

GraphPool: A High Performance Data Management for 3D Simulations

Patrick Lange, Rene Weller, Gabriel Zachmann

University of Bremen, Germany

cgvr.cs.uni-bremen.de

ACM SIGSIM PADS

15-18 May 2016, Banff, AB, Canada

Bremen

Data: Central Part in Simulations

- Generation, management and distribution of the global simulation state
- Managing the communication of many software components

Related Work

Our Approach

Results

Bremen

CG VR

- Challenges in Data Engineering for Simulations
- **1.** Performance (\geq realtime)
 - Simulation implementation vs. data storage
- 2. Scalability to massively parallel access
 - Parallelization of simulation workflow
 - Concurrency control
- 3. Adaptability to new data formats
 - Enrichment of simulation models

Relational Databases for Simulations

- Major data management used in modern architectures for 3D simulation applications
 - Strives for data consistency and transactional safety
 - Sacrifices performance and adaptability

- Schema and data synchronization for distributed 3D simulations [Hoppen'14,Rossmann'12]
- Store visualization data with collaboration [Julier'10,Walczak'12] or not [Schmalstieg'07]
- Static data schema [Haist'05] vs flexible data schema [Schmalstieg'07]

Relational Database Technology

- Motivation: Well-researched, easy-to-use, deliver out-of-the-box functionality
 - Quick integration & implementation
 - Relational database technology (aggregate queries, caching, consistency, ...)
- Scalability and performance of massively parallel acess due to serialization of queries

- Adaptability to new simulation data
- Performance bottleneck when transforming object-oriented data into table format of relational databases

Not the right tool for the job

- Replace relational database technology in complex simulation frameworks
 - No data transformation needed
 - No lock-based synchronization of transactions
- Our approach introduces
 - Graph-based data structure
 - Wait-free concurrency control
 - Key-based queries
 - Emulation of relational access queries

- Replace relational database technology in complex simulation frameworks
 - No data transformation needed
 - No lock-based synchronization of transactions
- Our approach introduces
 - Graph-based data structure
 - Wait-free concurrency control
 - Key-based queries
 - Emulation of relational access queries

Results

Recap - Wait-free Hash Maps: Concept

CG VR

 Assignment of unique identifiers to each data packet which is exchanged between software components

Bremen

- Every data packet is stored inside a hash map which resembles the complete system state
- Relies on memory cloning and atomic operations

Recap - Wait-free Hash Maps: Features

- Guarantees access to the shared data structure in a finite number of steps (e.g. as traditional thread or OpenMP implementation)
- Does not need any traditional locking mechanism
- Delivers high performance even for massive concurrent access

Nested Hash Maps

CG VR

- Emulating relational access queries requires
 - Unique identification of data
 - Linking structures between data
- Hash map representation advantages
 - Fast insert, deletion and lookup operations: 0(1)

Nested Hash Maps

- One nested hash map emulates one table
- $n \cdot m$ table is represented by m object keys and n member keys
 - Every key acts as a SQL primary key
- Easy extension of stored data

- Arrange nested hash maps in graph in order to enable relational queries via graph traversal
- Annotate and organize data with additional information (e.g. meta data)

Bremen

Property Graph Model: Example

Relation	al table re	epresentation	Our representation
ID N	lame	University	
23 S	Smith	Stanford	
42 J	ones	Yale	Yale Stanford
Reference WK3	Paper The 101	Contact Author 23	Paper
Reference WK3	Paper The 101 Simulatio	Contact Author 23	Paper Author
Reference WK3 LID	Paper The 101 Simulatio	Contact Author 23 Referenc e	Paper Author "101" "Contact"
Reference WK3 LID	Paper The 101 Simulatio	Contact Author23nReferenc eWK3	Paper Author "101" "Contact"

Motivation

Related Work

Our Approach

Results

Relati	ona	l table r	epr	esentation	
					(
ID	Na	me	Un	iversity	
23	Sm	nith	Sta	Inford	
42	Joi	nes	Yal	e	٢
					L
Referer	nce	Paper		Contact Author	C
Referen	nce	Paper The 101 Simulatio	on	Contact Author 23	Ľ
Referen WK3	nce	Paper The 101 Simulation	on	Contact Author 23	L
Referen WK3	nce	Paper The 101 Simulation	on	Contact Author 23 Referenc e	

Motivation

42

2

Related Work

WK3

Our Approach

Results

D	Na	me	Uni	versity
23	Sm	nith	Stanford	
42	Jor	nes	Yale	
Referen	се	Paper		Contact Author
WK3		The 101		23

Motivation

23

42

1

2

Related Work

WK3

WK3

Our Approach

Results

- Performance comparison of GraphPool, (on-disk/in-memory) relational databases and lock-based GraphPool
 - insert, select and aggregate queries
- Single and massively parallel access scenarios
- Verification of query results

- Test configuration:
 - C++ with -O3 optimization
 - Each test averages 10,000 read/write operations with varying data types (vectors, matrices, pointcloud data, strings, numerals)

Results: Single Access

Motivation Related Work Our Approach Results Conclusion

Results: Single Access

Motivation

Related Work

Our Approach

Results Conclusion

Results: Multi Access

Motivation Related Work Our Approach Results Conclusion

Motivation

Related Work

Our Approach

Results Conclusion

- Novel data management for sophisticated (massively parallel)
 (3D) simulation applications
 - Allows non-locking read and write operations
 - No deadlock, no starvation of operations
 - Highly responsive, low-latency access for any number of simulation components
 - Emulates relational database access queries
- Outperforms traditional approaches by a minimum of factor 10

Thank you for your attention

Questions?

Patrick Lange, Rene Weller, Gabriel Zachmann {lange,weller,zach}@cs.uni-bremen.de

This research is based upon the project KaNaRiA, supported by German Aerospace Center (DLR) with funds of German Federal Ministry of Economics and Technoloy (BMWi) grant *50NA1318*

