
Wait-Free Hash Maps in the Entity-Component-System Pattern
for Realtime Interactive Systems

Patrick Lange∗ Rene Weller† Gabriel Zachmann‡

University of Bremen

ABSTRACT

In the past, the Entity-Component-System (ECS) pattern has be-
come a major design pattern used in modern architectures for Re-
altime Interactive Systems (RIS). In this paper we introduce high
performance wait-free hash maps for the System access of Com-
ponents within the ECS pattern. This allows non-locking read and
write operations, leading to a highly responsive low-latency data
access while maintaining a consistent data state. Furthermore, we
present centralized as well as decentralized approaches for reduc-
ing the memory demand of these memory-intensive wait-free hash
maps for diverse RIS applications. Our approaches gain their effi-
ciency by Component-wise queues which use atomic markup op-
erations for fast memory deletion. We have implemented our new
method in a current RIS and the results show that our approach is
able to efficiently reduce the memory usage of wait-free hash maps
very effectively by more than a factor of ten while still maintaining
their high performance. Furthermore, we derive best practices from
our numerical results for different use cases of wait-free hash map
memory management in diverse RIS applications.

Index Terms: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information System—Artificial, augmented and vir-
tual realities D.4.2 [Operating Systems]: Storage Management—
Garbage collection

1 INTRODUCTION

A central part of Realtime Interactive Systems (RIS), Virtual Re-
ality (VR) systems, game engines and realtime simulations is the
generation, management and distribution of the global simulation
or world state. Usually many independent software components
need to communicate and exchange data in these modern graph-
ics interactive systems in order to generate this global state [17].
These components and their corresponding performance within an
RIS is often governed by the functional as well as non-functional
requirements of typical RIS development such as (realtime) perfor-
mance, responsiveness, scalability, consistency and (re-)usability
[19]. Consequently, RIS development strives for reusable patterns
and software architectures in order to increase the satisfaction of
the above mentioned requirements, especially for massive amounts
of RIS software components [12, 14]. Hence, diverse approaches
have been presented to tackle this kind of challenge. In the past, the
Entity-Component-System (ECS) pattern has become a major de-
sign pattern used in modern architectures for RIS [7]. This pattern
strives for high reusability and architectural scalability. The main
idea of ECS is to decouple high-level modules such as physics, ren-
dering or sound from the low-level objects with their correspond-
ing data. Therefore, ECS introduces three software architectural

∗e-mail:lange@cs.uni-bremen.de
†e-mail:weller@cs.uni-bremen.de
‡e-mail:zach@cs.uni-bremen.de

objects: Entities, Components and Systems. These are used to de-
scribe objects of a RIS via composition instead of object-oriented
inheritance.

Many advantages arise when using ECS. For instance, sthe be-
havior of Entities can be changed at runtime by adding or removing
Components. Moreover, Systems are likewise interchangeable as
they are not part of the Entity nor Component implementation. This
allows even the quick swap of e.g. a physics engine. This leads to
the elimination of ambiguity problems of wide and deep inheritance
hierarchies, often encountered in traditional RIS development. As a
result of this, the ECS pattern and variations of it have been applied
to many RIS, such as [16, 18, 12].

However, the ECS pattern does not aim at satisfying the perfor-
mance requirement of RIS architectures as it does not specify any
low-level implementation. For instance, the System access imple-
mentation to the Components is not defined. Usually, every System
iterates over a container (e.g. a array) of all Entities and applies
the Systems behavior on the corresponding Components. In fact,
modern RIS can consist of hundreds or thousands of Components
and Systems. Therefore, an access parallelization (e.g. in the form
of threads or OpenMP support) is necessary in order to maintain
realtime performance of the whole application. Consequently, this
container of Components (and therefore every Component) has to
be implemented as a shared data structure. Such shared data struc-
tures can quickly become bottlenecks of modern RIS applications
as they typically use crucial software synchronisation patterns such
as mutexes, semaphores and consequently synchronization which
can lead to thread starvation or system deadlock [17]. The ECS
pattern does not cover any guidelines or specifications for effec-
tively solving this problem but several applicable concurrency con-
trol management approaches exist in the literature.

One promising approach are wait-free concurrency control man-
agements. They guarantee access to a shared data structure in a
finite number of steps for each System (eg. as a traditional thread
or OpenMP implementation), regardless of other Systems accessing
the shared data structure. This means that these approaches do not
need any traditional locking mechanism in order to preserve a con-
sistent data state. Experiments have shown a superior performance
of wait-free approaches compared to traditional locking approaches
(See Figure 1). Consequently, wait-free approaches deliver high
performance access even for massive numbers of concurrent read
and write operations. However, as a drawback they often have a
large memory footprint [17, 19]: Usually, they rely on a double-
buffering approach with atomic operations in order to achieve wait-
free behavior. This double-buffering creates for every write access
to the shared data structure a clone of the manipulated data. When
all read operations on the cloned data are finished, the cloned data
is released.

Hence, the amount of cloned data directly responds to the
amount of write operations [17, 19]. In this paper, we present a
novel solutions to this challenge; our new approaches allow con-
current read- and write access even for highly data driven RIS ap-
plications (resp. RIS applications which inherit many Components
and/or Systems). Moreover, they can even handle multimodal RIS
applications in which different Systems interact with each other in
different frequencies.

In detail, our contribution of this paper is
• an extension of the ECS pattern for high performance double-

buffered wait-free hash maps with
• centralized as well as decentralized approaches for efficient

memory management of these data structures which greatly
reduces their memory consumption.

Our contribution allows non-locking read and write operations of
Systems, leading to a highly responsive low-latency data access
while maintaining a consistent state even for structured Compo-
nents. Simultaneously, our contribution greatly reduces the mem-
ory footprint of the introduced wait-free hash amps. Our novel
memory management is easy to implement and it fits perfectly into
the implementation of wait-free hash maps without altering the ECS
pattern itself.

Our approach therefore greatly benefits the overall RIS perfor-
mance.

2 RELATED WORK

Research in increasing scalability and performance as well as man-
aging concurrency within RIS frameworks has attracted increasing
interest in the last decade. This research can be broadly classified
into two classes: high-level and low-level concepts. High-level
concepts describe the overall RIS software architecture in terms
of software classes which use standard libraries for solving par-
allelization and concurrency of the low-level implementation. Ex-
amples for such high-level concepts are Simulator X [12] with its
actor model [22] or other high-level approaches, e.g. based on
dataflows [23]. Further, [2] gave an overview of high-level archi-
tectures aiming at solving consistency and concurrency for Collab-
orative Virtual Environments (CVE). However, this overview ne-
glected wait-free synchronization approaches. In contrast to these
high-level concepts, low-level concepts investigate programming
language specific implementations of synchronization approaches
for RIS challenges. In the past, low-level concepts mainly in-
troduced lock-based concurrency control management (CCM) ap-
proaches for RIS, VR and CVE frameworks in order to efficiently
implement the high-level concepts.

A distinctive characterization of CCMs is whether they are lock-
ing or non-locking. Locking approaches allocate resources exclu-
sively by using various well-studied techniques such as mutexes,
semaphores or condition variables. A main advantage of locking
CCMs is that they avoid race conditions and naturally guarantee
consistency of the system.

Many traditional RIS, especially CVEs, such as [3, 24] used
lock-based approaches until [24] reported that the locking approach
scales only to at most ten components. This is mainly because of
the problem that concurrent threads have to wait until a resource has
been released. This may result in a loss of efficiency because prob-
lems like thread starvation or deadlocks can occur. Consequently,
more modern CVEs like [9, 15, 21] tried to avoid this problem by
extending the basic locking mechanism, e.g. by a first-come-first-
serve locking [21]. Further, more sophisticated concurrency control
approaches introduced fine-grained locks per object for single-write
and multiple-read operations [10, 8, 5]. Due to the limitations of
lock-based approaches, wait-free approaches based on hash maps
for RIS had been introduced [17, 19, 20].

Wait-free approaches guarantee access to the shared data struc-
ture in a finite number of steps for each thread, regardless of other

Figure 1: Performance comparison of wait-free and lock-based con-
currency control management implementations, which are tradition-
ally used for VR and RIS frameworks. Adopted from [19].

threads accessing the shared data structure by introducing a few
atomic operations [13]. This means that these approaches do not
need any traditional locking mechanism in order to preserve a
consistent data state. Experiments have shown a superior perfor-
mance of wait-free approaches with respect to traditional locking
approaches as Figure 1 illustrates. These wait-free approaches not
only support structured Components such as arrays or lists but also
use fast hash key operations in order to find and retrieve the stored
Component inside the used hash table. Due to their excellent scal-
ability, they are perfectly suited for RIS frameworks which need to
support massive amounts of Systems, such as multi-agent system
based VR and RIS applications [25, 18]. Consequently, using wait-
free data structures as a data access backbone can highly improve
the performance and scalability of RIS frameworks.

However, these wait-free hash maps come at a cost: In order
to achieve wait-free behavior of read and write operations, they
use double-buffering for write operations. This means that every
write access on the shared data structure is preceded by a double-
buffering which clones the data [17, 19]. All ongoing read opera-
tions can still access the old data state while new read queries are
directly routed to the new (manipulated) data state. Therefore, after
a given timespan, the old data will not be used any more. When
all read operations on the old data state are finished, the data is re-
leased. Hence, the amount of cloned data directly responds to the
amount of write operations [17, 19].

In the following, we will describe the integration of double-
buffered wait-free hash maps into the ECS pattern. Furthermore, we
will describe our novel memory management for these data struc-
tures which reduces their memory demand greatly. Therefore, our
integration and novel memory management overcomes the limita-
tions of the presented related work.

3 WAIT-FREE HASH MAPS FOR
THE ENTITY-COMPONENT-SYSTEM PATTERN

In this section we will give a short recap of the ECS pattern and
introduce our actual implementation that relies on double-buffered
wait-free hash maps.

3.1 The Entity-Component-System Pattern
In the past, the Entity-Component-System (ECS) pattern has be-
come a major design pattern used in modern architectures for RIS
[7]. The main idea of ECS is to decouple high-level modules such
as physics, rendering or sound from the low-level objects with their
corresponding data. Therefore, ECS introduces three software ar-
chitectural objects: Entities, Components and Systems:

• The Entity is a general purpose object which is usually defined
as a unique id. These Entities can be further described via
composition of Components.

• The Component is the raw data for one aspect (e.g. a position,
velocity or sprite) of general purpose objects.

• The System performs global actions on every Entity that pos-
sesses a Component with the same aspect as that System. Each
System thereby runs continuously (e.g. as a thread).

These objects are used to describe objects of a RIS via compo-
sition instead of object-oriented inheritance. The traditional way
to implement simulation or game objects within RIS was to use
object-oriented programming. Each object was modelled and im-
plemented within a typical class hierarchy which intuitively al-
lowed for an instantiation of these classes. This enabled simulation
or game objects to extend to other objects through polymorphism.
However, with an increasing complexity of the RIS, this leads to
large, rigid class hierarchies. These wide and deep hierarchies be-
come consequently increasingly difficult to maintain. In addition,
placing a new simulation or game object into the hierarchy is further
complicated if the object needs a lot of different types of function-
ality from different domains. Figure 2 illustrates this limitation in
a game-based RIS scenario. Usually, the conflicting code is then
moved to the base class which results in super classes. These super
classes gradually decrease the maintainability and scalability of the
overall RIS architecture.

Figure 2: Evolving problems in inheritance based object design in
RIS applications: In order to preserve class-wise consistency, super
classes are constructed.

Typically, these deep and wide inheritance structures can be ver-
tically decomposed with the ECS pattern (see Figure 3). This al-
lows greater flexibility and adaptability in defining simulation or
game objects (e.g. vehicles, sensors, enemies, etc.) as every ob-
ject is an Entity. Every Entity consists of one or more Components
which add aspects (e.g. position, velocity, sprite, etc.) to the En-
tity. Within this context, the behavior of an Entity can be changed
at runtime by removing or adding Components.

Furthermore, even Systems are decoupled as each System applies
its computation on the same Component types which are referenced
via Entities. As an example, think of a physically-based simulation
for gravitational forces: The corresponding System will apply New-
ton’s law of gravity everytime on the same Component types: the
position and velocity but it does not concern any more properties of
the Entity.

As a consequence, even Systems can be easily added, removed
or changed as they are not part of Entity or Component implemen-
tation. Actually, object-oriented problems of deep and wide inheri-
tance structures as mentioned above are eliminated.

Figure 3: The Entity-Component-System pattern: Deep and wide in-
heritance structures arise in traditional RIS development (left). The
ECS pattern decouples the data and algorithms via composition
(right).

3.2 Integration of Wait-Free Hash Maps
As previously stated, the ECS pattern does not specify the low-level
implementation of the System access to the Components. In this pa-
per, we investigate the applicability of wait-free hash maps for this
System access to the Components as they promise high performance
even for massive numbers of concurrently acting Systems.

Several wait-free hash maps for RIS related research have been
proposed such as traditional hash maps [17, 19] or graph-based hash
maps [20]. These wait-free hash maps can be easily integrated in
to the ECS pattern as follows: All Components (which can repre-
sent primitive or structure data) are stored inside the wait-free hash
map. These Components are accessible via a unique key which is
generated for every Component. All Systems and Entities can refer
to these Components via their unique keys which retrieve the Com-
ponent from the hash map. Every Entity has a list of keys which
defines the Component-wise composition. Adding and removing
Components from the Entity are implemented as insertion and dele-
tion operations on this key list. Every System iterates over the Enti-
ties and uses the stored keys in order to retrieve the corresponding
Components for computation. This integration of wait-free hash
maps does not alter the original ECS approach. Figure 4 further
illustrates this concept.

Overall, the System access to all Components is implemented
straightforward (e.g. with OpenMP support) (See Algorithm 1).
Note, that no locking operations are needed in order to maintain
consistency of the hash map and consequently of all Components.

Figure 4: Integration of (wait-free) hash maps into the ECS pattern:
Components reside inside a hash map which is concurrently shared
by all Systems.

Listing 1: System access on Entities and Components in C++ pseu-
docode

/ / D e f i n e OpenMP p a r a l l e l i z a t i o n w i t h x t h r e a d s
#pragma omp p a r a l l e l f o r n u m t h r e a d s (x)
f o r (i n t i = 0 ; i < E n t i t i e s . s i z e () ; i ++)
{

i f (E n t i t i e s [i] . Type == System . Type)
{

ComponentKeys = E n t i t i e s [i] . Wri teKeys
f o r (i n t j = 0 ; j < ComponentKeys . s i z e () ; j ++)
{

Component c = Hashmap . g e t (ComponentKeys [j])
System . ApplyComputa t ion (c)
Component c l o n e = Hashmap . s e t (c)
/ / D e l e t e c l o n e a f t e r a l l c o n c u r r e n t
/ / read o p e r a t i o n s have f i n i s h e d

}
ComponentKeys = E n t i t i e s [i] . ReadKeys
f o r (i n t l = 0 ; l < ComponentKeys . s i z e () ; l ++)
{

Component c = Hashmap . g e t (ComponentKeys [l])
c . i nc remen tReadMarke r
/ / Use da ta as long as needed
/ / w i t h o u t a l t e r i n g i t
/ / . . .
c . decrementReadMarker

}
}

}

The Component access of the double-buffering wait-free hash
map is implemented in accordance to [17, 19]: Every System can
retrieve a Component from the hash map by looking up the corre-
sponding key. Within the double-buffering approach, every Compo-
nent is stored as a producer and consumer version in the hash map.
For all read operations, the hash map returns a pointer to a dedi-
cated consumer version of the Component. Consequently, all read
operations work on the same memory as they can not affect each
other. All actively reading Systems notify their access by incre-
menting (read operation starts) and decrementing (read operation
has ended) an atomic marker of the consumer version. For write
operations, Systems retrieve a producer version of the Component
which is a different memory object than the consumer version. Af-
ter modifying a Component, a System can notify its changes to all
other Systems by storing the Component back to the hash map. This
write process uses the aforementioned double-buffering and returns
the cloned Component.

In detail, the complete write operation of a System can be de-
composed into six steps: A System wants to modify a Component
which is stored inside the hash map. To do that, the corresponding
hash map access returns the producer version of the Component.
The System can then modify the Component and stores it back to
the hash map. In order to notify all other Systems about these mod-
ifications, this write operation creates automatically a clone of the
producer version which is used as the new consumer version. All
concurrent read operations are routed to the old consumer version as
long as the actual write operation of the hash map lasts. When the
new consumer version is available, all concurrent read operations
are routed directly to the new consumer version. In the meantime,
the old consumer version is not deleted to prevent memory failures.
When all ongoing read operations on the old consumer data are fin-
ished, the corresponding memory will be deleted, hence completing
the double-buffering principle. Parallel write operations are merged
as described in [19]. Figure 5 illustrates this double-buffering ap-
proach. The main challenge remains the efficient release of the old
Component data.

Figure 5: The double-buffering approach applied to the ECS pattern,
simplified into six steps: Every write access is preceded by a cloning
process of the Component data. When all parallel read operations
are finished, the old data is deleted.

4 MEMORY MANAGEMENT FOR
DOUBLE-BUFFERED WAIT-FREE HASH MAPS

In this section we present centralized as well as decentralized ap-
proaches for the memory management of cloned Component data
in wait-free hash maps for the ECS pattern. First, we present two
centralized approaches based on periodic memory release as well
as threaded memory release. These approaches are located in the
central hash map itself and rely on finished read notifications that
are triggered by all Systems. Second, we present a decentralized
approach which defines an individual memory release per System.
In this case, every System itself takes care of releasing unused Com-
ponents.

All approaches follow the presented main principle of atomic
memory markup [17, 19]: All Systems notify each other when they
read or write data via notifications. This notification is implemented
as an atomic marker which is increased when the read access begins
and which is decreased when the read access has finished. Conse-
quently, if this atomic marker is zero, the data can be safely deleted.

The basic challenge is the management, i.e. the saving and the
efficient release, of the generated Component clones. The original
implementation [17] introduced a single list implementation within
the centralized hash map. This list was used to store every cloned
data and was periodically checked. However, the nature of RIS
applications leads to different generation, update and deletion fre-
quencies of different Components. For instance, a collision detec-
tion query is updated at 1000 Hz and an animation of a scene node
is played when a certain event has triggered in the RIS. In these
cases the resulting Components (e.g. the resulting collision volume
and rotation matrix) are more frequently or rarely updated. Conse-
quently, different Components types (e.g. player-input, physically-
based simulation results or animators) are more frequently updated

Figure 6: The centralized and decentralized memory management approaches: In the centralized approach, every System notifies the central
hash map via atomic markers. The hash map itself releases the memory in either periodic or threaded implementation (left). In the decentralized
approach, all Systems notify themselves about ongoing and finished read operations. In addition, every System itself takes care of releasing its
cloned Component data (right).

than other Components types. This means that also the correspond-
ing clone data is more frequently generated. In this case, it is de-
sirable to handle the memory release per Component type. This
leads to our approach which introduces Component-wise queues
for storing the cloned Component data per Component type. These
queues basically split all cloned Components into smaller chunks
which can be faster checked than a single container for all cloned
Components. Every cloned Component data is directly sorted into
the corresponding queue immediately after its creation. Addition-
ally, every queue itself has a atomic boolean markup. Every time a
System notifies a finished read operation (by decrementing the cor-
responding atomic marker of the Component), this queue markup
will be set to true. The marker will be set to false when the release
function has finished its checks (See Algorithm 2). This release
function iterates over all queues and checks their boolean markers.
If a queue marker is set to true (resp. a System has finished its
reading operation on a cloned Component data within the queue) it
will further iterate the Component queue. After a queue check, the
release function will set the corresponding queue markup to false.
Figure 7 illustrates this queue concept. Algorithm 2 shows how
these Component-wise queues can be iterated in order to efficiently
release the unused cloned Component data.

Figure 7: The Component-wise queue concept: Cloned Compo-
nent data is stored into their corresponding queues which enable
fast memory deletion.

Listing 2: Cloned Component data access via queues in C++ pseu-
docode

f o r (i n t i = 0 ;
i < ComponentQueues . s i z e () ;
i ++)

{
i f (ComponentQueues [i] . Markup == t rue)
{

f o r (Component c = ComponentQueues [i] . peek () ;
ComponentQueues [i] . s i z e () > 0 ;
c = ComponentQueues [i] . peek ())

{
i f (c . ReadMarker == 0)
{

ComponentQueues [i] . pop ()
d e l e t e c

}
}
ComponentQueues [i] . Markup = f a l s e

}
}

The iteration over these Component-wise queues in order to min-
imize the amount of useless memory checks remains challenging.
As mentioned above, we present two approaches for tackling this
challenge: centralized and decentralized.

The centralized memory management approach is implemented
in three variations: periodic, continuously threaded and on-demand
threaded. In all cases, the memory management is located within
the central wait-free hash map and all Systems notify the hash map
with respect to the above mentioned atomic memory markup. The
continuously threaded approach implements a complete separate
thread that runs constantly in parallel within the RIS and checks
the queues as shown above. The on-demand threaded approach im-
plements a complete separate thread that is only activated when one
System has finished its operations and generated new cloned data.
After one check for all queues, it goes back to sleep state until it
is notified by another System again. The periodic centralized ap-
proach is called in accordance to the System frequencies. Systems
usually apply their computations to the Components periodically:
The physically-based simulation (e.g. collision detection) runs tra-
ditionally at 1000 Hz while animations require 30 Hz or 60 Hz.
Hence, it is also favourable to directly couple the frequency of the
memory release with the actual implemented System frequencies of
the RIS. We propose three frequencies for the periodic memory re-
lease: First, the memory release can be performed at the slowest
frequency of all Systems.

Second, the memory release can be performed at the fastest fre-
quency of all Systems. At last, the memory release can be per-
formed at the average frequency of all Systems. The periodic ap-
proach builds upon application domain knowledge. For instance, if
it is known to the RIS developer that mostly fast-paced physically-
based simulations are present in the application, also a rapid peri-
odic check for memory release could be useful and vice versa. In
contrast, the decentralized memory management is located within
the System implementation. All Systems notify each other with re-
spect to the above mentioned atomic memory markup. Every Sys-
tem actively checks on his own after each completed computation
whether memory can be deleted or not. Figure 6 illustrates these
approaches.

5 USE CASE STUDY

Our approach enables the implementation of very different cate-
gories of RIS applications. Exemplarily, we present the application
to a high fidelity dynamics and spacecraft EDL (entry, descent and
landing) end-to-end spaceflight mission simulator [16, 1].

More precisely, we implemented a simplified version of ESAs
ARCHEO-E2E system [4] that defines a reference architecture for
spacecraft engineering feasibility studies. Instruments of the space-
craft, as well as the environment, including the spacecraft’s orbit
and attitude, are simulated and defined within the ECS architecture.
Further, all Components are stored inside a wait-free hash map and
the Systems’ access to the Components is implemented as presented
above. Several Entities are present in the RIS as the sensor input
(e.g. camera and range finder measurements) for the instruments
is synthesized from the simulated environment. In our implemen-
tation, all this synthesized data and the current world state (e.g.
spacecraft pose, positions of celestial bodies, sensor configurations,
scene nodes) are represented as Components. Further, the internal
spacecraft components such as sensors, guidance, navigation and
control read and write Components periodically. In addition to this,
also the physically-based simulation as well as rendering act as a
System in this application. Summarizing, this scenario has a large
amount of concurrent read- and write operations of many interact-
ing Systems. Figure 8 shows a rendering of the simulation in which
a spacecraft conducts scientific experiments while orbiting an as-
teroid.

Figure 8: Use case study: A spacecraft is orbiting an asteroid.
Rangefinder (red) and landmark (green) measurements are gener-
ated for spacecraft self-localization [11, 6] purposes.

6 EVALUATION

The use case described above is the basis of our evaluation. We
have implemented our memory management approach in C++. We
performed our experiments on a machine with Intel Core i7 quad-
core processor with Hyperthreading enabled and 8GB of memory.

We compared our different memory management strategies in
several set-ups of our use case. Our evaluation concerned different
amounts of active Systems within the use case study as well as vary-
ing Component types. The Components represented simple three-
dimensional positions, 3x4 and 4x4 matrices, point clouds (ranging
between 1,000 and 40,000 points), three-dimensional line segments
and geometry as well as standard programming language objects
such as strings or integers. Furthermore, the Components varied
in size between a few Byte and several Megabyte. We performed
10,000 read- and write operations for each test. In order to avoid
caching effects we repeated all tests 50 times and we averaged the
resulting timings.

Figure 9 illustrates the performance of our novel memory man-
agement. Here, we evaluated how many unused Components are
deleted each simulation step in the RIS. Clearly, our novel memory
management outperforms the original implementation. Actually,
all of our proposed strategies outperform the original implemen-
tation but they also perform diverse for varying numbers of Sys-
tems. Each implementation, whether centralized or decentralized,
exhibits a sweet spot in which it outperforms the competitors. In de-
tail, the decentralized approach outperforms the centralized imple-
mentations the more Systems access the Components. In case of less
active Systems, the centralized approaches, especially the frequency
dependent variations, perform better. We believe that an increasing
number of Systems increases the overall memory dependency be-
tween the Systems. This means that the more active Systems a RIS
inherits, the more Systems are likely to use the same Components.
Therefore, they are ”blocking” the release of the cloned Compo-
nent data. Consequently, the responsibility of releasing the mem-
ory shifts from the overall collective of Systems more to the single
System, resp. to the decentralized approach. At last, the centralized
approaches always outperform the original implementation [17].

Furthermore, Figure 10 illustrates the lifetime of cloned data be-
fore it is deleted. Clearly, our novel memory management approach
outperforms the original implementation [17]. In detail, the decen-
tralized approach outperforms all competitors while the centralized
approach with high frequency can nearly compete with it. It can
be further observed that the frequency of the periodic centralized
implementation directly relates to the lifetime of the unused Com-
ponent data.

Finally, Figure 11 compares the actual access performance of the
original wait-free hash map implementation with our implementa-
tion with enhanced memory management. Furthermore, we com-
pared our wait-free implementation with a traditional lock-based
implementation for the Component access. It can be observed, that
our memory management does not introduce any performance is-
sues. Both wait-free implementations behave almost identical for
wait-free read and write operations. Furthermore, our results show
that the wait-free access implementation gradually outperforms the
traditional lock-based implementation with an increasing amount
of Systems by several orders of magnitude.

Figure 9: Performance comparison of the proposed memory management approaches.

Figure 10: Comparison of the unused Component data lifetime be-
fore they are deleted in RIS setting with 100 Systems.

7 BEST PRACTICES

It can be summarized, that our evaluation revealed different advan-
tages of the the presented memory management approaches. In de-
tail, for only a few active Systems in the RIS, the centralized (peri-
odic with any frequency) approaches outperform their competitors.
However, if the RIS inherits more than 30 active Systems, the de-
centralized approach outperforms all competitors. Furthermore, the
memory is deleted fastest in the decentralized approach, followed
by the centralized (periodic with high frequency and continuous
threaded implementation) approaches with an increasing number
of active Systems. We can derive from this some best practices
for RIS development which use wait-free hash maps with double
buffering. Tables 1 and 2 illustrate our findings for different use
cases, namely: RIS applications which inherit few/many Systems
as well as RIS applications which inherit small (e.g. only primi-
tives like vectors, matrices) or big Component data (such as large
structured data such as point clouds or triangles).

Figure 11: Performance comparison of our memory management en-
hanced wait-free implementation, original wait-free implementation
and standard locking approach.

Few Systems

Small Component Data Big Component Data
Centralized (periodic with any
frequency) management

Centralized (periodic with high
frequency) management

Table 1: Guideline for memory management approaches for few Sys-
tems within a RIS.

Many Systems

Small Component Data Big Component Data
Decentralized management Decentralized management

Table 2: Guideline for memory management approaches for many
Systems within a RIS.

8 CONCLUSION

We have presented a novel efficient memory management for high
performance wait-free hash maps within the ECS pattern. Our ap-
proaches enable non-locking read and write operations in highly
data driven RIS applications with large numbers of concurrent con-
sumers as well as producers while simultaneously maintaining a
consistent state of the whole system. Our approaches are easy to
implement and the do not alter the ECS pattern itself.

Our results show that such wait-free implementations outper-
form traditional lock-based implementations by several orders of
magnitude. Moreover, our new memory management based on
double-buffered wait-free hash maps is able to reduce the memory
consumption by a factor of ten without affecting the performance.
All results were measured in a realistic high fidelity space robotics
environment where we were able to achieve realtime performance
even in complex situations. Hence, believe that our approach is ap-
plicable to a wide variety of RIS applications which use the ECS
pattern or variations of it.

In the future, we would like to extend the double-buffered wait-
free hash maps with intelligent Component cloning. This would in-
corporate that the write operation only clones the Component data
when needed and not by default. This could be implemented with
a System-based heuristic which notifies when the next read opera-
tion may happen. Furthermore, we would like to apply wait-free
hash maps in more RIS applications in order to enable a profound
analysis of their capabilities. Finally, we would also like to ex-
tend our approach with high-level concepts for adaptive memory
management of double-buffered wait-free hash maps. It would be
beneficial if a RIS framework itself could determine which memory
management suits the current System and Component composition
best. This would incorporate that the RIS framework monitors the
usage of all Components from every System and adapts the memory
management accordingly.

ACKNOWLEDGEMENTS

This research is based upon the project KaNaRiA, supported by
German Aerospace Center (DLR) with funds of the German Fed-
eral Ministry of Economics and Technology (BMWi) under grant
50NA1318.

REFERENCES

[1] Alena Probst, Graciela Gonzales Peytavi, David Nakath, Anne Schat-
tel, Carsten Rachuy, Patrick Lange, et al. Kanaria: Identifying the
Challenges for Cognitive Autonomous Navigation and Guidance for
Missions to Small Planetary Bodies. International Astronautical
Congress (IAC), 2015.

[2] Cedric Fleury, Thierry Duval, Valerie Gouranton, Bruno Arnaldi. Ar-
chitectures and Mechanisms to Maintain efficiently Consistency in
Collaborative Virtual Environments. Software Engineering and Ar-
chitectures for Realtime Interactive Systems (SEARIS), 2010.

[3] Christer Carlsson, Olof Hagsand. DIVE - A Multi-User Virtual Re-
ality System. Virtual Reality Annual International Symposium, pages
394–400, 1993.

[4] Cristina de Negueruela, Michele Scagliola, Davide Giudici, Jose
Moreno, Jorge Vicent, Adriano Camps, Hyuk Park, Pierre Flamant,
Raffaella Franco. ARCHEO-E2E: A Reference Architecture for Earth
Observation end-to-end Mission Performance Simulators. Simulation
and EGSE facilities for Space Programmes, ESA ESTEC, 2012.

[5] David L. Detlefs, Paul A. Martin, Guy L. Steele. Lock-Free Reference
Counting. ACM Symposium on Principles of Distributed Computing,
pages 190–199, 2001.

[6] David Nakath, Carsten Rachuy, Joachim Clemens, Kerstin Schill. Op-
timal rotation sequences for active perception. In Proc. SPIE Multi-
sensor, Multisource Information Fusion: Architectures, Algorithms,
and Applications 2016. SPIE Press, 2016.

[7] Dennis Wiebusch, Marc Erich Latoschik. Decoupling the Entity-
Component-System Pattern using Semantic Traits for Reusable Re-

altime Interactive Systems. IEEE VR Workshop on Software Engi-
neering and Architectures for Realtime Interactive Systems, 2015.

[8] Dongman Lee, Mingyu Lim, Seunghyun Han. ATLAS - A Scalable
Network Framework for Distributed Virtual Environments. Presence,
16:125–156, 2007.

[9] Frederick Li, Rynson Lau, Frederick Ng. VSculpt: A Distributed Vir-
tual Sculpting Environment for Collaborative Design. IEEE Transac-
tion on Multimedia, 5:570–580, 2003.

[10] Jeonghwa Yang, Dongman Lee. Scalable Prediction Based Concur-
rency Control for Distributed Virtual Environments. Virtual Reality,
pages 151–158, 2000.

[11] Joachim Clemens, Thomas Reineking, Tobias Kluth. An evidential
approach to SLAM, path planning, and active exploration. Interna-
tional Journal of Approximate Reasoning, 2016.

[12] Marc Erich Latoschik, Henrik Tramberend. Simulator X: A Scalable
and Concurrent Software Platform for Intelligent Realtime Interactive
Systems. Proceedings of the IEEE VR, 2011.

[13] Maurice Herlihy. Wait-free synchronization. ACM Transactions on
Programming Languages and Systems, pages 206–209, 1991.

[14] Nicholas F. Polys, Sham S. Visamsetty, Puranjov Bhattacharjee, Eli
Tilevich. The Value of Patterns in Deep Media Scenegraphs. Soft-
ware Engineering and Architectures for Realtime Interactive Systems
(SEARIS), 2009.

[15] Olarn Wongwirat, Shigeyuki Ohara. Performance evaluation of com-
promised synchronization control mechanism for distributed virtual
environment. Virtual Reality, 9:1–16, 2006.

[16] Patrick Lange, Alena Probst, Abhishek Srinivas et al. Virtual Reality
for Simulating Autonomous Deep-Space Navigation and Mining. 24th
International Conference on Artificial Reality and Telexistence (ICAT-
EGVE 2014), 2014.

[17] Patrick Lange, Rene Weller, Gabriel Zachmann. A Framework for
Wait-Free Data Exchange in Massively Threaded VR Systems. 2014.

[18] Patrick Lange, Rene Weller, Gabriel Zachmann. Multi Agent System
Optimization in Virtual Vehicle Testbeds. EAI SIMUtools, 2015.

[19] Patrick Lange, Rene Weller, Gabriel Zachmann. Scalable Con-
currency Control for Massively Collaborative Virtual Environments.
ACM Multimedia Systems, Massively Multiuser Virtual Environments
(MMVE), 2015.

[20] Patrick Lange, Rene Weller, Gabriel Zachmann. GraphPool: A High
Performance Data Management for 3D Simulations. ACM SIGSIM
Conference on Principles of Advanved Discrete Simulations (PADS),
2016.

[21] Pietro Buttolo, Roberto Oboe, Blake Hannaford. Architectures For
Shared Haptic Virtual Environments. Computers & Graphics: Haptic
Displays in Virtual Environments and Computer Graphics in Korea,
21:421–429, 1997.

[22] Stephan Rehfeld, Henrik Tramberend, Marc Erik Latoschik. An
actor-based distribution model for Realtime Interactive Systems. Soft-
ware Engineering and Architectures for Realtime Interactive Systems
(SEARIS), 2013.

[23] Thomas Knott, Benjamin Weyers, Bernd Hentschel, Torsten Kuhlen.
Data-flow Oriented Software Framework for the Development of
Haptic-enabled Physics Simulations. Software Engineering and Ar-
chitectures for Realtime Interactive Systems (SEARIS), 2014.

[24] Un-Jae Sung, Jae-Heon Yang, Kwang-Yun Wohne. Concurrency Con-
trol in CIAO. IEEE Proceedings Virtual Reality, pages 22–28, 1999.

[25] Yue Yu, Abdelkader El Kamel, Guanghong Gong. Multi-Agent based
Architecture for Virtual Reality Intelligent Simulation System of Ve-
hicles. 2013.

