

Algorithm Outline

Pavel Borodin, Gabriel Zachmann, Reinhard Klein - Consistent Normal Orientation for Polygonal Meshes

University of Bonn · Computer Graphics Group

- 1. Detection of patches
- 2. Calculation of boundary coherence
- 3. Calculation of visibility
- 4. Consistent orientation of patches

Consistent Orientation of Patches

• Overall front-face visibility

$$V_f = \frac{\sum_m v_f^m \cdot a^m}{\sum_m a^m}$$

Pavel Borodin, Gabriel Zachmann, Reinhard Klein - Consistent Normal Orientation for Polygonal Meshes

University of Bonn · Computer Graphics Group

• Overall coherence $C = \sum_{m,n} c^{mn}$

• Goal: find orientation of all patches that maximizes both V_f and C

 Results Performance rates: 3 models at 3 levels of detail 							
	Number of polygons	Number of patches	Patch detection time (s)	Coherence calculation time (s)	Visibility calculation time (s)		
	180252 60080 18019	78 80 83	5.6 1.5 0.4	0.7 0.6 0.5	17.7 6.6 2.5		
- COFFO	194668 64648 19142	1508 1509 1511	5.9 1.8 0.4	3.4 2.0 1.1	19.0 6.8 2.6		
	300836 84673 14327	3310 2040 2067	10.5 2.7 0.4	9.2 2.8 0.9	29.1 9.1 2.5		
иннистичники пистички постички и коски постички и работ и работ 28	28 Pavel Borodin, Gabriel Zachmann, Reinhard Klein - Consistent Normal Orientation for Polygonal Meshes University of Bonn - Computer Graphics Group						

