
Fast, Accurate and Robust Registration of Multiple Depth Sensors Without Need for
RGB and IR Images

Andre Mühlenbrock, Roland Fischer, Christoph Schröder-Dering, René Weller and Gabriel Zachmann
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Abstract—Registration is an essential prerequisite for many
applications when a multiple-camera setup is used. Due to the
noise in depth images, registration procedures for depth sensors
frequently rely on the detection of a target object in the color or
infrared image. However, this prohibits use cases where neither
method is available or there is no mapping between the pixels
of the color, infrared and depth images, e.g. due to separate
sensors or different projections.

We present our novel registration method that requires only
the point cloud resulting from the depth image of each camera.
For feature detection, we propose a combination of a custom-
designed 3D registration target and an algorithm that is able
to reliably detect that target and its features in noisy point
clouds. Our evaluation indicates that our lattice detection is
very robust (with a precision of more than 0.99) and very
fast (on average about 20 ms with a single core). We have
also compared our registration method with known methods:
Our registration method achieves an accuracy of 1.6 mm at a
distance of 2 m using only the noise depth image, while the most
accurate registration method achieves an accuracy of 0.7 mm
requiring both the infrared and depth image.

Keywords-Point clouds; registration; extrinsic calibration;
depth sensors;

I. INTRODUCTION

Depth sensors (e.g., ToF cameras and LiDAR sensors)
are widely used in research and industrial applications
thanks to the variety of available and affordable products.
These sensors are often utilized in telepresence and robotic
applications for tasks such as 3D reconstruction, SLAM, or
object recognition. In order to cover large spaces or to avoid
occlusion, multiple cameras are used. In these cases, the
sensors must be calibrated intrinsically (individually) and
extrinsically (to each other) to obtain a common point cloud.

For multi-camera calibration and registration, the classical
approach is based on feature detection on flat checkerboards
since those features can be detected reliably and accurately
in color and infrared images. The first step is to detect the
checkerboard itself; then, the inner corners can be extracted
using known corner detectors (e.g., [1]), which serve as
point correspondences. Using these correspondences, a rigid
transformation between different sensors is computed. This
approach has been improved continuously (e.g., [2], [3]) and
generally leads to robust and accurate results.

However, this method is not always applicable, for ex-
ample, when infrared or color images are not available. In
addition, Reyes-Aviles et al. [4] reported that, depending on
the camera model, the infrared images and the corresponding
depth images may have different projections (which they ob-
served, for example, with different Orbbec RGB-D sensors)
which leads to errors when infrared images are used for
registration. On the other hand, if registration is performed
directly on depth images or point clouds, the problem of
inherently noisy depth data arises, making accurate feature
detection difficult [5].

Our registration procedure, which we present here, re-
quires only 3D point clouds obtained from depth images
(no color or infrared data needed), works independently of
scene brightness, can register both sensors facing in the same
direction and opposing depth sensors, and is very easy and
quick to perform. At the same time, we achieve excellent
results in our evaluations with the Microsoft Azure Kinect,
which are:
• low registration errors (avg. 1.6 mm at 2 m distance),
• robust target detection (PPV > 0.99),
• fast target detection (avg. 20 ms).
We accomplish this by using a custom-designed lattice-

like 3D registration target that can be easily replicated and a
pipeline designed to detect the target’s features accurately in
noisy depth images. Our implementation is available both as
a self-contained small C++ library and as an Unreal Engine
4 plugin with a sample project, which also allows registering
the depth sensors into a virtual world.

This paper is an extension of our CW 2021 paper [6].
In addition to a more detailed explanation of the algorithm
and evaluation, we present a new experimental setup and
perform an evaluation in which we compare the accuracy
of our registration method to commonly known registration
methods (see Section IV-A). Furthermore, we supplement
this paper with a new small C++ library, which allows the
use of our registration procedure in other software projects.

II. RELATED WORK

As mentioned earlier, the calibration and registration of
depth sensors is usually done via the accompanying IR or
RGB sensor images: Macknojia et al. [7] synchronously



captured a checkerboard in the color and IR images of a
Kinect for extrinsic calibration between RGB and depth
sensors. Registration (or extrinsic calibration) between mul-
tiple Kinect cameras was similarly performed using the
respective IR images. Chen et al. [8] captured a checker-
board in the color and IR images for homography-based
calibration, while Darwish et al. [9] tracked two orthogonal
checkerboards and aimed to improve depth accuracy.

In other publications, e.g. [10], [11] and [12], the use of
the checkerboard approach is also described, but external
optical tracking systems were added for depth correction
and registration of multiple cameras in a common coordinate
system, respectively. Although in this case the viewing areas
of the cameras do not need to overlap, the need for a tracking
system is a major limitation.

Herrera et al. [13] proposed a calibration approach that
works directly in the depth image by detecting the outer
corners of the checkerboard through a time-consuming
manual selection. Reyes-Aviles et al. [4] proposed using a
3D checkerboard as a calibration target and a method that
includes normal estimation, edge detection, and thresholding
to detect it in the depth image. The registration method
proposed by Song et al. [5] is based on a special checker-
board with regularly spaced hollow squares. Depth variations
are handled by a model-based approach that considers the
centers of the holes. Some works such as [14], [15] have
replaced checkerboard-like registration targets with static
marker-free 3D objects with known or previously scanned
geometry, e.g., a stack of boxes that can be detected in
depth images or point clouds. Furthermore, spherical targets
have also been presented for camera calibration (e.g. [16],
[17]) and registration in multiple-camera setup (e.g. [18]), in
which the target was detected in the RGB image using ellipse
fitting and in the depth image using background subtraction
or a spherical area detection and sphere fitting of the point
cloud.

Another popular approach is to perform a target-less
registration directly on the 3D point clouds of the sur-
rounding 3D scene obtained from multiple depth cameras.
The most well-known algorithm is Iterative Closest Points
(ICP), which alternatively searches for the closest point-to-
point correspondences and an optimal rigid transformation.
However, its main drawback is the tendency to converge
to a local minimum and, therefore, its high dependency on
good initial guesses [19]. Numerous variants were proposed
in order to improve the convergence [20], the computational
speed [21] and the robustness to noise [22]. Typical global
methods for 3D registration are based on feature matching
(including detection and description) and transformation
via RANSAC. Generally, these methods tend to be less
precise and, depending on the number of outliers, more
time-consuming [23]. A major problem with target-less
registration occurs when the point clouds do not overlap
completely or only slightly. Different recent approaches try

Figure 1: Left: photo of our lattice with 25 holes. Right: two
point clouds registered using our method.

to obtain a registration even in these cases, e.g. [24] and
[25]. However, if there is no overlap of the scene at all, e.g.
because depth sensors are facing each other, these target-less
methods are not applicable.

III. OUR APPROACH

We designed a lattice-like 3D target and developed a
lattice detection algorithm that allows for quick and easy
registration (extrinsic calibration) of multiple depth sensors.
Our lattice-like 3D target (see Fig. 1) consists of 12 bars
of size 44 cm x 4 cm x 0.2 cm, available in a common DIY
store. By leaving 4 cm of space between the bars in the
vertical and horizontal directions, 25 holes of size 4 cm x
4 cm are created that can be detected in the point cloud
generated by depth sensors.

To perform the registration, the lattice has to be moved
in the field of view of the depth sensors for a few seconds,
while our lattice detection algorithm detects up to 25 point
correspondences per frame for all depth sensors. Based
on these point correspondences of multiple frames, we
determine a rigid transformation matrix that describes the
transformation of the sensors with respect to each other.

The major challenge in classical camera registration is the
correct and accurate recognition of feature points. Since we
only use depth data and no RGB or IR data, we cannot easily
reuse the image-based recognition algorithms.

In the following, we present a novel approach that is fast
and easy to implement while still achieving robust results.
The detection of the lattice consists of the following steps:

1) Identification of plausible lattice candidates.
2) Detection of hole centers.
3) Identification of the center and axes of the lattice and

outlier removal among hole centers.
4) Correspondence mapping.
5) Correspondence rejection.
6) SVD-based transformation estimation.
In the following, we will explain the individual steps of

the lattice detection. Note that our algorithm expects an array
of 3D coordinates as input — i.e. a point cloud — that is
available in scanline order of the original depth image.



(a) Point Cloud (b) Gaps found along scanlines

(c) Clusters of gap segments (d) Plausible clusters

Figure 2: The steps in which we identify lattice candidates.

A. Lattice Candidates

Initially, we are given a point cloud in scanline order from
the depth image, without indication as to whether a lattice
is visible and where the lattice is located. To obtain clues
as to where lattices might be located in the point cloud,
we exploit the property that the lattice has many regularly
spaced holes that result in many gaps in scanline order.

So, in the first step, we search for gaps along the scanlines
which correspond to the regular geometry of the lattice
(see Fig. 2). We do this by segmenting individual scanlines
based on the Euclidean distance between neighboring points.
Scanline segments that are at most as long as the diagonal
of a hole and that are surrounded by two scanline segments
of plausible length are identified as gap segments.

Now we have many individual segments lying along
individual scanlines, each of which could be within a hole
of the lattice. However, since we want to find a section of
the point cloud that fully encloses the lattice, we cluster
all gap segments using their Virtual Gap Centers 1 based
on their proximity to each other. Using PCA, we calculate
eigenvectors and eigenvalues for each cluster. Based on the
proportions of the eigenvalues, we can efficiently discard
clusters that obviously cannot represent lattice candidates:
due to the symmetric structure of the lattice, we expect the

1Since gap segments lie in holes of the lattice where the lattice has no
geometry, the corresponding 3D points of the gap segment may lie behind
the lattice or be invalid. So, to calculate 3D coordinates of the gap segments
that lie on the plane of the lattice, we calculate a Virtual Gap Center for
each gap segment by averaging two 3D points that lie directly to the left
and the right of the gap segment since these are 3D points of the lattice’s
geometry. This resulting Virtual Gap Center (a) is located in the center of
the gap segment in image space and (b) lies approximately on the lattice’s
plane in 3D space.

(a) Before filtering (b) After filtering

Figure 3: Side view of the lattice in the point cloud (blue)
before and after filtering noise (e.g. due to the flying pixel
effect). This is done by fitting a plane (black) via RANSAC
into these points, then culling points by thresholding.

first two eigenvalues to be similar in size, while the third
eigenvector is many times smaller (we use a factor of 10 as
the threshold), since the lattice is flat. All remaining clusters
of gap segments are considered as lattice candidates.

B. Hole Center Detection

Using the clusters left over from the previous step, we now
know areas where a lattice may be located. In this step, we
try to identify the exact hole centers of the lattice for each
area found and discard lattice candidates that turn out to be
implausible in the following.

We first determine all 3D points that potentially belong
to the physical lattice due to their proximity to the gap
segments using their Virtual Gap Centers (see footnote 1).
A point is considered a lattice point if it is within a certain
radius to at least one Virtual Gap Center (we use r = 0.16m
to completely cover the lattice in case some holes were
missed in the previous step).

To effectively filter out the noise that typically occurs with
depth sensors (e.g., due to the flying pixel effect), we use
RANSAC [26] to fit a plane to the point cloud section and
define all points closer than a certain threshold to the plane
as lattice points (see Fig. 3). We store the indices of these
lattice points in an inlier set. All remaining points are defined
as outliers.

To identify the holes of the lattice, we again iterate over all
scanlines of the input point cloud, each from the first inlier to
the last inlier. We create segments similar to Section III-A
but this time we create segments of lattice points (which
are contained in the inlier set defined above) and segments
of outliers. All outlier segments, which are enclosed by
inlier segments are assumed to be a part of a hole. Since
we have only iterated over the horizontal scanlines so far
and thus only have horizontal segments, we now vertically
join adjacent outlier segments if they overlap horizontally to
obtain one segment for each hole of the lattice. This vertical
joining of the horizontally running outlier segments is done
efficiently using the union-find structure.

The remaining and joined outlier segments represent the
individual holes. However, since the points of these joined
outlier segments do not lie in the plane of the lattice, we
consider the directly adjacent inlier points in each scanline



Figure 4: A hole of the lattice in image space. The red line
visualizes the separation of both segments. The dark blue
points are those 3D inlier points used to calculate the hole
center by averaging them and projecting the average onto
the estimated plane in which the lattice is located.

(see Fig. 4), project them onto the earlier fitted plane and
use their average as hole centers.

C. Axes Detection and Outlier Removal
For each lattice candidate, we have found a set H of hole

center candidates. However, there may be still incorrectly
identified hole centers and additionally, we need correspon-
dence points between multiple sensors, i.e. we have to match
the found hole centers of different sensors.

For this purpose, we have developed a heuristic that can
recognize the axes of the lattice based on the potential hole
centers and that can cope even with quite noisy data. This
heuristic works as follows:

1) Given the set of all found hole centers H , we now
define the following set V of vectors:

V = {n−m | d−δ < dist(m,n) < d+δ, m, n ∈ H},
(1)

where d = hole spacing and δ is a tolerance (in our case
d = 8 cm and δ = 2 cm which represents the geometry
of our lattice). These vectors can be interpreted as
edges between the hole centers. Together, they form
a proximity graph (see Fig. 5).

2) Sort the vectors v ∈ V by their angle α they subtend
with the x-axis:

α(v) =

{
atan2(vy, vx) if atan2(vy, vx) ≥ 0

atan2(vy, vx) + π otherwise
(2)

3) Cluster these vectors based on their angle α. As can
be seen in Fig. 5, this results in two very large clusters
(color-coded by the violet and green edges) as well
as several other very small clusters. Thinking of these
vectors as edges of a proximity graph, we define the set
of all “good” edges in one of those two largest clusters
as G and the set of all “bad” edges in the remaining
small clusters as B.

4) For each hole center h ∈ H we now consider its
incident edges E(h) and remove hole centers based

Figure 5: Visualization of our heuristic that can filter incor-
rectly detected hole centers (gray) and detect directions of x
and y axes. In this example, the red and gray colored points
where detected as hole centers previously.

on the number of incident “good” edges and incident
“bad” edges, leaving the following set:

Hfiltered = {h | #EG(h) > #EB(h), h ∈ H}, (3)

where EG(h) = E(h)∩G and EB(h) = E(h)∩B. This
way, we very reliably remove incorrect hole centers.

5) Using the remaining hole centers Hfiltered, we look for
the hole center candidate h∗ ∈ H that is closest to the
average:

h′ =
1

|H|
∑
hi∈H

hi, (4)

The h∗ closest to this h′ will be considered the center
of the lattice.

6) By selecting the median vector in both the largest
clusters, we get two very stable vectors which points
along the x-axis and the y-axis (see Fig. 5).

7) At this point, we do not know which of the two vectors
represents the x-axis and which the y-axis as well as
their signs. To resolve this ambiguity, we consider the
points of the point cloud surrounding the lattice: these
are usually the points of the hand and arms holding
the lattice. So, we calculate a vector from h∗ to the
center of these hand points and flip both the previous
found vectors and assign them so that the x-axis always
points in the direction of the hands. Let us assume for
the moment that always the front side of the lattice is
visible in the depth image: Then we can set the plane
normal found by RANSAC as the z-axis, which then
determines the y-axis.

If we find that the two vectors we determined in step (6) are
not roughly orthogonal, or #Hfiltered is too small, we discard
this candidate, since it is more likely not to be the lattice in
this case. Using this heuristic and making the preliminary
assumption that the lattice is always visible from the front,
we were able to determine the center and axes of the lattice
as well as remove incorrect hole centers.

D. Point Correspondences

Generally, it would be possible to use only the centers of
the lattice across multiple sensors as point correspondences



over multiple frames. However, the more point correspon-
dences are used over a large space, the more accurate and
stable the registration is expected to become. Therefore, it
is desirable to use all the hole centers instead of just the
center one. By using all found hole centers, we get up to
25 times more point correspondences over a larger space.
This also considerably reduces the time needed to perform
a registration.

However, since we still lack the information on whether
the lattice in the original depth image is seen from the
front or the back, we cannot yet establish a clear mapping
of hole centers between multiple sensors. Therefore, we
first perform a less precise registration with only two point
correspondences per frame, namely (a) the lattice center as
well as (b) the lattice center shifted in the direction of the
x-axis, since the x-axis always points in the direction of
the hands. After that rough registration, we can transform
the z-axis vector of the lattice seen in sensor A into the
coordinate system of sensor B and use z′B = ±zB as z-axis
and y′B = ±yB as y-axis (since we created the y-axis using
the z-axis), depending on which sign gives the dot product
zA · zB . In this way, we have resolved the ambiguity of the
lattice side and ensure that lattices visible from the same
side in different cameras have the same sign.

E. Correspondence Rejection and Registration

Up to this point, we have found point correspondences for
which the 3D coordinates in the camera space of multiple
sensors are known. However, since our lattice detection
is not completely immune to errors, very rare errors in
the point correspondences are possible. To ensure that in
these cases the accuracy of the registration is not affected,
we filter the point correspondences using the RANSAC-
based correspondence rejection of the Point Cloud Library
(PCL) [27]. Finally, we perform registration with the remain-
ing point correspondences using SVD-based transformation
estimation implemented by the PCL [27].

IV. RESULTS

To investigate the accuracy, reliability, and runtime per-
formance2 of our registration procedure, we designed and
conducted several experiments, which we present in this
section. In all experiments, the Microsoft Azure Kinect was
used as depth sensor. The following is a list of experiments
we conducted, whereby experiments A and B are related to
the whole registration procedure, and experiments C, D and
E refer to the lattice detection in particular:

2Note that in terms of runtime, the lattice detection is the crucial part,
because the lattice detection has to be executed for each sensor and for
each frame compared to the rest of the pipeline, which is executed only
once. The runtime for the rest of the pipeline is on the order of a couple
of milliseconds including the correspondence rejection and SVD-based
transformation estimation which is almost negligible when using many
frames.

A Accuracy Measurement and Comparison: We
present an experimental setup that allows for very
accurate determination of the distance error of a point
as well as an angular error between two registered depth
sensors. We compare our lattice-based registration pro-
cedure with three variants of the well-known checker-
board registration procedure. Both depth sensors were
synchronized in time, so that two matched frames were
always recorded with a time offset of exactly 160µs.

B Common Coordinate System Registration: We reg-
ister a depth sensor into a ground truth coordinate
system given by Optitrack, a high precision optical
tracking system. The pose of the lattice is tracked both
by Optitrack and by the depth sensor. The purpose of
this experiment is also to determine the accuracy of
the registration procedure, but in a different application
– namely, the registration of a depth sensor with a
third system. Major differences to experiment A are
that (a) only the lattice center is taken as the point
correspondence instead of all hole centers, since Op-
titrack isn’t able to detect these, (b) there is no exact
time synchronization of the frames between the two
systems, and (c) the error is determined not only over
one very accurate correspondence point, but over many
correspondence points in a larger volume.

C Rotational Robustness: In this experiment, we rotate
the lattice while its center position is fixed. This allows
us to determine the minimum angle at which the lattice
is still detected by our method and to detect possible
systematic errors that depend on the angle of rotation.
In this way, we can estimate whether our registration
procedure is reliable in all situations (e.g., when the
angle between the direction vectors of both depth
sensors is very large) and whether higher errors can
possibly be expected there than those we obtain in
Experiments A and B.

D Runtime Performance: We investigate the runtime
performance of the lattice detection depending on the
lattice distance since the lattice detection takes by far
the largest part of the runtime (see footnote 2).

E Precision and Recall: The reliability of our registration
method essentially depends on how reliably the lattice,
including its hole centers, is found. Therefore, in this
experiment, for three different scenarios, we look at
how often the lattice was correctly detected when our
algorithm detected something (Precision) and how often
the lattice was correctly detected when a lattice should
have been visible (Recall).

A. Accuracy Measurement and Comparison

With this experiment, we examine the accuracy of our
lattice registration procedure and compare it to the accuracy
of conventional checkerboard registration procedures.

The following registration procedures are evaluated:



(a) Lattice Recording (b) Checkerboard
Recording

(c) Evaluation Recoding

Figure 6: Setup of the recordings made per run. In each
of the 10 runs, we recorded (a) the moving lattice, (b)
the moving checkerboard, and (c) the static whiteboard
with a checkerboard in the center. The whiteboard in (c)
was always located approximately in the middle of the
registration volume (Reg. Volume) and on average about 2
meters away from the sensors.

• Checkerboard (RGB): We capture a moving checker-
board (with 8x8 inner corners) in the RGB image,
detect its corners with OpenCV’s checkerboard corner
detection by Duda et al. [3] in image space, and then we
use OpenCV’s stereoCalibrate function [28] to obtain
a registration for the RGB sensors.

• Checkerboard (IR): We capture a moving checkerboard
(with 8x8 inner corners) in the infrared image, detect its
corners with OpenCV’s checkerboard corner detection
by Duda et al. [3] in image space and then we use
OpenCV’s stereoCalibrate function [28] to obtain a
registration for the infrared/depth sensors.

• Checkerboard (IR+D): We capture a moving checker-
board (with 8x8 inner corners) in the infrared image,
detect its corners with OpenCV’s checkerboard corner
detection by Duda et al. [3] in image space, use the
corresponding 3D points by the depth image, and apply
the correspondence rejection and SVD-based transfor-
mation estimation implemented in PCL [27], which is
also used by our method.

• Lattice (D): We capture a moving lattice in the point
cloud given by the depth image, detect it using our
lattice detection and perform registration which is based
on the correspondence rejection and SVD-based trans-
formation estimation implemented in PCL [27].

Note that the first three checkerboard registration methods
(RGB, IR and IR+D ) are well-known approaches in the
community that we compare to our lattice-based registration
(D ).

Our experiment consists of 10 runs, for each of which
we make (a) a recording with a moving lattice target, (b)
a recording with a moving checkerboard target, and (c) a
recording of a stationary whiteboard with a checkerboard

(a) Smoothed point cloud of the
checkerboard glued onto the white-
board

(b) Points used for plane fitting

Figure 7: Uneven-perceived surface and plane fitting. In (a),
the uneven-perceived surface of the checkerboard is visible.
In (b), the area of points of the whiteboard (white) which
we considered for plane fitting is shown.

pattern at its center (see Fig. 6). In each run, recordings (a)
and recording (b) are used to perform a registration while
recording (c) is an evaluation recording used to determine
a point correspondence between the cameras’ coordinate
systems very precisely for distance error measurement. After
each run, we slightly changed the position and orientation
of both Azure Kinects to get a bit of variation while
maintaining a distance of approximately 1.5 – 2.5 m to
the center of the registration volume. Furthermore, we
alternated the order whether the lattice recording (a) or
the checkerboard recording (b) was done first. Both Azure
Kinects were synchronized in time to avoid errors caused by
a larger location offset of the registration target in the same
frame of different sensors. However, to avoid interference
between multiple Azure Kinects, the second Azure Kinect
was delayed by 160µs as recommended by the manufacturer,
which is negligible regarding the expected error.

To obtain a point correspondence for error measurement
in recording (c), which is needed to determine the distance
error, we proceed as follows:

1) We detect the checkerboard pattern glued to the white-
board using OpenCV’s checkerboard corner detection
in the infrared image. According to [3], this yields
subpixel accuracy.

2) Since, in the case of the Azure Kinect, the projections
and sensors that generate the depth and IR image are
identical, for each corner in the IR image, we obtain
the 3D points of all corners, and average over all 3D
corner points to get a mid point of the checkerboard.

3) While the 3D mid point is assumed to be very precise
along the axes in image space, there may be small
deviations along the depth axis due to the alternating
colors of the checkerboard fields (see Fig. 7a). To
control for that, we fit a plane to the 3D points rectangle
that is centered to the checkerboard (see Fig. 7b). The
previously calculated mid point is then projected onto
this plane, which is finally used to estimate the error



Table I: Results of single registration runs. Error (mm) is the
distance error measured by the correspondence point while
Error (deg) is measured by the angle between the fitted plane
normals.

Error (mm) Error (deg)
Run RGB IR IR+D D RGB IR IR+D D

1 15.2 6.8 1.4 1.8 0.17 0.04 0.0 0.17
2 9.7 5.1 0.6 0.9 0.21 0.22 0.09 0.18
3 15.1 5.4 0.6 2.8 0.40 0.22 0.06 0.10
4 20.5 7.4 0.7 1.9 0.15 0.02 0.07 0.13
5 14.8 8.1 1.2 2.1 0.21 0.12 0.09 0.18
6 15.5 5.5 0.4 1.3 0.24 0.07 0.04 0.11
7 19.3 5.0 0.3 0.5 0.24 0.16 0.15 0.28
8 7.4 4.6 1.0 1.0 0.19 0.02 0.05 0.08
9 17.8 9.2 0.5 2.8 0.57 0.23 0.10 0.22
10 19.0 6.5 0.6 1.1 0.08 0.13 0.11 0.21

AVG 15.4 6.4 0.7 1.6 0.24 0.12 0.08 0.17
SD 4.0 1.4 0.3 0.7 0.13 0.08 0.04 0.06

between both point clouds.
Note that the registration transformation obtained by the

Checkerboard (RGB) procedure differs somewhat from those
obtained by the other procedures. This should be taken into
account when comparing the 3D accuracy of the different
calibration procedures. The reason for that arises from the
fact that the Azure Kinect (and potentially many other RGB-
D cameras) has two sensors: one sensor for both the IR and
depth image, and a separate sensor for the RGB image. In
order to perform a transformation of 3D points of Kinect
B into the reference frame of Kinect A, the following
concatenation of transformations should be used in case of
the RGB calibration procedure:

TDA←DB
= TDA←CA

· TCA←CB
· TCB←DB

where
• TDA←DB

denotes the transformation from the depth
sensor of Kinect B to the depth sensor of Kinect A,

• TCB←DB
denotes the transformation from Kinect B’s

depth to its color sensor (given by the factory calibra-
tion),

• TCA←CB
denotes the transformation from Kinect B’s

color sensor to Kinect A’s color sensor (known from
the checkerboard registration),

• TDA←CA
is the transformation from Kinect A’s color

to its depth sensor.
Obviously, the error of the Checkerboard (RGB) reg-

istration procedure using the RGB sensors and the error
of the factory calibration between depth and color sensors
accumulate. Therefore, it is to be expected that the Checker-
board (RGB) registration has a higher error than the other
registration procedures. This is verified by the results of our
experiments (see Table I).

In all runs, the lattice was detected by both sensors in an
average of 87.2 frames (SD: 32.0) of recording (a). In the

Figure 8: Distance error after registration by procedures and
axes.

RGB image of recording (b), the checkerboard was detected
in 108.3 frames (SD: 39.7) in average and in the IR image in
87.4 frames (SD: 39.0) in average. Note that the recordings
(a) and (b) are not identical – individual recordings of the
checkerboard methods and the lattice method can therefore
not be directly compared. Furthermore, the difference in the
number of detected checkerboards in the RGB image and
the IR image, both using recording (a), is due to the uneven
brightness of the checkerboard at different distances in the
IR image, so that the checkerboard was not detected in some
cases in the IR image.

The results (see Table I) show that the average distance
error of our method Lattice (D) (which only requires the
depth image) is 1.6 mm and the average angular error is
0.17 deg. The Checkerboard (IR+D) method performs con-
siderably better with an average distance error of 0.7 mm
and an average angular error of 0.08 deg, but requires both
the infrared image and the depth image. Compared to the
Checkerboard (IR) method with an average error of 6.4 mm
and the Checkerboard (RGB) method with an average error
of 15.4 mm, our registration method Lattice (D) as well
as the Checkerboard (IR+D) method perform significantly
better.

Since both the depth image and the infrared image are
combined as input in the Checkerboard (IR+D) method, this
method is expected to be more accurate than the Lattice (D)
method, which uses only the noisy depth image as input.
However, even if the average error of the Checkerboard
(IR+D) method is smaller than the average error of the
Lattice (D) method, both errors are very small in absolute
terms considering the accuracy of depth sensors, which
are much noisier and suffer from distortions at edges or
the flying pixel effect. Furthermore, one has to take into
account that the lattice in the experiment has a thickness of
4 mm (two layers of 2 mm thick bars) and was built with
a precision of about 1-2 mm. The motions of the lattice in
the recordings, as well as the higher standard deviation in
the X-direction for Lattice (D) in Figure 8, indicates that
the thickness of the lattice may have mattered. Thinner and
more precise lattices could improve the result of the Lattice
(D) method.

Figure 8 shows that the Checkerboard (RGB) and
Checkerboard (IR) procedures, in particular, contain a sys-



(a) Scenario A (b) Scenario B

Figure 9: Two scenarios used for ground truth evaluation,
from the perspective of the depth sensor.

tematic error that could be caused by the factory calibration
of the Kinect whose parameters are used in OpenCV’s stereo
calibration methods. In our experimental setup, the distance
between two adjacent pixels in the registration volume is
about 4 mm in physical space, so even small errors in
the intrinsic calibration could have a significant impact on
the distance error in both cases. On the other hand, these
two methods do not use depth information, so a possible
systematic offset in depth direction is not corrected by these
methods. In the case of the Checkerboard (RGB) method, as
described above, the errors in the transformations between
the separate depth and RGB sensors also add up, leading to
expected higher errors compared to the three other methods.

Finally, this experiment shows that our method is a
valuable alternative registration method in cases where no
IR or color image is available, and is also very accurate in
terms of absolute error values, in regard to the accuracy of
depth sensors.

B. Registration into a Common Coordinate System

In the previous section, we looked at the accuracy of a
registration between two depth sensors using our registration
method. In this section, we will examine the accuracy with
which we can register a depth sensor into Optitrack’s coor-
dinate system using our method. To do so, we tracked the
lattice using both Optitrack and a Microsoft Azure Kinect
combined with our detection algorithm. To track the lattice
with Optitrack, we attached seven markers to the lattice to
achieve sufficient accuracy. These Optitrack markers were
detected in the Azure Kinect depth image by our method
as hole centers. However, our heuristic generally detected
these hole centers as incorrect hole centers, resulting in no
noticeable effect on the precision of the lattice detection.

Since Optitrack and the Kinect use the same infrared
light at a wavelength of 850 nm, there was occasionally a
pulsating noise throughout the depth image (see Fig. 10).
We ran Optitrack at 30 fps (almost the same frame rate
with which the Azure Kinect recorded), as the pulsating

Table II: Mean error between ground truth lattice center and
detected lattice center after registration.

Scenario A Mean Error SD n rem.
Calibration Set 3.83 mm 2.10 mm 2401 20
Test Set 3.95 mm 1.69 mm 1880 1

Scenario B Mean Error SD n rem.
Calibration Set 4.38 mm 2.07 mm 1270 14
Test Set 4.40 mm 2.10 mm 871 5

Note: Rare error detections with an higher error that 20 mm were excluded
from the error calculation because they are removed during registration
during outliner rejection anyway and generally have no influence on the
registration result itself (the ”n” column indicates the number of used frames
whereas the “rem.” column indicates the number of removed frames).

noise was least likely to show up this way. The pulsating
noise caused a greatly increased runtime of the algorithm
in those frames, since many lattice candidates were detected
in flat background objects. However, all these false lattice
candidates were successfully discarded by our detection
algorithm.

We performed the evaluation in front of two different
backgrounds (see Fig. 9), hereafter also called scenarios,
while slowly moving the lattice. In scenario B, the distance
between the sensor and the lattice was between 1.0 m and
1.95 m while the center of the lattice stayed within a volume
of about 0.6 m³.3 In scenario A, the distance between the
sensor and the lattice ranged from 0.85 m to 2.05 m, with
the center of the lattice in a volume of about 1.2 m³ (the
entire lattice was about 2.2 m³).

Using the lattice centers as point correspondences, we
registered the Microsoft Azure Kinect’s point cloud into Op-
titrack’s coordinate system. We then measured the deviation
of the registered center point from the center point detected
by Optitrack. In both scenes we observed a quite similar
error averaging only 3.83 mm to 4.40 mm (see Table II).

Note that, compared to experiment A (see Section IV-A),
instead of just measuring the distance error of one point
which was located in the center of the registration volume
and was smoothed over time, we captured multiple corre-
spondences in a specific volume which still were affected by
the typical noise of the Azure Kinect. Additionally, Optitrack
and the Kinect were not synchronized in time. Therefore we
always searched for the closest Optitrack frame in time to a
Kinect frame to find point correspondences. Although we set
both Optitrack and the Kinect to 30 fps, they did not run at
exactly the same speed. The closest frames in time between
Optitrack and the Kinect were always time-shifted by 0 to
about 1/60 second, averaging 1/120 second. With an average
movement speed of 18.8 cm per second in scenario A, this
gives an expected error of 0.0083s ∗ 18.8cm/s = 1.56mm.

3The entire lattice was in about 1.5 m³ in scenario B, but since we could
only detect a single ground truth reference point via Optitrack, we only
used the detected centers of the lattice as point correspondences between
the two systems. For this reason, the smaller value is more relevant
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Figure 10: Pulsating noise in the recorded point cloud due
to inference between Optitrack and the Azure Kinect, which
both use infrared light with a wavelength of 850 nm. In the
image sequence shown, the noise varies from no noise (a)
to very intense noise (d).

(a) Set-up illustration (b) Set-up photo

Figure 11: Experiment setup to determine the deviation of
the detected center point during the rotation of the lattice
around its own axis.

The average error of the lattice detection by Optitrack was
specified by Optitrack’s Motive software as 0.7 mm.

C. Rotational Robustness

With this experiment, we tried to determine the robustness
of our method with respect to the angle between the line of
sight of the camera and the normal of the lattice. It is to
be expected that at grazing angles (i.e., angle between line
of sight and the lattice normal approaches 90 degrees), our
registration procedure will fail.

We used a thin thread to hang the lattice as symmetrically
as possible between two tripods, leaving one one degree of
freedom (see Figure 11). In the experiment, the lattice then
slowly rotated around its y-axis in the range [−90, 90] de-
grees. Assuming the rotation axis accurately passes through
the lattice’s real center, the position of the detected lattice
center is not expected to change regardless of the orientation
of the lattice.

After recording the lattice at a distance of about 1.5 m, we
obtained an average deviation from the mean center along
the x-axis of 0.9 mm (SD: 1.0 mm), along the y-axis of 0.4
mm (SD: 0.3 mm), and along the z-axis of 1.8 mm (SD:
1.3 mm) over a range of −57.0 deg to 59.7 deg (see Fig. 12)
— at larger angles the lattice was no longer detected. As

Figure 12: Deviation of the center point during rotation
around the y-axis of a lattice, which was clamped between
two tripods with sewing threads.

Figure 13: Scenario C for runtime measurement and preci-
sion and recall estimation.

expected, the deviation along the y-axis (upward axis) was
very small. The slightly higher deviation along the z-axis
compared to the x-axis could also be due, at least in part, to
the expected error of the Azure Kinect camera depth values
(which mainly affect the z-value). Also, our lattice has a
thickness of 4 mm and was built with an accuracy of only
about 1-2 mm.

D. Runtime Performance

We expect the runtime of the lattice detection to depend
on the distance between the lattice and the sensor since fewer
points of the point cloud have to be processed if the lattice
is further away. Therefore, we created a recording in which
we moved the lattice back and forth at a distance of about
0.9 m to 3.9 m (see Fig. 13).

On average, we observed an average runtime of 19.2 ms
on a single core of an AMD Ryzen 9 3900X processor
for the lattice detection per processed frame (SD 6.4 ms)
in Scenario C. For only 198 of considered 4022 frames, the
lattice detection took more than 33.33 ms (4.9%), while the
maximum runtime in this scenario was 60.5 ms. As expected,
the runtime clearly depends on the distance of the lattice to
the sensor, see Fig. 14.

For completeness, we have also given the results of our
runtime measurements for Scenario A and Scenario B in
Table III. There it can be seen that the average runtimes
of 19.8 ms and 24.5 ms are quite similar for other scenarios
as well. However, a few frames of both recordings were



Figure 14: Dependence of the runtime on distance between
lattice and sensor in scenario C only (considering frames
where a lattice was detected).

Table III: Runtimes of our lattice detection algorithm in
different scenarios (without parallelization).

Scenario A (n = 7034) Mean SD Max
Candidate search 8.9 ms 15.9 ms1 230.1 ms1

Candidate processing 10.9 ms 13.06 ms1 344.2 ms1

Plausible candidates 0.79 0.56 5

Total 19.8 ms 23.9 ms1 457.3 ms1

Scenario B (n= 3931) Mean SD Max
Candidate search 12.8 ms 8.4 ms1 67.8 ms1

Candidate processing 11.7 ms 7.75 ms1 62.84 ms1

Plausible candidates 1.18 0.73 6

Total 24.5 ms 14.2 ms1 116.1 ms1

Scenario C (n= 4022) Mean SD Max
Candidate search 9.3 ms 2.1 ms 19.4 ms
Candidate processing 9.9 ms 5.0 ms 53.6 ms
Plausible candidates 1.20 0.48 4

Total 19.2 ms 6.4 ms 60.5 ms

1: Scenarios A and B where affected by occasional pulsating noise due to
interference between Optitrack and Azure Kinect and are to be understood
as extreme cases with regard to performance.

affected by pulsating noise due to interference between
the Azure Kinect and Optitrack (see Fig. 10). As a result,
many lattice candidates were detected in these frames, and
although they were correctly rejected, the maximum runtime
was abnormally high.

E. Precision and Recall

Another quality metric for registration methods is the
robustness of the detection of the target object in the images,
which can be measured by the well-known classification
scores precision (defined as PPV = TP

TP+FP ) and recall
(defined as TPR = TP

TP+FN ). In our case, precision gives
the percentage of lattices detections that were correct, while
recall describes the percentage of correct lattices that our

Table IV: Precision and recall of the lattice detection algo-
rithm in Scenario C.

Scenario n TP FP TN FN PPV TPR
A 6049 4281 21 01 17471 0.995 0.71

B 3593 2141 19 01 14331 0.991 0.601

C 4022 3629 24 0 369 0.992 0.91

1: Note that in scenario A the lattice sometimes leaves the camera’s view
frustum completely, while in scenario B the lattice is only partially visible
in at least multiple frames. Since our lattice recognizer sometimes also
detected edge cases, we could not clearly determine at what point an
unrecognized lattice is counted as TN or FN. Therefore, we counted frames
in which no lattice was detected as FN even if the lattice was only partially
visible or not visible at all. So, the recall in these two scenarios is probably
significantly higher in reality.

(a) Sensor’s angle > 90 deg (b) Sensor’s angle < 90 deg

Figure 15: Since the lattice can be detected from both sides,
our registration method can be used in most applications
despite the limited detection at some angles (see Section
IV-C). As a rough rule of thumb, if angle between the lines-
of-sight of two cameras is greater than 90 deg, the lattice
should be positioned such that they see different sides of
the lattice (a), while for camera angles less than 90 deg, the
lattice should be held so that both sensors see the same side
of the lattice (b).

algorithm detected among all the visible, actual targets (i.e.,
in the camera’s field of view). In Scenario C, we ensured
that the lattice was fully visible in the camera’s field of view
at all times; hence, there are no true negatives in this case.

Our results can be found in Table IV.

F. Limitations

We observed that with the Azure Kinect, some of the
holes of the lattice are occasionally invisible in the original
depth image. In our experiments, we found that this seems
to depend on the background behind the lattice (e.g., surface
normal and reflectivity) and primarily occurs when the
distance to the background is greater than the Azure Kinect’s
working range (we used the NFOV unbinned mode which
has a working range of 0.5–3.86 m)4. We suspect this may
be related to a filter in the Azure Kinect or Azure Kinect

4Given by the Microsoft Azure Kinect specifications: https://docs.
microsoft.com/en-us/azure/kinect-dk/hardware-specification

https://docs.microsoft.com/en-us/azure/kinect-dk/hardware-specification
https://docs.microsoft.com/en-us/azure/kinect-dk/hardware-specification


(a) View through the HMD (b) Physical setup

Figure 16: Rendering of the point clouds of two Kinects
registered into a virtual scene seen from a first-person view
in an HMD (a) and from a third perspective (b).

Figure 17: The lattice with the motion controllers of the
HP Reverb G2 attached using a bracket allowing for precise
registration of depth sensors with the virtual scene.

SDK that appears to bridge areas between invalid pixels.
In scenario B, this effect likely had a significant impact on
the number of false-negative detections and, consequently,
the recall, due to the distant background (partially > 6m),
while the effect was nearly negligible in scenarios A and
C. Although this effect did not affect the registration suc-
cess nor accuracy in our scenarios, there might be special
application areas where registration with our method could
be difficult when the Azure Kinect is operated outside its
working range.

As shown in the experiment regarding rotational stability,
our method can detect the lattice stable only if the angle
between the lattice normal and the camera viewing direction
is smaller than about 55 deg. However, since our method is
robust against viewing the lattice from the front or from the
back, this is only a minor limitation for most applications,
as Figure 15 shows.

Finally, probably the most obvious and very minor limi-
tation is the fact that our lattice needs to be held by one or
two hands at only one side while registration is performed.

V. VIRTUAL WORLD REGISTRATION

Some applications require not only registration between
depth sensors, but also registration of these depth sensors
with a virtual world. For example, in VR applications, it
might be required to stream a point cloud into the virtual

world for the use as a user’s avatar or for real objects to cast
shadows by virtual lights (see Fig. 16).

To perform such a registration, we need to find corre-
spondences between virtual world space and one of the
depth sensors. To do so, we designed a physical bracket to
which our lattice and two motion controllers can be attached.
This allows to move the lattice and the motion controllers
simultaneously while maintaining a fixed relative distance
between them (see Fig. 17). We manually measured the
transformations from the lattice to both motion controllers,
TRightController and TLeftController, resp. Given those, we can
derive the position of the controllers in camera space. Since
their position in virtual world space is also given (by the
VR system’s tracking), their positions in both reference
frames can be collected simultaneously over multiple frames,
which can then be used as corresponding point pairs. Thus,
the virtual world and the camera reference frames can be
registered using the SVD-based transformation estimation
of the PCL [27].

Instead of manually measuring the transformation be-
tween the motion controllers and the lattice, it is also
possible to estimate the transform using the rigid motions
of both controller and lattice. This problem is known as
hand-eye calibration and simply requires recording of mul-
tiple poses of the motion controllers and the lattice. For
a feasibility check, we performed this calibration offline
using the method of [29]. Instead of only calculating the
transformation between controller and lattice, we could also
directly compute the world to camera space transformation.
As the norm of this transformation typically is larger,
though, a small error in the lattice orientation leads to an
overall higher calibration error.

VI. SOURCE CODE

We provide two implementations of our registration
procedure. To register arbitrary depth sensors with each
other, we provide a new small C++ library which can
be found at https://gitlab.informatik.uni-bremen.de/cgvr
public/lattice registration library. Second, we provide a
slightly larger Unreal Engine 4 project that allows for regis-
tration of multiple Microsoft Azure Kinects with each other
as well as with a virtual world: https://gitlab.informatik.
uni-bremen.de/cgvr public/lattice based registration ue4

VII. CONCLUSION

We presented a novel approach for the registration (ex-
trinsic calibration) of depth sensors based exclusively on
depth data. As a registration target, we designed a lattice-like
board with regularly-spaced holes which are visible in the
depth image. More importantly, we developed an algorithm
that can detect such boards reliably and accurately in depth
images and is very easy to implement.

In our test scenarios, which we performed using a
Microsoft Azure Kinect under real-world conditions, we

https://gitlab.informatik.uni-bremen.de/cgvr_public/lattice_registration_library
https://gitlab.informatik.uni-bremen.de/cgvr_public/lattice_registration_library
https://gitlab.informatik.uni-bremen.de/cgvr_public/lattice_based_registration_ue4
https://gitlab.informatik.uni-bremen.de/cgvr_public/lattice_based_registration_ue4


achieved a precision of more than 0.99 with our lattice
detection algorithm. At the same time, the lattice detection
has an average running time of roughly 20 ms on a single
core of an AMD Ryzen 9 3900X per frame. Using the
features of the detected lattices for registration, we measured
an average registration error of 1.6 mm between two point
clouds in the middle of the registration volume at a capture
distance of approximately 2 m from the sensors.

We provide an open, small C++ library that can be used
to register any kind of depth sensors. Furthermore, we make
an Unreal Engine 4 project available that is capable of
registering depth sensors with a virtual world; it works
exemplary with the Microsoft Azure Kinect, but can be
adapted easily to other depth cameras as well.

In future work, our method could be made even more
accurate by integrating the work of Deng et al. [30], which
is able compensate slight distortions of the depth camera
within a larger volume. Additionally, one could implement
the optimization presented by Beck et al. [12] for better
registration results with hardware which is not synchronized
in time. Finally, it could be useful to extend the method to
optionally detect the lattice in an IR or color image as well.
This might improve the accuracy a bit more, e.g. if one wants
to register depth-only sensors or LiDAR sensors, which do
not provide an infrared or color image, with RGB-D sensors,
which have such an additional image.
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