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Abstract

In this paper, we present a novel, hardware-
accelerated approach to compute the visibility be-
tween surface points and directional light sources.
Thus, our method provides a first-order approxima-
tion of the rendering equation in graphics hardware.
This is done by accumulating depth tests of ver-
tex fragments as seen from a number of light direc-
tions. Our method does not need any preprocessing
of the scene elements and introduces no memory
overhead. Besides of the handling of large polygo-
nal models, it is suitable for deformable or animated
objects under time-varying high-dynamic range il-
lumination at interactive frame rates.

1 Introduction

Shadows are one of the most important visual clues
about the spatial structure of an object. E.g. for
virtual reality applications, such as life-sized cloth
visualization, or medical surgery planning, they are
important because they increase the presence of the
virtual objects and the overall realism. However,
the shadows need to be computed at interactive
frame rates, otherwise usability and presence will
break down. While local illumination models are
the strength of modern graphics hardware, more ad-
vanced techniques, which include e.g. soft shadows
and ambient occlusion, are notoriously hard to per-
form efficiently. On the other hand, recent methods
like pre-computed radiance transfer [1] enable com-
plex illumination effects at fast frame-rates, but are
limited to static objects or pre-defined animations
due to their long precomputation times.
In this paper, we present a method to efficiently
compute the visibility for many light directions for
each vertex on the GPU at interactive frame rates,
even for large models. This includes self-occlusion
as well as occlusion caused by other objects. This

Figure 1: Stanford dragon under high-dynamic range il-
lumination including ambient occlusion, which has been
computed on graphics hardware.

is done by using hardware occlusion query results
from vertex fragments as seen from a number of
light directions. All geometry in the scene can de-
form and move, and the illumination can change at
no extra cost. Thus, we can compute and render
a first-order approximation of the rendering equa-
tion [2] for opaque, polygonal objects on the graph-
ics hardware.
Our algorithm features the following advantages:
• no precomputation, no complex data structures

or special preprocessing is needed
• handles arbitrary deforming geometry
• fast hardware-accelerated occlusion calcula-

tion.
• high-dynamic range image based illumination
• easy to implement.
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2 Previous work

A vast amount of work has been done on shadow al-
gorithms. Shadow maps [3] or shadow volumes [4]
and all derivates are the classical approaches for
point-like light sources. A good overview of algo-
rithms which produce soft shadows can be found
in Hasenfratz et al. [5]. All these algorithms can-
not efficiently be used for arbitrary lighting environ-
ments. On the other hand, environment mapping as
introduced by Blinn et al. [6] is able to render reflec-
tions of incident lighting, but without shadows. Ray
tracing is capable of handling globally illuminated
scenes, but is naturally limited to the current cam-
era position, Interactive rates are only achieved in
a massive parallel environment with optimal accel-
eration structures [7, 8], which take several seconds
to build. Other theoretical work [9] on GPU-based
raytracing is not yet available in hardware. Very re-
cently there have also been approaches to solve ra-
diosity on graphics hardware [10], with interactive
rates for small scenes.
To evaluate the illumination received by a point
on the surface, there exist mainly two approaches.
The first category gathers the incoming radiance at
each surface point or vertex and scales with that
count. The hemisphere defined by the vertex nor-
mal is sampled in different ways. Either rays are
shot into predefined directions using standard ray
tracing methods, or hemicube [11] sides are ren-
dered using the standard pipeline [12]. With ray
casting, intensive intersection tests have to be cal-
culated and acceleration structures have to be main-
tained (e.g. space partitioning), whereas hemicubes
cannot yet be evaluated efficiently on the graphics
hardware. Other methods compute visibility cones
[13], blocker maps [14], obscurance maps [15, 16],
visibility maps [17] or radiance transfer [1] which
also includes inter-reflections. All these methods
require certain amounts of pre-computation time,
and are therefore not suitable for dynamic objects.
Very recent work on the topic discussed in this pa-
per was presented by Kautz et. al [18]. It is mainly
based on fast hemicube rasterization in order to de-
tect blocker triangles. Downsampling of the visibil-
ity mask and a coarser blocker mesh are used for
speed up. Interactive frame rates are achieved for
small animated models. In contrast to their work,
our method does not need a mesh hierarchy nor any
additional graphics memory during run-time.

The second category is based on the approxima-
tion of the ambient environment by point or di-
rectional light sources, which amounts to revers-
ing the first approach from ”inside-out” to ”outside-
in”. That is, the visibility computation is origi-
nated at the light sources. Lately, NVIDIA pro-
posed a hardware-accelerated 2-pass method, using
accumulated shadow maps [19, 20], which is also
used in many shaders in commercial rendering soft-
ware packages [21]. To minimize sampling arti-
facts, jittering of the depth maps was introduced.
This approach involves common shadow mapping
projection problems [22]. To achieve usable results,
several seconds per frame are needed. Changing
to a new viewpoint requires new shadow mapping
passes or an unwrapping process to obtain an oc-
cludence texture. Superimposing images was also
done by Keller et al. [23] to compute instant ra-
diosity. This also requires space-partitioning struc-
tures.

3 Ambient occlusion calculation

In this section, we will present the core of our new
method. In the following, a triangle mesh with ver-
tex normals is given. To compute the outgoing ra-
diance Lr at a surface point x into direction v we
have to compute:

Lr(x,v) =

Z
Ω

fr(x,v, l)Li(x, l)V (x, l)(nx · l)dl

where Ω is the hemisphere domain over x, fr the
BRDF, Li the incident radiance from direction l,
V (x, l) the visibility from x to direction l and nx

the vertex normal at x. We discretize the integral by
k light directions lj , j ∈ [1, . . . , k], which leads to

Lr(x,v) ≈
kX

j=1

fr(x,v, lj)Li(x, lj)V (x, lj)(nx · lj)

We now concentrate on the efficient computation
of the term Li(x, lj)V (x, lj)(nx · lj).

3.1 Overview

Our method relies on depth test results from ren-
derings of the desired object. We approach the
problem of light direction visibility for each vertex
by considering a set of k directional light sources
lj and determine the visibility of all N vertices at
once as seen from each of the light source direc-
tions. Because the number of light source directions
k is much smaller than the number of vertices N
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for large models, the ”outside-in” approach is much
more efficient, than the ”inside-out” approach, that
is, a much smaller number of render passes, k in-
stead of N , of the object into the depth buffer is
needed.
More precisely, we render all geometry as seen from
a light source direction into the depth buffer. Then,
all vertices are rendered again as a point set. An in-
dividual occlusion query per vertex allows us to re-
trieve those vertices that passed the depth test. For
these, the currently considered light source direc-
tion is marked as visible and stored in a matrix M ,
which we call visibility matrix. We repeat this pro-
cess for each light source, updating the appropriate
entries in M .

3.2 Visibility matrix computation

Our method makes heavy use of the OpenGL ex-
tension ARB OCCLUSION QUERY [24] . The
purpose of this extension is to deliver the num-
ber of fragments that passed both depth and
stencil test. In contrast to its predecessor
HP OCCLUSION QUERY it is asynchronous, i.e.
it does not use a ”stop-and-wait” execution model
for using multiple queries. This allows applications
to issue many occlusion queries before asking for
the result of any one. As mentioned above, in the
first pass, the unlit scene is rendered into the depth
buffer from one of the light source directions. We
do this in orthographic projection mode. In the sec-
ond pass, all vertices are rendered as glPoints with
size 1, without updating the depth buffer. An off-
set (glPolygonOffset) with default values (1.0, 1.0)
is used to avoid rounding issues. Each single vertex
i ∈ N is handled by an individual occlusion query
and the visibility matrix M , which stores visibility
information for each vertex i to the light direction
lj , is updated for all j. For later performance, we
do not store a boolean visibility bit, but instead the
dot product computed from the vertex normal ni

and the vector defined by the light source direction
lj if the vertex is visible from that direction. lj is
computed once for each virtual light source direc-
tion. Therefore we obtain:

Mij =


ni · lj : vertex visible

0 : vertex invisible

Figure 2 gives an overview of the core algorithm as
pseudo-code.

enable orthographic projection
disable framebuffer
for all light directions j do

set camera at light direction lj
render object into depth buffer with polygon offset
for all vertices i do

begin query i
render vertex i
end query i

end for
for all vertices i do

retrieve result from query i
if result is ”visible” then

Mij = ni · lj
end if

end for
end for

Figure 2: Outline of the core algorithm for visibility
matrix calculation.

Figure 3: Simplified data flow of our approach.

3.3 Rendering

After Mij has been computed, the final color ci for
each vertex i can be computed as:

ci =

kX
j=1

MijIj

where Ij is the 3-component (RGB) color of the
light coming from direction lj . Figure 3 shows a
simplified data flow of our approach. Note, that nei-
ther Mij nor Ij change, if the viewpoint is changed.

3.4 Creating the lightsphere

To approximate ambient occlusion with single di-
rectional light sources, we have to distribute k light
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directions. Each light direction is represented by a
point on the unit sphere. We seek a distribution of
points on the sphere satisfying the following con-
ditions. The visibility computation should be done
only once and the illumination environment should
be changeable without doing new queries (see Sec-
tion 5). Furthermore, to allow an easy increase of
the number of light directions, already computed
parts of M should be re-usable. Therefore, the dis-
tribution should equally sample the the environment
in all directions. Recent approaches like [25, 26]
which do an efficient sampling of the environment
map are not easily adaptable for our method. They
need seconds to minutes of preprocessing time to
reduce the number of light directions, therefore
would not allow interactive change of the lighting
environment. For equal distribution of points on
a sphere, several methods exist [27–29]. We pro-
pose the following preprocessing procedure, based
on subdivision of a regular solid. We start with
the vertices of a unit octahedron, i.e. k = 6 light
directions at subdivision level s = 0. To gener-
ate level s + 1, we do midpoint subdivision of the
edges on level s and project the new vertices on the
unit sphere, thus creating a polyhedron with 2 ·4s+1

faces and 2+4s+1 vertices. This structure allows us
to add new sets of well distributed points, while us-
ing the occlusion queries of all coarser subdivision
levels. Figure 5 shows several increasing configura-
tions.

4 Optimizations

Whenever the object is moved or deformed, that
is when vertex positions change, we need a com-
plete re-computation of M . In the following, we
will present several methods that significantly re-
duce that effort, so that we can maintain interactive
frame rates even under these circumstances. Even
for static geometry, depending on the viewpoint, not
all vertices must be evaluated.

4.1 Vertex filtering using temporal coher-
ence

The first optimization exploits temporal coherence
by observing that during a viewpoint change only
a small number of polygons become visible for the
first time (at most those that cross the object silhou-
ette). Consequently, we can compute the visibility

Figure 4: Vertex filtering optimization for the computa-
tion of M has to be done carefully, otherwise artifacts will
occur (middle). Left: wireframe; right: correct rendering.

matrix M lazily, thereby distributing the computa-
tion effort over several frames. More precisely, we
maintain two lists of triangles: a list of ”unseen” tri-
angles, U , containing all triangles that have not yet
been visible and a list T (”todo”), containing trian-
gles that will be seen in the next frame for the first
time. U is initialized with all vertices once. Vertices
which belong to triangles stored in U have not yet
been visible from the camera so far. Thus, we do
not need their occlusion with respect to the light di-
rections. Vertices which belong to triangles which
are stored in T have to be processed for the next
frame, because these triangles will then be visible.
Using the two lists, in each frame we need to deter-
mine the occlusion only for a small fraction of ver-
tices (see also Figure 3). In order to compute list T ,
we perform an algorithm similar to the one in Sec-
tion 3, except that here we render triangles in the
second pass and use perspective projection. More
precisely, in the first pass, we render the unlit mesh
into the depth buffer as seen from the new camera
position. In the second pass, we render only the tri-
angles still in list U , each with its own occlusion
query (again with offset and without depth buffer
update). Obviously, when U contains less triangles
than a certain threshold, we do not gain any perfor-
mance any more. In that case, we just add all trian-
gles from U to T and skip this optimization in the
remaining frames. Note that for this optimization
we need to consider triangles, not vertices. Other-
wise, artifacts could occur, because a triangle might
be visible although one of its vertices is not, and
thus its corresponding value in M has not yet been
computed. This is illustrated in Figure 4. In Section
7, we discuss the performance gains introduced by
this optimization.
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Figure 5: Object rendered with different number of light directions (k=6, 18, 66, 258). The upper row shows the
lightsphere configurations, where the yellow dots represent the light directions.

4.2 Changing the Lightsphere configura-
tion

A further optimization is to dynamically change the
lightsphere configuration. While the scene is ani-
mated or objects are deformed, we can decrease the
number of light directions. In idle time, in order
to converge to the exact solution, we increase that
count as shown in the upper row in Figure 5. Note,
that if the number k is too small, under-sampling ar-
tifacts (left bunny) can occur depending on the used
environment. In our experience a level of s = 3
and often even level s = 2 produces reasonable re-
sults. The algorithm allows user control through the
choice of a desired frame rate or a certain configu-
ration.

5 Image Based Illumination

In this section, the core algorithm is extended to
incorporate image-based illumination [30–32], us-
ing high- dynamic range environment maps [33,34].
Similar to other approaches [35–37] we pre-filter
the environment. Therefore, we use HDRshop [38]
to generate a latitude-longitude lookup map out of
a cube map and apply gaussian blur as a filter as
shown in Figure 6. The black dots on the right im-
age are the projected light directions. We now have
the environment parameterized with (θ, φ), with the
angle θ ∈ [0, π] and φ ∈ [0, 2π], which is also
known as Mercator projection. Thus, we can easily
look-up the intensity from the light coming out of

=⇒

Figure 6: Illumination information stored in a high-
dynamic range environment cube-map (left) and filtered
version in latitude-longitude representation (right) with
projected light source positions (black dots).

the light direction lj . When the environment map is
rotated relative to the object, the light directions are
multiplied by the same rotation matrix to obtain the
new look-up positions. We apply standard gamma
correction to all vertex color values.

6 Dynamic Geometry and Animations

It should be obvious by now, that in an environ-
ment with a single object, a rigid transformation
can be handled quite efficiently: a translation can
be ignored, while a rotation just amounts to an addi-
tional matrix multiplication before the look-up into
the visibility matrix. If there are several objects
changing positions relative to each other or an ob-
ject changes shape, than the complete visibility ma-
trix M needs to be re-computed. However, this
can still be done at interactive frame rates, because
our algorithm does not need any spatial accelera-
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tion structures. We only need to the re-initialize list
U (Section 4) and update the vertex arrays for the
objects. Figure 7 shows sample key frames of an
animation of a skeleton running at interactive frame
rates, while changing the viewpoint and the light-
ing environment. In each frame, M is re-computed
according to Figure 3.

7 Results and discussion

This section presents performance measurements
of our new algorithm, which was run on an AMD
Athlon64 3200+ (2.0 GHz) under Windows 2000
and an ATI Radeon 9800 XT using OpenGL 1.5.
All images and videos were rendered at a resolu-
tion of 1280 × 960 pixels. This paper is also ac-
companied by a video. As for the rendering results,
we have chosen to render all our objects without
textures to make the visual effects of our algorithm
more evident. As a matter of course, our method
can be combined very easily with texturing or stan-
dard shadow mapping techniques [3, 22], in order
to handle point light sources as well. The left im-
age on Figure 8 shows, that our method is also fea-
sible to render large objects for medical visualiza-
tion. The teeth object consists of 116k vertices. De-
tailed surface structures are visible. The middle and
right image in Figure 8 show several objects that
occlude each other from light directions, which is
handled correctly by our method. The bunny be-
tween the dragons is much darker, due to the occlu-
sion. Figure 9 shows a comparison of our method
with OpenGL Phong lighting and a ray-traced im-
age, in a high-dynamic range illumination environ-
ment. To achieve the same visual quality 500 sam-
ples/ray were needed and it took over half an hour
compared to under 1 minute using the new method.
The venus object consists out of 134k vertices. The
slight color shift is due to the slightly different ex-
posures and environment orientations.
Table 1 gives an overview over the computation
time of the visibility matrix (time1) in milliseconds
for several different objects and light directions k.
If the vertex filtering (time2) is enabled, the calcula-
tion performance is drastically increased. FPS1 and
FPS2 show the frame rates in Hertz with and with-
out the vertex filtering optimization, when the ob-
jects are rendered. We achieve real-time frame rates
(> 30Hz) for static objects and interactive rates for
the skeleton and pair of trousers animation.

object vertices k time1 time2 FPS1 FPS2

(msec) (msec) (Hz) (Hz)
bunny 35k 6 445 339
static 18 1082 797

66 3606 2666
258 13715 10373

1026 60304 39765
teeth 116k 6 1495 1257
static 18 3651 3041

66 12243 10290
258 46482 38976

skeleton 8325 6 133 113 8.08 8.85
animation 18 337 245 3.66 4.10

66 937 740 1.14 1.35
258 3301 2472 0.30 0.40

trousers 3219 6 49 34 18.85 22.75
animation 18 103 66 9.23 12.80

66 330 222 3.03 4.63
258 1217 811 0.82 1.35

Table 1: Computation times (time) for the visibility ma-
trix for static objects and animations with different light-
sphere configurations (k) and frame rates (FPS) when ren-
dered. Times with 1 are without and 2 with vertex filtering
enabled. See text for details.

8 Conclusions

We have presented a new method to calculate
vertex-light direction visibility, thus providing a
first-order approximation of the rendering equa-
tion. This is done by sampling the environment
by several directional light sources and efficiently
computing vertex visibility from these light direc-
tions using hardware-accelerated occlusion queries.
In conjunction with vertex filtering optimization,
we are able to handle deformable objects and an-
imations at interactive frame rates. The proposed
method also allows the usage of image based illu-
mination stored in filtered high-dynamic environ-
ment maps. The algorithm drastically reduces vis-
ibility calculation times and might be incorporated
in other visibility determination problems. Because
the method is vertex based, artifacts may occur due
to undersampling, which is, of course, true for all
vertex-based approaches.

8.1 Future Work

As a drawback, the proposed method has to store
the visibility list M on the CPU, because the query
result is always sent back from the graphics card. It
would be a great performance increase, if this result
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would be available directly on the GPU on future
hardware. Additional speed-up could be achieved
by allowing parallel query updates through seg-
mented result buffers. To achieve real-time frame
rates for an animation or as a general speed-up, we
want to implement our algorithm in a parallel envi-
ronment.
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Figure 7: Sample key frames of the skeleton animation running at interactive frame rates. A lot of self-
shadowing occurs among the bones.

Figure 8: Left image: Large object teeth (116k vertices) rendered using our new algorithm under ho-
mogeneous white illumination. Middle and right images: Scene with several objects, rendered under
high-dynamic range or homogenous white illumination. Note the darker bunny between the dragons.

Figure 9: Comparison between different rendering methods of the venus object (134k vertices). From left
to right: wireframe, OpenGL Lighting, under HDR illumination with our new algorithm and raytraced.
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