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Abstract1

Purpose Marker-based tracking of surgical instruments facilitates surgical navigation systems with high precision, but
requires time-consuming preparation and is prone to stains or occluded markers. Deep learning promises marker-less tracking
based solely on RGB videos to address these challenges. In this paper, object pose estimation is applied to surgical instrument
tracking using a novel deep learning architecture.
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Methods We combine pose estimation from multiple views with recurrent neural networks to better exploit temporal coher-
ence for improved tracking. We also investigate the performance under conditions where the instrument is obscured. We
enhance an existing pose (distribution) estimation pipeline by a spatio-temporal feature extractor that allows for feature
incorporation along an entire sequence of frames.
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Results On a synthetic dataset we achieve a mean tip error below 1.0 mm and an angle error below 0.2◦ using a four-camera
setup. On a real dataset with four cameras we achieve an error below 3.0 mm. Under limited instrument visibility our recurrent
approach can predict the tip position approximately 3 mm more precisely than the non-recurrent approach.
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Conclusion Our findings on a synthetic dataset of surgical instruments demonstrate that deep-learning-based tracking using
multiple cameras simultaneously can be competitive with marker-based systems. Additionally, the temporal information
obtained through the architecture’s recurrent nature is advantageous when the instrument is occluded. The synthesis of multi-
view and recurrence has thus been shown to enhance the reliability and usability of high-precision surgical pose estimation.
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Introduction 23

Surgical navigation systems facilitate a variety of appli- 24

cations in clinical interventions such as minimal invasive 25

neurosurgery, stereotaxy or implant placement [1]. Com- 26

bining pre-operative medical images with real-time tracking 27

during surgery provides invaluable guidance for the surgeon 28

and improves surgical precision, accuracy, and safety [2, 3]. 29

Marker-based approaches achieve high precision and 30

repeatability with errors below 1 mm [3]. However, the mark- 31

ers require to be in line-of-sight, which forces the surgeon to 32

prevent occlusion. Furthermore, the instrument can become 33

polluted, preventing tracking entirely and requires marker 34

replacement. AI-based marker-less approaches could address 35

these challenges by predicting the instrument pose from RGB 36

images using neural networks, even with partial visibility. 37

These techniques represent a potential future direction for 38

surgical tracking. Significant progress has already been made 39
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for hand-object estimation [4] and multi-view pose estima-40

tion [5] for surgical instruments.41

In this paper, we investigate how multi-view approaches42

and recurrent neural networks (RNN) can further improve43

the precision, reliability, and usability of surgical tracking44

systems. Multi-view pose estimation [6–8] leverages images45

from multiple cameras to enhance the accuracy and reliabil-46

ity of estimations compared to single-view setups [9, 10].47

EpiSurfEmb [7] estimates 3D-3D correspondence distribu-48

tions from single-view correspondences. CosyPose [6] uses49

single-view results to simultaneously optimize the positions50

of cameras and objects using RANSAC. The SpyroPose51

architecture [8] utilizes a grid-based method to compute a52

pose distribution. A multi-view approach is accomplished in53

SpyroPose by using the same grid for all views.54

Additionally, recurrent architectures leverage temporal55

information to improve tracking performance, reducing jitter,56

and compensating for information loss due to partial occlu-57

sion [11, 12]. [11] applies a recurrent neural network (RNN)58

for temporal-information-enhanced object pose refinement,59

while [12] leverages temporal information for the consis-60

tency of motion within the estimation of human poses.61

Our recurrent architecture incorporates convolutional62

GRU (ConvGRU) layers [13] into a feature extractor [14]63

for object pose estimation and combines the novel architec-64

ture with a multi-view approach. We investigate how these65

two approaches improve the tracking and in particular, how66

they interact with each other when combined. We conduct a67

study on a simulated dataset of surgical instruments with real-68

istic hand poses. Artificial occlusion is added to analyze the69

behavior under partial visibility. Finally, the findings of the70

synthetic dataset are evaluated on a real dataset that resem-71

bles a surgical scene. All data are available online1. To the72

best of our knowledge this is the first concept to combine73

recurrence and multi-view for object pose estimation.74

Method75

A novel recurrent multi-view architecture for 6DoF pose76

estimation is developed and evaluated alongside the base-77

line implementation. An existing multi-view pose estimation78

architecture is extended by recurrence to investigate the effect79

of temporal information and to develop a pose estimator that80

is more robust against object occlusion.81

Dataset creation82

We create synthetic datasets featuring two medically relevant83

objects-a screwdriver and a drill sleeve (see Fig. 1) using84

1 https://cgvr.informatik.uni-bremen.de/research/
ai_surgical_navigation/.

BlenderProc to generate photorealistic images. Each object 85

is grasped in 20 unique ways by a gloved hand model. Using a 86

motion-capturing system, we record three minutes of trajec- 87

tories for the instrument movement, so that the final datasets 88

contain sequences of linearly sampled frames at 10 FPS. We 89

also collect a real dataset using marker-based motion cap- 90

ture, following the approach in [15], which enables training 91

after marker removal via inpainting. 92

Pose estimation baseline 93

We have selected SpyroPose as our baseline architecture due 94

to its capabilities in multi-view pose estimation and pose dis- 95

tribution learning, which is particularly effective in managing 96

object symmetries. In the following, we briefly summarize 97

the main features. For a more detailed overview, we refer 98

to Haugaard et al. [8]. Coarse-to-fine hierarchical grids are 99

combined with deep-learning-based feature extraction and a 100

multilayer perceptron (MLP)-based hypothesis scoring (see 101

Fig. 2). A feature extraction network encodes spatial and 102

semantic information into pixel-wise embeddings of RGB 103

images cropped by an object detector. The feature extractor 104

combines a U-Net [16] with a ResNet18 [17] backbone to 105

obtain 64-dimensional features per input pixel. 106

The hierarchical grids differ in granularity and describe 107

pose candidates, such that candidates from multiple levels 108

of granularity can be obtained. For each pose candidate, 109

represented as a grid element, keypoints are projected onto 110

the image. These keypoints are selected using furthest-point 111

sampling on the object’s 3D model. Interpolated keypoint 112

features from the feature extractor output are fed into an 113

MLP to score hypotheses by predicting unnormalized log- 114

likelihoods. The MLP learns to differentiate between correct 115

and incorrect pose hypotheses using the InfoNCE loss. 116

Furthermore, SpyroPose applies importance sampling by 117

leveraging the learned scores to focus computations on the 118

most promising hypotheses. 119

Multi-view point estimation strategy 120

SpyroPose generates distributions of possible poses. The 121

pose candidate with the highest probability is selected as the 122

final pose. We investigate additional selection methods. For 123

surgical applications, we focus on two specific aspects: the 124

tip position and the direction of the instrument, referred to 125

as object angle. These features are crucial for the navigation 126

system. The tip position is determined by using its coordi- 127

nates in object space from the most likely pose candidate. 128

The direction the instrument points is calculated by consid- 129

ering a second point located at the object’s rear (see Fig. 1). 130

By focusing on these two measurements rather than directly 131

using the 6D pose, we eliminate challenges with rotationally 132
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Fig. 1 Screwdriver (left) and
drill sleeve (right). The blue
arrows show the tip and the red
arrows the rear of the
instruments. We use the line
between tip and rear to measure
the angle error

Fig. 2 SpyroPose baseline
architecture consisting of
multi-level pose hypotheses
grids, object detector, feature
extractor and an MLP network
for pose hypotheses scoring

symmetric instruments. We’ve examined three methods to133

determine the final pose candidate:134

• Max Probability: We select the 6D pose that has the high-135

est probability as the final pose. This is the approach in136

SpyroPose [8].137

• Weighted Averages: We compute the weighted average of138

the top n predicted poses weighted by their probabilities.139

• Grid-Based Method: The position of the tip is represented140

by coordinates x, y, z and a probability p. Since errors141

in depth (z) are usually the largest, we set smaller error142

bounds dx and dy within the plane, and a larger bound143

for dz perpendicular to it. We create a stretched cuboid144

for each of the top n pose candidates according to these145

bounds. These cuboids are then arranged in a uniform146

grid. For grid cells where cuboids overlap, we combine147

their probabilities. The final 6D pose is determined by148

choosing the grid cell with the highest total probability.149

To minimize depth ambiguity in pose estimation, we uti-150

lize images from multiple cameras. Currently, SpyroPose151

includes a multi-view estimation feature, where it employs152

the same grid across all camera views. For the recursive grid 153

refinement, the grid cells with the highest probabilities across 154

all cameras are selected. Essentially, SpyroPose incorporates 155

sensor fusion directly within its neural network architecture. 156

In addition to this integrated approach, we explore late 157

fusion, where we combine the results from individual camera 158

views after initial pose estimations are made. To find the 159

optimal number of views, we examine how the number of 160

camera views affects the accuracy of the pose estimation. 1161

Recurrent pose estimation 162

Incorporating recurrence might be suitable in SpyroPose’s 163

MLP and the feature extractor. However, extending the MLP 164

by recurrence can be challenging as its input consists of all 165

the feature vectors per key point for each pose candidate 166

of a single frame. Thus, up to 512 feature vectors have to 167

be considered for a single frame. On one hand, concatenat- 168

ing these features in the batch’s feature dimension leads to 169

very large features, which is computationally expensive [13]. 170

On the other hand, concatenating in the sequence dimension 171

requires the recurrent layers to go back up to 512 time points 172
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Fig. 3 5-level
Recurrent-Residual-U-Net for
spatio-temporal feature
extraction. ConvGRU layers
replace convolutional layers on
second and fifth encoder as well
as third and fifth decoder level.
Residual connections of the
encoder are not shown to
improve readability

per frame, which may limit the temporal processing. Fur-173

thermore, the MLP input might vary between frames due to174

the difference in pose hypothesis grids, which worsens the175

temporal consistency.176

SpyroPose’s feature extractor allows for recurrence incor-177

poration to provide sequence-enhanced features enriched by178

previous frames. Due to their ease of training compared179

to Long Short Term Memory (LSTMs) or standard RNNs,180

Gated Recurrent Unit (GRUs) are applied [14]. Standard181

GRU layers are not specifically designed for spatial inputs.182

They require prior feature flattening and thereby enlarge the183

feature vectors depending on the input’s spatial size. The184

introduction of ConvGRU layers promises spatio-temporal185

feature learning [13, 14].186

The fully connected operation of standard GRU gates187

are replaced by convolutions in a ConvGRU, which reduces188

the number of weights for multi-dimensional data such as189

images. The convolution operation further allows focusing190

on regional context. Equations 1 to 4 describe the processing191

of a ConvGRU layer with W as trainable weights, xt as input192

and ht as output at time t. The * denotes a convolution.193

zt = σ (xt ∗ Wxz + ht−1 ∗ Whz + bz) (1)194

rt = σ (xt ∗ Wxr + ht−1 ∗ Whr + br ) (2)195

ĥt = tanh(xt ∗ Wxh + ht−1 ∗ Whh + bh) (3)196

ht = zt $ ht−1 + (1 − zt ) $ ĥt (4)197

ConvGRU layers replace the convolutional layers at differ-198

ent stages of SpyroPose’s Residual-U-Net architecture (see199

Fig. 3). Randomly initialized recurrent layers are incorpo-200

rated into the pretrained ResNet18 [17] encoder and decoder201

such that temporal information can facilitate latent represen-202

tation learning as well as spatial information reconstruction.203

The residual nature of the encoder allows the model to ignore 204

temporal information by using the identity connection [17]. 205

The current implementation (RC) has been empirically 206

shown to obtain best results compared to other variants, such 207

as a single ConvGRU layer at the U-Net bottleneck (RB) or 208

ConvGRU layers at every encoder and decoder level (RA) 209

(see Table 1). Recurrence in the bottleneck seems to have a 210

large effect as the RB and RC results are similar, in contrast 211

to the additional GRU layers of RC. Adding a GRU layer to 212

each level (RA) increases the number of trainable parameters 213

by about 23 million compared to RC. 214

Recurrent multi-view 215

For the synthesis of both methods, the trained single-view 216

recurrent models are combined with the multi-view early 217

fusion approach. This merges spatio-temporal features with 218

fused grids and candidate probabilities from multiple cam- 219

eras. 220

Experiments 221

The synthetic baseline training set of the conducted exper- 222

iments consists of 10,000 unique scenes (120,000 total 223

images). In each scene, a camera is randomly positioned to 224

capture images at twelve different time points. For the test set, 225

we create 100 scenes. In each of these, 96 images are taken 226

from eight randomly placed cameras, capturing images at the 227

same twelve time points. The training set lacks multi-view 228

data, which is not required for training our neural network. 229

A second synthetic training set, referred to as the synthetic 230

distractor dataset, contains distractor objects that are added 231
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Table 1 Tip and angle errors of
different architecture
approaches obtained from the
synthetic baseline dataset for the
screwdriver

Tip error (in mm) Angle error (in degree)

Mean±SD RMSD Mean±SD RMSAD

RB 26.32±30.51 46.00 2.39±2.99 0.0490

RB 26.32±30.51 46.00 2.39±2.99 0.0490

RA 28.30±32.13 46.77 2.51±2.68 0.0445

RC 25.86±28.88 44.12 2.39±2.70 0.0463

RB: recurrence on bottleneck level; RA: recurrence on all levels; RC: recurrence on custom levels

between the sixth and ninth frame (62,400 total images).232

The corresponding test set applies two cameras (6,000 total233

images) where the view of one camera is occluded from the234

sixth frame onward. The real dataset consists of three scenes235

and a total of around 40,000 annotated images captured with236

four cameras at the same time. The experimental setup is237

shown in Fig. 4. We utilize the SpyroPose architecture with238

the same training parameters as those specified in [8].239

Multi-view point estimation240

We evaluate the three final pose selection methods across241

three scenarios: i) single-view, ii) multi-view with late fusion,242

and iii) SpyroPose with integrated multi-view analysis, using243

the synthetic baseline dataset. For the multi-view approaches244

we use all eight cameras. The results are summarized in245

Table 2. For the single-view and SpyroPose multi-view246

scenarios, Weighted Averages performs best with a 55%247

reduction for multi-view in comparison with the Max Prob-248

ability method of SpyroPose. For multi-view late fusion, the249

Grid-Based approach yields the best performance, with an250

error of 3.5 mm.251

These results demonstrate that the late fusion approach is252

considerably less effective than using sensor fusion directly253

within the neural network. As indicated in Table 2, the two254

methods show a difference of 76%. Based on these findings255

we use the SpyroPose multi-view with weighted averages.256

The results for different camera setups are summarized257

in Table 3. Our findings demonstrate a substantial improve-258

ment when employing a multi-view setup. Particularly, with259

six or eight views, the tip error is reduced to sub-millimeter260

levels, and the angle error is minimized to less than 0.15◦.261

Multi-view performance on real data is lower than on the262

synthetic dataset. Nonetheless, performance remains strong,263

with single-view results matching those on synthetic data.264

Figure 5 illustrates how the accuracy of tip and angle errors265

is influenced by the number of camera views. The median tip266

error and interquartile range (IQR) decreases as the number267

of cameras increases, highlighting an improvement in accu-268

racy and precision with more viewpoints. Fewer tip error269

outliers are observed in setups with more than four cameras,270

suggesting enhanced reliability. Overall, the increase in per-271

Fig. 4 Experimental setup for collecting real-world training and test
images

formance appears to be converging, wherefore the accuracy 272

cannot be improved indefinitely. 273

Recurrent single-view 274

Temporal information is expected to be particularly use- 275

ful when visual information is limited, e.g., due to object 276

occlusion [11]. In order to investigate the recurrent perfor- 277

mance under these circumstances, experiments with artificial 278

occlusion through a checkerboard overlay are conducted 279

using the synthetic baseline dataset. Occlusion is randomly 280

applied to 50% of the frames in the second half of each 281

sequence to ensure that objects are visible at the beginning. 282

Furthermore, the checkerboard pattern is added with a ran- 283

dom offset. For better comparability, the test set frames are 284

identical across different model evaluations. The models are 285

trained and evaluated with and without artificially occluded 286

frames. Evaluation metrics include the tip positional error 287

and object angle error as well as metrics measuring the 288

smoothness of the predicted trajectories, namely root mean 289

squared deviation (RMSDs) and root mean squared angular 290

deviation (RMSAD). The RMSD and RMSAD measure the 291

deviation of the tip position and object angle between subse- 292

quent frames. Due to the actual movement of the instrument 293

between frames, the RMSD and RMSAD of a smooth tra- 294

jectory prediction are not expected to be zero but close to the 295

ground truth. 296

The following models are evaluated as shown in Table 4: 297
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Table 2 Tip error obtained with point estimation methods on the synthetic baseline dataset: max probability, weighted averages, and grid-based
methods from the pose distribution for the screwdriver, measured in millimeters

Single-view Multi-view late fusion Multi-view

Max probability 16.9 13.6 1.86

Weighted averages 15.8 5.8 0.83

Grid-based 18.3 3.5 2.4

Table 3 Influence of number of
views on tip error and angle
error for the synthetic baseline
and the real datasets

Views Screwdriver Drill sleeve

Tip error (mm) Angle error (◦) Tip error (mm) Angle error (◦)

Synthetic 1 15.80 1.43 11.83 1.02

2 2.37 0.47 1.90 0.47

4 1.04 0.20 0.75 0.18

6 0.86 0.16 0.57 0.14

8 0.83 0.15 0.55 0.13

Real 1 11.50 1.87 16.05 2.05

2 4.23 0.65 4.15 0.69

4 2.85 0.44 2.64 0.53

Fig. 5 Box plot depicting the
distribution of tip and angle
errors in millimeters as a
function of the number of
cameras, ranging from 2 to 8 on
the synthetic baseline dataset

• Non-recurrent baseline (NRB) trained without occlusion298

• Non-recurrent model trained with occlusion (NRO)299

• Non-recurrent model trained with sequential batch sam-300

pling and occlusion (NRSBO)301

• Recurrent baseline (RB) trained without occlusion302

• Recurrent model trained with occlusion (RO)303

The baseline experiment (NRB) applies random frame304

sampling and data augmentation as per [8] to the train-305

ing set without occlusion. The baseline achieves the best306

results for the screwdriver on the non-occluded test set with307

a mean tip error of 15.80 mm and a mean angle error of308

1.43◦ . The mean results for the drill sleeve are 11.83 mm and309

1.02◦. The NRO model predicts the instruments’ pose sim-310

ilarly well as the baseline. To investigate the effect of batch311

variance, the non-recurrent model (NRSBO) is trained with312

occlusion and the same sequence batch sampling as the recur-313

rent models, where batches consist of entire sequences. The314

shrinkage in batch variance has a severe impact on the evalu- 315

ation metrics for both instruments. The experiments with the 316

recurrent architecture achieve similar results as the NRSBO 317

model, thus all metrics are worse than the other non-recurrent 318

approaches. 319

On the occluded dataset, the recurrent architecture improves 320

the performance. Models trained without occlusion have con- 321

siderably larger errors when applied to an occluded test set, 322

as not being faced with similar data during training. Also for 323

the models trained with occlusion the metrics drop but less 324

severely. The non-recurrent model (NRO) predicts the tip 325

with a mean error of 29.46 mm and 22.79 mm. The recurrent 326

approach (RO) is able to outperform the non-recurrent in all 327

metrics with a mean tip error for the screwdriver of 25.86 mm 328

and 19.57 mm for the drill sleeve. Similarly, the angle error 329

and trajectory smoothness metrics improve. 330

Figure 6 depicts a screwdriver sample with distractor 331

occlusion, which demonstrates the recurrent architecture’s 332
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Table 4 Single-view results of
the synthetic baseline test set
with and without checkerboard
occlusion separated by surgical
instruments

Test set without occlusion Test set with occlusion

Mean±SD RMSD / RMSAD Mean±SD RMSD / RMSAD

Tip error (in mm)

Screw driver NRB 15.80±12.80 23.35 73.48±170.56 204.20

NRO 16.74±13.46 24.20 29.46±51.62 64.70

NRSBO 20.71±18.17 27.60 37.40±63.15 77.01

RB 19.51±16.41 25.92 64.47±135.26 164.86

RO 19.37±15.72 26.52 25.86±28.88 44.12

Drill sleeve NRB 11.83±9.87 19.57 58.30±147.46 167.26

NRO 11.57±9.59 19.95 22.79±42.90 54.72

NRSBO 12.44±10.70 20.57 25.69±54.11 62.46

RB 12.66±11.52 20.81 50.58±126.67 139.93

RO 12.74±11.62 21.01 19.57±26.40 38.90

Angle Error (in degree)

Screw driver NRB 1.43±1.51 0.0103 9.55±25.80 0.4549

NRO 1.50±1.54 0.0261 3.48±9.58 0.1312

NRSBO 1.91±1.90 0.0318 4.83±12.76 0.1772

RB 1.84±2.00 0.0288 8.07±22.82 0.3643

RO 1.81±1.79 0.0296 2.39±2.70 0.0463

Drill sleeve NRB 1.02±1.22 0.0220 7.19±20.62 0.3372

NRO 1.00±1.00 0.0223 2.65±8.26 0.1095

NRSBO 1.06±1.00 0.0232 3.30±10.60 0.1417

RB 1.09±1.12 0.0235 4.59±12.73 0.1902

RO 1.07±1.04 0.0229 1.64±1.98 0.0405

Fig. 6 Sample from the
distractor test set depicting the
occluded screwdriver

strength of facilitating previous frames in case of ambiguous333

poses. While the non-recurrent model predicts a plausible yet334

false angle of the occluded instrument, the recurrent model335

can leverage temporal information to resolve the ambiguity.336

Figure 7 highlights the beneficial effect of recurrence337

regarding tip and angle error with respect to object visibil-338

ity. The visibility is measured by the percentage of visible339

surface pixels considering occlusion by scene objects, hands340

or the artificial checkerboard compared to the visible pix-341

els without any occlusion. The heavier the instrument is342

occluded, the better is the recurrent prediction compared to343

the non-recurrent. In the interval between 20% and 40%344

visibility, the recurrent architecture achieves a tip error345

of 44.70±12.10 mm and an angle error of 4.29±1.15◦,346

compared to 59.58±18.38 mm and 8.27±3.83◦ for the non-347

recurrent architecture.348

Figure 8 shows the screwdriver tip error distribution for the 349

non-recurrent and recurrent model. Only the latter half of the 350

sequence is displayed, where all frames are occluded with the 351

checkerboard pattern. The lack of considerable differences 352

is expected in the non-recurrent approach, while the result of 353

the recurrent approach indicates that the temporal receptive 354

field covers the six occluded frames over the period of 0.6 s 355

and suggests experiments with longer sequence lengths. 356

Recurrent multi-view 357

Recurrent multi-view experiments combine both methods 358

by processing a batch of frames from multiple cameras 359

of an entire sequence. The experiments use the synthetic 360

baseline dataset with two out of eight cameras. The results 361

resemble the findings from the single-view experiments and 362
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Fig. 7 Mean tip and angle error
of recurrent and non-recurrent
models applied to the
screwdriver test set for binned
visibilities with each bin of size
1%

Fig. 8 Distribution of the tip
error of the non-recurrent and
recurrent model for the
screwdriver test set with
checkerboard occlusion
considering occluded frames
only

are presented in Table 5. Without occlusion, the benefit of363

recurrence seems negligible, and temporal information can-364

not compensate for the lower variance in training data. In365

general, the results of the different models do not deviate366

considerably across all metrics. For the screwdriver the best367

result is achieved by the non-recurrent baseline (NRB) with368

a mean tip error of 2.37±1.45 mm, for the drill sleeve the369

recurrent model (RO) achieves the lowest mean tip error370

with 1.87±1.28 mm. As recurrence does not considerably371

improve the results for two cameras and the effect of recur-372

rence is expected to decrease with increasing number of373

views, experiments with more cameras are not conducted.374

When adding artificial checkerboard occlusion to the375

test set, the recurrent results are able to outperform the376

non-recurrent in all metrics but the mean tip error of the377

screwdriver (NRO: 4.39±11.11 mm, RO: 4.52±7.64 mm).378

For the drill sleeve, the RO model achieves the best tip379

error of 3.92±8.84 mm, while the NRO model error is380

4.07±10.99 mm. The occlusion pattern is randomly added381

to both views of the test set sequences. In case of low mean382

instrument visibility across both views, the recurrent model383

is able to improve upon the non-recurrent (see Fig. 9). In the384

interval between 20% and 40% visibility, the mean tip error385

of the RO model is about 3 mm better than the non-recurrent386

(6.44±4.07 mm and 9.65±8.52 mm).387

To examine the beneficial effect of temporal information 388

in a more realistic occlusion setting, models are trained on 389

the synthetic distractor and the real training set and eval- 390

uated on the respective test set containing two cameras. As 391

shown in Table 6, the results of the distractor test set resemble 392

the checkerboard occlusion results, where the recurrent (RD) 393

outperforms the non-recurrent (NRD) model on all metrics. 394

In contrast to the checkerboard occlusion, the distractor test 395

set contains only sequences with one of two cameras with an 396

occluded view toward the target instrument, which explains 397

the slightly better result. The performance on the real test 398

set is shown in Table 7. The recurrent (RR) model achieves 399

slightly better results for the screwdriver (mean tip error of 400

3.94 mm), while the non-recurrent the slightly better for the 401

drill sleeve (4.15 mm). 402

Discussion 403

Our experiments emphasize that a multi-view setup is neces- 404

sary to achieve surgically required precision. In our analysis 405

of camera configurations, it is evident that increasing the 406

number of cameras generally leads to better results. How- 407

ever, a high number of cameras might not always be practical 408

in real-world clinical settings due to space, cost, or logisti- 409
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Table 5 Multi-view results of
the synthetic baseline test set
with multi-view setup using two
cameras

Test set without occlusion Test set with occlusion

Mean±SD RMSD / RMSAD Mean±SD RMSD / RMSAD

Tip error (in mm)

Screw driver NRB 2.37±1.45 16.52 11.86±43.95 42.44

NRO 2.42±1.44 16.57 4.39±11.11 20.97

NRSBO 2.49±1.48 16.63 6.32±16.97 26.17

RO 2.56±1.50 16.56 4.52±7.64 19.93

Drill sleeve NRB 1.90±1.26 14.53 7.84±33.04 33.23

NRO 1.92±1.48 14.55 4.07±10.99 19.03

NRSBO 1.92±1.35 14.56 4.14±17.87 21.06

RO 1.87±1.28 14.57 3.92±8.84 18.47

Angle error (in degree)

Screw driver NRB 0.47±0.28 0.0167 2.29±11.73 0.1104

NRO 0.50±0.29 0.0182 0.73±1.67 0.0283

NRSBO 0.50±0.29 0.0174 1.15±3.47 0.0504

RO 0.52±0.30 0.0174 0.71±0.79 0.0218

Drill sleeve NRB 0.47±0.39 0.0166 2.08±10.97 0.1168

NRO 0.49±0.48 0.0160 0.86±2.73 0.0347

NRSBO 0.48±0.38 0.0168 0.91±4.27 0.0437

RO 0.47±0.38 0.0167 0.64±0.73 0.0213

Fig. 9 Mean tip and angle error
of the screwdriver per binned
visibility of recurrent and
non-recurrent models applied to
the checkerboard occlusion test
set in a setup with two cameras.
Visibility is measured as the
average surface visibility across
both views

Table 6 Multi-view results of
the synthetic test set with
distractor, where one of two
cameras has an occluded view
toward the instrument

Test set with distractor

Tip error (mm) Angle error (degree)

Mean±SD RMSD Mean±SD RMSAD

Screw driver NRD 3.26±7.24 16.61 0.62±1.19 0.0188

RD 3.07±4.23 15.91 0.59±0.57 0.0165

Drill sleeve NRD 2.73±4.93 14.22 0.55±0.62 0.0164

RD 2.45±2.96 14.08 0.51±0.47 0.0161

Table 7 Results of the
non-recurrent (NRR) and
recurrent (RR) model for the
real test set with two cameras

Real test set
Mean tip error (mm) Mean angle error (degree)

Screw driver NRR 4.23 0.65

RR 3.94 0.65

Drill Sleeve NRR 4.15 0.69

RR 4.20 0.90
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cal constraints. When evaluating real data, we observe that410

pose estimation performance is generally lower compared to411

the synthetic dataset. This discrepancy may stem from label-412

ing inaccuracies, despite careful annotation. Additionally, the413

real dataset may present inherently greater challenges due to414

the complexity and variability of real-world conditions. Fur-415

ther investigation is needed to fully understand and address416

these differences. Overall, multi-view configurations, partic-417

ularly those with four or more cameras, show potential for418

providing tip and angle estimates that approach the require-419

ments for clinical applications.420

Still, the trained model’s performance degrades with lim-421

ited object visibility. The novel recurrent architecture is422

able to improve the pose prediction robustness under these423

circumstances. The single-view results obtained on the syn-424

thetic test set with checkerboard occlusion demonstrate that425

the recurrent architecture is capable of leveraging temporal426

information to improve the pose prediction. However, the427

non-occluded precision cannot be obtained. Without occlu-428

sion, the recurrent architecture performs worse due to the429

lower batch variance during training. In a two-camera set-430

ting, the positive effect of recurrence can be confirmed on431

the synthetic test set with more realistic occlusion from dis-432

tractor objects that take into account occlusion dependencies433

across frames and views. Still, the likelihood that at least one434

camera has good visibility is increased for a multi-view setup435

and the described angle ambiguity is less likely. Although the436

recurrence benefit appears to be lower in the real dataset, the437

less prominent occlusion of this dataset needs to be con-438

sidered. Further exploring occlusion in a realistic surgical439

environment is a potential future direction.440

With respect to the clinical application, the recurrent archi-441

tecture can enhance the navigation system’s usability as442

instrument poses can still be predicted under heavy occlu-443

sion. For critical situations during the surgery, the accuracy444

of an occluded instrument remains insufficient, such that the445

clinician has to ensure clear line-of-sight for the cameras446

to obtain high pose prediction precision. Furthermore, the447

recurrent architecture might be of interest in other computer448

vision tasks where occlusion robustness is critical and preci-449

sion requirements are lower.450

Future work451

The recurrent architecture’s dependency toward batch vari-452

ance could be tackled in another future work, as this has453

been shown as a limitation of the recurrent models. Possible454

directions could be advanced augmentations, longer train-455

ing with more training data, and architectural changes, such456

as replacing batch normalization layers. Furthermore, the457

applied object detector could be investigated in a recurrent458

setup to ensure its applicability under heavy object occlusion,459

e.g., by incorporating recurrence.460

Conclusion 461

We applied marker-less 6DoF pose distribution learning to 462

instruments commonly used in surgical navigation systems. 463

Using synthetic and real datasets of two realistic surgical 464

instruments, our experiments demonstrate the true potential 465

of marker-less multi-view pose estimation. While single- 466

camera tracking yields a mean tip error above 10 mm and a 467

mean angle error above 1◦, the multi-camera setup achieves 468

sub-millimeter and sub-degree accuracy. These trends are 469

mirrored in experiments on a real dataset, where single- 470

camera tracking similarly results in tip errors exceeding 471

10 mm, while a four-camera configuration reduces this to 472

3.0 mm or less. 473

By extending the deep-learning-based pose estimation 474

pipeline with a recurrent feature extractor, we are able to 475

exploit the temporal information of video sequences. This 476

temporal information has been shown particularly benefi- 477

cial when the frame’s visual information is limited, e.g., due 478

to instrument occlusion. Even under heavy occlusion where 479

only between 20% and 40% of the instrument surface is vis- 480

ible, a setup of only two cameras and our novel recurrent 481

architecture enhances the mean tip error by approximately 482

3 mm compared to the non-recurrent model. The recurrent 483

architecture thus serves as a prototype for incorporating tem- 484

poral information into 6DoF pose distribution learning and 485

improves the reliability and usability of surgical navigation 486

systems. 487
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