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Virtual Prototyping (VP) is, so far, the most challenging class of applications for virtual real-
ity (VR). A VR system suitable for VP must be able to handle very large geometric complexities
which, in general, cannot be reduced significantly by common rendering techniques such as tex-
turing or level-of-detail. Furthermore, VP is the most “interactive” type of applications for VR
compared to other areas such as architecture, medicine, or entertainment. This is due to the sim-
ulation of rather complex tasks involving many objects whose behavior and properties should
be imitated as closely as possible. Finally, in order to sustain continuously a feeling of presence
and immersion, the VP system must be able to achieve a frame rate of no less than 15 frames
per second at any time.
This chapter will deal with the issue of interaction in complex virtual environments (VEs)

for VP. First, we will review briefly the novel I/O devices currently being used in VR, and
classify VEs with respect to the devices being used and with respect to the real environment
being simulated. Then, several interaction techniques will be discussed, both for VEs in general
and for VP in particular. The last two sections give a more technical view on the issue of how to
describe VEs and on the overall architecture of VR systems.

1 Characterization of VEs
Virtual environments can be distinguished by their relation to a real environment.

The VE is actually a projection of some real environment. That real environment might
be of very different scale [28] or at some distance from the user [5]. The latter is usually
described by the term tele-presence.

The VE does not exist but is otherwise (fairly) realistic. It might have existed in the past,
or it might exist in the future (which is actually the purpose of VP).

The VE is quite unreal. This is commonly the case in entertainment which strives to
provide the participants with an exciting and exotic world.

There are, of course, intermediate or mixed forms. An example of this is “augmented reality”[8]:
the user sees his real environment through special glasses which allow the superposition of
computer generated images. Thus, the image of the real world can be augmented by pictures,
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signs, pictograms, hints, instructions, etc. However, interaction is usually restricted to the real
environment.
Different VEs (as distinguished above) require different kinds of interaction:

the user manipulates existing, real objects. Examples are: repair of a satellite by means
of a vehicle armed with tools; steering of a vehicle where humans cannot enter (e.g., the
moon, radioactively polluted terrain, etc.); exploration and modification of the structure
of materials at atomic scale [28].

the user manipulates non-existent objects. Examples might be: examination and modi-
fication of the interior design of a building which is still under planning; visualization
of fabrication processes, such that deficiencies or dangers for human operators can be
detected at an early stage; simulation of surgical operations.

Another classification scheme can be based on the amount of distribution. The simplest
VEs are local, single-user. Distributed VEs might still be single-user, but the application is
distributed among several machines or processors. In multi-user VEs, several users share the
same experience while being at (possibly) remote places.

2 Techniques to achieve immersion
Virtual environments can be classified according to several orthogonal criteria: the real environ-
ment being simulated, the amount of immersion and presence they offer (see Figure 1), and the
degree of distribution.

2.1 Immersion

A key feature of VR technology is immersion. This term defines the feeling of a VR user, that
his virtual environment is real. 1
A high degree of immersion is equivalent to a realistic or “believable” virtual environment.

In the following we will briefly describe several effects which detract from the experience of
immersion (ordered by significance), and how they can be avoided:

1. Psychological experiments indiciate that the most important effect is feedback lag. There
are mainly three factors which contribute to this lag:

Rendering time.
Tracking systems usually produce delayed data. The more sensors they have to track,
the longer the delay. In addition, filtering introduces lag. Attempts have been made
to overcome this problem by trying to predict the position/orientation [17].
Other computations like collision detection or simulation of physics.

1More precisely, we define complete immersion analogously to Turing’s definition of (artificial) intelligence: if
the user cannot tell which reality is “real”, and which one is “virtual”, then the computer generated one is totally
immersive.
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2. Narrow field-of-views is a rather severe shortcoming which makes the user feel as if he
looked through a tunnel into the world, especially, if he uses a head mounted display.
To overcome this, HMDs usually have got some kind of wide-angle optics. Large pro-
jection screens can alleviate the “tunnel” effect of monitors; a very large field-of-view is
achieved by a surround-screen projection (cave) as developed by [6].

3. A monoscopic view deprives the user of ability to estimate distances in the depth range
from 20cm to about 5m. A stereoscopic view can be obtained quite easily by simply
rendering the same scene twice with slightly shifted viewpoints (stereoscopic rendering).
One should use the parallel-lens algorithm to achieve a good stereoscopic effect [18, 1,
27].
Unfortunately, the conflict between the computer generated disparity in the user’s eyes and
the eyes’ accommodation to the screen surface (or the HMD’s virtual display distance) will
still remain. From our experience, this is not a problem, although the discrepancy is not
realistic.

4. Low display resolution, from our experience, is the least significant factor concerning
immersion. First generation HMDs based on LCDs have very low resolution which is
made worse because of the wide-angle optics. CRT based HMDs offer full resolution, but
are heavier.

Since our visual perception is our primary sense, research focuses very much on fast, realis-
tic, high-resolution rendering. However, other senses must also be stimulated to achieve full
immersion; among them are audible feedback, tactile, and force feedback.

2.2 Presence

While immersion is an objective measure, presence is the subjective sense of being in the VE
[26]. Presence requires a self-representation in the VE – a virtual body (often, only the hand is
represented in the VE, since the whole body is not tracked). It requires also that the participant
identify with the virtual body, that its movements are his/her movements.

3 Devices
Virtual Reality offers a novel human-computer interface by utilizing novel I/O devices. The
output devices and their determining characteristics commonly used are:

Display Characteristics

HMD, Boom
Cave, Stereo-Projection, Workbench
Monitor

Resolution
Color / Monochrome
Field-of-View
Contrast and Brightness
Distortion
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Very important to most VR applications is the tracking device which measures the head’s,
hand’s, or the complete body’s position and orientation. Several technologies and character-
istics are:

Tracking technology Characteristics
magnetic
optical
mechanical
other (ultra-sonic, inertial, gyro-
scopic)

volume
noise and distortion latency
accuracy occlusion

Other input devices are:

Device Characteristics
glove
desktop positioning device
tetherless positioning device
other (buttons, microphone, . . . )

dimension
accuracy
practicality

The amount of immersion and presence is determined, among others, by the I/O devices
being used [11]: the ultimate immersion can be achieved by head-mounted displays, followed
by arm-mounted (Boom), several cave variants through screen-based (Workbench or just stereo-
projection) systems. Unfortunately, the degree of presence is (almost) reciprocal to the degree
of immersion: with a workbench, we do have full presence, but almost no immersion. In a cave,
we have optimal presence because the real body is actually inside the VE, but we cannot achieve
full immersion. With an HMD we have full immersion but almost no presence.
Using output devices for other human senses such as hearing or feeling greatly increases the

effect of immersion.
The situation is quite similar on the input side: all input devices so far offer different advan-

tages and disadvantages. While one application might demand a fully immersive VE, another
one might be best implemented by stereo-projection and spacemouse.
The result of this observation is that there cannot be a perfect, general input or output device.

Instead, the appropriate devices are determined by the application. For assembly simulations
it is important to achieve a very high level of immersion in yet to be built “environments”.
Style and desgin evaluation doesn’t necessarily need perfect immersion, but it does need high
quality images and a good sense of presence. Entertainment needs a high degree of immersion
in unreal environments which will never exist. Augmented reality usually provides a very high
level of presence in the existing environment, while there is not much of a virtual environment
at all. Figure 1 gives a graphical depiction of our classification of some typical areas of VR
applications.
As can be seen from the figure, VP is an area which has a very broad range of requirements:

on one hand, there are applications more biased towards functional simulation, and thus requir-
ing a high degree of immersion; on the other hand, there are applications such as ergonomy
studies or interior design which require a high degree of presence.
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Figure 1: This graph depicts the classification of some typical applications of VR with respect to
the “reality” of the environment and with respect to the immersion/presence required.

3.1 Distortion Correction of magnetic fields

Electro-magnetic trackers have become the most wide-spread devices used in today’s virtual
reality systems. They are used to track the position and orientation of a user’s hands and head, or
to track instruments such as an endoscope or scissors. They’re also being deployed in real-time
motion capture systems to track a set of key points and joints of the human body. Commercial
optical tracking systems are becoming more mature; however, they’re still much more expensive
than electro-magnetic systems, but are not yet quite as robust in terms of drop-outs.
Unfortunately, there is one big disadvantage of electro-magnetic trackers: the electro-magnetic

field itself, which gets distorted by many kinds of metal. Usually, it is impossible to banish all
metal from the sphere of influence of the transmitter emitting the electro-magnetic field, espe-
cially when using a long-range transmitter: monitors contain coils, walls, ceiling, and floors of
the building contain metal trellises and struts, chairs and tables have metal frames, etc. While
tracking systems using direct current seem to be somewhat less susceptible to distortion by metal
than alternating current systems, all ferro-magnetic metal will still influence the field generated
by the transmitter to some degree.
A distortion of the magnetic field directly results in mismatches between the tracking sensor’s

true position (and orientation) and the position (orientation) as reported by the tracking system.
Depending on the application and the set-up, mismatches between the user’s eye position (the
real viewpoint) and the virtual camera’s position (the virtual viewpoint) impair more or less the
usability of VR. For example, in assembly tasks or serviceability investigations, fine, precise, and
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Figure 2: Without correction of the magnetic
field tracking, an off-center viewer in a cave
will see a distorted image. The effect is even
worse when the viewer moves, because ob-

jects seem to move, too.

Figure 3: With our method, the perspective is
always correct, even when the viewer moves.
(See also the color plates.) Data courtesy of

Volkswagen AG.

true positioning is very important [7]. In a m cave or at a workbench, a discrepancy of 7 cm
(3 in) between the real viewpoint and the virtual viewpoint leads to noticeable distortions of the
image2, which is, of course, not acceptable to stylists and designers. For instance, straight edges
of objects spanning 2 walls appear to have an angle (see Figure 2), and when the viewer goes
closer to a wall, objects “behind” the wall seem to recede or approach (see [14] for a description
of some other effects). Mismatches are most fatal for Augmented Reality with head-tracking in
which virtual objects need to be positioned exactly relative to real objects [22].
We have developed an algorithm which overcomes these adverse effects [34]. It is very fast

(1-2 msec), so no additional latency is introduced into the VR system. With our algorithm, the
error of the corrected points from their true positions does not depend on the distance to the
transmitter, nor does it depend on the amount of local “warp” of the magnetic field.

4 Interaction Techniques
By interaction we mean any actions of the user aiming at modification or probing the virtual
environment. In order to achieve a good degree of immersion, it is highly desirable to develop
interaction techniques which are as intuitive as possible. Conventional interaction devices (key-

2This is just a rule of thumb, of course. The threshold at which a discrepancy between the real and the virtual
viewpoint is noticeable depends on many variables: expertise, distance from the cave wall or projection screen, size
of the cave, etc.
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handscart

camera

Figure 4: All navigation modes can be de-
duced from the flying carpet model. Not all

modes utilize all of the “devices” shown.

Figure 5: With a Boom for interior design, the
eyeball-in-hand navigation technique is used.

board, mouse, tablet, etc.) are not fit for natural interaction with most VR applications. One of
the more intuitive ways is the “virtual trackball” or the “rolling trackball”, which both utilize the
mouse[16, p. 51 ff.].
The shortcoming of all of the above mentioned devices is their low number of input dimen-

sions (at most 2). However, new devices like SpaceMouse, DataGlove, tracking systems, Boom,
Cricket, etc., provide 6 and more dimensions. These allow highly efficient, natural interaction
techniques. Some of them will be described in the following.

4.1 Navigation

By navigation we mean all forms of controlling the viewpoint in a virtual environment, or steer-
ing of a real exploration device (e.g., the repair robot or the microscope needle). Navigation is
probably the simplest form of interaction, which can be found in all VR applications.
Virtually all navigation techniques can be deduced from a single model, which assumes the

virtual camera mounted on a virtual cart, also sometimes referred to as flying carpet model (see
Fig. 4). See also [32, 25, 9].

In point-and-fly the user moves the cart by pointing in the desired direction with the nav-
igation device (e.g., glove or cricket) and making a certain gesture or pressing a certain
button. If a glove is being used, the speed of the motion can be controlled by the flexion
value. If head tracking is enabled, the camera will be controlled by the head tracker.
This navigation technique is the one most widely used.
[19] have suggested a more sophisticated point-and-fly mode: the user points at the desired
object and the VR system computes a “swerved” path which will place the user eventually
in front of the object. Again, the speed can be controlled.
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Sometimes it is desirable to constrain the cart at a certain height, for example at eye level
above the virtual ground, while the user can still move around.

eyeball-in-hand: this paradigm is implemented by feeding the tracking system’s output
(e.g., the position of an electro-magnetic sensor or a Boom), directly to the viewpoint and
the viewing direction, while the cart remains fixed. This technique is most appropriate
for close examination of single objects from different viewpoints, e.g., interior design
(see Fig. 5).

scene-in-hand: this is the complementary technique to eyeball-in-hand. Sometimes this
can be quite useful for orientation or coarse object placement [23].

Sometimes it is desirable to be able to control the viewpoint “without hands”. In that case,
speech recognition can be used in order to move the cart by uttering simple commands
such as “turn left”, “stop”, etc. This has become feasible with today’s user-independent
speech recognition systems and fast processors.

In order to attain maximum flexibility, it is highly desirable that all of the above mentioned
navigation modes can be mapped to all possible configurations of input devices. While there are
certain combinations of navigation mode and input device configuration which will be utilized
much more often than others, a general mapping scheme comes in handy at times.
Of course, there are many parameters which affect user representation and navigation: navi-

gation speed, size and offset of the hand, scaling of head motion, eye separation, etc. These have
to be adjusted for every VE.

4.2 Gesture recognition

Usually, static gestures like “fist” or “hitch-hike” are used to trigger actions. Gestures can be
augmented by taking also the orientation of the glove’s tracker into account, i.e., a hitch-hike
gesture pointing up is different from a hitch-hike pointing down (for example, to make an eleva-
tor go up or down). There is also research going on to recognize dynamic gestures which consist
of a continuous sequence of static gestures and tracker positions.
There is a little bit of confusion about terminology here. Sometimes, static gestures are called

postures and dynamic gestures are just called gestures. We will call gestures plus orientation
postures.
Gestures can be defined as ellipsoids in (where or , typically); then, they

can be recognized by a simple point-in-ellipsoid test. Of course, other norms can be utilized as
well, for example the -norm is computationally much more efficient.
Another, more robust approach exploits the fact that almost all gestures are located near the

“border” of , i.e., their flex values are (almost) maximal or minimal. So, can be
subdivided into certain half-spaces, quarter-spaces, etc.
Other approaches are back-propagation networks (perceptrons) [30] and hidden Markov mod-

els [21]. Still, with all algorithms, glove calibration for each user is necessary.
Gestures are very well suited to trigger simple actions, like navigation or display of a menu.

However, experience has shown that VR systems should not be over-loaded with gesture driven
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Figure 6: When objects should be grabbed, in-
teraction with virtual environments can actually

be more efficient than in the real world.

Figure 7: Objects should behave naturally, so
interaction with them can be natural. Here, the
hood of the car can be opened by just lifting it.

interaction [24]. A casual user will confuse gestures, and the every-day user will find them
rather unnatural. In fact, a set of gestures which trigger specific actions can be considered
another type of (invisible) menu, which is no more realistic or natural than well-known 2D
desktop menus. Other techniques such as speech recognition or natural object behavior should
be utilized whenever there is no special reason to use gestures.

4.3 3D menus

Menus provide a 1-of-n choice. 3D menus are a straight-forward extension of the well-known
2D menus [15]. Usually their appearance is triggered by a gesture or a button. Several possibil-
ities exist in order to select a menu item with the pointing device (glove, flying joystick, etc.):
shooting a ray through the index finger (if a glove is being used), shooting a ray from the eye
through the index finger, or actually touching the 3D button with the finger.
However, we feel that 3D menus should be avoided. They are a relic of 2D desktop interac-

tion and there are usually more efficient ways to interact in 3D. Furthermore, almost all 1-of-n
choices can be done much more efficiently by speech recognition.

4.4 Natural object behavior

The goal of this technique is to avoid burdening the user with acquiring any skills other than
the ones used in every-day life, i.e., objects in the virtual world should behave just like they do
in the real world. However, to achieve such realism, great computational resources are needed,
both in terms of CPU power and in terms of clever algorithms.
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Figure 8: Collision response while moving an
object must not interfere with smooth inter-
action. Here, collision response was chosen
to be highlighting of colliding objects by wire-

frame and via sound feedback.

Figure 9: Particle sources can be placed in a
virtual environment interactively, while the par-
ticle tracing module computes particle paths
on-line. So, the simulation of a flow field can be
visualized within the environment itself, which

is the inside of a car in this case.

Grabbing, pushing, or pulling an object are every-day tasks. As in the real world, a user
should be able to do this in the virtual environment by just pushing or pulling it with a virtual
hand (see Figures 6, 7).
Although it is highly desirable that objects behave naturally, we feel that the designer of a

virtual environment has to decide on a case-by-case basis how close to reality certain interactions
should be. For example, for many tasks, it is perfectly sufficient to let the user grab an object by
just touching it while making a fist gesture. However, for other scenarios, e.g. design evaluation,
the grabbing should be modeled as close to reality as possible.
Another property of realistic object behavior is that they do not penetrate each other. The

basis of almost all natural object behavior is real-time collision detection for complex objects
[12]. However, if force feedback is not available, collision response must be modeled carefully
to facilitate efficient interaction. For example, it might be very hard to place an object within
a dense environment, if colliding objects stick to each other [29]. Instead, a more suitable
collision response might be to highlight colliding objects and accompany the collision by some
sound feedback (see Fig. 8).
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Figure 10: In a shared virtual environment, two astronauts perform a repair task on the Hubble
telescope while being at different locations (Germany and Texas). Scenarios like this can be

used for training or simultaneous engineering.

4.5 Interaction for scientific visualization

This is a rather new field in the realm of virtual environments. By using 6D (or more) devices,
new and potentially much more efficient techniques for interaction with simulation results can
be devised.
We have ported several visualization techniques for flow fields to virtual environments. Com-

mon techniques are particle tracing, stream lines, and streak lines. For each of them, sources
within the field have to be placed. Using interaction techniques for virtual environments, it is
very easy to place these: the user just grabs the object which represents the source and places it
somewhere else in space. Or, even more efficient, the fingers of the virtual hand itself become
sources (see Fig. 9).

4.6 Cooperation in VEs

So far, computer-supported cooperative work (CSCW) does not play a major role in today’s
product design. As companies operate more and more globally, however, design teams will
get more and more distributed. Eventually, there will be a need for CSCW techniques in VP
systems, so that several designers or stylists can discuss a new digital prototype while being at
remote sites, possibly located on different continents. Therefore, a VR system should be able
to allow multiple users to interact with each other and with the same VE (see Figure 10 for an
example).
From a classification point of view, it does not make a big difference if there are multiple

participants or just one. However, from a technical point of view, it doesmake quite a difference.
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When dealing with multiple participants, many new technical issues arise: for instance, the time
lag introduced by networks should be neutralized; appropriate representations of the other users
should be created.
A great challenge is floor control, i.e., mutually exclusive access to objects, in real-time across

networks. Intertwined with that is the problem of when access should be mutual exclusive:
sometimes participants do want to access an object simultaneously (e.g. for repair), sometimes
it is not necessary (because the attributes being altered are “orthogonal”). Several methods have
been devised to insure consistency:

Ownership token passing [31]. Smooth dead-reckoning is done for local ghosts. The
owner of the token of an objects broadcasts updates for that object. When and how the
token for an object will be passed is up to the implementation and might be determined
by the application.

Read/write permissions à la Unix. Objects can be marked writable for a specific group of
users. Every process which changes an attribute of an object and has write permission,
broadcasts updates.

Distributed locks. When a process wants to change an object, it will first lock it’s local
database, then request a distributed lock on that object.
With this approach it might be difficult to assert responsiveness at all times. In order to
avoid delays in the simulation loop, an application could try to look ahead and request
a lock in advance if it can be foreseen that a user will probably try to execute an action
which requires a particular lock.

The methods above can be combined – however, whatever measures we take, we must make
sure that the overall system is responsive at all times.

5 Description of VEs
Creating virtual worlds is still a cumbersome and tedious process. Below, we describe a frame-
work which facilitates creating virtual environments. VE “authors” should be allowed to ex-
periment and play interactively with their “worlds”. Since this requires very low turn-around
times, any compilation or re-linking steps should be avoided. Also, authors should not need to
learn a full-powered programming language. A very simple, yet powerful script language will
be proposed, which meets almost all needs of VE creators [33] (we will not, however, discuss
any syntactical issues, since they can be found in the reference).
In order to achieve these goals, we identify a set of basic and generic user-object and object-

object interactions which, experience has taught us, are needed in most applications.
For specification of a virtual world, there are, at least, two contrary approaches:

The event based approach is to write a story-board, i.e., the creator specifies which ac-
tion/interaction happens with a certain event.
A story-driven world usually has several “phases”, so we want a certain interaction option
to be available only at that stage of the application, and others at another stage.
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The behavior based approach is to specify a set of autonomous objects or agents, which
are equipped with receptors and react to certain inputs to those receptors (see, for exam-
ple, [4]).
So, overstating a little, we create a bunch of “creatures”, throw them into our world, and
see what happens.

In the long term, you probably want to be able to use both methods to create a virtual world.
Here, we will focus on the event based approach. The language for specifying those worlds

will be very simple for several reasons: VE authors “just want to make this and that happen”,
they don’t want to learn Python or C++. Moreover, it is much easier to write a true graphical
user interface for a simple language than for a full-powered programming language.
All concepts being developed here have been inspired and driven by concrete demands during

recent projects. Most of them have been implemented in an interaction-module, which is part of
our whole VR system.

5.1 The action-event paradigm

A virtual world is specified by a set of static configurations (geometry, module parameters,
navigation modes, etc.) and a set of dynamic configurations. Dynamic configurations are object
properties, user-object interaction, action dependencies, or autonomous behavior.
The basic idea of dynamic configurations is that certain events trigger certain actions, prop-

erties, or behavior; e.g., when the user touches a virtual button, a light will be switched on, or,
when a certain time is reached an object will start to move. Consequently, the basic building
blocks of our virtual worlds are actions, events, and graphical objects – the AEO triad3 (see
Figure 11).
Unlike other systems [13, 2, 10], our actions are not part of an object’s attributes (in fact, one

action can operate on many objects at the same time).
In order to be most flexible, the action-event paradigm must satisfy the following require-

ments:

1. Any action can be triggered by any event.

2. Several events can trigger the same action. An event can trigger several actions simulta-
neously (many-to-many mapping).

3. Events can be combined by boolean expressions.

4. Events can be configured such that they start or stop an action when a certain condition
holds for its input (positive/negative edge, etc.)

5. The status of an action can be the input of another event.

We do not need any special constructs (as in [20]) in order to realize temporal operators.
Parallel execution of several actions can be achieved trivially, since one event can trigger many

3In object-oriented programming parlance, actions, events, as well as graphical objects are objects. However, in
the following we will use the term object only for graphical objects.
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Figure 11: The AEO triad. Anything that can
“happen” in a virtual environment is repre-
sented by an action. Any action can be trig-
gered by one or more events, which will get in-
put from physical devices, the scene graph, or
other actions. Note that actions are not “tied-
in” with graphical objects, and that events are

objects in their own (object-oriented) right.

Figure 12: A simulation of virtual environments
must maintain several time “variables”. Any ac-
tion can have its own action time variable, which
is derived from a global simulation time, which
in turn is derived from wall clock time. There
is a small set of actions which allow the simu-
lation to set/change each time transformation

individually.

actions. Should those actions be triggered by different events, we can couple them via another
event. Sequential execution can be achieved by connecting the two actions by an event which
starts the second action when the first one finishes. Similarly, actions can be coupled (start-to-
start or start-to-stop) with a delay.

5.2 Time

Many actions (besides navigation, simulation, and visualization) depend on time in some way.
For example, an animation or sound sample is to be played back from simulation time through
, no matter how much computation has to be done or how fast rendering is.
We maintain a global simulation time, which is derived from wall-clock time. The trans-

formation from wall-clock time to simulation time can be modified via actions (to go to slow-
motion, for example, or to do a time “jump”).
Furthermore, we keep an unlimited number of time variables. The value of each time variable

is derived from the global simulation time by an individual transformation which can be modified
by actions as well (see Figure 12).
Those times can be used as inputs to events, or to drive simulations or animations. Thus, time

can even be used to create completely “time-coded” parts of a virtual reality show.

5.3 Events

Events are probably the most important part for our world description – they can be considered
the “sensory equipment” of the actions and objects. They have the form

event-name: trigger-behavior input parameters
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where event-name is for further reference in the script. When an event “triggers” it sends a
certain message to the associated action(s), usually “switch on” or “off”.
It is important to serve a broad variety of inputs (see below), but also to provide all possible

trigger behaviors. A trigger behavior specifies when and how a change on the “input” side
actually causes an action to be executed. Let us consider first the simple example of an animation
and a keyboard button:

animation on as long as button is down,
animation switch on whenever button is pressed down,
animation switch on whenever button is released,
animation change status whenever button is pressed down,

These are just a few possibilities of input action trigger-behavior. The complete syntax of
trigger behaviors can be found in [33].
It would be possible to have the world builder “program” the trigger-behavior by using a

(quite simple) finite state machine (as in dVS, for instance [10]). However, we feel that this
would be too cumbersome, since those trigger behaviors are needed very frequently.
In addition to the basic events, events can be combined by logical expressions. This yields a

directed “event graph”. This graph is not necessarily acyclic.
Our experience shows that it is necessary to be able to activate and deactivate actions. This is

needed, for example, to enable unmounting of a part only after some screws have been removed.
This is done via a certain action, which (de-)activates other actions.

A Collection of Event Inputs

Physical input includes all kinds of buttons (keyboard, mouse, spacemouse, boom), flex and
tracker values, gestures, postures (gesture plus orientation of the hand), voice input (keyword
spotting, enhanced by a simple regular grammar, which can tolerate a certain (user-specified)
amount of “noise” words).
Geometric events are triggered by some geometric condition. Among them are virtual but-

tons, virtual menus, portals, and collisions.
Any action’s status (on or off) can trigger an event. Some actions have an action-specific

status, which can be used also.
All time variables (see above) can be the input of an event. This allows for one-shot or

cyclical triggering of actions.
Sometimes we need to “monitor” certain object attributes and issue an action when they

change, while we don’t care which action (or even other module) changed them. Attributes are
not only graphical attributes (transformation, material, wireframe, etc.), but also “interaction”
attributes, such as “grabbed”, “falling”, “constrained”, etc. Object attributes might be set by our
interaction module itself (by possibly many different actions), or by other modules.

5.4 Actions

Actions are the building blocks for “life” in a virtual environment. Anything that happens, as
well as any object properties, are specified through actions. The set of actions should be very
generic, but not too low level. If they are too low level, then building VE with them is probably
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no more efficient that using a programming language. If they are too high level, then they are
probably too specialized and cannot be used in a broad variety of applications.
Actions are usually of the form

action-name : function objects parameters options

All actions should be made as general as possible, so it should always be possible to specify a
list of objects (instead of only one). Also, objects can have any type, whenever sensible (e.g.,
assembly, geometry, light, or viewpoint node). The action-name is for later reference in the
script.
There are several cases where inconsistency has to be dealt with in a VR system. One such

case arises when several actions transform the same object. For example, we can grab an ob-
ject with our left hand while we stretch and shrink it with the other hand. The problem also
arises, when an action takes over (e.g., we scale an object after we have grabbed and moved it).
However, by implementing a standardized way of object transformation, this problem can be
solved.
Another inconsistency arises when we use levels-of-detail (LODs) in the scene graph. Since

any object can be a LOD node or a level of a LOD, any action should transparently apply changes
to all levels, so that the author of the virtual world doesn’t have to bother or know whether or
not an object name denotes an LOD node (or one of its children).

A Collection of Actions.

During our past projects, the set of actions listed below briefly has proven to be quite generic.
The scene graph can be changed by the actions load, save, delete, copy, create (box, ellipsoid,

etc.), and attach (changes scene hierarchy by rearranging subtrees).
Some actions to change object attributes are switch, wireframe, rotate, translate, scale (set

a transformation or add/multiply to it). Others change material attributes, such as color, trans-
parency, or texture.
The “grab” action first makes an object “grabbable”. Then, as soon as the hand touches it,

it will be attached to the hand. Of course, this action allows grabbing a list of sub-trees of the
scene graph (e.g., move a table when you grab its leg).
With the “stretch” action we can scale an object (or sub-tree).
A great deal of “life” in a virtual world can be created by all kinds of animations of attributes.

Our animation actions include playback of transformations, visibility, transparency (for fading),
and color from a file. The file format is flexible so that several objects and/or several attributes
can be animated simultaneously. Animations can be time-tagged, or just be played back with a
certain, possibly non-integer, speed. Animations can be absolute or relative which just adds to
the current attribute(s). This allows, for example, simple autonomous object locomotion which
is independent of the current position.
As described above, there are actions to set or change the time transformation for the time

variables.
Occasionally we want to constrain the movement of an object. It is important to be able to

switch constraints on and off at any time, which can be done by a class of constraint actions.
Several constraints on transformations of objects, including the viewpoint, have proven useful:
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1. Constrain the translation in several ways:

(a) fix one or more coordinates to a pre-defined or the current value,
(b) keep the distance to other objects (e.g., ground) to a pre-defined or the current value.

The distance is evaluated based on a direction which can be specified.

This can be used to fix the user to eye level, for terrain following, or to make the user ride
another object (an elevator, for example).

2. Constrain the orientation to a certain axis and possibly the rotation angle to a certain range.
This can be used to create doors and car hoods.

All constraints can be expressed either in world or in local coordinates. Also, all constraints
can be imposed as an interval (a door can rotate about its hinge only within a certain interval).
Interaction with those objects can be made more convenient if the deltas of the constrained
variable(s) are restricted to only increasing or decreasing values (e.g., the car hood can only be
opened but not closed).
Another constraint is the notion of walls, which is a list of objects that cannot be penetrated

by certain other objects. This is very useful to constrain the viewpoint or to make some objects
rigid and solid.
One of the most basic physical concepts is gravity, which increases “believability” of our

worlds tremendously. It has been implemented in an object property “fall”, which makes objects
fall in a certain direction and bounce off “floor objects”, which can be specified separately for
each falling object.

Object selection. There must be two possibilities for specifying lists of objects: hard-wired
and user-selected.
In entertainment applications, you probably want to specify by name the objects on which an

action operates. The advantage here is that the process of interacting with the world is “single-
pass”. The downside is inflexibility, and the writing of the interaction script might be more
cumbersome.
Alternatively, we can specify that an action should operate on the currently selected list of

objects. This is more flexible, but the actual interaction with the world consists of two passes:
first the user has to select some objects, then specify the operation.

User modules. From our experience, most applications will need some specialized features
which will be unnecessary in other applications. In order to integrate these smoothly, our VR
system offers “callback” actions. They can called right after the system is initialized, or once
per frame (the “loop” function), or triggered by an event. The return code of these callbacks can
be fed into other events, so user-provided actions can trigger other actions.
These user-provided modules are linked dynamically at run-time, which significantly reduces

turn-around time.
It is understood that all functionality of the script as well as all data structures must also be

accessible to such a module via a simple, yet complete API.
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5.5 Examples

The following example shows how the point-and-fly navigation mode can be specified.

cart pointfly dir fastrak 1 \
speed joint thumbouter \
trigger gesture pointfly

cartrev gesture pointflyback
cart speed range 0 0.8
glove fastrak 1

The hood of a car can be modeled by the following lines. This hood can be opened by just
pushing it with the index finger.

constraint rot Hood neg \
track IndexFinger3 \
axis a b to c d \
low -45 high 0 \
on when active collision Finger13 Hood

The following is an example of a library “function” to make clocks. (This assumes that the
hands of the clock turn in the local xz-plane.)

define CLOCK( LHAND, BHAND )
timer LHAND cycle 60
timer speed LHAND 1
/* rotate little hand every minute by 6 degrees in local space
*/
objattr LHAND rot add local 6 (0 1 0) time LHAND 60
/* rotate big hand every minute by 0.5 degrees in local space
*/
objattr BHAND rot add local 0.5 (0 1 0) time LHAND 60 /* define
start/stop actions */
Stop##LHAND : timer speed LHAND 0
Start##LHAND : timer speed LHAND 1

The ## is a concatenation feature of acpp. By applying the definition CLOCK to a suitable
object, we make it behave as a clock. Also, we can start or stop that clock by the actions

CLOCK( LittleHand, BigHand )
action "StartLittleHand" when activated speech "clock on"
action "StopLittleHand" when activated speech "clock off"

6 Architecture
So far, we have considered only a few of many modules a complete VR system comprises. For
sake of completeness, we will briefly give an overview of the architecture of a VR system [3].
Figure 13 shows a hierarchy of modules: at the bottom there are service modules which

are primarily concerned with I/O, such as rendering, polling of input devices, and audio feed-
back. In the middle level there are service modules implementing functionality which is vital
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Figure 13: Architecture of a VR system. At the center is the object handler which maintains the
scene graph. All modules must be able to run concurrently and asynchronously to each other,

in order to achieve a constantly high frame rate.

to many higher-level modules, such as collision detection and communication with other VR
systems. The object handler is a supremely important module, because it maintains the scene
graph. While most high-level modules keep their own module-specific, logical representations
of objects, the scene graph is still the common basis to all of them. At the top level reside
modules implementing functionality for interaction and simulation, such as navigation, object
manipulation, physical behavior, and others.
The device handler implements a device abstraction by the notion of logical devices [9], a

concept well known from GKS or PHIGS. It has proven quite practical to implement each device
server so that it can be run on a remote machine and communicate with the device handler via a
socket or other inter-process mechanism.
As stated above, virtually any non-trivial application needs some specialized functionality

which will probably not be needed by any other application. This is depicted in the figure by the
“application specific module”, which is not a statically linked part of the VR system, but instead
loaded by the VR system at run-time on demand. These modules still have full access to all data
structures of the VR system.
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A VR system must be able to sustain constantly a high frame rate (20 frames/sec or higher)
under all circumstances, in order to achieve immersion and efficiency. Even more important is
low lag, i.e., the latency between a change of the input data and a change in the output images
must be minimal at all times. Therefore, modules must not block or delay the flow of data from
the input devices to the rendered images. In order to achieve that, most modules depicted in
Figure 13 run concurrently and asynchronously.
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