
Kinetic Bounding Volume
Hierarchies for
Deformable Objects

René Weller
Clausthal University of Technology, Germany
weller@in.tu-clausthal.de

VRCIA ’06, June 2006, Hong Kong

Introduction Overview KDS Kinetic AABB Kinetic BoxTree Experiments End

Motivation

 Bounding volume hierarchies (BVHs) are widely employed in
many areas of computer science to accelerate geometric queries

 ray-tracing

 occlusion culling

 collision detection

Introduction

C
ou

rt
es

y
G

RI
S,

 T
üb

in
ge

n

Introduction Overview KDS Kinetic AABB Kinetic BoxTree Experiments End

Deformable BVH

 BVHs are constructed in a pre-processing step

 The pre-processed hierarchy becomes invalid when the object
deforms

→ The BVH must be rebuilt or updated after deformations

Introduction

Introduction Overview KDS Kinetic AABB Kinetic BoxTree Experiments End

Brute Force Update of single BV

Introduction

Introduction Overview KDS Kinetic AABB Kinetic BoxTree Experiments End

Problems

 Discrete time sampling

 Many update operations

 Missing changes between queries

 No adequate use of spatial and temporal coherence

 Other approaches:

 Hybrid updates [van den Bergen, 1998]

 Lazy updates [Mezger et al. 2003]

 Restriction of deformation schemes [James and Pai, 2004]

 Intrinsic collision test on the GPU [Wong and Baciu 2005]

 Chromatic decompositions [Govindaraju et al. 2005]

Introduction

Introduction Overview KDS Kinetic AABB Kinetic BoxTree Experiments End

Our Approach

 Motion in the physical world is normally continuous

 Changes in the combinatorial structure of the BHVs occur only at
discrete time points

 → We store only the combinatorial structure of the BVH and use

an event based approach for updates

Overview

Introduction Overview KDS Kinetic AABB Kinetic BoxTree Experiments End

Kinetic Updates

Overview

Introduction Overview KDS Kinetic AABB Kinetic BoxTree Experiments End

Advantages

 Fewer update operations

 Valid BVHs at every point in time

 Independent of query sampling frequency

 Can handle all kinds of objects

 polygon soups, point clouds, and NURBS models

 Can handle insertions/deletions during run-time

 Can handle all kinds of deformations

 Only a flightplan is required for every vertex

 These flightplans may change during simulation

Overview

Introduction Overview KDS Kinetic AABB Kinetic BoxTree Experiments End

Recap: Kinetic Data Structures

 KDS are a framework for designing and analyzing algorithms for
objects in motion [Basch et al. 1997]

 KDS framework leads to event-based algorithms that samples the
state of parts of a system only as often as necessary for a special
task (e.g. a bounding box)

KDS

Introduction Overview KDS Kinetic AABB Kinetic BoxTree Experiments End

KDS terminology

 The task is called the attribute

 A KDS consists of certificates

 Certificate failures are called events

 If the attribute changes at the time of an event, the event is
called external, otherwise internal

KDS

Introduction Overview KDS Kinetic AABB Kinetic BoxTree Experiments End

Quality of a KDS

 A KDS is compact, if it requires only little space

 A KDS is responsive if we can update it quickly in case of a
certificate failure

 A KDS is local, if one object is involved in not too many events

 A KDS is efficient, if the overhead of internal events with respect
to external events is reasonable

KDS

Introduction Overview KDS Kinetic AABB Kinetic BoxTree Experiments End

Kinetic AABB Tree

 Kinetization of the AABB tree

 Pre-processing: Build the tree by any algorithm suitable for static
AABB trees

 It is only required that the height of the BVH is logarithmic

 Store with every node the indices of those points that determine
the BV

 Initialize the event queue

Kinetic AABB

Introduction Overview KDS Kinetic AABB Kinetic BoxTree Experiments End

Kinetic AABB Tree Events

 Leaf Event

Kinetic AABB

Introduction Overview KDS Kinetic AABB Kinetic BoxTree Experiments End

Kinetic AABB Tree Events

 Tree Event

 Flightplan Update Event

Kinetic AABB

Introduction Overview KDS Kinetic AABB Kinetic BoxTree Experiments End

Simulation Loop

while simulation runs

determine time t of next rendering

e ← min event in event queue

while e.timestamp < t

processEvent(e)

 e ← min event in event queue

check for collisions (or cast ray, or …)

render scene

Kinetic AABB

Introduction Overview KDS Kinetic AABB Kinetic BoxTree Experiments End

Event Handling

 Leaf Event

Kinetic AABB

Introduction Overview KDS Kinetic AABB Kinetic BoxTree Experiments End

Event Handling

 Leaf Event cont

Kinetic AABB

Introduction Overview KDS Kinetic AABB Kinetic BoxTree Experiments End

Analysis

 Theorem 1: The kinetic AABB tree is compact (O(n)), local
(O(log n)), responsive (O(log n)) and efficient.
Furthermore, the kinetic AABB tree is a valid BVH at every
point of time.

 Theorem 2: Given n vertices, we assume that each pair of
flightplans intersect at most s times.
Then, the total number of events is in nearly O(n log n).

Kinetic AABB

Introduction Overview KDS Kinetic AABB Kinetic BoxTree Experiments End

Kinetic Boxtree

 Kinetic AABB tree needs up to six events for every BV

 => The kinetic BoxTree which uses less memory than the kinetic
AABB tree

 Combination of k-d tree and AABB

Kinetic BoxTree

AABB tree BoxTree

Introduction Overview KDS Kinetic AABB Kinetic BoxTree Experiments End

Event Computation

1

2
3

5

4

6

11

7

9

10

8

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11

1, 2, 5 3, 4, 6

1, 2 5

1 2

3, 4 6

3 4

10, 11 7, 8, 9

10 11 7 8, 9

8 9

Kinetic BoxTree

Introduction Overview KDS Kinetic AABB Kinetic BoxTree Experiments End

BoxTree Events

Kinetic BoxTree

Introduction Overview KDS Kinetic AABB Kinetic BoxTree Experiments End

Analysis

 Theorem: The kinetic BoxTree is compact, local and efficient. The
responsiveness holds only in the one-dimensional case.
Furthermore, the kinetic BoxTree builds a valid BVH at every point
of time.

Kinetic BoxTree

Introduction Overview KDS Kinetic AABB Kinetic BoxTree Experiments End

Test Scenes

Experiments

Introduction Overview KDS Kinetic AABB Kinetic BoxTree Experiments End

Results

Experiments

#Events and
#Updates

Introduction Overview KDS Kinetic AABB Kinetic BoxTree Experiments End

Updating time

Experiments

Introduction Overview KDS Kinetic AABB Kinetic BoxTree Experiments End

Total time (= Update + Collision Check)

Experiments

Introduction Overview KDS Kinetic AABB Kinetic BoxTree Experiments End

Conclusions

 Two novel data structures for updating a BVH over deformable
objects fast and efficient

 Efficiency due to event based approach

 Theoretic Analysis:

 Upper bound of nearly O(n log n) for the updates that are required to
keep a BVH valid

 Our kinetic AABB tree and kinetic BoxTree are optimal in number of
updates

 Up to 20 times faster than bottom-up updates in practically
relevant scenarios

End

Introduction Overview KDS Kinetic AABB Kinetic BoxTree Experiments End

Future Work

 Use our kinetic Data Structures also for continuous collision
detection

 Utilize our data structures for other kinds of motion

 physically-based simulations

 other animation schemes

 Use our KDS for other applications like ray-tracing or occlusion
culling

End

Introduction Overview KDS Kinetic AABB Kinetic BoxTree Experiments End

Acknowledgements

 Gabriel Zachmann, Clausthal University of Technology

 Johannes Mezger, University of Tübingen

 Stefan Kimmerle, University of Tübingen

 DFG grant ZA 292/1-1 ("Aktionsplan Informatik")

End

