
Wait-free Hash Maps in the

Entity-Component-System Pattern

for Realtime Interactive Systems

Patrick Lange, Rene Weller, Gabriel Zachmann

University of Bremen, Germany

cgvr.cs.uni-bremen.de

9th SEARIS Workshop at IEEE VR

19-23 March 2016, Greenville, SC

Data: Central Part in RIS Development

 Generation, management and distribution of the global simulation or

world state for all software components and/or users

 Usually many independent inhomogeneous software components

need to communicate and exchange data in order to generate this

global state

System

Motivation Related Work Our Approach Results Conclusion

Requirements in RIS Development

 Reusability

 (Realtime) performance

 Scalability

System A

System

System

System B

Motivation Related Work Our Approach Results Conclusion

Entity-Component-System (ECS) Pattern

 Major design pattern used in modern architectures for Realtime

Interactive Systems

 Strives for high reusability and architectural scalability

 Novel architectural software concepts

 Performance and scalability for massively parallel access?

Motivation Related Work Our Approach Results Conclusion

[Wiebusch’15]

Entity-Component-System (ECS) Pattern

 Introduces three software architecture concepts

 Entity: General purpose object, defined as unique id

 Component: Raw data for one aspect of a general purpose object

 System: Runs continuously and applies global actions on Entities

 Decouples high-level modules such as physics, rendering or simulation from

low-level objects

Motivation Related Work Our Approach Results Conclusion

ECS: Game-based Example

Position Velocity Range Health

Physics Input

Systems

Components

Base Enemy Tower

Entities

Motivation Related Work Our Approach Results Conclusion

ECS: Game-based Example

Position Velocity Range Health

Physics Input

Systems

Components

Base Enemy Tower

Entities

Motivation Related Work Our Approach Results Conclusion

ECS: Game-based Example

Position Velocity Range Health

Physics Input

Systems

Components

Base Enemy Tower

Entities

Motivation Related Work Our Approach Results Conclusion

ECS: Game-based Example

Position Velocity Range Health

Physics Input

Systems

Components

Base Enemy Tower

Entities

Motivation Related Work Our Approach Results Conclusion

ECS: Shared Data Structures

 Current RIS applications inherit many Entities, Components and

Systems

 Parallelization of System access necessary in order to preserve

realtime performance constraints

 The container of Components becomes a shared data structure

 ECS does not give guidelines or specification how to solve this

problem

Motivation Related Work Our Approach Results Conclusion

Concurrency Control for RIS

 Process of managing simultaneous execution of software

components on shared global word/simulation state

 RIS reserach concerns low-level concepts and high-level

concepts for parallelism [Latoschik‘11,Rehfeld’13,Knot‘14]

 High-performance architectures for e.g. sophisticated (3D)

simulations (C/C++, CUDA, OpenMP, OpenGL..)

Responsiveness

ConsistencyScalability

Motivation Related Work Our Approach Results Conclusion

Wait-free Hash Maps

 Guarantee access to a shared

data structure in a finite number

of steps (e.g. as traditional

thread or OpenMP

implementation)

 Does not need any traditional

locking mechanism

 Deliver high performance even

for massive concurrent access

Motivation Related Work Our Approach Results Conclusion

Responsiveness

ConsistencyScalability

Wait-free Hash Maps: Basic Idea

 Assignment of unique identifiers

to each data packet which is

exchanged between software

components

 Every data packet is stored

inside a hash map which

resembles the complete system

state

 De-coupling and parallelization

of read, write and data deletion

processes via atomic operations

and memory cloning [Lange‘14,

Lange‘15]

Motivation Related Work Our Approach Results Conclusion

[Adapted from Lange’15]

Wait-free Hash Maps: Applications

 Massive concurrent access (> 50 threads) per simulation/system

frame

 Multi-agent system based simulation, simulation-based optimization

Motivation Related Work Our Approach Results Conclusion

Frame 1

Frame 2

SYNC

System #1 System #n…

Components in Hash Map

System #1 System #n…

Components in Hash Map

Integration of Wait-free Hash Maps

Motivation Related Work Our Approach Results Conclusion

Integration of Wait-free Hash Maps

 All Components reside in our wait-free hash map

Motivation Related Work Our Approach Results Conclusion

Integration of Wait-free Hash Maps

 All Components reside in our wait-free hash map

 Components (also collections) are accessible via unique keys

Motivation Related Work Our Approach Results Conclusion

Integration of Wait-free Hash Maps

 All Components reside in our wait-free hash map

 Components are accessible via unique keys

 Entity composition as list of Component keys

Motivation Related Work Our Approach Results Conclusion

Wait-free Hash Maps: Double Buffering

 Producer and consumer version of data within hash map

 Atomic reference counter guards consumer versions

 Every write access to the hash map generates a clone of the

manipulated data

Motivation Related Work Our Approach Results Conclusion

System A
Producer

Consumer

Hash map bucket

H
A

S
H

Wait-free Hash Maps: Double Buffering

 Producer and consumer version of data within hash map

 Atomic reference counter guards consumer versions

 Every write access to the hash map generates a clone of the

manipulated data

Motivation Related Work Our Approach Results Conclusion

System A
Producer

Consumer

GET(KEY)

Wait-free Hash Maps: Double Buffering

 Producer and consumer version of data within hash map

 Atomic reference counter guards consumer versions

 Every write access to the hash map generates a clone of the

manipulated data

Motivation Related Work Our Approach Results Conclusion

System A
Producer

Consumer
Consumer

Consumer
Consumer

Consumer

WRITE(KEY)

Wait-free Hash Maps: Double Buffering

 Producer and consumer version of data within hash map

 Atomic reference counter guards consumer versions

 Every write access to the hash map generates a clone of the

manipulated data

 Parallel read access can return, in accordance to RIS setup, any

old state

Motivation Related Work Our Approach Results Conclusion

System A
Producer

Consumer
Consumer

Consumer
Consumer

Consumer

WRITE(KEY)

System B

READ(KEY)

Integration of Wait-free Hash Maps

Motivation Related Work Our Approach Results Conclusion

Integration of Wait-free Hash Maps

Motivation Related Work Our Approach Results Conclusion

Integration of Wait-free Hash Maps

Motivation Related Work Our Approach Results Conclusion

Integration of Wait-free Hash Maps

Motivation Related Work Our Approach Results Conclusion

Integration of Wait-free Hash Maps

Motivation Related Work Our Approach Results Conclusion

Integration of Wait-free Hash Maps

Motivation Related Work Our Approach Results Conclusion

Integration of Wait-free Hash Maps

Position Velocity Range Health

Physics Input

Systems

Components

Base Enemy Tower

Entities

Motivation Related Work Our Approach Results Conclusion

Integration of Wait-free Hash Maps

Motivation Related Work Our Approach Results Conclusion

//Define OpenMP parallelization with x threads

#pragma omp parallel for num_threads(x)

for(all Entities of System)

{

for(all WriteKeys of Entity)

{

Component = Hashmap.get(WriteKey)

// Change component

// ….

Clone = Hashmap.put(Component, WriteKey)

}

for(all ReadKeys of Entity)

{

Component = Hashmap.get(ReadKey)

…..

}

}

Integration of Wait-free Hash Maps

Motivation Related Work Our Approach Results Conclusion

//Define OpenMP parallelization with x threads

#pragma omp parallel for num_threads(x)

for(all Entities of System)

{

for(all WriteKeys of Entity)

{

Component = Hashmap.get(WriteKey)

// Change component

// ….

Clone = Hashmap.put(Component, WriteKey)

}

for(all ReadKeys of Entity)

{

Component = Hashmap.get(ReadKey)

…..

}

}

Integration of Wait-free Hash Maps

Motivation Related Work Our Approach Results Conclusion

//Define OpenMP parallelization with x threads

#pragma omp parallel for num_threads(x)

for(all Entities of System)

{

for(all WriteKeys of Entity)

{

Component = Hashmap.get(WriteKey)

// Change component

// ….

Clone = Hashmap.put(Component, WriteKey)

}

for(all ReadKeys of Entity)

{

Component = Hashmap.get(ReadKey)

…..

}

}

Integration of Wait-free Hash Maps

Motivation Related Work Our Approach Results Conclusion

//Define OpenMP parallelization with x threads

#pragma omp parallel for num_threads(x)

for(all Entities of System)

{

for(all WriteKeys of Entity)

{

Component = Hashmap.get(WriteKey)

// Change component

// ….

Clone = Hashmap.put(Component, WriteKey)

}

for(all ReadKeys of Entity)

{

Component = Hashmap.get(ReadKey)

…..

}

}

Component-wise Queues

 Different Components are more frequently used than other

Components

 Collision detection (1000 Hz) vs. animation (30 Hz)

Motivation Related Work Our Approach Results Conclusion

Component-wise Queues: Example

Motivation Related Work Our Approach Results Conclusion

Physics

Position Velocity Collision Flag

Old

New

 At startup: Create Component-type sorted list

 Sort created cloned Components into corresponding queues for

each Component-type

 Each list node contains markup for changes within queue

 Iteration checks every node for markup and queues

Component-wise Queues: Example

Motivation Related Work Our Approach Results Conclusion

Physics

Position Velocity Collision Flag

Old

New

 At startup: Create Component-type sorted list

 Sort created cloned Components into corresponding queues for

each Component-type

 Each list node contains markup for changes within queue

 Iteration checks every node for markup and queues

Component-wise Queues: Example

Motivation Related Work Our Approach Results Conclusion

Physics

Position Velocity Collision Flag

Old

New

 At startup: Create Component-type sorted list

 Sort created cloned Components into corresponding queues for

each Component-type

 Each list node contains markup for changes within queue

 Iteration checks every node for markup and queues

 Component-wise queues are either located inside hash map

(centralized) or System implementation (decentralized)

 Centralized in three variations: Frequency-based, continously

threaded, threaded on-demand

 Rely on read access notifications via atomic operations

Memory Management

Motivation Related Work Our Approach Results Conclusion

Evaluation

 Performance comparison of centralized and decentralized

memory management implementations to original implementation

 Performance comparison of lock-based and wait-free hash map

implementation

 Test configuration: Spaceflight mission simulator KaNaRiA

 C++ with -O3 optimization

 Each test averages 10,000 read/write operations with varying

Component types (vectors, matrices, pointcloud data, strings,

numerals)

Motivation Related Work Our Approach Results Conclusion

Results: Access Performance

Motivation Related Work Our Approach Results Conclusion

Results: Memory Management

Motivation Related Work Our Approach Results Conclusion

Results: Memory Management

Motivation Related Work Our Approach Results Conclusion

Best Practices

Few Systems

Small Component data Big Component data

Centralized (periodic with any

frequency) management

Centralized (periodic with high

frequency) management

Many Systems

Small Component data Big Component data

Decentralized management Decentralized management

Motivation Related Work Our Approach Results Conclusion

Our Contribution

 Novel extension of the ECS pattern for high performance double-

buffered wait-free hash maps

 Allows non-locking read and write operations

 Highly responsive low-latency Component access for any number of

Systems

 Novel efficient centralized and decentralized memory

management for double-buffered wait-free hash maps

 Reduces their memory consumption greatly by more than a factor of

10 while maintaining their high-performance access

Motivation Related Work Our Approach Results Conclusion

Future Work

 High-level concepts for adaptive memory management

 Determine current composition of ECS architecture

 Autonomous switch between centralized and decentralized memory

management

System System

? ?
?

?

Motivation Related Work Our Approach Results Conclusion

Thank you for your attention

Questions?

Patrick Lange, Rene Weller, Gabriel Zachmann

{lange,weller,zach}@cs.uni-bremen.de

This research is based upon the project KaNaRiA, supported by

German Aerospace Center (DLR) with funds of German Federal

Ministry of Economics and Technoloy (BMWi) grant 50NA1318

