
ACM SIGGRAPH ASIA 2010 conference proceedings

ProtoSphere: A GPU-Assisted Prototype Guided
Sphere Packing Algorithm for Arbitrary Objects

Rene Weller, Gabriel Zachmann, Clausthal University, Germany

Figure 1: A model of an armadillo filled with 15000 spheres (left). As a side effect of our algorithm, we get an approximation of the medial
axis in the first iteration (middle). The sphere filled cube shows the fractal Apollonian property of our algorithm (right).

1 Motivation
Filling objects densely with sets of non overlapping spheres has been
investigated for centuries. Once started as a pure intellectual chal-
lenge, today, sphere packings have diverse applications in a wide
spectrum of scientific and engineering disciplines, for example in au-
tomated radiosurgical treatment planning, investigation of processes
such as sedimentation, compaction and sintering, in powder metal-
lurgy for three-dimensional laser cutting, in cutting different natural
crystals, the discrete element method is based on them, and so forth.

In computer graphics, sphere packings also have proven to be very
efficient when doing collision detection, which was the starting point
of our research [Weller and Zachmann 2009].

Additionally, volumetric representations provide advantages for
physically based simulations of deformable objects: with simple
mass spring systems it is hard to fulfill volume preservation; on the
other hand, FEM based methods are hard to do in real-time. So, an
approximation of the volume in combination with fast mass spring
methods can result in a novel approach for deformable object simu-
lation.

The voxel-based method used so far tends to produce a lot of small
and very regularly placed spheres close to the surface. This results
in artifacts, in particular temporal aliasing, in the collision response.

In this talk, we would like to present a new algorithm that is able
to efficiently compute a space filling sphere packing for arbitrary
objects. It is independent of the object’s representation (polygonal,
NURBS, CSG,...); the only precondition is that it must be possible
to compute the distance from any point to the surface of the object.
Moreover, our algorithm is not restricted to 3D but can be easily
extended to higher dimensions.

The basic idea is very simple and related to prototype based ap-
proaches known from machine learning. This approach directly
leads to a parallel algorithm that we have implemented using CUDA.
As a byproduct, our algorithm yields an approximation of the ob-
ject’s medial axis that has applications ranging from path-planning
to surface reconstruction.

2 Our Approach
A simple algorithm to fill an object with a set of non-overlapping
spheres is the following greedy method. For a given object we start
with the largest sphere that fits in the object. Iteratively, we insert

new spheres, under the constraints that a) they must not intersect the
already existing spheres and b) that they be completely contained
inside the object.

The resulting sphere packing is called an “Apollonian sphere
packing”. One important property of Apollonian packings is that
they are known to be space filling. There exist efficient algorithms to
compute Apollonian diagrams for very simple geometrical shapes
like cubes or spheres (see e.g. [Mahmoodi-Baram and Herrmann
2004]) but they are hardly expandable to arbitrary objects, let alone
their computation time.

2.1 Basic Idea
Let P denote the surface of a closed, simple object in 3D. Consider
the largest sphere s inside P . Obviously, s touches at least 4 points of
P , and there are no other points of P inside s. This implies that the
center of s is a Voronoi node (VN) of P . Consequently, it is possible
to formulate the greedy space filling as an iterative computation of
a generalized Voronoi diagram (VD) of P plus the set of all spheres
existing so far.

Many algorithms have been devised for the calculation of the clas-
sic VD and for its many generalizations. However, there are rela-
tively few works dedicated to the construction of VDs for spheres
in 3D. E.g. [Wang 1999] used 3D Voronoi diagrams for spheres
to approximately solve the optimal sphere packing problem. But,
this approach can handle only points and spheres and moreover it is
very slow. [Baran and Popović 2007] used an approximative greedy
sphere packing algorithm for automatic rigging of animated char-
acters. The spheres are all located on the medial axis and they are
allowed to overlap. Even if it is possible to extend this approach
to more general sphere packings, the re-computation of intermedi-
ate data structures like an octree and a kd-tree would make it ineffi-
cient, because it already needs several seconds of computation time
to compute just an approximation of the medial axis. To our knowl-
edge, there is no algorithm that supports the computation of VDs
for a mixed set of triangles and spheres, let alone a fast and stable
implementation.

Fortunately, a closer look at the simple algorithm we proposed
above shows that we do not need the whole VD, but only the VNs.
Hence, the core of our novel algorithm (which we call “Proto-
Sphere”) is the approximation of the VNs. Again, the basic idea
is very simple: we let a single point, the prototype, iteratively move

1

ACM SIGGRAPH ASIA 2010 conference proceedings

Figure 2: The space filling rate of our sphere packing algorithm (left). The models used for the timings: A cow, a pig, a bust and a dragon
(middle). Timings for different objects on a Geforce GTX480 (right; please note that the code is not optimized yet).

towards one of the VNs:

Algorithm 1: convergePrototype(prototype p, object O)
place p randomly inside O
while p has not converged do

qc = argmin{ ‖p− q‖ : q ∈ surface of O }
choose ε ∈ [0, 1]
p = p+ ε · (p− qc)

The last line guarantees that, after each single step, p is still inside
the object, because the entire sphere around p with radius ‖p − qc‖
is inside the object.

Moreover, moving p away from the border, into the direction
(p − qc), leads potentially to bigger spheres in the next iteration.
Usually, ε is not a constant, but a cooling function that allows large
movements in early iterations and only small changes in the later
steps.

The accuracy of the approximated VN depends on the choice of
this cooling function and on the number of iterations.

2.2 Parallelization
Using a single prototype does not guarantee to find the global op-
timum (which is the sought-after VN), because the algorithm pre-
sented in the previous section depends on the starting position of the
prototype. Hence, we use a set of independently moving prototypes
instead of only a single one. This can be easily parallelized if the
prototypes are allowed to move independently.

Therefore, we compute a uniform grid and start with a prototype
in each cell that is located inside the object. During the movement
step of Algorithm 1, the prototypes are confined to their cells. This
results in a uniform density of the prototypes, and moreover the grid
can be used to speed up the distance computations. For the latter, we
additionally compute the discrete distance from each cell to the sur-
face. The complete parallelized algorithm can be written as follows:

Algorithm 2: spherePacking(object O)
In parallel: Initialize discrete distance field
while Number of required spheres is not met do

In parallel: Place pi randomly inside grid cell ci
In parallel: convergePrototype(pi, O ∪ inserted spheres)
In parallel: Find VN pm ∈ {pi} with max distance dm
Insert sphere at position pm with radius dm
In parallel: Update discrete distance field

Please note that after the convergence of the initial set of proto-
types, we get an approximation of the medial axis. Its accuracy de-

pends on the number of initial prototypes and thus on the size of the
grid. In addition, our algorithm extends Apollonian sphere packings
to arbitrary objects. This is the reason for the space filling property
of our algorithm.

3 Results
We have implemented our algorithm using CUDA. Figure 2 shows
the results for some of the objects that we have filled with spheres.
The triangle count reaches from 10.000 for the pig up to 300.000
for the dragon. We are able to fill all objects with 100.000 spheres
within a few seconds using a NVIDIA GTX480 graphics card. The
number of iterations of Algorithm 1 was set to 50. The accuracy
of the computed Voronoi nodes is > 99.99% compared to the exact
Voronoi nodes position.

Surprisingly, the filling rate depends only on the number of
spheres but is independent of the objects shapes, at least with all
objects that we have tested.

4 Conclusions and Future Work
Summarizing, we have presented a novel method for filling arbitrary
objects very quickly and stably with sets of non-overlapping spheres.
It is optimal in the sense, that it produces space filling sphere pack-
ings due to the Apollonian property, but it is not optimal in the num-
ber of spheres, which is known to be an NP complete problem. How-
ever, small modifications of our algorithm could also help to solve
sphere packing problems with other objectives, e.g. replacing the
greedy choice by dynamic programming would maximize the cov-
ered volume for a predefined number of unequal spheres.

Beyond that, our algorithm offers numerous other starting points
for future work. For instance, further optimization of the implemen-
tation could make, at least the first step and thus the approximation
of the medial axis, capable for real-time applications. This could be
helpful e.g. for path-planning in deformable environments. More-
over our algorithm can be used as a blueprint for several generalized
Voronoi diagram problems.

References
BARAN, I., AND POPOVIĆ, J. 2007. Automatic rigging and animation of 3d

characters. ACM Trans. Graph. 26, 3, 72.
MAHMOODI-BARAM, R., AND HERRMANN, H. J. 2004. Self-similar

space-filling packings in three dimensions. Fractals 12, 293–301. cond-
mat/0312345.

WANG, J. 1999. Packing of unequal spheres and automated radiosurgical
treatment planning. Journal of Combinatorial Optimization 3, 453–463.
10.1023/A:1009831621621.

WELLER, R., AND ZACHMANN, G. 2009. A unified approach for
physically-based simulations and haptic rendering. In Sandbox 2009:
ACM SIGGRAPH Video Game Proceedings, ACM Press, New Orleans,
LA, USA.

2

