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Figure 1: Our new data structure, the Inner Sphere Tree, is based on sphere packings in arbitrary polygonal objects (left). They are suitable
for different kinds of geometric queries, namely proximity queries (middle) and the penetration volume (right).

Abstract

Based on our new geometric data structure, the inner sphere trees,
we present fast and stable algorithms for different kinds of collision
detection queries between rigid objects at haptic rates. Namely,
proximity queries and the penetration volume, which is related to
the water displacement of the overlapping region and thus corre-
sponds to a physically motivated force.

The latter allows us to define a novel penalty-based collision re-
sponse scheme that provides continuous forces and torques which
are applicable to physically-based simulations as well as to haptic
rendering scenarios. Moreover, we present a time-critical version
of the penetration volume computation that is able to achieve very
tight bounds within a fixed budget of query time.

The main idea of our new data structure is to bound the object from
the inside with a set of non-overlapping bounding volumes.

The results show performance at haptic rates both for proximity and
penetration volume queries, independent from the polygon count of
the objects.

CR Categories: I.3.5 [Computing Methodologies]: Compu-
tational Geometry and Object Modeling—Geometric algorithms,
Object hierarchies; I.3.7 [Computing Methodologies]: Three-
Dimensional Graphics and Realism—Animation, Virtual reality
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1 Introduction
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The progress of visual and aural sensations, thanks to the devel-
opment of more powerful hardware in conjunction with improved
algorithms, has revolutionized the immersion of modern computer
games.

Since the visual feedback and effects of today’s games have become
extremely mature, it will be more and more important for games to
provide realistic feedback to other senses, such as our haptic sense.
On the hardware side, this has become possible in recent years by
the advent of first inexpensive haptic devices on the consumer mar-
ket, such as the Falcon from Novint. Research on force-feedback
devices and algorithms has been done over 10 years, and has only
fairly recently been introduced to games.1

However, while there is a large body of research on how to render
forces given a collision and its contact information, the computation
of the latter for massive models is still a challenge. First of all, this
is due to the much higher effort to compute contact information.
Second, this is due to the update rates that are necessary for haptic
rendering, which need to be much higher than for visual rendering,
i.e., 250–1000 Hz. And third, defining the contact information such
that continuous contact forces can be derived is not always obvious.

Therefore, one of the major challenges in haptic rendering for
games is the computation of continuous forces at haptic rates. A
solution to this challenge can also be utilized to do physically-based
simulation of rigid bodies, which has become increasingly popular
in games over the past few years.

In this paper, we take advantage of the fact that in rendering hap-
tic forces, as well as in most real-time applications that involve
physically-based simulation, an absolutely correct determination of
the forces acting on the virtual objects is not necessary.

1.1 Main Contributions

Based on our new data structure, the Inner Sphere Trees (IST), we
present the following novel ideas:

- new contact information for stable penalty forces, i.e. the pene-
tration volume;

1 This is in analogy to Nintendo’s Wii, which is a transfer and adaptation of
the research on novel, intuitive, unintrusive input devices over the past 15
years.



Figure 2: The different stages of our sphere packing algorithm: First, we voxelize the object (left) and compute distances from the voxels to
the closest triangle (second image; transparency = distance). Then, we pick the voxel with the largest distance and put a sphere at its center.
We proceed incrementally and, eventually, we obtain a dense sphere packing of the object (right).

- a unified algorithm that can compute both an approximate mini-
mal distance and the approximate penetration volume for a pair
of rigid objects; i.e., the application does not need to know in
advance which situation currently exists between the pair of ob-
jects;

- a time-critical variant of the penetration volume calculation,
which runs only for a pre-defined time budget, including a new
heuristic to derive good error bounds, the expected overlap vol-
ume;

- a novel collision response scheme to compute stable and contin-
uous forces and torques based on the penetration volume.

The main idea of the ISTs is that we do not build an (outer) hi-
erarchy based on the polygons on the boundary of an object, like
most other BVHs do, but we fill the interior of the model with a set
of non-overlapping simple volumes that cover the object’s volume
densely. We used spheres in our implementation because of their
convenient properties, but the idea of using inner BVs for lower
bounds instead of outer BVs for upper bounds can be extended
analogously to other kinds of volumes. On top of these inner BVs,
we create a hierarchy in order to accelerate the computation of the
approximate proximity and penetration volume queries.

The penetration volume corresponds to the amount of water being
displaced by the overlapping parts of the objects and, thus, leads to
a physically motivated and continuous penalty force. According to
[Fisher and Lin 2001, Sec. 5.1], it is “the most complicated yet ac-
curate method” to define the extent of intersection, which was also
reported earlier by [O’Brien and Hodgins 1999, Sec. 3.3]. However,
to our knowledge, there are no algorithms to compute it efficiently
as yet.

Our data structure supports all kinds of object representations,
e.g. polygon meshes or NURBS surfaces. They only have to be
watertight. The construction of the ISTs consists of two main steps.
First, we have to fill the object densely with a set of non-overlapping
spheres. Therefore, we extended a flood filling voxelization algo-
rithm and combined it with a special sphere creation scheme. The
second step is to build a hierarchy upon these inner spheres for
which we use a clustering approach.

We describe the algorithm to compute both approximative separa-
tion distance and penetration volume based on the ISTs. In addition,
we include improvements of the algorithm in quality and speed.

The results show that our new data structure can answer both kinds
of queries at haptic rates with a negligible loss of accuracy.

2 Previous Work

Collision detection has been extensively investigated by researchers
in the past decades. There exist a large variety of freely avail-
able libraries for collision detection queries (see e.g. [Trenkel et al.
2007]). However, the number of libraries that also support the com-
putation of proximity queries or the penetration depth is manage-
able. Additionally, most of them are not designed to work at haptic
refresh rates. In the following, we will give a short overview of
classical and also state of the art approaches.

2.1 BVH based data structures

In [Johnson and Cohen 1998] a generalized framework for mini-
mum distance computations that depends on geometric reasoning
and includes time-critical properties is presented. The PQP library
[Larsen et al. 1999] uses swept sphere volumes as BVs in combi-
nation with several speed-up techniques for fast proximity queries.
We used it in this paper to compute the ground truth for the prox-
imity queries. Sphere trees have also been used for distance com-
putation [Quinlan 1994; Hubbard 1995; Mendoza and O’Sullivan
2006]. The algorithms presented there are interruptible and they are
able to deliver approximative distances. Moreover, they all com-
pute a lower bound on the distance, while our ISTs derive an upper
bound. Thus, a combination of these approaches with our ISTs
could deliver error bounds in both directions. A local minimum
distances for a stable force feedback computation is proposed by
[Johnson and Willemsen 2003]. They use spatialized normal cone
pruning for the collision detection.

Another classical algorithm for proximity queries is the GJK
[Gilbert et al. 1988; van den Bergen 1999], which computes the dis-
tance between a pair of convex objects, by utilizing the Minkowski
sum of the two objects. Extensions to the GJK algorithms also al-
low to measure the penetration depth [Cameron 1997].

[Zhang et al. 2007] presented an extended definition of the pene-
tration depth that also takes the rotational component into account,
called the generalized penetration depth. However, this approach is
computationally very expensive and, thus, might currently not be
fast enough for haptic interaction rates. [Redon and Lin 2006] ap-
proximate a local penetration depth by first computing a local pen-
etration direction and then use this information to estimate a local
penetration depth on the GPU. Other GPU approaches have been
presented by [Kim et al. 2003; Kim et al. 2002; Hoff et al. 2002]
that also support proximity queries in image resolution.

There is very little literature on penetration volume computation.
[Hasegawa and Sato 2004] explicitly construct the intersection vol-
ume of convex polyhedra and apply this method to 6-DOF haptic
rendering. However, this method is applicable only to very simple



geometries.

Another approach mentioned by [Faure et al. 2008] computes an
approximation of the intersection volume from layered depth im-
ages on the GPU. While this approach is applicable to deformable
geometries, it is restricted to image space precision.

2.2 Voxel based data structures

Most 6-DOF haptic rendering approaches use the Voxmap
Pointshell method [McNeely et al. 1999]. The main idea is to di-
vide the virtual environment into a dynamic object, that is allowed
to move freely through the virtual space and static objects that are
fixed in the world. The static environment is discretized into a set of
voxels, whereas the dynamic object is described by a set of points
that represents its surface. During query time, for each of these
points it is determined with a simple boolean test, whether it is lo-
cated in a filled volume element or not. [Renz et al. 2001] presented
extensions to the classic VPS, including optimizations to force cal-
culation in order to increase its stability. However, even these opti-
mizations cannot completely avoid the limits of VPS, namely alias-
ing effects, the huge memory consumption and the strict disjunction
between dynamic and static objects.

Closely related to VPS are distance field based methods. [Barbič
and James 2008] generates continuous contact forces for 6-DOF
haptic rendering by using a pointshell of reduced deformable mod-
els in combination with distance fields.

3 Construction of the Inner Sphere Tree

In this section we describe the construction of our data structure.
The goal is to fill an arbitrary object densely with a set of disjoint
(i.e. non-overlapping) spheres such that the volume of the object is
covered well while the number of spheres is as small as possible.
In a second step, we build a hierarchy over this set of spheres. We
chose spheres for volumes, because they offer a trivial and very fast
overlap test. Moreover, they are rotationally invariant, and it is easy,
in contrast to AABBs or OBBs, to compute the exact intersection
volume.

3.1 Let there be Spheres

Filling objects densely with spheres is a highly non-trivial task. Bin
packing, even when restricted to spheres, is still a very active field
in geometric optimization and far away from being solved for gen-
eral objects [Birgin and Sobral 2008; Schuermann 2006]. In our
implementation of the inner sphere trees, we use a simple heuristic
based on discrete distance field that offers a good trade-off between
accuracy and speed in practice.

Currently, we voxelize the object as an intermediate step (by a sim-
ple flood filling algorithm). But instead of only storing whether or
not a voxel is filled, we additionally store the distance d from the
center of the voxel to the nearest point on the surface.

After the voxelization, we generate the inner spheres greedily. We
choose the voxel V ∗ with the largest distance d∗ to the surface. We
create an inner sphere with radius d∗ and centered on the center
of V ∗. All voxels whose centers are contained in this sphere will
not be considered any further. Additionally, we have to update all
voxels Vi within a radius 2d∗ around V ∗ and distance d(Vi, V

∗) <
di + d∗; their di must now be set to the new free radius. This
is, because they are now closer to the sphere around V ∗ than to a
triangle on the hull. This process stops, when there is no voxel left.

After these steps, the object is filled densely with a set of non-
overlapping spheres. The density can be controlled by the number

of voxels.

3.2 Building the Hierarchy

Based on the sphere packing, we create a bounding volume hier-
archy. To do so, we use a top-down wrapped hierarchy approach,
according to the notion of [Agarwal et al. 2004], where inner nodes
are tight BVs for all their leaves, but they do not necessarily bound
their direct children. We start with a bounding sphere for all inner
spheres, which becomes the root node of the hierarchy. To compute
that, we use the fast and stable smallest enclosing sphere algorithm
proposed in [Gärtner 1999]. Then, we recursively divide the set of
inner spheres into subsets in order to create the children.

The partitioning of the spheres can be done by using any effective
technique. In our examples, we use an approach based on a clus-
tering algorithm called batch neural gas with magnification control
(see [Hammer et al. 2006; Weller and Zachmann 2009] for details).
Experiments with our data structure have shown that a branching
factor of 4 produces the best results. Additionally, this has the bene-
fit that we can use the full capacity of SIMD units in modern CPUs.

In the following, we will call those spheres in the hierarchy that
are not leaves hierarchy spheres. Spheres at the leaves, which were
created in Section 3.1, will be called inner spheres. Note that hier-
archy spheres are not necessarily contained completely within the
object.

4 BVH Traversal

Our algorithm(s) for answering proximity queries and for comput-
ing the penetration volume work similarly to the classic recursive
schemes that simultaneously traverse two given hierarchies [Zach-
mann 1998]. As a by-product, our algorithm can return a witness
realizing the separation distance in the case of non-collision, and a
partial list of intersecting polygons in the case of a penetration.

In the following, we describe algorithms for these two query types,
but it should be obvious how they can be modified in order to pro-
vide an approximate yes-no answer. This would further increase
the speed.

First, we will discuss the two query types separately, in order to
point out their specific requirements and optimizations. Then, we
explain how they can be combined into a single algorithm.

4.1 Proximity Queries

Our algorithm for proximity queries works like most other classical
BVH traversal algorithms. We simply have to maintain, in addi-
tion, a lower bound for the distance. If a pair of leaves, which are
inner spheres, is reached, we update the lower bound so far (see
Algorithm 1). During traversal, there is no need to visit branches of
the bounding volume test tree that are farther apart than the current
minimum distance, because of the bounding property. This guaran-
tees a high culling efficiency.

4.1.1 Improving runtime

In most collision detection scenarios, there is a high spatial and tem-
poral coherence, especially when rendering at haptic rates. Thus, in
most cases, those spheres realizing the minimum distance in a frame
are also the closest spheres in the next frames, or they are at least in
the neighborhood. Therefore, using the distance from the last frame
yields a good initial bound for pruning during traversal. Thus, in
our implementation we store pointers to the closest spheres as of



Algorithm 1: checkDistance( A, B, minDist )
input : A, B = spheres in the inner sphere tree
in/out : minDist = overall minimum distance seen so far
if A and B are leaves then

// end of recursion

minDist = min{distance(A,B),minDist}
else

// recursion step

forall children a[i] of A do
forall children b[j] of B do

if distance(a[i], b[j]) < minDist then
checkDistance( a[i], b[j], minDist )

Figure 3: After constructing the sphere packing (see Section 3.1),
every voxel can be intersected by several non-overlapping spheres
(left). These do not necessarily account for the whole voxel space
(blue space in the left picture). In order to account for these voids,
too, we simply increase the radius of the sphere (blue sphere) that
covers the center of the voxel (right).

the last frame and use their current distance to initialize minDist in
Algorithm 1.

If the application is only interested in the distance between a pair of
objects, then, of course, a further speed-up can be gained by aban-
doning the traversal once the first pair of intersecting inner spheres
is found (in this case the objects must overlap).

Moreover, our traversal algorithm is very well suited for paralleliza-
tion. During recursion, we compute the distances between 4 pairs
of spheres in one single SIMD implementation, which is greatly
facilitated by our hierarchy being a 4-ary tree.

4.1.2 Improving accuracy

Obviously, Algorithm 1 returns only an approximate minimum dis-
tance, because it utilizes only the distances of the inner spheres for
the proximity query. Thus, the accuracy depends on their density.

Fortunately, it is very easy to alleviate these inaccuracies by simply
assigning the closest triangle (or a set of triangles) to each inner
sphere. After determining the closest spheres with Algorithm 1, we
add a subsequent test that calculates the exact distance between the
triangles assigned to those spheres. This simple heuristic reduces
the error significantly even with relatively sparsely filled objects,
and it does not affect the running time (see Figure 8).

4.2 Penetration Volume Queries

In addition to proximity queries, our data structure also supports
a new kind of penetration query, namely the penetration volume.
This is the volume of the intersection of the two objects, which can
be interpreted directly as the amount of the repulsion force, if it is
considered as the amount of water being displaced.

Obviously, the algorithm to compute the penetration volume (see
Algorithm 2) does not differ very much from the proximity query
test: we simply have to replace the distance test by an overlap test
and maintain an accumulated overlap volume during the traversal.

Figure 4: We estimate the real penetration volume (brown) during
our time-critical traversal by the “density” in the hierarchy spheres
(green and red) and the total volume of the leaf spheres.

Algorithm 2: computeVolume( A, B, totalOverlap )
input : A, B = spheres in the inner sphere tree
in/out : totalOverlap = overall volume of intersection
if A and B are leaves then

// end of recursion

totalOverlap += overlapVolume( A, B )
else

// recursion step

forall children a[i] of A do
forall children b[j] of B do

if overlap(a[i], b[j]) > 0 then
computeVolume( a[i], b[j], totalOverlap )

4.2.1 Filling the gaps

The algorithm described in Section 3.1 results in densely filled ob-
jects. However, there still remain small voids between the spheres
that cannot be completely compensated by increasing the number
of voxels.

As a remedy, we assign an additional, secondary radius to each in-
ner sphere, such that the volume of the secondary sphere is equal to
the volume of all voxels whose centers are contained within the ra-
dius of the primary sphere.This guarantees that the total volume of
all secondary spheres equals the volume of the object, within the ac-
curacy of the voxelization, because each voxel volume is accounted
for exactly once.

Certainly, these secondary spheres may slightly overlap, but this
simple heuristic leads to acceptable estimations of the penetration
volume.

4.2.2 Improvements

Similar to the proximity query implementation, we can utilize
SIMD parallelization to speed up both the simple overlap check
and the volume accumulation.

Furthermore, we can exploit the observation that a recursion can be
terminated if a hierarchy sphere (i.e., an inner node of the sphere
hierarchy) is completely contained inside an inner sphere (leaf)of
the other IST. In this case, we can simply add the total volume of
all of its leaves to the accumulated penetration volume. In order to
do this quickly, we store the total volume

Voll(S) =
∑

Sj∈Leaves(S)

Vol(Sj), (1)

where Sj are all inner spheres below S in the BVH.

This can be done in a preprocessing step during hierarchy creation.



Algorithm 3: compVolumeTimeCritical( A,B )
input : A,B = root spheres of the two ISTs
estOverlap = Vol(A,B)

Q = empty priority queue
Q.push( A,B )
while Q not empty & time not exceeded do

(R,S) = Q.pop()
if R and S are not leaves then

estOverlap –= Vol(R,S)

forall Ri ∈ children of R, Sj ∈ children of S do
estOverlap += Vol(Ri, Sj)

Q.push( Ri, Sj )

4.2.3 Time-critical computation of penetration volume

In most cases, a penetration volume query has to visit many more
nodes than the average proximity query. Consequently, the running
time on average is slower, especially in cases with heavy overlaps.

In the following, we will describe a variation of our algorithm for
penetration volume queries that guarantees a predefined query time
budget. This is essential for time-critical applications such as haptic
rendering.

A suitable strategy to realize time-critical traversals is to guide the
traversal by a priority queue Q. Then, given a pair of hierarchy
spheres S and R, a simple heuristic is to use Vol(S ∩ R) for the
priority in Q. In our experience, this would yield acceptable upper
bounds.

Unfortunately, this simple heuristic also leads to very bad lower
bounds in cases where only a relatively small number of inner
spheres can be visited (unless the time budget permits an almost
complete traversal of all overlapping pairs).

A simple heuristic to derive an estimate of the lower bound could
be to compute ∑

(R,S)∈Q

∑
Ri∈ch(R),
Sj∈ch(S)

Vol(Ri ∩ Sj), (2)

where ch(S) is the set of all direct children of node S.

Equation 2 amounts to the sum of the intersection of all direct child
pairs of all pairs in the p-queue Q. Unfortunately, the direct chil-
dren of a node are usually not disjoint and, thus, this estimate of the
lower bound could actually be larger than the upper bound.

In order to avoid this problem, we introduce the notion of expected
overlap volume in order to estimate the overlap volume more accu-
rately.

The only assumption we make is that for any point inside S, the
distribution of the probability that it is also inside one of its leaves
is uniform.

Let (R,S) be a pair of spheres in the p-queue. We define the density
of a sphere as

p(S) =
Voll(S)

Vol(S)
(3)

with voll(S) defined similarly to equation 1 as the accumulated
volume of all inner spheres below S.

This is the probability that a point inside S is also inside one of its
leaves (which are disjoint). Next, we define the expected overlap

volume Vol(R,S) as the probability that a point is inside R ∩ S
and also inside the intersection of one of the possible pairs of leaves,
i.e.,

Vol(R,S) = p(S) · p(R) ·Vol(R ∩ S)

=
Voll(R) ·Voll(S) ·Vol(R ∩ S)

Vol(R) ·Vol(S)

(4)

(see Figure 4).

In summary, for the whole queue we get the expected overlap vol-
ume ∑

(R,S)∈Q

Vol(R,S) (5)

Clearly, this volume can be maintained during traversal quite easily.

More importantly, this method provides a much better heuristic for
sorting the priority queue: if the difference between the expected
overlap Vol(R,S) and the overlap Vol(R ∩ S) is large, then it is
most likely that the traversal of this pair will give the most bene-
fit toward improving the bound; consequently, we insert this pair
closer to the front of the queue.

Algorithm 3 shows the pseudo code of this approach. (Note that
p(S) = 1 if S is a leaf, and therefore Vol(R,S) returns the exact
intersection volume at the leaves.)

4.3 The Unified Algorithm

In the previous sections, we introduced the proximity and the pen-
etration volume computation separately. However, it is of course
possible to combine both algorithms. This yields a unified algo-
rithm that can compute both the distance and the penetration vol-
ume.

To that end, we start with the distance traversal. As soon as we find
the first pair of intersecting inner spheres, we simply switch to the
penetration volume computation.

This is correct because all pairs of inner spheres we visited so far
did not overlap and thus they could not increase the penetration
volume. Thus, we do not have to visit them again and can continue
with the traversal of the rest of the hierarchies using the penetration
volume algorithm. If we do not meet an intersecting pair of inner
spheres, the unified algorithm still reports the minimal separating
distance.

5 Collision Response

In this section, we describe how to use the penetration volume to
compute continuous forces in order to enable a stable haptic render-
ing. Mainly, there exist three different approaches to resolve colli-
sions: the penalty-based method, the constraint-based method and
the impulse-based method. The constraint-based approach com-
putes constraint forces that are designed to cancel any external ac-
celeration that would result in interpenetrations. Unfortunately, this
method has at least quadratic complexity in the number of contact
points. The impulse-based method resolves contacts between ob-
jects by a series of impulses in order to prevent interpenetrations.
It is applicable to real-time simulations but the forces may not be
valid for bodies in resting contact.

So, we decided to use the penalty-based method, that computes
penalty forces based on the interpenetration of a pair of objects.
The main advantages are its computational simplicity, which makes
it applicable for haptic rendering, and its ability to simulate a vari-
ety of surface characteristics. Moreover, the use of the penetration
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Figure 6: Left: magnitude (red) and direction (blue) of the force arising between two copies of the object shown in the middle, one of which
is being moved on a pre-recorded path. Right: torque magnitude (red) and direction (blue) in the same scene.

PR,S

cR

cS

Figure 5: Left: We compute a normal cone for each inner sphere.
The cone bounds a list of triangles that is associated with the
sphere. Note that the spread angle of the normal cone can be 0
if the sphere is closest to a single triangle (e.g., the green sphere).
Right: The axis of the normal cones cR and cS are used for the
force direction. The center PR,S of the spherical cap defines the
contact point.

volume eliminates inconsistent states that may occur when only a
penetration depth (e.g. a minimum translational vector) is used.

5.1 Contact Forces

Algorithm 2, and its time-critical derivative, return a set of overlap-
ping spheres or potentially overlapping spheres, resp. We compute
a force for each of these pairs of spheres (Ri, Sj) by:

f(Ri) = kc Vol(Ri ∩ Sj)n(Ri) (6)

where kc is the contact stiffness, Vol(Ri ∩ Sj) is the overlap vol-
ume, and n(Ri) is the contact normal.

Summing up all pairwise forces gives the total penalty force:

f(R) =
∑

Ri∩Sj 6=∅

f(Ri) (7)

In order to compute normals for each pair of spheres, we augment
the construction process of the ISTs: in addition to storing the dis-
tance to the object’s surface, we store a pointer to the triangle that
realizes this minimum distance. While creating the inner spheres
by merging several voxels (Section 3.1), we accumulate a list of tri-
angles for every inner sphere. We use the normals of these triangles

to compute normal cones, which are defined by an axis and an an-
gle. They tightly bound the normals of the triangles that are stored
in the list of each inner sphere.

During force computation, the axes of the normal cones cR and
cS are used as the directions of the force, since they will bring the
penetrating spheres outside the other object in the direction of the
surface normals (see Figure 5). Note that f(Ri) 6= f(Sj). If the
cone angle is too large (i.e., α ≈ π), then we simply use the vector
between the two centers of the spheres.

Obviously, this force is continuous in both cases, because the move-
ment of the axes of the normal cones and also the movement of the
centers of the spheres are continuous, provided the path of the ob-
jects is continuous. See Figure 6 for results from our benchmark.

5.2 Torques

In rigid body simulation, the torque τ is usually computed as τ =
(Pc−Cm)×f , wherePc is the point of collision,Cm is the center of
mass of the object and f is the force acting at Pc. Like in the section
before, we compute the torque separately for each pair (Ri, Sj) of
intersecting inner spheres:

τ(Ri) = (P(Ri,Sj) − Cm)× f(Ri) (8)

Again, we accumulate all pairwise torques to get the total torque:

τ(R) =
∑

Ri∩Sj 6=∅

τ(Ri) (9)

We define the point of collision P(Ri,Sj) simply as the center of the
intersection volume of the two spheres (see Figure 5). Obviously,
this point moves continuously if the objects move continuously. In
combination with the continuous forces f(Ri) this results in a con-
tinuous torque.

6 Results

We have implemented our new data structure in C++ on a PC run-
ning Windows XP with an Intel Pentium IV 3GHz dual core CPU
and 2GB of memory. We extended Dan Morris’ Voxelizer [Morris
2006] to compute the initial distance field.

We used several hand recorded object paths for our benchmarks.
For the proximity queries, we focused on very close configurations,
within a distance range of about 0–10% of the object’s BV size, be-
cause these are most stressing and also more relevant to real world



scenarios than larger distances. The paths for the penetration vol-
ume tests concentrate on light to medium penetrations of about 0–
10% of the object’s volume, because this best resembles the usage
in haptic applications and physically-based simulations. In addi-
tion, we included some heavy penetrations of 50% of the object’s
volume to stress our algorithm.

We used several different objects to test the performance of our al-
gorithms with a polygon count ranging up to 700k triangles per ob-
ject in the armadillo scene (see Figure 7). We voxelized each object
in different resolutions in order to evaluate the trade-off between
the number of spheres and the accuracy. This trade-off is indepen-
dent of the object’s complexity but depends on the density of inner
spheres.2

We used PQP to compute the exact distance and measure the quality
of our distance approximation. The running time of PQP is not di-
rectly comparable to our ISTs because of the more time consuming
exact distance computation. Thus, we did not include the timings
in our plots. Just to give the reader a sense of the speed-up: our ap-
proximative approach is between 20–120 times faster than the exact
PQP, depending on the density of the inner spheres.

To our knowledge, there are no publicly available implementations
to compute the penetration volume efficiently. In order to evalu-
ate the quality of our penetration volume approximation, we used
a tetrahedralization of the objects. The non-overlapping tetrahe-
dra fill the objects without any gaps, and thus we can calculate
the intersection volume exactly. Additionally, we build a hierar-
chy on top of the tetrahedra in order to accelerate penetration vol-
ume queries. However, the runtime of this approach is not appli-
cable to real-time applications due to bad BV fitting and the costly
tetrahedron-tetrahedron overlap volume calculation. It takes more
than 2 sec/frame on average within all our scenarios.

The results from our benchmark prove that the distance queries can
be done at haptic rates even for very large objects with hundreds of
thousands of polygons (see Figure 7). The approximation error is
less than 1%. The accuracy can be further improved by the simple
extension described in Section 4.1.2. With the highest sphere count,
the error is below floating point accuracy with only a negligible
longer running time (see Figure 8).

Also, our penetration volume queries perform at haptic rates of at
least 200 Hz on average (see Figure 9). Again, the error is consid-
erably smaller than 1% when using an adequate amount of inner
spheres. However, in the case of deeper penetrations, it is possible
that the traversal algorithm may exceed its time budget for haptic
rendering. In this case, our time-critical traversal guarantees ac-
ceptable estimations of the penetration volume even in worst-case
scenarios and multiple contacts (see Figure 10).

7 Conclusions and Future Work

We have presented a novel hierarchical data structure, the inner
sphere trees, that supports both proximity queries and penetration
volume computations with one unified algorithm. Both kinds can
be answered at rates of about 1 kHz (which makes the algorithm
suitable for haptic rendering) even for very complex objects with
several hundreds of thousands of polygons.

For proximity situations, typical average runtimes are in the order
of less than 0.5 msec with 500 000 spheres per object and an error
of about 0.5%. Obviously, the running times depend much more on
the intersection volume in penetration situations; here, we are in the

2 Please visit cg.in.tu-clausthal.de/research/ist/ to watch some videos of our
benchmarks.

order of around 5 msec on average with 250 000 spheres and an er-
ror of about 0.7%. The balance between accuracy and speed can be
specified by the user, and it is independent of the object complexity,
because the number of leaves of our hierarchy is mostly indepen-
dent of the number of polygons. For time-critical applications, we
described a variant of our algorithm that stays within a fixed time
budget while returning an answer “as good as possible”.

Our algorithm for both kinds of queries can be integrated into exist-
ing simulation software very easily, because there is only a single
entry point, i.e., the application does not need to know in advance
whether or not a given pair of objects will be penetrating each other.

Memory consumption of our inner sphere trees is similar to other
sphere hierarchies, depending on the predefined accuracy (in our
experiments, it was always in the order of a few MB). This is very
modest compared to voxel-based approaches.

Another big advantage of our penetration volume algorithm is that
it yields a continuous measure for penetration and force direction
as well as a stable heuristic for torque computations.

Last but not least, inner sphere trees are perfectly suited for SIMD
acceleration techniques and allow algorithms to make heavy use of
temporal and spatial coherence.

Our novel approach opens up several avenues for future work. First
of all, we are currently working on replacing the intermediate dis-
tance field by a Voronoi-based approach to generate better sphere
packings. This is a challenging task, because several goals should
be met: accuracy, query efficiency, and small build times. We are
confident that this will also result in analytically predictable error
bounds.

Furthermore, a GPU implementation of the force computation
should result in further speed-ups. This is possible, because the
forces and torques depend only on computations on a set of inde-
pendent pairs of spheres, which is (almost) trivially parallelizable.

Another option could be the investigation of inner volumes other
than spheres. This could improve the quality of the volume cover-
ing, because spheres do not fit well into some objects, especially if
they have many sharp corners or thin ridges.

Until now, our approach is restricted to watertight objects. In the fu-
ture, we plan to extend the ISTs so that they are also able to handle
arbitrary objects, including thin sheets and open geometries. Fi-
nally, a challenging task would be to extend our approach also to
deformable objects.
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