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ABSTRACT
We present a novel knowledge discovery approach for au-
tomatic feasible design space approximation and parameter
optimization in arbitrary multiobjective blackbox simula-
tions. Our approach does not need any supervision of simu-
lation experts. Usually simulation experts conduct simula-
tion experiments for a predetermined system specification by
manually reducing the complexity and number of simulation
runs by varying input parameters through educated assump-
tions and according to prior defined goals. This leads to
a error-prone trial-and-error approach for determining suit-
able parameters for successful simulations. In contrast, our
approach autonomously discovers unknown relationships in
model behavior and approximates the feasible design space.
Furthermore, we show how Pareto gradient information can
be obtained from this design space approximation for state-
of-the-art optimization algorithms. Our approach gains its
efficiency from a novel spline-based sampling of the param-
eter space in combination within novel forest-based simula-
tion dataflow analysis. We have applied our new method
to several artificial and real-world scenarios and the results
show that our approach is able to discover relationships be-
tween parameters and simulation goals. Additionally, the
computed multiobjective solutions are close to the Pareto
front.

CCS Concepts
•Computing methodologies → Model development
and analysis;

Keywords
Knowledge Discovery in Simulation; Multiobjective Opti-
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1. INTRODUCTION
Traditional simulation-based optimization approaches [25,

21] usually require pre-defined objective functions in order
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to use optimization techniques to find a local or global min-
imum for the specified simulation. Unfortunately, such ob-
jective functions are not available in blackbox simulation
problems. In these blackbox simulations, but also in regular
simulations, is the analysis of the model behavior and the
determination of the valid design space, respectively, usually
done manually by simulation experts. This manual analysis
is generally performed by identifying a few distinct parame-
ters according to the simulation project scope given as a set
of simulation goals. An optimization is not conducted by a
simulation itself, but rather through execution of multiple
simulation runs. In order to reduce complexity and num-
ber of runs, the input parameters of each single run have to
be varied cleverly [27]. The simulation expert usually takes
an educated guess based on his experience which parame-
ters might be influential on the project scope and therefore
time and effort is invested in experimenting with these fo-
cus parameters in a fixed system configuration environment.
Hence, for each simulation run, the input configuration has
to be adjusted if the simulated model performance does not
meet scenario or engineering expectations. Currently, this
adjustment of input parameters in simulations is either done
externally by simulation experts that need to guide the sim-
ulation process, or by defining a number of scenarios. These
scenarios are pre-defined by simulation experts to cover al-
most all aspects of the simulation model. The use of expert
guidance can lead to quite effective simulation results. How-
ever, such experts are rare and expensive. Additionally, its
not always feasible to have an expert available for configur-
ing and supervising the simulation. Nevertheless, this ap-
proach is widely used [13] but yields many disadvantages as
this workflow is based upon subjective judgment of simula-
tion results. These judgments are insufficient for efficiently
solving this problem because they can not survey the whole
underlying multiobjective problem of the simulation model,
especially for blackbox simulations.

[13] refers to this as the ”trial-and-error approach” to find-
ing a good solution and recommends that simulation ex-
perts should spend more time in analyzing than building
the model. Furthermore, pre-defined scenarios may lead to
less optimal adaptation [12].

Consequently, it would be beneficial to automatically com-
pute suitable input configurations for a given simulation
model without the need of an expert guiding this process
[28]. In addition, recent simulation models are dominated
by a multiobjective optimization problem (MOP) because
many real world problems involve decisions based on multi-
ple and conflicting criteria [17].



There is already a number of computational methods for
solving MOP [9, 32] available. However, they usually do not
consider the generation of vast amounts of simulation model
behavior results that can be easily derived from simulation
data farming. Although, this data could be used to deliver
additional (gradient) information to traditional MOP solv-
ing approaches. In the best case, optimization approaches
can directly benefit from this information.

In this paper, we present a different approach which is
directly based on this observation and the idea of so-called
Knowledge Discovery in Databases (KDD) [36]. Unlike tra-
ditional approaches for solving MOP, KDD in simulations
is not limited to a static, pre-determined input dataset for
model behavior and optimization. Instead, the simulation
can be used as an generator for new data by itself. This
enables us to investigate the whole bandwidth or at least
the largest part of possible model behavior by conducting
cleverly designed simulation data farming in order to dis-
cover surprises and potential [11, 35] which can be re-used
in the MOP solving process, too. More precisely, we adapt
techniques from KDD research to multiobjective Pareto op-
timization in blackbox simulations with unknown objective
functions. Our approach autonomously builds an active
model between simulation input and simulation goals which
is capable of
• approximating the feasible design space for a Pareto

based optimization by uncovering unknown causal re-
lations in large parameter sets between simulation in-
put and model behavior which are assumed to be un-
known non-linear objective functions.
• computing Pareto gradient information from this de-

sign space approximation which can be used in state-
of-the-art multiobjective optimization solvers.

As our approach is completely autonomous, it does not need
any supervision from simulation experts. Another advantage
of our approach is its performance. It gains its efficiency
from a novel spline-based sampling of the parameter space
in combination with a novel forest-based simulation dataflow
analysis. The only pre-condition is that the simulation out-
put has to be deterministic.

2. RELATED WORK
Research in combining KDD and simulation methodology

has attracted increasing interest in the last decade. [24] ex-
plored the landscape characterization problem with a sup-
port vector machine (SVM) by analyzing the complete in-
put parameter space. The approach assumed a non-goal
oriented simulation, in which the simulation model can be
reduced to a single function f which updates the simulation
state x with parameter set θ via xk+1 = f(xk, θ). They
defined the landscape characterization problem by deter-
mining the set of points θ in which a pre-defined simula-
tion state is achieved. This approach can neither be applied
to single-objective nor multi-objective based simulations in
which the simulation model is governed by a set of (possible)
contradictory functions fi, ..., fn as the approach does not
concern any contradictory goals within the simulation. [4]
determined dynamic adaptation strategies for agent-based
traffic simulations via supervised learning. They extracted
parameter patterns in the from of decision trees in stochas-
tic simulation by simulating the simulation model several
times. These generated decision trees are valid for linear
relationships between input parameters and model ”what if”

studies. The approach is further restricted to a small num-
ber of simulation input parameters as the approach involves
a runtime which is quadratic in the number of input pa-
rameters. Likewise, [26] neglected multiobjective simulation
properties. They investigated the application of KDD in
simulation of aircraft engine fleet management. They ap-
plied a linear regression to all input parameters xi, ...xn for
one simulation goal state y resulting in a model of the form
y = C + α1x1, ..., αnxn. This model was used to determine
the cost drivers in aircraft fleet management. These cost
drivers were then classified by a clustering algorithm into
low- or high cost classes, describing the main cost drivers
for the given fleet management simulation. [27] proposed an
approach for uncovering unknown relationships in model be-
havior. They conducted large scale experiments by replicat-
ing pre-defined experiment definitions. The resulting sim-
ulation data output was clustered and presented in various
plots and charts in order to reveal unknown relationships for
the simulation experts and is consequently highly depending
on the simulation expert. KDD approaches based on multi-
objective (respectively Pareto) simulations (such as [34, 20,
23, 6]) focussed on extracting additional information from
pre-determined Pareto sets or analzying these sets within the
simulation. Consequently, they can be used to neither ap-
proximate the feasibile design space nor to compute a Pareto
solution itself.

In summary, all of the above mentioned studies were fo-
cused on building passive models between simulation in-
put and goal-related simulation output while minimizing
the simulation parameter scope or by focusing on single-
objective linear simulation models. These passive models
deliver coarse granularity parameter relationship informa-
tion which can be used to neither approximate the feasible
design space nor to compute a Pareto gradient information
(e.g. distance or gradient information of the analyzed data
with respect to the Pareto front). Moreover, they are highly
depending on the simulation expert supervising the KDD
process. In addition, they are also not applicable to non-
linear simulation models in which the objective functions
are not available. Consequently, they can not be used as
input for multiobjective optimization algorithms in order to
compute suitable configurations.

Figure 1: The traditional Knowledge Discovery in

Databases (KDD) process: Low level data is extracted and

data mining methods generate specific representations. Man-

ual evaluation of these representations leads finally to low

level data knowledge. Adapted from [36].



Figure 2: Our autonomous knowledge discovery process: First, all causal relations between input parameters and simulation

goals are uncovered. Second, simulation data farming is efficiently conducted in order to approximate the feasible design space

as well as to compute Pareto gradient information.

3. OUR KNOWLEDGE
DISCOVERY PROCESS

Originally, Knowledge Discovery in Databases (KDD) is
defined as making sense of data collections that are too big to
manually review each and every single record. Input sources
for such kinds of data are complex simulations, graphs, or
data warehouses [37]. [36] describe the KDD process as mul-
tiple steps to ultimately transform low level data into useful
knowledge (see Figure 1). In detail, the KDD process is a
highly interactive five-step-process that requires many deci-
sions made by the user. Some of these steps (e.g. target data
selection or interpretation of patterns) have to be iteratively
repeated by the user for convincing results. Hence, KDD is
a semi-automatic process because the user is ultimately re-
sponsible for interpretation and evaluation of mining results.
This particularly applies for the evaluation of the usefulness
of the generated knowledge [36].

Today, simulation models are dominated by a multiobjec-
tive optimization problem (MOP) because many real world
problems involve decisions based on multiple and conflicting
criteria [17]. The optimal decisions have to consider the best
trade-off among these criteria. This is actually the goal of
multiobjective optimization. Such multiobjective optimiza-
tion problems can be found in many situations, for example,
in product design where several criteria must be simultane-
ously satisfied [5, 31, 33]. We define MOP according to [17]:
Given a subset X of Rn and p functions fj : X ⇒ R for
j = 1, 2, ..., p, MOP is defined as:

(MOP ) min
x∈X

F (x) = (f1(x), f2(x), ...fp(x)) (1)

where F : X ⇒ Rp is the objective function vector. We as-
sume that X is of the form X = {x = (x1, x2, ..., xn) ∈ Rn :
ai ≤ xi ≤ bi, i = 1, 2, ..., n}, where ai and bi are the lower

and upper bound of the ith component of variable x, re-
spectively. When the objective functions conflict with each
other, no single solution can simultaneously minimize all
scalar objective functions fj(x), j = 1, ..., p. Consequently, it
is necessary to introduce a new notion of optimality in mul-
tiobjective problems. A most commonly used one is that of
Pareto optimality or Pareto efficiency, which is an important
criterion for evaluating economic and engineering systems.
The definition of Pareto optimality can be provided by using
Pareto dominance relation [1]:
• Let xu, xv ∈ X be two decision vectors. F (xu) is said

to dominate F (xv) (denoted F (xu) ≺ F (xv)) if and
only if fi(xu) ≤ fi(xv) ∀i ∈ {1, 2, ..., p} and fj(xu) <
fj(xv) ∃j ∈ {1, 2, ..., p}
• A point x∗ ∈ X is globally Pareto optimal if and only

if there is no x ∈ X such that F (x) ≺ F (x∗). Then,
F (x∗) is called globally efficient. The image of the set
of globally efficient points is called the Pareto front.
In general, computational methods cannot guarantee
global Pareto optimality [18], but at best local Pareto
optimality that is defined as:
• A point x∗ ∈ X is locally Pareto optimal if and only if

there exists an open neighborhood of x∗, B(X∗), such
that there is no x ∈ B(x∗) ∩ X satisfying F (x) ≺
F (x∗). F (x∗) is then called locally efficient. The im-
age of the set of locally efficient points is called the
local Pareto front.

The goal of MOP is to identify a subset of the Pareto opti-
mal points (P∗) which is able to represent the Pareto front
or to compute a single trade-off solution x ∈ P∗. In gen-
eral, identifying the set of all Pareto optimality points is
not a tractable problem and mostly impossible, particularly
when the knowledge on the structure of the problem is very
minimal or not available [17].



In this work, we present the application of an completely
automatic knowledge discovery process to reveal causal re-
lationships between simulation input parameters and pre-
defined simulation goals with respect to blackbox simula-
tions with an underlying multiobjective model behavior. The
result of our knowledge discovery process is an approxima-
tion of the feasible design space as well as Pareto information
which can be directly used for solving the multiobjective op-
timization problem of the model.

Three main challenges arise when applying KDD tech-
niques to these problems:

First, engineers who specify the simulation model as well
as simulation experts have limited and hence incomplete
knowledge about the simulation model behavior with re-
spect to the complete parameter input space. Consequently,
the assumed relations between pre-defined simulation goals
and parameter space input are incomplete or wrong. Un-
fortunately, efficiently computing viable solutions for MOP
requires at least a correct approximation of the relation-
ship between the parameter input space and the objective
functions. This means, all relations between a simulation in-
put parameter and a pre-defined simulation goal within the
simulated model behavior have to be determined. Second,
KDD requires extensive simulation data farming in order
to yield useful results. This simulation data farming can
lead to a computationally very expensive KDD process be-
cause this complexity usually grows at least quadratically
with the amount of input parameters [4]. Hence, the sim-
ulation data farming constraints (selection and sampling of
convenient input parameters) have to be minimized. Third,
diverse algorithms exist for computing a solution to MOP,
such as gradient descent [15, 14], simulated annealing [8, 32]
or evolutionary algorithms [9, 10]. The proposed knowledge
discovery process should yield Pareto information in such
a way that this information can be directly used in such
different optimization approaches.

In order to overcome these challenges, our knowledge dis-
covery process differs in many ways from the above described
standard KDD process (see Figure 2). Basically, our pro-
cess is split into two main phases: association rule based
dataflow analysis and simulation data farming with rela-
tionship analysis. The first phase reveals unknown model
behavior and constructs a simulation goal based forest data
structure which enables fast simulation data farming. The
second phase utilizes this forest in order to analyse the un-
known model behavior. This analysis is used to approximate
the feasible design space and consequently to compute the
needed Pareto information for MOP optimization. In the
following, we will detail both phases of our main algorithms.

4. FOREST-BASED
ASSOCIATION RULE MINING

Our knowledge discovery process starts with the deter-
mination of possible causal relations between simulation in-
put parameters and simulation goals. We define a possible
causal relation with an existing dataflow inside the simula-
tion denoted as fj{xi, ..., xn} 7→ Gj where Gj is a pre-defined
simulation goal which maps the parameters {xi, ..., xn} with
an objective function fj to a satisfaction value or goal state.
Since our approach assumes a blackbox simulation, no map-
ping between parameters {x0, ..., xn} and simulation goals
{G0, ...,Gj} as well as explicit forms of {fo, ..., fj} is known

in advance. The simplest, and computationally most ex-
pensive, approach would be to brute-force analyze all given
parameters for every simulation goal in order to reveal un-
known model behavior. This would result in a simulation
data farming computational complexity of:

O((n2 − n) · g) (2)

where

g : number of simulation goals
n : number of simulation model input parameters

Sophisticated simulations easily inherit hundreds or thou-
sands of input parameters with large parameter spaces. This
would result in computationally very expensive brute-force
analysis of the complete knowledge discovery process.

In order to overcome this limitation, we present several
ideas to accelerate the computation. We start with a fast
Association Rule Mining (ARM) which uncovers the com-
plete dataflow of the simulation by analyzing all dataflow
transactions. These transactions can be used to determine
the parameter mapping {xi, ..., xn} as well as for identifying
fj of fj{xi, ..., xn} 7→ Gj .

The main idea is to use the traditional ARM Apriori [30]
algorithm with low support and high confidence settings. In
order to enable data farming parallelization and pruning of
the analyzed workflow, we transform the original list output
of the Apriori algorithm into a disjoint union of tree data
structures called forest.

Following the original definition by [30], the problem of
ARM is defined as: Let I = ii, i2, ..., in be a set of n binary
attributes called items. Let D = t1, t2, ..., tn be a set of
transactions called the database. Each transaction in D has
a unique transaction ID and contains a subset of the items
in I. An association rule is an implication expression of the
form X ⇒ Y , where X and Y are disjoint itemsets, i.e.,
X ∩ Y = 0. Further, X,Y ⊆ I.

To illustrate these concepts, we use a small example from
the supermarket domain: {butter, bread} ⇒ {milk} mean-
ing that if butter and bread are bought, customers also buy
milk.

The strength of an association rule can be measured in
terms of its support and confidence. The support value of
X with respect to T is defined as the proportion of transac-
tions in the database which contains the item-set X given
as σ(X) =| {ti | X ⊆ ti, ti ∈ T} |. Confidence, on the other
hand, measures the reliability of the inference made by a
rule. Both are mathematically defined as:

Support, s(X ⇒ Y ) =
σ(X ∪ Y )

N
(3)

Confidence, c(X ⇒ Y ) =
σ(X ∪ Y )

σ(X)
(4)

Apriori [30] is an algorithm for frequent item set mining
and association rule learning over transactional databases.
It proceeds by identifying the frequent individual items in
the database and extending them to larger and larger item
sets as long as those item sets appear sufficiently often in
the database. The output of the Apriori algorithm is a list
of level-k-itemsets: {{X0, ..., Xk} ⇒ Y }s,c.



Algorithm 1 GenerateForestStructure

O = list of objective references {X0, ..., Xg}
L = list of level-1-itemsets rules: {{X} ⇒ Y } from the
Apriori algorithm
F = forest root node
for Oi ∈ O do
M = tree root node with Oi

Mchilds = GenerateTreeStructure(M, L, Oi)
Ftrees += M

end for

Algorithm 2 GenerateTreeStructure

R: read relations of Oi as
⋃

X⇒Y ∈L
:= {X | ∀Y = Oi}

for Ri ∈ R do
C = child node of M with Ri

Cchilds = GenerateTreeStructure(C, L, Ri)
end for
return M

In our scenario, we are only interesting in direct relations
represented as consistent association rules. More precisely,
we are interested in level-1-itemset rules which have high
confidence c and low support s as they describe direct pa-
rameter relations [30]. Due to the inherent structure of a
simulation dataflow, which is constituted by the simulation
workflow, repeating patterns of data access emerge. For in-
stance, a physically-based simulation of Newton’s law will
always modify the position and velocity of certain simulated
objects. This physically-based simulation will update the
corresponding objects every time step in the simulation, gen-
erating such repeating patterns. These patterns especially
appear when different simulation goals are related to the
same parameters. This is usually a valid assumption for
every multiobjective optimization problem. Consequently,
the list-based output of the Apriori algorithm is not suit-
able for efficiently analyzing the simulation dataflow as it
can not represent these repeating patterns. These patterns
would lead to additional effort in the simulation data farm-
ing process because the repeating relations would need to be
analyzed multiple times.

We present a novel idea based on forest data structures
in order to overcome these repeating patterns. The main
idea is to generate for every simulation goal G a tree which
denotes the level-1-itemset dataflow result of the ARM pro-
cess for this particular simulation goal. Within these trees,
repeating transactions will manifest as duplicated sub-trees
which can be effectively pruned. Figure 3 additionally il-
lustrates the first step of our knowledge discovery process,
namely the forest generation.

Figure 3: Level-1-itemsets are generated by the Apriori

algorithm. The list based output is transformed into a forest

structure which facilitates efficient simulation data farming.

Repeating data access patterns from the simulation workflow

result in prunable (green & orange) sub-trees of our forest.

Our utilization of the simulation transaction data as well
as our forest data structure introduction reduces original
computational complexity because we focus now in our sim-
ulation data farming phase only actual relationships:

O((n2 − n) · g)⇒ O(k · g) (5)

where

k : number of simulation goal related input parameters
with k ≤ n

4.1 Cubic Spline based Simulation
Data Farming & Sampling

In order to determine causal relations our knowledge dis-
covery process needs to farm simulation data after the data-
flow determination of the blackbox simulation. As stated
before, a brute-force analysis would lead to computationally
very expensive behavior of the complete knowledge discov-
ery process.

In this section, we present the next step of our knowl-
edge discovery process which involves our efficient farming
of simulation data for the given parameter and simulation
goal relations. As mentioned before, repeating transaction
patterns of the simulation workflow will result in duplicated
sub-trees in the forest.

As a consequence, we can simply prune a node n that
does not have a causal relation to its parent node p. This
relation is obviously valid for all trees in the forest. Conse-
quently, all sub-trees of n can be removed of all forest trees.
In the following, we present two algorithms to discover these
causal relations as well as to minimize the sampling rate of
the parameter space without losing objective value informa-
tion. First, we define a spline approximation of the unknown
objective function and second, we describe a recursive cor-
relation analysis in Section 4.2.



Algorithm 3 ForestSampling

for T ∈ F do
for N ∈ T do
Sgoal = splineApprox(N , Tgoal)
Sparent = splineApprox(N , Nparent)
Cgoal = correlationAnalysis(Sgoal)
Cparent = correlationAnalysis(Sparent)
if Cparent < ε or Cgoal < ε then

Remove all subgraphs of N in F
end if

end for
end for

We assume that every relationship between a parameter
x = x0, ..., xk with parameter space k, unknown objective
function f and utility value y = y0, ..., yk can be formally
represented as a continuous function fj{xi, ..., xn} 7→ Gj . It
would be possible to perfectly determine the behavior of f
with respect to x by brute-force sampling the whole param-
eter space k. However, in real world applications k can be
arbitrary large, therefore a brute-force sampling of the pa-
rameter space is infeasible. In order to overcome this chal-
lenge, we propose an approach based on cubic splines. A
spline is a function that is piecewise defined by low-degree
polynomials. Splines are often preferred in interpolation
problems over higher-degree polynomial interpolation ap-
proaches because spline interpolation avoids the problem of
Runge’s phenomenon, i.e. oscillations that occur in interpo-
lations between points when using high degree polynomials.
Furthermore, even splines based on even polynomials can
accurately approximate a given non-linear function.

The general idea of cubic splines is to represent the func-
tion by a different cubic function on each interval between
data points. For n data points, the spline S(x) is the func-
tion

S(x) =

 C1(x), x0 ≤ x ≤ x1
Ci(x), xi−1 ≤ x ≤ xi
Cn(x), xn−1 ≤ x ≤ xn

(6)

where each Ci is a cubic function. The most general cubic
function has the form

Ci(x) = ai + bix+ cix
2 + dix

3 (7)

The main idea of our simulation data sampling and farm-
ing is to minimize the amount of samples n which are used
to approximate the original behavior of f . In order to real-
ize that, we iteratively approximate the unknown objective
function f with a cubic spline. This spline is iteratively up-
dated with more sampled data until the spline approximates
f within a specified error degree. Algorithm 4 and Figure 4
illustrate this concept.

Algorithm 4 SplineApproximation

D = x0, x k
2
, xk

S = a spline based on D
R = amount of remaining samples: k − 3
E = list of rejections
while R > 0 and E < εrejections do
X = evenly distributed x ∈ X
D += X
Ysim = simulation result of X
Yspline = S(X )
if | Ysim - Yspline | < εdeviation then
E += X

end if
S = rebuild spline based on D
R = R - 1

end while
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Figure 4: Spline approximation of a unknown objective

function f : The spline is initialized with three initial sam-

pled data points. The spline is iteratively updated until it

approximates the unknown objective function within a cer-

tain error degree.

4.2 Recursive Correlation Analysis
When we have defined the cubic spline which represents

the objective function f output y = {yo, ..., yn} for a given
parameter space x = {xo, ..., xn}, the next step is to deter-
mine whether or not a causal relation is present between x
and y. This correlation analysis is needed as a spline approx-
imation itself does not contain any correlation or causality
information and can therefore approximate any given sig-
nal. Due to the fundamental property of self-containment of
a simulation, confounding variables can be neglect as they
would also be part of the workflow which would be uncovered
by our ARM approach (see Section 4). Therefore, correla-
tion alone can be used to determine the causal relation be-
tween x and y. In order to do so, we approximate the cubic
spline representation s of f with segments which prove cor-
relation. If the complete cubic spline s can be represented
with such segments, we assume correlation and therefore
causality between x and y.

Correlations between variables can be measured with the
use of different indices (coefficients), such as the Pearson
product correlation coefficient r [19]. It measures the linear
correlation between two variables X and Y , giving a value



between +1 and -1, where +1 describes total positive corre-
lation, 0 no correlation and -1 total negative correlation.

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2 ·
√∑n

i=1(yi − ȳ)2
(8)

where

n : number of elements in X resp. Y
x,y : elements of X and Y
x̄, ȳ : sample mean x̄ = 1

n

∑n
i=1 xi (analogously for ȳ)

However, non-linear objective functions (e.g. polynomi-
als with degree ≥ 2) can not be correctly modelled with r.
We therefore propose to recursively compute the Pearson
coefficient. If the signal can not be described with r, we
recursively split the signal in the middle and analyze the
remaining signals. The causal relation is proven when the
complete signal can be described with {rk}, where k is the
number of coefficients. Algorithm 5 and Figure 5 illustrates
this concept:

Algorithm 5 RecursiveCorrelationAnalysis(S spline)

C empty correlation segments
rxy = pearson coefficient of S[0,n]
if |rxy| >= rthreshold then
C += S[0,n]

else
C += recursiveCorrelationAnalysis(S[0,n

2
])

C += recursiveCorrelationAnalysis(S[n
2

,n])
end if
return C
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Figure 5: Result of the correlation analysis: Segments

which prove linear correlation computed for the Spline rep-

resentation of the objective function.

4.3 Determination of Pareto Information
After the determination of all causal relations between pa-

rameters {x0, ..., xp} and simulation goals {g0, ..., gk} (resp.
objective functions {f0, ..., fk}) we can approximate the fea-
sible design space for every parameter xi. This feasible de-
sign space approximation can be used to efficiently compute
suitable Pareto information for optimization algorithms.

xa xb
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Figure 6: Approximation of feasible design space for a ob-

tained parameter and simulation goal (α, β) relationship and

given minimum objective value (dotted line): xa, ..., xb deter-

mines the feasible parameter configurations.

The feasible design space constitutes a sub-set
{{xi, ..., xj}, ..., {xn, ..., xm}} ⊆ {xo, ..., xk} with 0 ≤ i, i <
j, n < m, j < n,m ≤ k. Figure 6 illustrates this concept for
a parameter which is related to two simulation goals α, β.

Depending on the extracted design space, different out-
comes are possible: singleobjective as well as multiobjective
optimization problems. Singleobjective optimization prob-
lems can be directly solved by regular optimization algo-
rithms. Multiobjective structures require Pareto informa-
tion to solve conflicting objective functions. In the last case,
we can further utilize our feasible design space approxima-
tion to generate Pareto gradient information.

An additional challenge appears if the same parameter
contributes to different objective values at different time
steps in the simulation (e.g. a fuel state/configuration in
a car simulation which changes over time). Because of con-
figurations like this, we prefer to define a spline of the ob-
jective function for each simulation time step individually.
This results in a list of splines: {S({xk})t0 , ..., S({xk})tn} =
{{yk}t0 , ..., {yk}tn} for n time steps with:

S({xk})ti = {yk}ti (9)

where

ti : simulation time
{xk} : parameter space
{yk} : objective values of the corresponding objective

function

In the easiest case, every input parameter xi ∈ xk would
result in every time step in the same objective value yi,
hence yit0 = yit1 = ... = yitn . In this case, only one spline
is needed to describe the relationship. In the other case, we
define the deviations of xi over the simulation time as

αt(xi) = {y0, ..., ym} (10)

where

{y0, ..., ym} : objective values for all simulation steps m

Additionally, we introduce a weighting function for this
case in order to achieve smooth gradient transitions for the
simulation behavior over the simulation time. We define this
weighting as a Gaussian alignment of {yo, ..., ym}.



ωxit =
e−k2

αt(xi) + ...+ e−g2αtm(xi)

m
(11)

where

k > m, k = 1,m : number of simulation time steps
g : the Gaussian weight

In order to generate the required Pareto information, we
transform this parameter space and objective space of the
corresponding relations into a new representation which we
call Pareto space.

The transformation into the Pareto space is implemented
with ωxit:

ωpareto(xi) =

∑
Θi(| on −

o∑j=0
j<n fj(xi)

· ωxit(xi)|)

k
(12)

where

1 ≤ o ≤ 100 : weighting factor
k : the number of non-empty utility functions
n : the number of related simulation goals
Θ : the Pareto weighting factor

We construct the Pareto space ωpareto for all given Pareto
goal weightings Θ0, ...,Θn. Figures 7 and 8 additionally il-
lustrate the definitions:
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Figure 7: Graphs and deviation of a causal relationship

between a parameter and a simulation goal.
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Figure 8: The Pareto gradient is determined by the amount

of related simulation goals as well as Pareto weight Θ. The

gradient information is computed for every sampling data

point and constitutes our Pareto space. For every weight-

ing Θ, a different Pareto space ({xa, ...xb} and {xc, ...xd}) is

constructed.

5. USE CASE STUDIES
We present two diverse use case studies from the fields of

engineering and biology to illustrate the broad range of ap-
plications of our presented approach. First, we use Kepler’s
orbital mechanics which are used in space flight to describe
celestial body and spacecraft movement. Second, we use the
non-linear differential Lotka-Volterra equations [3] which are
frequently used to describe the dynamics of biological sys-
tems in which to species interact, one as a predator and the
other as prey. In both use case scenarios, the model behav-
ior is unknown to our knowledge discovery process. Known
to our approach are only the available input parameters as
well as simulation goal measurements.

5.1 Spaceflight Orbit Optimization

5.1.1 Scenario
Usually spaceflight navigation solutions, especially auto-

nomous interplanetary cruise flight, use optical measure-
ments of reference bodies (e.g. Sun, Earth, Mars, Jupiter)
to compute their position [2]. On-board optical systems take
pictures of these reference bodies with respect to stars with
known celestial locations. These images are used to compute
the angular position of a spacecraft with respect to the refer-
ence bodies. These measurements are essential as spacecraft
self-localization is needed throughout the complete mission
[2]. Consequently, spacecraft trajectory calculation to tar-
get destinations has to consider possible reference bodies as
well as optical system placing on the spacecraft for a given
mission scenario.

The main idea of this use case is to compute a orbit for
a interplanetary cruise flight to a target body in such a way
that optical measurements to two reference bodies are guar-
anteed in order to ensure that spacecraft self-localization is
possible.

5.1.2 Methodology
In celestial mechanics, Kepler’s orbital elements can be

used to uniquely identify a specific orbit in space. A Kep-
lerian orbit is an idealized, mathematical approximation of
an orbit for a particular time span. Each Kepler orbit is de-
fined with six elements (see Figure 9), namely eccentricity e,
inclination i, semimajor axis a, longitude of ascending node
Ω, argument of periapsis ω and mean anomaly at epoch M .

Solving Keplers Equation M(t) = E(t)− esin(E) for the
eccentric anomaly E(t) which defines the cartesian position
of the specified orbit object can then be done with an ap-
propriate method numerically, e.g. via Newton-Raphson it-
eration until |En − En−1| ≤ k, where k defines the allowed
deviation for the orbit (see Equation 13).

En = En−1 −
En−1 − e · sin(En−1)−M

1− e · cos(En−1
(13)

~r is then defining the object position in cartesian coor-
dinates with respect to the eccentric anomaly and support
vectors ~P , ~Q:

~r = a · (~P · (cos(E)− e) +
√

1− e2 · ~Q · sin(E)) (14)



Figure 9: Illustration of the Keplerian orbital elements.

The two target bodies as well as the spacecraft are repre-
sented by their Kepler orbits around the Sun
k1 = {e, a, i, ω,Ω,M}, k2 = {e, a, i, ω,Ω,M},
ksc = {e, a, i, ω,Ω,M}. The required field of view of the
sensor measurements are represented by

cosα =
( ~rtarget − ~rsc) · ~p

| ( ~rtarget − ~rsc) | · | ~p |
≤ t (15)

where

~p : the aligned payload vector
t : the allowed angle of the payload field of view
~rsc : the spacecraft position
~rtarget : the target position

5.2 Lotka-Volterra Optimization

5.2.1 Scenario
The prey-predator system is a widely used simulation model

of biological systems in which two species interact with each
other. It consists of a dynamical non-linear system modeled
by two differential equations, known as the Lotka-Volterra
equations [3]. The equations model the evolution of two
populations evolving in a common environment: preys and
predators. Predators need to consume preys to survive, and
preys spontaneously reproduce.

Due to the non-linear behavior of the Lotka-Volterra equa-
tions and further constraints (e.g. environmental condi-
tions as the seasons which affect birth and death rate of
the species) which can be added to the model, determining
suitable input for observed real world ecosystem data is a
challenging problem [22]. Therefore, the main idea of this
use case is to determine a suitable input parameter set for
the Lotka-Volterra equations in order to achieve a steady
state between preys and predators for a given time span.

5.2.2 Methodology
The Lotka-Volterra model involves four parameters:

α : preys reproduction rate
β : preys death rate due to predators
δ : predators death rate in absence of preys
γ : predators reproduction rate according to consumed

preys

Figure 10: Illustration of the Lotka-Volterra equations: Pe-

riodic oscillation between preys and predators occur.

The population evolution is given by these two differential
equations:

dx(t)

dt
= x(t)(α− βy(t)) (16)

dy(t)

dt
= −y(t)(δ − γx(t)) (17)

where x(t) is the prey population at time t and y(t) is the
predator population at time t. Figure 10 further illustrates
the behavior of the model.

6. EVALUATION
We implemented our knowledge discovery process and op-

timization approach in C++. We performed our experi-
ments on a machine with Intel Core i7 quad-core processor
with Hyperthreading enabled and 8GB of memory.

We applied different experiments to measure the perfor-
mance as well as the quality of our approach. For the qual-
ity measurement, we used the use case scenarios described
above. Both use case simulations were used to evaluate
whether the computed Pareto gradient information are suit-
able for converging towards the Pareto front.

However, both scenarios are relatively small and can be
hardly used to evaluate the performance of our approach.
Hence, we additionally implemented a synthetic benchmark
for performance measurements. We included three standard
optimization algorithms: gradient descent, simulated an-
nealing and evolutionary algorithms. The synthetic bench-
mark is based on blackbox simulations. We generated ran-
dom objective functions for arbitrary simulation input pa-
rameters with mixed polynomials up to degree ten. These
objective functions are further linked arbitrary times to-
gether with various simulation input parameters in order
to generate multiobjective constraints.

Such multiobjective optimization problems do not have a
single, accepted measure for solution quality [16], in contrast
to single objective optimizations that have single global op-
timum, it is more complicated to measure the quality of any
solution produced by a optimization algorithm.

We use the GD (Generational Distance) measurement [7]
that provides an estimation of the distance of the current so-
lution to the Pareto front. In other words, GD = 0 indicates
that all solutions are placed on the Pareto front. We first
compute the minimum Euclidean distance δi, i = 1, 2, ..., np

of each solution where np is the number of solutions found.



The Generational Distance is then defined as:

GD =

√∑np

i=1 δi
2

np
(18)

Figure 11 shows the mean average computation time for
the implemented Association Rule Mining approach in our
synthetic benchmark. Our approach generates level-1-itemsets
for more than 10.000 simulation input parameters in less
than a second (see Figure 11). Moreover, our approach is
able to generate our forest data structure of up to 100 simu-
lation goals for these 10,000 parameters in less than 100 mil-
liseconds (see Figure 12). Consequently, our approach is able
to analyze large scale simulations very effectively. Figure 13
shows the average sampling rate of our cubic spline based
interpolation needed for successfully approximating an un-
known objective function with parameter space k = 100.
The sampling rate depends on the polynomial degree of the
unknown objective function. We compared our spline based
approach with an approach which randomly samples the pa-
rameter space. The results show that our approach needs
less samples for determining the objective function.

All three optimization algorithms we tested directly ben-
efit from our Pareto information. Here, we compared how
close the algorithms optimize towards the Pareto front when
using our provided Pareto gradient information or not. When
using the provided Pareto gradient information from our ap-
proach, the algorithms find solutions closer to the Pareto
front by up to 38% for gradient descent, 44% for simulated
annealing and 81% for a evolutionary approach (see Figure
14).

Surprisingly, evolutionary algorithms benefit most from
our Pareto information. We believe, that with an increasing
number of conflicting goals, even our Pareto space inherits
many local minima, which adversely affect gradient descent
and simulated annealing.

We used our use case scenarios to measure the quality of
our approach. In the prey predator system, our approach
was successfully able to compute a suitable input parameter
set in order to achieve a steady simulation state. Figure 15
shows initial and the optimized model behavior. In our space
flight scenario, our approach obtained an optimized flight
orbit of the spacecraft with respect to the needed sensor
measurements (see Figure 16). In both use case studies, our
approach computed suitable solutions based on our Pareto
space and it achieved the desired simulation goal state.

Figure 11: Our customized Association Rule Mining ap-

proach is able to analyze several thousands of parameters for

generating level-1-itemsets in less than a second.

Figure 12: Our forest generation algorithm is able to gener-

ate the corresponding tree structures for more than 100 goals

in less than 100 milliseconds.

Figure 13: Our cubic spline algorithm is able to efficiently

approximate unknown objective functions with less than half

of the available parameter space even for high degree poly-

nomials.

Figure 15: Evaluation of the Lotka-Volterra use case study:

Our approach is able to compute Pareto information in order

to achieve a steady state in the population.

Figure 16: Evaluation of the spacecraft flight use case

study: Our approach is able to compute Pareto information

in order to achieve the desired orbit for suitable observation

possibilities.



Figure 14: Our Pareto information directly benefit gradient descent, simulated annealing and evolutionary approaches and

deliver results closer to the Pareto front.

7. CONCLUSION
We presented a novel knowledge discovery process for ac-

tive model building of multiobjective optimization within
deterministic blackbox simulations.

Our process automatically builds an active model between
simulation input and simulation goals which is capable of
• approximating the feasible design space for a Pareto

based optimization by uncovering unknown causal re-
lations in large parameter sets between simulation in-
put and model behavior which are assumed to be un-
known non-linear objective functions.
• computing Pareto gradient information from this de-

sign space approximation which can be used in state-
of-the-art multiobjective optimization solvers.

Our knowledge discovery process is completely autonomous
and does not need any supervision from a simulation expert.

The results from our case studies and synthetic bench-
marks show that our approach is able to analyze large scale
simulations with tens of thousands of parameters in less
than a second while providing suitable Pareto information
for state-of-the-art multiobjective optimization algorithms.
Due to its generality, our approach is applicable to a wide va-
riety of simulation domains such as engineering design prob-
lems, including layout, design, and process optimization.

In the future, we would like to extend our approach to
support intelligent, heuristic-based simulation data farming
and sampling. In detail, our approach could sample directly
in the direction of the Pareto front in order to improve the
simulation data farming process. In order to realize this,
a sampling heuristic is needed which should be in a direct
feedback-loop with our proposed Pareto gradient optimiza-
tion. Furthermore, an evaluation of our approach with stan-
dard optimization via simulation problems as provided by
[29] is planned. Finally, it would also be beneficial if our
approach could support stochastic simulations.

This would incorporate that our spline-based sampling
technique needs to adapt to randomness in the sampling
of objective values.
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