OpenCollBench - Benchmarking of Collision Detection &
Proximity Queries as a Web-Service

Toni Tan René Weller Gabriel Zachmann
University of Bremen University of Bremen University of Bremen
Germany Germany Germany

ABSTRACT

We present a server-based benchmark that enables a fair analysis of
different collision detection & proximity query algorithms. A sim-
ple yet interactive web interface allows both expert and non-expert
users to easily evaluate different collision detection algorithms’ per-
formance in standardized or optionally user-definable scenarios and
identify possible bottlenecks. In contrast to typically used simple
charts or histograms to show the results, we additionally propose
a heatmap visualization directly on the benchmarked objects that
allows the identification of critical regions on a sub-object level. An
anonymous login system, in combination with a server-side sched-
uling algorithm, guarantees security as well as the reproducibility
and comparability of the results. This makes our benchmark useful
for end-users who want to choose the optimal collision detection
method or optimize their objects with respect to collision detection
but also for researchers who want to compare their new algorithms
with existing solutions.

CCS CONCEPTS

« Computing methodologies — Collision detection; Shape
analysis.

KEYWORDS

collision detection, proximity query, open benchmark, heatmap
visualization, semantic information, benchmark as web-service

ACM Reference Format:

Toni Tan, René Weller, and Gabriel Zachmann. 2020. OpenCollBench -
Benchmarking of Collision Detection & Proximity Queries as a Web-Service.
In The 25th International Conference on 3D Web Technology (Web3D °20),
November 9-13, 2020, Virtual Event, Republic of Korea. ACM, New York, NY,
USA, 9 pages. https://doi.org/10.1145/3424616.3424712

1 INTRODUCTION

Collision detection (CD) is essential in many applications, such as
physically-based simulation, motion planning, and computer games.
In many of these applications, CD is the computational bottleneck.
For instance, in randomized path planners, more than 90% of the
computation time is spent on collision detection [Hsu et al. 1998].
The most time-consuming part is usually the so-called narrow phase

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Web3D °20, November 9-13, 2020, Virtual Event, Republic of Korea

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8169-7/20/11...$15.00
https://doi.org/10.1145/3424616.3424712

CD, i.e., detecting whether a pair of 3D objects intersect or not.
Closely related to this challenge are proximity queries (PQ) that ad-
ditionally report the minimum distance between the pair of objects
in case of non-collision.

Due to the wide variety of use cases and inherent complexity of
the problem, CD & PQ have been researched since several decades
in different communities, and they remain an active field of re-
search because until now, no all-in-one algorithm suitable for every
purpose has been found if such a solution could exist at all.

Most available CD & PD algorithms for the narrow phase rely
on bounding volume hierarchies (BVHs) to accelerate the queries.
The idea is, instead of calculating slow and complex tests on the
geometric primitives, objects are enclosed recursively with simple
bounding volumes (BV) that allow culling parts of the geometry
to avoid further testing. Many different bounding volumes have
been proposed to build such BVHs for CD & PD, including spheres
[Hubbard 1996], AABBs [van den Bergen 1998] [Zachmann 1995],
k-DOPs [Klosowski 1998] [Zachmann 1998], OBBs [Gottschalk et al.
1996], spherical shells [Krishnan et al. 1998], swept spheres [Larsen
et al. 1999a], to name but a few. Moreover, BVHs can have different
branching factors, the BVHs can be constructed in different ways
(e.g., iteratively, bottom-up, or top-down), the primitives can be
assigned in different ways to the BVs in the hierarchy (for instance,
via middle split, median split or even using sophisticated clustering
algorithms) and finally, there exist different algorithms for the
hierarchy traversal during run-time [Tan et al. 2019].

The reason for such a large amount of different CD & PQ ap-
proaches is that they are often optimized for a particular scenario.
CD & PQ algorithms are usually susceptible to certain factors like
relative the object’s shape (e.g., convex or concave), the sizes be-
tween objects, relative distances, the sizes, shapes, and distributions
of the geometric primitives or the transformations between objects,
to name but a few. Moreover, the limitations of the algorithms are
hardly discussed in the publications, if actually known. In many
publications, authors usually use a set of self-defined objects &
scenarios to benchmark & compare their proposed algorithms with
existing ones. However, this is not always in favor of existing algo-
rithms since authors might choose objects or scenarios that favor
their proposed algorithms. Even more, the source code of compet-
ing algorithms is often unavailable or outdated, and there is no
access to objects and scenarios used by the competing algorithms
for their benchmarks. Besides that, technical difficulties, i.e., the
sheer amount of involved parameters or integration of existing CD
algorithms making benchmarking of CD algorithms a complicated
and time-consuming process. Finally, the reported scenarios often
only show an average, sometimes a standard deviation, and maybe
the maximum running time for a whole sequence of transforma-
tions. This is not sufficient to understand why a certain algorithm

Web3D 20, November 9-13, 2020, Virtual Event, Republic of Korea

performs better or worse in a particular scenario. Actually, a slight
change of transformations or the objects, e.g., a slightly different
polygonization of the object, could result in completely different
results.

In this paper, we present an idea to simplify the complex and
time-consuming process of benchmarking collision detection al-
gorithms, more precisely, of CD methods for the broad phase CD
of rigid polygonal polygon soups. Moreover, we provide a set of
predefined scenarios, i.e., a set of objects together with configu-
rations that cover a broad range of interesting collision detection
cases. However, this set can also be extended by the users to include
scenarios that we did not consider. If allowed by the user, these
new scenarios can be included in the benchmark and will be made
available to the public.

The main idea is to provide the benchmarking of CD & PQ as an
online service. This has the advantage that a large amount of colli-
sion detection algorithms is available as pre-compiled libraries on
a common, unified hardware platform via an easy-to-use but never-
theless highly adjustable web interface. Additionally, the extending
object and configuration database allow us to cover an increasing
number of interesting collision scenarios. This web-based service
facilitates the comparison of CD algorithms dramatically and is of
interest to both users of CD algorithms who simply want to find
the best choice for their particular scenario and CD researchers,
who want to compare their new algorithms to competitors.

Our web-based service provides a front end interface that allows
the users to adjust some benchmark parameters, e.g., selecting
scenarios, algorithms, or upload their objects and generate a set of
configurations. The actual benchmark is performed on a dedicated
back end server PC that is reserved for only this task in order to not
disturb the benchmarking procedure by simultaneous web access
and, obviously, for security reasons. All benchmarks are scheduled
to guarantee the same computational power for all users.

The basis of our web service is a well established benchmark-
ing suite for collision detection algorithms [Trenkel et al. 2007]. It
has a well defined and easy-to-use interface to include new algo-
rithms, and it already delivers a set of interesting collision scenarios.
However, we further extended it to also support proximity queries
instead of simple boolean collision queries. Moreover, we heavily
extended its’ analyzation functionalities: the original benchmark-
ing suite simply computes the average and maximum collision
detection times and plots them to charts or histograms. Our web
service offers the possibility to overlay the 3D object with a detailed
heatmap. This facilitates it to identify interesting object regions,
e.g., regions that are hardly checked for collisions, regions where
particular algorithms perform better or worse, etc.

We are confident that this new method to visualize information
from the collision detection benchmark will influence the further
research of collision detection, for instance, by optimizing BVH
construction algorithms or by optimizing the geometry for partic-
ular CD algorithms. Moreover, we think that the general idea of
providing benchmarking as a web service can be also interesting
for other research fields and is an interesting research field for its
own, e.g., with respect to the user interface or the display of the
results in 3D, perhaps directly projected as a heatmap to 3D objects.

This could benefit both expert and non-expert users in many
real applications, i.e., choosing optimal CD algorithms according

Toni Tan, René Weller, and Gabriel Zachmann

Figure 1: An example of heatmap based on configuration’s
(a) average timings, (b) median timings, (c) standard devia-
tion timings, (d) median absolute deviation timings, and (e)
min timings, (f) max timings, and (g) density.

to use case or optimizing objects for CD by removing/modifying
slow regions.

2 RELATED WORK

The benchmarking process varies across different fields, i.e., multi-
object tracking [Dendorfer et al. 2020] compared the result of the
proposed algorithm against ground truth annotated by a human. In
ray tracing, benchmarking is usually done using a set of predefined
scenarios, e.g., the Benchmark for Animated Ray Tracing (BART)
[Lext et al. 2001].

Benchmarking programs are typically provided as standalone
programs, which can restrict access due to hardware or software
constraints. An attempt to solve this is to offer benchmarking suites
as web-service [Gillard and Vandenbosch 2009] [Widlowski et al.
2008]. To our knowledge, this idea was never applied for computer
graphics related topics, especially on an algorithmic level that would
help users to choose the best algorithm for their specific scenario
and supports developers and researchers with an infrastructure for
optimizing and distributing their algorithms. Actually, there exist
different graphics algorithms that could benefit from such an online
service. We decided to choose the complex problem of collision
detection because there exists a variety of different algorithms, and
CD is often the computational bottleneck.

Usually, authors of collision detection simply define a certain
scenario on their own to test their algorithms. For instance, Otaduy
et al. [Otaduy and Lin 2003] used a set of self-defined scenarios
(wrinkled torus falling along with a spiral peg, spoon sliding inside

OpenCollBench - Benchmarking of Collision Detection & Proximity Queries as a Web-Service

a cup, soup of numbers settling in a bowl) to benchmark their
proposed CD algorithm. Van Den Bergen [van den Bergen 1998]
positioned a pair of objects inside a bounded space randomly and
tested them for the intersection. The probability of intersection is
controlled by changing the size of objects.

There exist only very few efforts to provide general, fair, and re-
producible benchmarks for CD algorithms. Zachmann [Zachmann
1998] proposed a simple benchmark for DopTree that also applies to
general algorithms by positioning two identical objects at a certain
distance relative to each other. The relative distance is calculated
based on the center of the object’s bounding box. One object will
stay still, while the other performs a full rotation around the z-axis
at fixed small steps. The average timing of the CD algorithm is
calculated by averaging CD time at all steps.

Caselli et al. [Caselli et al. 2002] use several predefined scenes
in a probabilistic motion planner to benchmark several advanced
collision detection algorithms, i.e., V-Clip, RAPID, SOLID, PQP, and
V-Collide. However, the results can not be directly transferred to
scenarios not included in the benchmark.

Trenkel et al. [Trenkel et al. 2007] proposed a systematic way
to measure CD algorithms by combining broad and narrow phases
from Hubbard [Hubbard 1993] taxonomies into a CD pipeline. The
test scenarios are generated by positioning two identical objects
at a predefined distance. The positions and orientations for the
predefined distance are generated by rotating and translating one
of the objects.

Diktas et al. [Diktas and Sahiner 2008] argue that it is not enough
to test algorithms based on the relative distance between objects
since objects might penetrate against each other. They proposed
a benchmarking suite that takes relative penetration along with
relative distance and size into account. They presented a way to
generate a position by performing continuous CD using sphere-tree
fitted to object against the object’s surface offset.

Weller et al. [Weller et al. 2010] extended [Trenkel et al. 2007]
to include relative penetration between objects. They proposed
a method to measure the quality of force and torque for 6 DOF
(Degrees Of Freedom) haptic rendering and applied it to evaluate
two algorithms, i.e., Voxmap-Pointshell (VPS) and Inner Sphere
Tree (IST).

Woulfe et al. [Woulfe and Manzke 2009] proposed a generic
benchmarking suite for interactive applications. They enable users
to supply parameters that mimic the standard geometric and physi-
cal properties of rigid bodies, i.e., position, size, mass, acceleration,
velocity, etc. However, it is limited to CD algorithms available in
Bullet Physics. The object is also predefined, which makes it im-
possible to test a custom object. Besides that, adding a custom CD
algorithms into Bullet is extremely difficult.

Although there exist some efforts to provide a fair and systematic
benchmark for CD algorithms, little to none work has been put
to provide a better understanding of benchmarking results on a
sub-object level to identify, for instance, parts of an object that
are maybe especially well or badly suited for a certain algorithm.
Results are mostly represented using a chart or histogram based on
algorithms’ average or maximum timings for the whole sequence of
configurations and a complete pair of objects, which is not sufficient
to understand CD algorithms’ behavior & characteristic in-depth.

Web3D ’20, November 9-13, 2020, Virtual Event, Republic of Korea

3 OUR APPROACH

Our OpenCollBench consists of three parts: an easy-to-use but
highly adjustable benchmark for CD and PQ algorithms, a novel
visualization method for the results of the benchmarks that supports
a sophisticated but understandable inspection of the results even
for inexperienced users on a sub-object level, and a web-based
system that offers our benchmark as a service. In the following, we
will detail the individual parts of OpenCollBench, starting with the
actual benchmark.

3.1 Collision Detection Benchmark

The core benchmarking functionality of OpenCollBench relies on
an already available standardized open-source benchmarking suite
by Trenkel et al. [Trenkel et al. 2007]; hence we will start with a very
quick recap. In general, the benchmarking suite is a suitable narrow
phase CD of arbitrary polygonal rigid objects, and it supports even
polygon soups. It is based on the observation that the running-time
of boolean CD algorithms is worst in the case that the objects are
in close proximity but do not collide: in this case, the typical BVH-
based algorithms have to traverse very often down to the leaves,
but they cannot stop the traversal because they do not find an
actual intersection; hence a lot of backtracking is necessary by the
recursive traversal algorithms. Moreover, it relies on the assumption
that in interactive applications, it is not known in advance in which
particular configuration, i.e., translation and orientation, the pair
of objects will collide; hence, we have to consider all of them.

As a consequence, the benchmarking suite samples the configu-
ration space with a user-definable accuracy. The sampling includes
the possible orientations and distances of the objects. Two differ-
ent sampling methods are available; one simply places one object
on a sphere and moves it towards the second object until a cer-
tain distance is met, whereas the second method uses a grid for
the initial positioning of the moving object. The second method
is more accurate but requires more computation time to generate
a set of configurations. The user can define the set of objects. A
set of objects in different polygonal resolutions and pre-computed
configurations for these objects is available. For more details, we
refer the interested reader to [Trenkel et al. 2007].

The benchmark offers a lightweight and well-documented C++
interface: developers simply have to write a small wrapper that
offers two functions, one to import the polygonal model and a
second one to move the objects according to a 4x4 transformation
matrix. There already exist many wrappers for current state-of-
the-art collision detection libraries like CollDet with its different
included algorithms, including the new SIMDop [Tan et al. 2019]
that uses SIMD units of modern CPUs for the acceleration of the
traversal, PQP [Larsen et al. 1999b], DOPTree [Zachmann 1998],
BoxTree [Zachmann 1995], and V-COLLIDE [Hudson et al. 1997].
The benchmark is based on OpenSG, and this has the advantage
that it supports a lot of different 3D object formats to be imported.
Moreover, it has a headless mode, which is essential for server oper-
ation and guarantees benchmarking results that are not disturbed
by interferences with the graphical output. In headless mode, all
the parameters can be passed to the benchmark via the command
line.

Web3D 20, November 9-13, 2020, Virtual Event, Republic of Korea

In its original form, the benchmarking suite supports only boolean
collision detection algorithms, i.e., algorithms that tell whether a
pair of objects collide or not. We have extended it also for proximity
queries. In this case, the algorithms report minimum distances in
case of non-penetrations. This kind of information is often required
in robotic applications such as path planning. We only slightly
changed the wrapper interfaces for algorithms that also support
distance computations; the configuration generation remained un-
touched. Moreover, we extended the data that is collected during a
benchmarking procedure that we will use in the next section for
our heatmap visualization: the main difference is that we count
for each triangle how often it appears in a polygon test, and we
count the number of bounding volume and polygon tests for each
configuration.

3.2 Heatmap Visualization

The benchmarking suite by Trenkel et al. [Trenkel et al. 2007]
already includes several scripts based on Gnuplot to generate plots
of the results: for instance, for a pair of objects at a certain polygon
count, it can plot the average or maximum running time of the
benchmarked algorithms with respect to the distance, or it can plot
the running-time with respect to polygon count for a fixed distance.
Such plots are useful to get a broad overview of the algorithms’
performance with a particular pair of objects. However, depending
on the object, it is possible, that the maximum running time is
realized only at a very special part of the object that is hardly
colliding in the target application. Even more, maybe a slight change
of the object, e.g., placing an antenna a few polygons to the right
or the left, might change the performance of the collision detection
dramatically, so can also do a simple re-polygonization of parts of
the object. Consequently, we decided to implement a novel, more
sophisticated visualization of the benchmarking results on a sub-
object level. The main idea is to visualize different results directly
on the object’s surface by using a heatmap.

To do that, we collect additional data, as written in the previous
section, during the benchmark. For a pair of 3D objects A and B and
a set C of n configurations C = (c1, ¢2, ..., ¢;y) that was generated
by the benchmarking suite, we store for each configuration ¢; € C
the collision check time t;, the number of tested bounding volumes
bv;, the number of tested polygons n;. Then we project the data to
the object to generate the heatmap. Therefore, we compute for each
configuration c; the closest point p; between the pair of objects (see
Figure 2b). This is usually located on a polygon p of A and one B. In
order to generate a heatmap for A we assign the measured values t;,
bv;, and n; to all vertices of p. Obviously, we normalize the assigned
vertex values by dividing them by the number of assignments.

This facilitates it to identify interesting object regions, e.g., re-
gions that are hardly checked for collisions, regions where particu-
lar algorithms perform better or worse, etc.

These vertex values can be easily mapped to color values when
showing the heatmaps in our web GUI. We support different map-
pings of the values to colors, namely:

(1) Average (Figure 1a), median (Figure 1b), min (Figure 1e), and
max (Figure 1f) timing.
e to visualize critical regions based on algorithm’s timing.

Toni Tan, René Weller, and Gabriel Zachmann

(c) (d)

Figure 2: Heatmap generation pipeline based on bench-
mark’s result: (a) 3D object, (b) closest points of all configu-
rations, (c) generated heatmap based on algorithm timings,
and (d) generated heatmap based on configurations density.

(2) Standard Deviation (Figure 1c) and Median Absolute Devia-
tion (Figure 1d)
e to visualize outlier regions where algorithm’s timing could
differs greatly between slightly different configurations.
(3) Configuration density (Figure 1g)
e to visualize regions that are extensively or hardly checked
by algorithms.

We also support an optional outlier removal based on the inter-
quartile range (see Figures 3). Using t;, bv;, and n; the heatmaps
can be generated to visualize the average or median time and also
another statistical information to classify the data like the standard
deviation (see Figures 2c and 2d for some examples), as well as the
number of tested polygons (see Figure 4a), and the number of BV
checks (see Figure 4b).

3.3 Web-based Benchmarking Service

A primary goal of OpenCollBench as a benchmark as a service is
to simplify the time-consuming process of integrating CD and con-
figuring algorithms and to provide a common hard- and software
platform to produce long-term reproducible and comparable results.
We have realized this by a web-based client-server architecture. Fig-
ure 6 shows an overview of our system; it is based on a front end
that provides an easy-to-use GUI to the user and a dedicated back
end server that performs the actual benchmarking.

The front end is designed to focus on simplification and usability
of the benchmarking process to enable both expert and non-expert
users to intuitively benchmark CD algorithms. We have imple-
mented our front end using the vue.js framework. Figure 7 shows
the website to select appropriate benchmark parameters via sliders

OpenCollBench - Benchmarking of Collision Detection & Proximity Queries as a Web-Service

Figure 3: Heatmaps of object pipes with 124k polygons based
on median value (timing in milisec) of 200k configurations
(a) before, and (b) after removing outliers using interquartile
range.

Figure 4: Heatmaps of object happy buddha with 100k poly-
gons based on statistical information of 200k configura-
tion’s density (the number of check) (a) BV check, and (b)
polygon check of DOPTree algorithm. The red circle shows
regions that heavily checked at both BVH and primitive
level.

and buttons. Additionally, it is possible to upload objects and option-
ally store them together with the generated configurations. Another
option is to register for an account to recall previous benchmarking
results or re-trigger past benchmark runs. In order to prevent failed
benchmark due to connection problem or time constraints, we mark
incoming benchmark requests with a unique id and store the id
to the user’s browser locally via cookies. This request-id enables
the user to resume ongoing benchmarks. We also implemented a
progress interface (see Figure 8) to keep the user informed about
ongoing benchmark, e.g., uploading objects, generating configura-
tion, performing benchmark, or generating heatmaps. By default,
all generated results will be saved on our server for a period of time
in case the same object is being tested again. However, we plan to
add a more sophisticated access system that optionally allows users
to secure their uploaded objects and results in the future. This is

Web3D ’20, November 9-13, 2020, Virtual Event, Republic of Korea

required, especially for industrial users that wish nondisclosure.
Traditional plots of the results of the benchmark can be downloaded.
Moreover, our client offers the possibility to inspect the objects
with the heatmap overlay discussed in the previous section. The
visualization is realized in WebGL via three.js. The heatmap viewer
can be adjusted by the user to show the different results, switch
outlier removal on and off, or chose an appropriate coloring method
(see Figure 9).

The front end communicates via Axios with our dedicated back
end server. In general, our back end server is implemented using the
Express framework on top of node.js. It consists of several modules:

o Request handler handles incoming benchmark requests. It
also assigns the unique id and schedules the requests via a
queue system to prevent benchmarking suites from running
multiple instances at one time, which will mess up CD al-
gorithms’ timing. The request handler is implemented with
express.js.

o Collision Benchmarking Suite performs the actual CD & PQ

benchmark for a given object and parameters. It also is re-

sponsible for generating the configurations according to the

user’s selected parameters. The benchmarking suite is im-

plemented in C++, and it uses OpenSG, according to Trenkel

et al. [Trenkel et al. 2007].

Heatmap Generation Pipeline generates the heatmaps, i.e., the

vertex colors, from the benchmark results. It is implemented

in implemented using three.js.

o Exporter finally exports the generated heatmap into a file for
further access by the front end.

Our server runs under Windows 10 on an Intel i9-9820X CPU
with 10 discrete CPU cores; Hyperthreading is enabled to support
20 Threads, 64GB RAM, and GTX 980 GPU. Currently, none of
the included algorithms uses multithreading for the narrow phase
collision detection. The Intel Turbo Boost is enabled, this allows
single-core applications to increase the maximum CPU frequency.
We decided to use a current state-of-the-art Intel CPU because, in
contrast to the recent AMD CPUs, it supports the most advanced
SIMD acceleration technique, which is at the moment AVX512. Our
results show that collision detection algorithms can benefit from
this technology dramatically. On the other hand, the GPU seems
a little bit outdated. However, most available narrow phase CD &
PQ algorithms for rigid objects, particularly all of the algorithms
currently supported by the benchmarking suite, run completely on
the CPU. Moreover, the benchmark runs in headless mode; hence,
there is no need for a powerful GPU at the moment. Obviously,
in the future, the state-of-the-art in both hardware and software
might change. In the case of large development steps, we will have
to replace our current server. In order to still guarantee comparable
results, we will simple re-trigger all benchmarks that are stored so
far and update the results. The users will be informed about the new
results automatically if they agree to this procedure. Moreover, in
the case that submitted CD libraries do not work on a new platform,
we will contact the developers to adjust their libraries or exclude
them from further benchmarking. This will motivate developers to
maintain their software to be further included in the benchmarking
suite and hence, to be considered by those users searching for an
appropriate CD solution and to be cited in future applications.

Web3D 20, November 9-13, 2020, Virtual Event, Republic of Korea

1,400

1,200

1,000

800

time/sec

400
200
0 | L il L
0 0.2 0.4 0.6 0.8 1

relative distance

Figure 5: Time needed to generate around 200k configura-
tions based on Grid and Sphere position finding methods for
object bunny with 65k polygons at various predefined dis-
tances. The position finding methods tend to be slower at
the higher distance between objects.

Back end
Static Collision 3d Heatmap
Benchmarking Suite | resuls Generation Pipeline

3d object +
benchmark parameters

Request handler

request
benchmark

vertices info

Exporter J

3d heatmaps

L Front end |°_

Used Technologies

D nginx, three.js, axios, vue.js

D express 3d objects 3d heatmaps
D c++ collision benchmarking suite A 4
Dthree.js User

D three.js

Figure 6: System Overview of OpenCollBench, which con-
sists of two parts, namely front end that enable user to up-
load 3d object and select benchmarking parameters, and
back end that process incoming benchmarking request and
return heatmap as result.

4 RESULTS

We have implemented our open benchmarking server as a web
service to allow both expert and non-expert users to easily evaluate
CD & PQ algorithms’ performance in standardized or optionally
user-definable scenarios and to identify possible bottlenecks. The
web service is open for the public and can be accessed at URL:

Toni Tan, René Weller, and Gabriel Zachmann

¥

Object File Benchmark Mode Algo First / All Collision ?
Choose a file Castle_64221 Proximity v SIMDop v All v

Rotate Object By Degree

Benchmark Configurations: ~ Position Finding Method Move Object By Degree

Use Saved Positions v Sphere v

Relative Distance : 0

O Remove object after benchmark

Figure 7: Interactive Graphical User interface (GUI) for
OpenCollBench, which enable user to upload object (red
box) and selecting benchmark parameters interactively. The
option panels connected with each other, i.e. changing
Bench Mode (blue box) to proximity will display algorithms
that support promxity query in Algo (green box).

e Y4
=3 (=]

Figure 8: Benchmark’s progress GUI for OpenCollBench,
which consists of three parts, namely, left (red box) showing
progress of object uploaded by user, middle (blue box) show-
ing benchmarking progress including configurations gener-
ation, and right (green box) showing progress of heatmap
generation pipeline.

Figure 9: Benchmark’s results GUI for OpenCollBench,
which showing generated heatmap based on benchmarking
results. Left panel (red box) enable user to select different
mapping value, middle panel (green box) showing generated
heatmap, and right panel (blue box) showing mapping color
value.

OpenCollBench - Benchmarking of Collision Detection & Proximity Queries as a Web-Service

Figure 10: Heatmaps of object bunny with around 65k poly-
gons based on configuration’s density of around 200k con-
figuration using position finding method (a) Grid, and (b)
Sphere at a relative distance of 0.0. The Grid method is able
to generate more configurations at concave area (red circles)
compared with Sphere method.

http://opencollbench.com. Currently, only files in the OBJ format
can be uploaded by the user. In general, the benchmarking suite and
three.js support a wide variety of different 3D file formats; however,
they have to be integrated manually into three.js. For this reason,
but also for security reasons, we decided, at the moment, to restrict
the upload to the mostly used plain file format and add support for
further file formats later on user request.

First, we have investigated the performance of our benchmark-
ing server. In the case that the user does not choose a predefined
scenario but decides to upload his own objects, he has to generate a
set of configurations. According to [Trenkel et al. 2007], the user can
choose between the Grid and Sphere method. For a user-definable
number of configurations, the sphere method is faster, but it may
fail to generate some interesting contact scenarios, especially in the
case of concave objects, whereas the grid method is able to generate
a wider variety of configurations but requires more computation
time (see, e.g., the area around the ears and the foot in Figure 10). In
general, computing configurations can be rather time-consuming;
both the grid as well as the sphere method require up to 20 min-
utes to generate around 200k configurations for a pair of objects
consisting of a total of 130k polygons (see Figure 5). In the case of
close distances, the sphere method converges very quickly because
it is based on a BVH distance algorithm. In case of larger distances,
a lot more BV-pairs have to be considered to find the closest dis-
tance during the traversal, i.e., the pruning takes longer. We did not
expect such a large difference between the individual distance as
are shown by Figure 5, especially for distance 0.0, where we recog-
nized a speed-up of more than an order of magnitude for the sphere
method. However, the tendency of this behavior is independent of
the object; at least it appeared with all our benchmarking scenarios.
We will further investigate this in the future. While the configura-
tion computation is relatively slow, the actual benchmarking can
be done quickly. Benchmarking 200K configurations for a pair of
objects with a total of 130k polygons requires only 2 minutes in
case of the worst-case distance of 0.0.

In Section 3.2, we have introduced our new heatmap visualization
that allows investigating the algorithm’s performance on a sub-
object level. In this section, we will present a few findings from

Web3D ’20, November 9-13, 2020, Virtual Event, Republic of Korea

this visualization. We use the google turbo colormap [Google 2019]
to map different kinds of benchmarking data to the vertices. This
data can be, for instance, average or median timing, the deviations
of the timings, the density, e.g., a counter how often a particular
polygon realizes the minimum distance between the objects for a
given number of configurations or the number of BV and polygon
tests. The average and minimum CD times per-vertex help us to
identify regions of the object where the CD requires more time
than in other regions (see Figure 3). However, in the case of large
differences in the values or measurement inaccuracies, our optional
outlier detection can be enabled, as described in the previous section.
This allows us to find the more complicated CD configurations, that
with the largest median CD times, close to the center of the pipes
object as expected. Investigating the timing deviations helps us to
identify regions that are susceptible to different configurations: e.g.,
Figure 12 shows the mapping of median absolute deviation timing
for an object using the DOPTree algorithm. We can see that the
performance checking the outer regions of the object is relatively
independent of the configuration, whereas, for the inner regions,
the configuration matters. Moreover, we can identify regions that
are hardly ever colliding, independently of the colliding object’s
configuration. To visualize this, we map the configuration’s density
to vertex color. Figure 13 shows the heatmap for the extremely
concave Lustre object. The inside of the object is hardly checked by
algorithms. However, it also shows small regions on the extremal
points of the objects that are hit very often. In the future, it could
be helpful to optimize CD algorithms for exactly such high-density
regions why building looser BVs for less dense regions, e.g., by
stopping the BV construction earlier and thus, storing multiple
polygons in a single leaf node.

We can also spread the heatmap coloring visualization through
the results of several algorithms: Figure 11 shows the median CD
check times for the bunny object with 65k polygon with a single
unified coloring for all algorithms. It is easy to detect the fastest
algorithm by the deep blue color, which is, in this example, the
SimDOP. For some algorithms, we can find different critical re-
gions; for the DopTree, checking the regions between the ears is
the most time consuming (see Figure 11a), whereas the Boxtree has
a bottleneck at the back of the bunny (see Figure 11c). V-COLLIDE,
PQP, and SIMDop seem to perform independent of the region, at
least in this unified visualization.

Beyond boolean CD, our benchmarking suite can be used to eval-
uate PQ algorithms. Obviously, PQ is more complicated than simple
CD checks: classical BVH-based CD algorithms can prune non-
overlapping parts earlier according to the Separating Axis Theorem
(SAT). Hence, when using the same BVH, the PQ performs worse
than the CD BVH. Figure 14 shows the benchmarking result using
SIMDop, an algorithm that supports both CD & PQ checks. The
CD check remains fast & stable across all configurations, whereas
PQ checks slow & differs between regions compared with the CD
check. In the case of larger distances, the minimum distance is usu-
ally found close to the objects’ extremal points, i.e., on the convex
hull of the object. We can find this observation by visualizing the
density with respect to the distance: Figure 15 shows heatmaps for
a chair object with 113k polygons for the various relative distance
between objects. The configurations were generated using the Grid
method and have around 200k configurations each.

Web3D 20, November 9-13, 2020, Virtual Event, Republic of Korea

(c) BoxTree

0.02

(e) SIMDop

Figure 11: Heatmaps based on median value (timing in
milisec) for object bunny with 65k polygons based on rel-
ative median value of various CD algorithms timings after
removing outliers. The red circles show slower regions for
particular algorithms.

Toni Tan, René Weller, and Gabriel Zachmann

Figure 13: Heatmap of object lustre with 120k polygons
based configuration’s density of 200k configurations gener-
ated using Grid method after removing outlier. The inner
region rarely checked by algorithms, whereas the outer re-
gion heavily tested.

(b)

Figure 14: Heatmaps of object bunny with 65k polygons
based on median value (timing in milisec) of 200k configu-
rations for (a) CD, and (b) PQ without SIMD traversal, using
SIMDop algorithms at relative distance of 0.0. The CD check
remains stable across configurations, whereas PQ fluctuates
between regions.

Figure 12: Heatmap result of object schwamm with 95k poly-
gons based on median absolute deviation (timing in milisec)
using DOPTree. The outer region does not fluctuate much,
whereas the inner region fluctuates up to 1.1 milisec be-
tween slightly different configurations.

(@ (b) (©

Figure 15: Heatmaps of object chair with 70k polygons based
on configuration’s density generated by grid method at rel-
ative distance (a) 0.0, (b) 0.2, and (c) 0.4. The further the
relative distance between objects, the fewer object regions
checked by algorithms.

OpenCollBench - Benchmarking of Collision Detection & Proximity Queries as a Web-Service

5 CONCLUSIONS AND FUTURE WORK

We have presented OpenCollBench, a benchmarking architecture
for collision detection and proximity algorithms that offers the
benchmarking procedure as an open web service to the public. The
goal is to make complicated and time-consuming benchmarking
accessible for both expert and non-expert users. We have addressed
this goal by proposing a combination of a simple yet adjustable
user interface with a dedicated hardware platform that guarantees
reproducible and comparable results. Additionally, we have pre-
sented an extension to a sub-object accuracy for the analysis of
the benchmarking results. The idea is to use heatmaps to visualize
information gathered by the benchmark. This allows the user to
identify critical parts of their objects, and it enables a better un-
derstanding of the behavior and characteristics of the particular
collision detection algorithm.

Our approach also offers interesting avenues for future work: for
instance, currently, OpenCollBench is restricted to narrow phase
collision detection and proximity queries for rigid objects that run
on the CPU. Obviously, we want to extend our benchmark to cover
more cases related to collision detection, like broad phase CD, de-
formable objects, GPU-based algorithms, other kinds of object rep-
resentation than polygonal objects, to name but a few. We also
plan to include real penetration scenarios, e.g., the relative penetra-
tion volume, according to [Weller et al. 2010], that can be used to
compute additional configurations. In general, we want to include
more collision detection libraries. In the future, we plan to offer
researchers and developers an automatic upload of their libraries
to the OpenCollBench framework. However, this may result in
security risks, which is the main reason that currently, the inclu-
sion of new algorithms is curated by the authors. Moreover, we
want to use the information gained from the extended heatmap
visualization to improve existing collision detection algorithms or
even develop completely new ones. Our results already provide
hints that BVH-based algorithms can be optimized by, for instance,
optimizing the polygonization in parts of the objects, e.g., by trans-
parently performing local subdivision steps or by optimizing the
BVH construction. We also consider a hybrid algorithm that au-
tomatically chooses the optimal CD algorithm depending on the
objects’ actual configuration. This could be realized by an Al-based
approach. Finally, we consider extending the idea of a benchmark
as a service to other kinds of algorithms, especially in the computer
graphics context: acceleration data structures for ray tracing could
be a first interesting topic for this.

ACKNOWLEDGMENTS

The research reported in this paper has been (partially) supported
by the German Research Foundation DFG, as part of Collabora-
tive Research Center (Sonderforschungsbereich) 1320 “EASE - Ev-
eryday Activity Science and Engineering”, University of Bremen
(http://www.ease-crc.org/). The research was conducted in subpro-
ject R03 <Embodied simulation-enabled reasoning>.

REFERENCES

Stefano Caselli, Monica Reggiani, and M. Mazzoli. 2002. Exploiting Advanced Collision
Detection Libraries in a Probabilistic Motion Planner.. In WSCG. 103-110.

Web3D ’20, November 9-13, 2020, Virtual Event, Republic of Korea

Patrick Dendorfer, Hamid Rezatofighi, Anton Milan, Javen Shi, Daniel Cremers, Ian
Reid, Stefan Roth, Konrad Schindler, and Laura Leal-Taixé. 2020. Mot20: A bench-
mark for multi object tracking in crowded scenes. arXiv preprint arXiv:2003.09003
(2020).

Engin Deniz Diktas and Ali Vahit Sahiner. 2008. A benchmarking framework for static
collision detection. (2008).

R. Gillard and G. A. E. Vandenbosch. 2009. SoftLAB, a European web-service for
antenna software benchmark. In 2009 3rd European Conference on Antennas and
Propagation. 2736-2740.

Google. 2019. Turbo, An Improved Rainbow Colormap for Visualization. https://ai.
googleblog.com/2019/08/turbo-improved-rainbow-colormap-for.html

Stefan Gottschalk, Ming C Lin, and Dinesh Manocha. 1996. OBBTree: A hierarchi-
cal structure for rapid interference detection. In Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques. ACM, 171-180.

David Hsu, Lydia E Kavraki, Jean-Claude Latombe, Rajeev Motwani, Stephen Sorkin,
et al. 1998. On finding narrow passages with probabilistic roadmap planners. In
Robotics: the algorithmic perspective: 1998 workshop on the algorithmic foundations
of robotics. 141-154.

Philip M Hubbard. 1993. Interactive collision detection. In Proceedings of 1993 IEEE
Research Properties in Virtual Reality Symposium. IEEE, 24-31.

Philip M. Hubbard. 1996. Approximating Polyhedra with Spheres for Time-Critical
Collision Detection. ACM Transactions on Graphics 15, 3 (July 1996), 179-210.
Thomas C Hudson, Ming C Lin, Jonathan Cohen, Stefan Gottschalk, and Dinesh
Manocha. 1997. V-COLLIDE: Accelerated collision detection for VRML. In Proceed-

ings of the second symposium on Virtual reality modeling language. 117—ft.

James Thomas Klosowski. 1998. Efficient Collision Detection for Interactive 3D Graphics
and Virtual Environments. Ph.D. Dissertation. State University of New York at Stony
Brook. Adviser-Joseph S. Mitchell.

S. Krishnan, M. Gopi, M. Lin, Dinesh Manocha, and A. Pattekar. 1998. Rapid and
Accurate Contact Determination between Spline Models using ShellTrees. Computer
Graphics Forum 17, 3 (1998), 315-326.

E. Larsen, S. Gottschalk, M. Lin, and D. Manocha. 1999a. Fast proximity queries with
swept sphere volumes. In Technical Report TR99-018.

Eric Larsen, Stefan Gottschalk, Ming C Lin, and Dinesh Manocha. 1999b. Fast proximity
queries with swept sphere volumes. Technical Report. Department of Computer
Science, University of North Carolina.

Jonas Lext, Ulf Assarsson, and Tomas Moller. 2001. A benchmark for animated ray
tracing. IEEE Computer Graphics and Applications 21, 2 (2001), 22-31.

Miguel A. Otaduy and Ming C. Lin. 2003. CLODs: Dual Hierarchies for Multiresolu-
tion Collision Detection. In Proceedings of the 2003 Eurographics/ACM SIGGRAPH
Symposium on Geometry Processing (Aachen, Germany) (SGP '03). Eurographics
Association, Goslar, DEU, 94-101.

T. Tan, R. Weller, and G. Zachmann. 2019. SIMDop: SIMD optimized Bounding Volume
Hierarchies for Collision Detection. In 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 7256-7263.

Sven Trenkel, René Weller, and Gabriel Zachmann. 2007. A Benchmarking Suite for
Static Collision Detection Algorithms. In International Conference in Central Europe
on Computer Graphics, Visualization and Computer Vision (WSCG), Vaclav Skala
(Ed.). Union Agency, Plzen, Czech Republic. http://cg.in.tu-clausthal.de/research/
colldet_benchmark

Gino van den Bergen. 1998. Efficient collision detection of complex deformable models
using AABB trees. J. Graph. Tools 2, 4 (Jan. 1998), 1-13. http://dl.acm.org/citation.
cfm?id=763345.763346

Rene Weller, Mikel Sagardia, David Mainzer, Thomas Hulin, Gabriel Zachmann, and
Carsten Preusche. 2010. A benchmarking suite for 6-dof real time collision response
algorithms. In Proceedings of the 17th ACM symposium on virtual reality software
and technology. 63-70.

J-L Widlowski, M Robustelli, M Disney, J-P Gastellu-Etchegorry, T Lavergne, P Lewis,
PRJ North, B Pinty, R Thompson, and MM Verstraete. 2008. The RAMI On-line
Model Checker (ROMC): A web-based benchmarking facility for canopy reflectance
models. Remote Sensing of Environment 112, 3 (2008), 1144-1150.

Muiris Woulfe and Michael Manzke. 2009. A framework for benchmarking interac-
tive collision detection. In Proceedings of the 25th Spring Conference on Computer
Graphics. 205-212.

Gabriel Zachmann. 1995. The BoxTree: Exact and Fast Collision Detection of Arbitrary
Polyhedra. In SIVE Workshop. 104-112.

Gabriel Zachmann. 1998. Rapid Collision Detection by Dynamically Aligned DOP-
Trees. In Proc. of IEEE Virtual Reality Annual International Symposium; VRAIS *98.
Atlanta, Georgia, 90-97.

