikov and Fette 2011] are an ideal solution to this problem. They
make it possible to establish and maintain a bidirectional connec-
tion between a client, in this case, the backend server, and a server.
This is done via an initial handshake, which is still carried out using
an HTTP-compatible protocol. After that, all data is transmitted in
a binary protocol based on Transmission Control Protocol (TCP).

In order to enable the WebSocket, which was started in the
backend server, to communicate with the VM, it needs the Inter-
net Protocol (IP) address of the VM, which can be queried using a
PowerShell command (See A.1).

To ensure that the server is always running when the VM is
started, a checkpoint was created with Hyper-V during operation.
The VM is then always reset to this before it is started if necessary.
This is done using a PowerShell script that is called from the back-
end server (See A.2). The caller thread then waits until the VM has
started and the script terminates.

Currently, only 1 VM would be allowed to run at one time. This
guarantees comparability and prevents malicious actors from over-
loading the benchmarking machine, i.e., by uploading malicious
algorithms simultaneously (more or less) from different clients. In
addition, the VM is always reset back to its initial state before start-
ing a new benchmark job. This step prevents any system changes
by either OS updates or malicious algorithms.

A Framework for Safe Execution of User-Uploaded Algorithms Web3D ’22, November 2–4, 2022, Evry-Courcouronnes, France

Virtual Machine

Static Collision
Benchmarking Suite

WebSocket Server

Back end (native OS)

Benchmark
results

Benchmark
parameters

Hyper-V
Start / stop VM

Request Handler

Benchmark
parameters

Benchmark
results

3d Heatmap
Generation Pipeline

Exporter

Front end

User

Benchmark
results

3d heatmap +
Benchmark results

object +
Benchmark parameters

3d heatmap

Object +
Benchmark parameters

Figure 1: System Overview of our proposed framework,
which extends the capability of openCollBench to bench-
mark user-uploaded algorithms in a secure virtualization
environment

3.2 GPU Passthrough
Direct access to the host system’s GPU is entirely feasible using
Hyper-V and a full-fledged Windows VM. To do this, a so-called
GPU passthrough must be configured under Hyper-V. The VM is
given exclusive access to the GPU since the host system does not
virtualize it.

For the configuration, the storage location of the desired graphics
card must first be determined. To do this, the hardware can be
selected via the Windows device manager and the property storage
location paths can be selected under the Details tab. The storage
location can be found in the first line of the text field. The command
A.3 can be used to disconnect the graphics card from the host system
via PowerShell.

However, the host system’s GPU may stop working at this step
if the host system only has one card available. To then assign the
GPU to the VM, another command A.4 is used in PowerShell.

The graphics card should then be found in the VM’s device
manager, enabling a CUDA installation, thus able to run algorithms
that make use of GPU computation.

4 RESULTS
We have implemented our framework based on Microsoft Hyper-
V™. The automation and additional services have been implemented
using PowerShell and node.js. As a result, we extended the capability
of OpenCollBench to allow the execution of user-uploaded algo-
rithms securely. Figure 1 shows the architecture of the extended
system.

In the new architecture, the benchmarking execution was de-
coupled from the operation of the backend server. This ensures,
among other things, that the CPU access of this process is not in-
terrupted when there is a high load in the backend, which means
the benchmarking results will stay consistent.

In order to take a closer look at the influence of the VM when
benchmarking user-uploaded algorithms, we compared the results
from VM with the native system. Figure 3 shows a comparison of

(a) (b)

(c) (d)

Figure 2: The objects we used in our timings: (a) hand, (b)
pipes, (c) happy buddha, and (d) castle.

running time for benchmarks executed in native and virtualiza-
tion environments for both object Castle (Figure 2d) and Happy
Buddha (Figure 2c) with up to 120k polygons. Each object in our
benchmark (See Figure 2) consists of up to 200k configurations. As
a result, each benchmark takes up to 20 minutes to finish, with the
average collision check between 0.7 to 6.7 milliseconds. The results
from the virtualization environment are slightly higher, which is
expected due to the virtualization layer. However, it remains con-
sistent with delta between 3.7% to 4.7% across different algorithms,
object shapes, and object complexity. Figure 2 shows objects we
used to measure the effectiveness of benchmarking in VM. Between
several benchmarks runs under the same parameters, there could
be a slight deviation between their running time. In the native en-
vironment, the deviation is typically less than 0.1%. This is also the
case in the virtualization environment.

It is well known that the windows operating system comes with
lots of apps pre-installed. This could affect the running time dur-
ing the benchmark. Hence, we also measured the influence of the
number of core a system hat towards algorithms running time.
Figure 4 shows the comparison of running times for object Pipes
(Figure 2b) with up to 120k polygons using DopTree algorithms
under the native and virtualization environment with one core, two
cores, and three cores allocated. The results are as expected since
DopTree only makes use of one core. Hence adding more core to
the virtualization environment does not improve collision running
time.

5 CONCLUSIONS AND FUTUREWORK
We have presented a benchmarking framework for the secure execu-
tion of user-uploaded algorithms in the virtualization environment.
The goal is to allow web-based benchmarking tools to execute
user-uploaded algorithms and, at the same time, provide a security
guarantee while running unknown code. Our implementation is
done on top of existing web-based benchmarking tools, namely
OpenCollBench. Additionally, we provided automation for running

Web3D ’22, November 2–4, 2022, Evry-Courcouronnes, France Toni Tan, René Weller, and Gabriel Zachmann

0 0.2 0.4 0.6 0.8 1 1.2

·105
0

0.5

1

1.5

2

polygon

tim
e
/m

ili
se
c

native
vm

0 0.2 0.4 0.6 0.8 1 1.2

·105
0

0.5

1

1.5

2

polygon

tim
e
/m

ili
se
c

native
vm

Figure 3: Average collision query time for the object Castle
and happy buddha in native and virtualization environment.
The delta are very similar for all objects.

benchmarking tools in the virtualization environment within our
framework.

Our approach also offers interesting avenues for future work: for
instance, by implementing the server endpoint as a REST endpoint,
other services could also use the benchmarking server for example,
to evaluate the proposed algorithm within a continuous integration
pipeline when building an application. In this sense, a plugin for
integrated development environment (IDE) such as Visual Studio
would also be conceivable that allows the user to directly assess
the effects of his changes to algorithms during development.

ACKNOWLEDGMENTS
The research reported in this paper has been (partially) supported
by the German Research Foundation DFG, as part of Collabora-
tive Research Center (Sonderforschungsbereich) 1320 “EASE - Ev-
eryday Activity Science and Engineering”, University of Bremen

0 0.2 0.4 0.6 0.8 1 1.2

·105
0

2

4

6

polygon

tim
e
/m

ili
se
c

native
vm - 1 core
vm - 2 cores
vm - 3 cores

Figure 4: Average collision query time for the object Pipes in
native and virtualization environment using 1 core, 2 cores,
and 3 cores.

(http://www.ease-crc.org/). The research was conducted in subpro-
ject(s) <R03> <A knowledge representation and reasoning frame-
work for robot prospection in everyday activity>.

REFERENCES
Engin Deniz Diktas and Ali Vahit Sahiner. 2008. A Benchmarking Framework for

Static Collision Detection. In Theory and Practice of Computer Graphics, Ik Soo
Lim and Wen Tang (Eds.). The Eurographics Association. https://doi.org/10.2312/
LocalChapterEvents/TPCG/TPCG08/107-113

J. Lext, U. Assarsson, and T. Moller. 2001. A Benchmark for Animated Ray Tracing.
IEEE Computer Graphics and Applications 21, 2 (2001).

Alexey Melnikov and Ian Fette. 2011. The WebSocket Protocol. RFC 6455. https:
//doi.org/10.17487/RFC6455

Miguel A. Otaduy and Ming C. Lin. 2003. CLODs: Dual Hierarchies for Multiresolu-
tion Collision Detection. In Eurographics Symposium on Geometry Processing, Leif
Kobbelt, Peter Schroeder, and Hugues Hoppe (Eds.). The Eurographics Association.
https://doi.org/10.2312/SGP/SGP03/094-101

Toni Tan, René Weller, and Gabriel Zachmann. 2019. SIMDop: SIMD optimized Bound-
ing Volume Hierarchies for Collision Detection. In 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, Macau, China, 7256–7263.
https://doi.org/10.1109/IROS40897.2019.8968492

Toni Tan, ReneWeller, andGabriel Zachmann. 2020. OpenCollBench - Benchmarking of
Collision Detection & Proximity Queries as a Web-Service. In The 25th International
Conference on 3D Web Technology (Virtual Event, Republic of Korea) (Web3D ’20).
Association for Computing Machinery, New York, NY, USA, Article 9, 9 pages.
https://doi.org/10.1145/3424616.3424712

Sven Trenkel, René Weller, and Gabriel Zachmann. 2007. A Benchmarking Suite for
Static Collision Detection Algorithms. In International Conference in Central Europe
on Computer Graphics, Visualization and Computer Vision (WSCG), Václav Skala
(Ed.). Union Agency, Plzen, Czech Republic.

Zhengzheng Tu, Yan Ma, Zhun Li, Chenglong Li, Jieming Xu, and Yongtao Liu. 2022.
RGBT Salient Object Detection: A Large-scale Dataset and Benchmark. IEEE
Transactions on Multimedia (2022), 1–1. https://doi.org/10.1109/TMM.2022.3171688

Gino van den Bergen. 1998. Efficient Collision Detection of Complex Deformable
Models Using AABB Trees. J. Graph. Tools 2, 4 (jan 1998), 1–13. https://doi.org/10.
1080/10867651.1997.10487480

BolunWang, Zachary Ferguson, Teseo Schneider, Xin Jiang, Marco Attene, and Daniele
Panozzo. 2021. A Large-Scale Benchmark and an Inclusion-Based Algorithm for
Continuous Collision Detection. ACM Trans. Graph. 40, 5, Article 188 (sep 2021),
16 pages. https://doi.org/10.1145/3460775

Rene Weller, Mikel Sagardia, David Mainzer, Thomas Hulin, Gabriel Zachmann, and
Carsten Preusche. 2010. A Benchmarking Suite for 6-DOF Real Time Collision
Response Algorithms. In Proceedings of the 17th ACM Symposium on Virtual Reality
Software and Technology (Hong Kong) (VRST ’10). Association for Computing

https://doi.org/10.2312/LocalChapterEvents/TPCG/TPCG08/107-113
https://doi.org/10.2312/LocalChapterEvents/TPCG/TPCG08/107-113
https://doi.org/10.17487/RFC6455
https://doi.org/10.17487/RFC6455
https://doi.org/10.2312/SGP/SGP03/094-101
https://doi.org/10.1109/IROS40897.2019.8968492
https://doi.org/10.1145/3424616.3424712
https://doi.org/10.1109/TMM.2022.3171688
https://doi.org/10.1080/10867651.1997.10487480
https://doi.org/10.1080/10867651.1997.10487480
https://doi.org/10.1145/3460775

A Framework for Safe Execution of User-Uploaded Algorithms Web3D ’22, November 2–4, 2022, Evry-Courcouronnes, France

Machinery, New York, NY, USA, 63–70. https://doi.org/10.1145/1889863.1889874
Muiris Woulfe and Michael Manzke. 2009. A Framework for Benchmarking Interactive

Collision Detection. In Proceedings of the 25th Spring Conference on Computer
Graphics (Budmerice, Slovakia) (SCCG ’09). Association for Computing Machinery,
New York, NY, USA, 205–212. https://doi.org/10.1145/1980462.1980501

A APPENDIX: POWERSHELL SCRIPT
A.1 Get IP Address of VM

1 get-vm -Name VMName | select -ExpandProperty
networkadapters | select ipaddresses

A.2 Turning On/Off VM
1 param(
2 [string] $vmName ,
3 [string] $op
4)
5
6 $checkpoint = 'uploadTest '
7
8 if($op -eq 'start '){

9 Restore-VMSnapshot -VMName $vmName -Name
$checkpoint -Confirm:$false

10 Start-VM -Name $vmName
11 while ((get-vm -Name $vmName).state -ne '

Running ') {
12 Write-Output "Waiting for $VMName to run"
13 start-sleep -s 5
14 }
15 } elseif ($op -eq 'stop') {
16 Stop-VM -Name $vmName
17 }

A.3 Disconnect GPU From Host
1 Dismount-VMHostAssignableDevice -force -

LocationPath [LocationPath]

A.4 Assign GPU to VM
1 Add-VMAssignableDevice -LocationPath [locationPath

] -VMName [VMName]

https://doi.org/10.1145/1889863.1889874
https://doi.org/10.1145/1980462.1980501

	Abstract
	1 Introduction
	2 Related Work
	3 Our Framework
	3.1 Benchmarking in VM
	3.2 GPU Passthrough

	4 Results
	5 Conclusions and Future Work
	Acknowledgments
	References
	A Appendix: PowerShell Script
	A.1 Get IP Address of VM
	A.2 Turning On/Off VM
	A.3 Disconnect GPU From Host
	A.4 Assign GPU to VM

