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Figure 1: The Earthbender workflow: transforming a simple 2D sketch into a detailed heightmap. The final 3D terrain (right
side) is rendered in Blender

Abstract
Games, 3D simulations, and cinematic pipelines depend on realistic
3D terrain for immersion. However, creating detailed 3D terrain
is labour-intensive: artists sculpt elevation, iterate on mountains,
rivers, lakes, and must often repeat the entire workflow when the
design changes. Recent generative approaches are attempting to
address this challenge, but they primarily focus on a single landform
(typically mountains) and overlook structural features, such as river
networks, roads, or lakes.

We propose a sketch-conditioned diffusion framework that gen-
erates depth maps representing complete landscapes, including
mountains, river networks, and lakes. Our method extends Stable
Diffusion with a ControlNet branch that takes multiple channel
inputs: Canny edges for overall structure, red for mountains, green
for lakes, and blue as a carving tool for painting roads and rivers
onto the heightmap.

This approach addresses the technical challenges while priori-
tizing the artist’s creative control. Our interactive system, Earth-
bender, gives the artist fine-grained control over every detail in the
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heightmap, demonstrating a collaborative model where the gener-
ative AI acts as a powerful assistant to achieve an artistic vision,
rather than replacing the artist’s creativity.

Our experiments show that our ControlNet-based approach sig-
nificantly outperforms traditional GANs in both data efficiency and
output quality. Furthermore, we present an analysis demonstrating
that the choice of loss function acts as a powerful artistic control,
allowing the user to select between a sharp, detailed style and a
softer, more organic output better suited for downstream game
engine workflows.

CCS Concepts
• Human-centered computing → Graphical user interfaces; •
Computing methodologies → Shape modeling; Generative
and developmental approaches.
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1 Introduction
In game development, 3D simulations, and cinematic pipelines,
creating vast and believable environments is crucial for achieving
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an immersive experience. A fundamental component of these en-
vironments is the terrain, which is often represented by a large
3D mesh. However, the process of authoring high-quality terrain
remains a significant bottleneck. Artists, level designers, and tech-
nical artists must spend hours manually sculpting digital surfaces
or using procedural tools that often require indirect manipulation
of complex parameters. Furthermore, any significant change in the
design often requires repeating the entire laborious workflow. Us-
ing a heightmap to generate terrain can yield high-quality results.
Still, the source of heightmaps is usually limited to satellite data,
and altering the heightmaps is as time-consuming as sculpting the
mesh itself.

To address this, researchers have explored the use of AI gener-
ative models to create heightmaps. While early approaches using
Generative Adversarial Networks (GANs) [Goodfellow et al. 2020]
demonstrated the potential for generating realistic textures, they
often provide insufficient user control over the final output. They
usually require large, specialized datasets to train effectively. The
trade-off has consistently been between the quality of the generated
heightmap [Voulgaris et al. 2021] and the artist’s ability to guide the
creation process. Even in newer models based on Diffusion [Ho et al.
2020] models, there is still a lack of control that can compromise
artistic freedom [Löchner et al. 2023].

In this work, we argue for a different paradigm: generative AI
as a collaborative tool that enhances, rather than replaces, human
creativity. We present Earthbender, a novel interactive system for
generating high-quality heightmaps through a direct, sketch-based
workflow. Our approach is built on a diffusion framework that
extends a pre-trained Stable Diffusion model with a ControlNet
[Zhang et al. 2023] branch. This ControlNet is conditioned on a
multi-channel semantic sketch created by the artist, where Canny
edges provide the overall structure, and specific colours directly
map to geographical features: red indicates regions of positive
elevation displacement (mountains), blue marks carved depressions
(rivers and roads), and green defines planar areas (lakes).

Our system is designed from the ground up to prioritize artistic
control. It features a complete GUI that includes not only the core
drawing tools but also a suite of real-time post-processing controls
for fine-tuning the output. Through a comprehensive set of experi-
ments, we analyze the effectiveness of our approach and present
our findings. The primary contributions of this paper are:

• A novel, interactive system ("Earthbender") for the direct,
sketch-based authoring of multi-feature terrain heightmaps
using a guided diffusion model.

• A comparative study demonstrating that our ControlNet-
based approach significantly outperforms a traditional GAN
architecture (Pix2PixHD) [Wang et al. 2018] in both data
efficiency and the structural fidelity of the generated output.

• An analysis of loss functions reveals that the choice of loss
function acts as a robust artistic control, allowing the user
to select between a sharp, detailed style and a softer, more
organic output better suited for downstream game engine
workflows.

• The results of a qualitative evaluation study that validates
the usability and creative utility of our system in a practical,
artist-centric workflow.

2 Related Work
2.1 Image-to-Image Translation
The field of conditional image-to-image translation was signifi-
cantly advanced by the pix2pix framework [Isola et al. 2017]. This
approach introduced a general-purpose solution using a Condi-
tional Generative Adversarial Network (cGAN) [Mirza and Osin-
dero 2014] capable of learning the mapping between various visual
domains. Its key architectural innovations were a U-Net based gen-
erator [Ronneberger et al. 2015], which uses skip connections to
pass low-level image information directly from the encoder to the
decoder, and a PatchGAN discriminator that focuses on preserv-
ing high-frequency details by classifying local image patches. This
combination proved highly effective for a wide range of tasks, such
as translating sketches to photographs or satellite imagery to maps.
However, while foundational, the original pix2pix architecture of-
ten struggled to produce high-quality results at higher resolutions,
a challenge that was directly addressed by its successor.

A foundational approach in high-resolution, conditional im-
age synthesis is the work of [Wang et al. 2018], often known as
pix2pixHD. To overcome the instability of training GANs on high-
resolution images, they introduced a novel coarse-to-fine generator
and a multi-scale discriminator architecture. This, combined with a
feature-matching loss, allowed for the generation of photorealistic
images from semantic label maps at unprecedented resolutions.
Their work established a powerful baseline for GAN-based, image-
to-image translation and demonstrated a high degree of visual
quality. However, the system’s primary input is a dense seman-
tic map, and it does not focus on the sparse, multi-channel, and
artist-driven sketch-based workflow that we explore in our system.

A landmark in interactive image synthesis is GauGAN [Park
et al. 2019], powered by the Spatially-Adaptive Denormalization
(SPADE) architecture. This system demonstrated state-of-the-art
results in transforming semantic layouts into stunningly photoreal-
istic landscapes, offering users a high degree of control. However,
its core interaction paradigm is fundamentally different from our
approach. GauGAN operates on dense semantic segmentationmaps,
where every pixel in the input is assigned a specific class like "sky,"
"mountain," or "water." While incredibly powerful, this method is
not directly comparable to our work. Our system, Earthbender, is ex-
plicitly designed to interpret sparse, multi-channel artistic sketches,
which more closely mimic a traditional drawing workflow. There-
fore, we do not include a quantitative comparison, as the vastly
different input modalities would make such an analysis inequitable
and unenlightening. Instead, we position our work as exploring a
complementary, sketch-driven approach to terrain authoring.

Another powerful, artist-centric approach was presented by
[Perche et al. 2023], who developed a system for terrain authoring
based on the StyleGAN2 architecture. Their key contribution is the
concept of "spatialised style," where they use a sophisticated encod-
ing process to allow artists to mix the styles of different terrains
in specific, user-defined regions. While their work also focuses on
providing a suite of interactive tools, their underlying technical
approach is fundamentally different from ours. Their system is
built on a GAN that is trained from scratch and is centered on the
manipulation of style in a latent space. In contrast, our work lever-
ages the powerful generative prior of a large, pre-trained diffusion
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model and focuses on direct, semantic control of geological features
through a multi-channel sketch, representing a complementary
philosophy for interactive terrain generation.

It is also important to differentiate our work from the extensive
research in neural style transfer, which, while related to image syn-
thesis, addresses a fundamentally different problem. State-of-the-art
methods have evolved significantly from the original optimization-
based approach, with techniques like Adaptive Instance Normal-
ization (AdaIN) [Huang 2017] enabling real-time, arbitrary style
transfer. More recent transformer-based models like StyleFormer
[Park and Kim 2022] and Stytr2 [Deng et al. 2022] have pushed
the boundaries even further, offering enhanced control over the
stylization process and producing remarkably high-quality artistic
images. While these methods are powerful and might seem appli-
cable, they are fundamentally designed to transfer textural and
color properties from a style image onto the global structure of a
content image. They are not suited for our task, which requires
the model to interpret sparse semantic inputs from a sketch and
generate new, corresponding geometric structures (a heightmap),
rather than simply re-texturing an existing one.

2.2 Diffusion Models
Our work is built upon the foundation of Denoising Diffusion Prob-
abilistic Models (DDPMs) [Ho et al. 2020], a class of generative
models that have recently demonstrated state-of-the-art image syn-
thesis quality. The core mechanism of a DDPM involves a two-stage
process: a fixed forward process that incrementally adds Gaussian
noise to an image over a series of timesteps until it becomes pure
noise, and a learned reverse process that iteratively denoises the im-
age to reconstruct a clean sample. The key insight presented by [Ho
et al. 2020] is that this reverse process can be effectively modeled
by training a neural network—typically a U-Net—on a simplified
objective: predicting the noise that was added at each timestep.
This approach not only proved capable of generating images with
higher fidelity than many contemporary GANs but also offered a
more stable and straightforward training regime. We chose this
architecture as the basis for our system due to its proven ability to
generate high-quality, detailed outputs and its inherent structure,
where the step-by-step denoising process provides a robust frame-
work for injecting the strong spatial conditioning required for our
sketch-based control.

While the aforementioned Denoising Diffusion Probabilistic
Models (DDPMs) produce high-quality results, they are computa-
tionally intensive as they operate directly in the high-dimensional
space of pixels. A significant breakthrough in addressing this limita-
tion came with the introduction of Latent Diffusion Models (LDMs)
[Rombach et al. 2022], the core technology behind the popular Sta-
ble Diffusion model. The key insight of LDMs is to perform the
iterative denoising process not in pixel space, but in a much smaller,
perceptually-equivalent latent space learned by a powerful autoen-
coder. By first compressing the image into this lower-dimensional
space, the model can learn the primary semantic and conceptual
composition of the data with far greater computational efficiency.
We selected a pre-trained LDM, specifically Stable Diffusion v1.5,
as the foundation for our system because it provides a robust, state-
of-the-art generative base without the prohibitive training costs of

earlier diffusion models, allowing us to focus our efforts on training
a novel control mechanism.

A pivotal development in guiding large-scale diffusion models is
ControlNet [Zhang et al. 2023], a neural architecture designed to
add robust spatial conditioning to pre-trained text-to-image models.
The authors address the challenge of finetuning massive models
on smaller, task-specific datasets without catastrophic forgetting.
The core idea is to lock the original model’s weights, preserving
its vast knowledge, while creating a trainable copy of its encoding
layers. This trainable copy learns the specific input condition (e.g.,
edges, human pose, depth maps) and feeds its output back into the
frozen model. Crucially, the connection between the two is made
with "zero convolution" layers—weights initialized to zero—which
prevents harmful noise from corrupting the powerful pre-trained
backbone during the initial stages of training. This elegant approach
allows for efficient and stable training of a wide variety of spatial
controls. Our work directly leverages this architecture; we adopt
the ControlNet framework to train our own specialized model
that learns to interpret multi-channel semantic sketches for terrain
generation.

More recently, the Terrain Diffusion Network (TDN) by [Hu
et al. 2024] also explored sketch-guided terrain generation, intro-
ducing a complex, multi-level denoising scheme to achieve a high
degree of geological realism. While their work focuses on produc-
ing geologically plausible terrain influenced by climatic patterns,
our work differs in its primary goal of enhancing direct artistic con-
trol. This difference in focus is reflected in our architectural choice:
instead of building a complex model from scratch, we leverage a
large, pre-trained model via a single ControlNet. This ’simplicity-
for-interactivity’ approach allows us to focus our contribution on
the artist-centric system and its user-facing controls.

The most relevant prior work to our own is the excellent system
presented by [Löchner et al. 2023], which also utilizes a diffusion
model for interactive terrain authoring, featuring controls for cre-
ating ridges, erosion, and flat areas. However, while the high-level
goals are similar, our work differs fundamentally in three key ar-
eas. First, in our architectural approach, we leverage the powerful
prior of a large, pre-trained text-to-image model (Stable Diffusion)
via a ControlNet. In contrast, their system is trained from scratch
on a smaller, domain-specific diffusion model. Second, in terms of
data efficiency, this architectural choice enables us to achieve high-
fidelity results by training on a small, hand-drawn dataset of only
400 images, in stark contrast to the 6 million images required by
their system. Third, in our primary contribution, a core finding of
our work is the analysis of the loss function itself as a form of artis-
tic control, a nuanced aspect not explored in their paper. Our work,
therefore, demonstrates a significantly more data-efficient and flex-
ible methodology for achieving fine-grained, stylistic control in
terrain authoring.

2.3 Procedural and Sketch-Based Terrain
Generation

The challenges of manual authoring have long been addressed
by traditional procedural content generation (PCG) tools that use
algorithms like fractal noise [Perlin 1985] and physics-based simu-
lations, such as hydraulic erosion [Génevaux et al. 2013] [Mei et al.
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2007]. While powerful, these methods present their own significant
hurdles for artistic expression. They typically require the indirect
manipulation of numerous abstract parameters, leading to a work-
flow that can feel more like trial-and-error than direct creation.
Even approaches that add a layer of control, for example by using
software agents to guide the generation [Doran and Parberry 2010],
still rely on a fundamentally indirect authoring process. A key limi-
tation of these approaches is that they are based on mathematical
functions that simulate, rather than learn, natural processes. This
can make it difficult to generate the complex, subtle, and diverse
geological features found in real-world data. Our work builds on
this history by seeking to combine the generative power of modern
AI with a more direct, artist-centric control paradigm.

Generative Adversarial Networks (GANs) have been successfully
applied to terrain generation. [Spick et al. 2019], for example, used
a Spatial GAN to learn the features of specific real-world regions
from satellite data, enabling the generation of new, stylistically sim-
ilar heightmaps. However, as an unconditional generative method,
this approach does not provide the direct, sketch-based control over
landscape features that is the primary focus of our work. Other re-
search has focused on comparing different generative architectures
for terrain synthesis. [Demergis 2021], for example, conducted a
comparative analysis of VAEs [Kingma and Welling 2014], GANs,
and PixelCNNs [van den Oord et al. 2016] for the specific task of
generating island heightmaps. The study concluded that the GAN-
based approach provided the best trade-off between visual quality
and generation speed. However, the work focused exclusively on
unconditional generation, where the models learn to produce ran-
dom islands from a learned distribution. This highlights the need
for conditional methods, like our ControlNet-based system, that
allow for direct artistic control over the specific features and layout
of the generated terrain.

Other GAN-based approaches have focused on a two-stage pipeline
for terrain generation. [Voulgaris et al. 2021], for instance, first used
an unconditional GAN to generate a random, realistic satellite im-
age and then employed a separate conditional GAN (pix2pix) [Isola
et al. 2017] to translate that satellite image into a corresponding
heightmap. While this method can produce a wide variety of plau-
sible terrains, the creative process is indirect and lacks user control;
the system generates a random landscape rather than allowing an
artist to author a specific one. In contrast, our work focuses on
a direct, single-stage pipeline where the artist’s sketch provides
explicit, fine-grained control over the final output.

Other research has directly tackled the problem of sketch-based
control for terrain authoring. [Ramos et al. 2023], for example, pro-
posed the Dual Critic Conditional Wasserstein GAN (DCCWGAN)
[Radford et al. 2015], a novel architecture designed to transform
low-fidelity sketches into realistic heightmaps. Their system clev-
erly uses two separate discriminators: one to enforce the realism of
the output and a second to ensure the generated terrain is faithful
to the user’s input sketch. While this work validates the demand for
artist-centric tools and shows a successful GAN-based implemen-
tation, our approach differs by leveraging a pre-trained diffusion
model. This allows us to use a more direct, multi-channel semantic
sketch for conditioning and avoids the need to train a complex
generator and discriminator from scratch.

Concurrent to our work, the TerraFusion system, presented in
a recent pre-print by [Higo et al. 2025], also explores the use of
latent diffusion models for sketch-based terrain authoring. Their
primary contribution is a framework for the joint generation of
both a heightmap and a corresponding color texture, which they
achieve by concatenating the latent representations of both modali-
ties. Their sketch-based control, similar to ours, uses colored lines to
define features like ridgelines and valleys. While this work further
validates the power of guided diffusion for this task, our approach
differs in its focus: we concentrate exclusively on the high-fidelity
generation of the heightmap itself and introduce a more granular,
four-channel semantic input for finer control. Furthermore, we pro-
vide a complete, interactive system with real-time post-processing,
which is a central component of our contribution.

3 Methodology
3.1 System Overview
The Earthbender system is an end-to-end interactive pipeline de-
signed to translate an artist’s high-level semantic sketch into a
detailed terrain heightmap. The entire workflow, illustrated in Fig-
ure 2, emphasizes a rapid, iterative creative process by providing
granular artistic control at every stage.

The workflow begins in a custom GUI, where the artist authors
a multi-channel semantic sketch. This sketch is then pre-processed
into a 4-channel tensor representing feature masks and structural
edges. This tensor serves as conditional guidance for our custom-
trained ControlNet [Zhang et al. 2023], which in turn steers a pre-
trained Latent Diffusion Model (Stable Diffusion v1.5) [Rombach
et al. 2022]. The model operates in a compressed latent space to
efficiently generate a raw grayscale heightmap that conforms to
the artist’s input.

Finally, the raw heightmap is presented back to the artist in the
GUI for an interactive refinement stage. Here, a suite of real-time
post-processing filters allows for fine-tuning the terrain’s visual
characteristics. To complete the feedback loop, the final result can
also be inspected in an integrated 3D pre-visualization viewport.

3.2 Interactive Sketch Input and Pre-processing
The artist’s interaction with the Earthbender system is mediated
through a custom graphical user interface built with PyQt6. This
interface is designed to provide a seamless and expressive design
experience, allowing for both expressive input and granular control
over the generation parameters before inference begins.

3.2.1 Input Tools. The primary input is a canvas where the artist
authors a multi-channel semantic sketch. The system provides
several tools to facilitate this process, including semantic brushes
for mountains, rivers, and lakes; a pressure-sensitive brush for
expressive strokes; and a spray paint tool with controllable spread
and density for creating more organic features. A standard eraser
tool is also provided for refinement.

3.2.2 Pre-Inference Parameter Control. Before running the model,
the artist can adjust two sets of critical parameters via sliders in
the GUI. The individual influence of mountains, rivers, and lakes
can be independently weighted, acting as scalar multipliers on
their respective semantic masks. Additionally, a global ControlNet
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Figure 2: An overview of the Earthbender system architec-
ture. An artist’s semantic sketch is pre-processed into a 4-
channel conditioning tensor. This tensor guides a ControlNet,
which steers a frozen Stable Diffusion U-Net to generate a
raw heightmap. The result is then presented back to the artist
for interactive post-processing and 3D visualization.

conditioning_scale parameter determines the overall fidelity of the
generated image to the input sketch.

3.2.3 Conditioning Tensor Pre-processing. Once the artist initiates
the generation, the sketched image is processed into a 4-channel
conditioning tensor. This pipeline involves generating binary masks
from the sketch’s HSV color values, applying the user-defined fea-
ture weights, and creating a comprehensive structural map by com-
bining Canny edges from both the overall sketch and the individual
feature masks. The three weighted masks and the combined edge
map are then stacked to form the final [mountains, rivers, lakes,
edges] tensor that is fed into the ControlNet.

3.3 Model Architecture and Training
This section details the specifics of the model architecture, the
training procedure, and our analysis of the loss functions used.

3.3.1 Model Architecture. We adopt the ControlNet architecture,
a now-standard method for adding spatial conditioning to large,

pre-trained diffusion models [Zhang et al. 2023]. The core of our
system retains the original, frozen weights of the Stable Diffusion
v1.5 U-Net and VAE, preserving the powerful, general-purpose
prior learned from billions of images. To introduce our custom
control mechanism, we create a trainable copy of the weights of the
Stable Diffusion U-Net’s twelve encoder blocks and its middle block.
This trainable copy is designed to learn the relationship between
our 4-channel semantic sketch and the desired output structure.
Following the ControlNet methodology, the output of each trainable
block is added back to the corresponding skip-connection of the
frozen U-Net. This connection is mediated by "zero convolution"
layers—1x1 convolutions with weights and biases initialized to zero.
This ensures that at the beginning of training, no noise is added
to the U-Net’s features, thereby protecting the robust pre-trained
backbone from being corrupted and allowing for stable and efficient
fine-tuning.

3.3.2 Training Procedure. The ControlNet was trained on our cus-
tom dataset of paired sketch-and-heightmap images. We utilized the
Hugging Face Accelerate library for efficient training. The model
was trained for a maximum of 50,000 steps with a batch size of 4, em-
ploying an early stopping criterion to prevent significant overfitting.
We used the AdamW optimizer with a constant learning rate of 2e-5
and a cosine learning rate scheduler with 500 warmup steps. The
entire training process was conducted on a single consumer-grade
GPU, demonstrating the efficiency of the ControlNet fine-tuning
approach.

3.3.3 Loss Function as Artistic Control. A key part of our investiga-
tion involved analyzing how the choice of loss function could act
as a form of artistic control over the final output style. We explored
two primary objectives. The first was the standard denoising objec-
tive from Latent Diffusion, a simplified mean squared error (MSE)
in the latent space [Zhang et al. 2023]:

L𝐿𝐷𝑀 = E𝑧0,𝜖∼N(0,1),𝑡
[
| |𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑡) | |22

]
(1)

where 𝑧0 is the initial latent, 𝜖 is the sampled noise, 𝑡 is the timestep,
and 𝜖𝜃 (𝑧𝑡 , 𝑡) is the model’s noise prediction.

The second objective was a custom hybrid loss function designed
to exert more explicit control over the pixel-space output. This loss
combines the standard latent-space MSE with a weighted L1 pixel-
space loss and a smoothness term for lake regions:

L𝐻𝑦𝑏𝑟𝑖𝑑 = L𝐿𝐷𝑀 + 𝜆𝐿1L𝐿1,𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 + 𝜆𝑠𝑚𝑜𝑜𝑡ℎL𝑠𝑚𝑜𝑜𝑡ℎ (2)

Here,L𝐿1,𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 is an L1 loss between the decoded prediction and
the ground truth, with a higher weight on lake regions. L𝑠𝑚𝑜𝑜𝑡ℎ

penalizes image gradients within lake regions to encourage flat
surfaces.

The smoothness term, L𝑠𝑚𝑜𝑜𝑡ℎ , is specifically designed to ad-
dress the challenge of generating flat, featureless surfaces for lake re-
gions. It operates in pixel space by penalizing the image gradients—
the rate of change between adjacent pixels—but only within the
areas defined by the lake mask. This discourages the model from
creating noisy textures or unwanted bumps on lake surfaces. The
loss is formally defined as the mean L1 norm of the masked image
gradients:

Lsmooth = E
[��∇𝑥𝑌

�� ⊙ 𝑀lake +
��∇𝑦𝑌

�� ⊙ 𝑀lake
]

(3)
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where 𝑌 is the generated output image, 𝑀lake is the binary mask
for the lake regions, ∇𝑥𝑌 and ∇𝑦𝑌 are the horizontal and vertical
image gradients, and ⊙ is the element-wise multiplication. This
formulation directly corresponds to our implementation, which
calculates the L1 difference between adjacent pixels and applies the
lake mask before taking the mean.

Our experiments showed that neither loss is definitively superior;
rather, they produce distinct and valid artistic styles. The standard
L𝐿𝐷𝑀 yields a terrain with sharp, high-frequency details, while
our L𝐻𝑦𝑏𝑟𝑖𝑑 produces a smoother, more organic output. Notably,
the smoothness and weighted L1 terms in our hybrid loss were
particularly effective at generating the flat, featureless surfaces we
desired for lake regions. Based on this specific improvement, our
artistic preferences, and the goal of creating terrains well-suited
for downstream game engine workflows, we selected the custom
hybrid loss for the final "Earthbender" system.

3.4 Interactive Post-Processing and 3D
Visualization

To complete the artist-centric workflow, the Earthbender system
includes a final stage for the interactive refinement and visualization
of the generated heightmap. This stage is designed to be entirely
real-time and non-destructive, allowing for rapid iteration and fine-
tuning of the final output.

3.4.1 2D Post-Processing Filters. Once the raw grayscale heightmap
is generated by the model, a suite of post-processing filters, con-
trolled by sliders in the GUI, can be applied. These filters operate
on the 2D image data and are designed to give the artist precise
control over the final look and feel of the terrain.

• Per-Feature Brightness Control: The artist can independently
adjust the brightness of mountain, river, and lake regions,
effectively increasing or decreasing their elevation. This is
implemented as a simple additive operation, where the slider
value is applied to pixel intensities within the corresponding
feature’s semantic mask. This enables subtle strengthening
or weakening of specific terrain elements.

• Distance-Based Blending: To soften the integration of fea-
tures into the surrounding landscape, the system includes
a sophisticated blending tool. This is implemented using a
distance transform (cv2.distanceTransform) on the inverse
of a feature’s mask. The resulting distance map is used to
create a smooth falloff gradient around the feature’s outer
edge. The artist can control both the width of this gradient
(Outer Blur) and its intensity (Blur Brightness). This allows
for the creation of soft transitions, halos, or subtle shadows
around features, with the brightness of the blended region
being controlled independently from the feature itself.

3.4.2 3D Pre-visualization. During our initial qualitative evalua-
tion, a consistent piece of feedback was the difficulty users had
in mentally translating the 2D grayscale heightmap into a three-
dimensional form. To address this directly, we developed and inte-
grated an interactive 3D pre-visualization viewport into our system.
This feature is not intended to produce a final, game-ready mesh,
but rather to serve as an immediate and intuitive guide for the
artist.

The viewer takes the final post-processed heightmap and gen-
erates a 3D surface mesh. To overcome the limited dynamic range
often present in raw VAE outputs, the viewport provides the artist
with a set of essential real-time controls:

Level Clamping: Sliders for adjusting the black and white points
allow the artist to remap the height data, effectively increasing the
contrast and defining which grayscale value corresponds to the
lowest and highest points on the terrain.

• Gamma Correction: A mid-level gamma control allows for
the non-linear adjustment of the height curve, enabling the
artist to make the terrain feel flatter or steeper.

• Vertical Scale: A Z-Scale slider acts as a global multiplier on
the final height data, allowing the artist to exaggerate the
verticality of the terrain for dramatic effect.

These controls, combined with standard 3D camera navigation,
provide a powerful and immediate feedback loop.

4 Experiments and Results
To validate the effectiveness of our proposed system, we conducted
a series of quantitative and qualitative experiments. This section
details the custom dataset created for this task, the experimental
setup for our comparative analysis, and the results of our evalua-
tions. We aim to demonstrate the superiority of our diffusion-based
approach over traditional GANs and to analyze the artistic impact
of our custom loss function.

4.1 Dataset
To train and evaluate our models, we created a custom dataset of
400 paired sketch-and-heightmap images. The foundation of our
dataset is a collection of high-resolution digital elevation models
(DEMs) from NASA SRTM Digital Elevation 30m [Farr et al. 2007].
We use Google Earth Engine [Gorelick et al. 2017] to select our area
of interest in the .tif format and then export 1024x1024 tiles of the
region.

To create the paired sketch for each heightmap, every sketch
in our dataset was manually hand-drawn. This process involved
tracing key geological features from the ground-truth DEMs, such
as ridgelines, rivers, and lakes, and translating them into our seman-
tic color language. While labor-intensive, this approach ensures
that our training data accurately reflects the natural variations and
imperfections of a real artistic workflow, providing a robust foun-
dation for training a model that is responsive to genuine user input.
The sketches shown in our qualitative results (Figure 3) were taken
from the test set, which was created using the same manual process.

4.2 Experimental Setup
To provide a comprehensive evaluation, we compare four different
models, representing two distinct architectures and two different
loss functions. For all experiments, we use a suite of standard quan-
titative metrics to evaluate the fidelity and realism of the generated
heightmaps against the ground truth test set. This includes a tradi-
tional reconstruction metric (PSNR), a modern perceptual metric
(LPIPS) [Zhang et al. 2018], and two distributional metrics (FID
and KID) [Binkowski et al. 2018] [Zhang et al. 2018]. Both FID and
KID measure the statistical similarity between the distributions



Earthbender: An Interactive System for Stylistic Heightmap Generation using a Guided Diffusion Model MIG ’25, December 03–05, 2025, Zurich, Switzerland

of generated and real images, where lower scores indicate a more
realistic and diverse output

The models in comparison are as follows:
• ControlNet-Default:OurControlNet architecturewas trained
using the standard latent-space MSE loss (L𝐿𝐷𝑀 ) common
to Latent Diffusion Models.

• ControlNet-Hybrid (Ours): Our final ControlNet model
trained with our custom hybrid loss function (L𝐻𝑦𝑏𝑟𝑖𝑑 ),
which includes pixel-space L1 and smoothness terms. This
is the model used in the final Earthbender system.

• Pix2PixHD-Default: A baseline implementation of the
Pix2PixHD architecture trained on our dataset using its stan-
dard objective function.

• Pix2PixHD-Hybrid: To ensure a fair comparison of loss
functions between architectures, we also trained the Pix2PixHD
model with our custom hybrid loss function.

All models were trained for a maximum of 50,000 steps using
the same training and validation data splits (10% validation), with
checkpoints saved periodically. For our final evaluation, we se-
lected the checkpoint for each model that demonstrated the best
performance on the validation set.

4.3 Quantitative Analysis
We evaluated the performance of all four models on our held-out
test set of 40 images. The results, calculated in a series of paired
and distributional metrics, are presented in Table 1.

Table 1: Quantitative comparison of models on the test set.
"Default" refers to models trained with their standard loss
functions, while "Hybrid" refers to models trained with
our custom loss function. For PSNR, higher is better. For
LPIPS/FID/KID, lower is better. Best scores are in bold.

Model PSNR ↑ LPIPS ↓ FID ↓ KID (x100) ↓

Pix2PixHD (Default) 19.74 0.5398 407.15 38.20 ± 0.00
Pix2PixHD (Hybrid) 19.17 0.8304 356.47 28.63 ± 0.00

ControlNet (Default) 12.08 0.5424 280.93 15.46 ± 0.00
ControlNet (Hybrid) 11.91 0.5587 287.13 14.52 ± 0.00

It is important to note that the absolute values of FID and KID
are dataset-dependent and cannot be directly compared to scores
reported on other domains (e.g., ImageNet, FFHQ). In our setting,
these metrics serve primarily as relative indicators of performance
across the baselines evaluated on the same dataset.

At first glance, the results present a paradox. The traditional,
pixel-wise reconstruction metric, PSNR, overwhelmingly favors
the Pix2PixHD models, with the default GAN achieving the high-
est score of 19.74. However, a closer look at the more advanced,
perceptually-aligned metrics reveals a different and more accurate
story.

The distributional metrics, FID and KID, which measure the sta-
tistical similarity between the generated images and the ground
truth, decisively favor our ControlNet-based approach. The Con-
trolNet model with the default loss achieved the best FID score
(280.93), while our hybrid loss variant achieved the best KID score

(14.52). Both significantly outperform the best Pix2PixHD model
(FID of 356.47 and KID of 28.63). This discrepancy highlights a
well-known limitation of pixel-wise metrics in evaluating gener-
ative tasks. PSNR rewards the blurry, low-frequency outputs of
the GAN because they are "less wrong" on a pixel-by-pixel aver-
age. In contrast, FID and KID correctly identify that the detailed,
high-frequency textures generated by our ControlNet models are
far more realistic and representative of the true data distribution.

The comparison between our two ControlNet loss functions fur-
ther reinforces our methodology. The scores across all metrics are
remarkably close, indicating that both models produce outputs of a
similar overall quality. The default loss model is slightly better in
terms of FID, while our hybrid loss model is slightly better in terms
of KID. This confirms that the choice between them is primarily an
artistic one, based on the desired output style (sharp and detailed vs.
smooth and organic), rather than a clear difference in quantitative
performance.

4.4 Qualitative Analysis
To resolve the paradox presented by the quantitative metrics, a
qualitative visual comparison is necessary. Figure 3 shows a repre-
sentative example from our test set.

While the quantitative metrics provide a valuable overview, a
qualitative visual analysis is essential for understanding the practi-
cal and artistic differences between the models. The numerical para-
dox, where the Pix2PixHD models achieve superior PSNR scores,
is immediately resolved upon visual inspection of the outputs, as
shown in Figure 3.

Across all test cases, the Pix2PixHD models consistently fail to
produce usable or structurally coherent results. The outputs are
characterized by a low-frequency, blurry texture that lacks any of
the fine details or sharp features present in the ground truth. As
seen in the examples, the GAN baseline fails to interpret the specific
semantic meaning of the input sketch; mountains, rivers, and lakes
all dissolve into a noisy, indistinct pattern. The model is unable to
generate the sharp coastlines or intricate riverbeds specified in the
input, rendering its output unusable for any practical application.

In stark contrast, both ControlNet models demonstrate a pro-
found understanding of the input sketch, generating complex, de-
tailed, and structurally faithful heightmaps. Themodels successfully
interpret the semantic colors, creating elevated mountain ridges,
carved river valleys, and flat lake beds that correspond directly to
the artist’s input. The high-frequency textural detail is not only
present but also geologically plausible, aligning with the superior
FID and KID scores that these models achieved.

The comparison between the two ControlNet loss functions
reveals the stylistic trade-off discussed in our methodology. The
model trained with the default latent denoising loss produces a
terrain with a very high frequency of sharp, "etched" detail, excel-
lent for raw realism. The model trained with our custom hybrid
loss, however, produces a slightly smoother and more organic re-
sult, with more consolidated shapes that are often more desirable
for downstream applications like game engines. This visual evi-
dence confirms that our primary quantitative metrics (FID/KID) are
far more indicative of perceptual quality than traditional metrics
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Input Sketch Groundtruth ControlNet (Default) ControlNet (Hybrid) Pix2PixHD (Default) Pix2PixHD (Hybrid)

Figure 3: Qualitative comparison on three examples from the test set. For each example (row), we show (from left to right): the
input sketch, the ground truth heightmap, and the outputs from our four trained models. This figure clearly illustrates the
superior detail and structural fidelity of the ControlNet-based models compared to the Pix2PixHD baselines, which consistently
produce blurry and unusable results.

(PSNR) and validates our choice of the hybrid loss as a means of
achieving a specific, artistically preferable style.

4.5 Training Dynamics
To provide insight into our model development process, Figure 4
displays the training and validation loss curves for our two Control-
Net models. Both models exhibit stable training dynamics, with the
training loss consistently decreasing over time. The validation loss,
which was calculated every 1,000 steps, was used to monitor for
overfitting and to select the final model checkpoints for evaluation.

For the model trained with the default latent denoising loss, the
validation loss reached its minimum at approximately 30,000 steps,
after which it began to show signs of overfitting. We therefore
selected the 30,000-step checkpoint for this model. For our custom
hybrid loss model, the validation loss was lowest and most stable
around the 20,000-step mark, and we selected this checkpoint for
all subsequent experiments. These plots confirm that our training
procedure was stable and that our final models were selected based
on their optimal performance on unseen validation data.

4.6 Qualitative Evaluation (User Feedback)
To complement our quantitative metrics and validate the practical
usability of the Earthbender system, we conducted a preliminary

participant feedback study. This evaluation was designed not as a
formal expert review, but to gather initial user feedback and assess
how the tool performs in the hands of its target audience.

4.6.1 Methodology. The study involved 15 participants, primarily
computer science students with a diverse range of prior experience
in game development and digital art, from novice to experienced.
Each session began with a five-minute guided introduction to the
system’s interface, features, and workflow. Following the tutorial,
participants were given ten minutes for a hands-on, free-form cre-
ative task where they were encouraged to explore the tool and
create a terrain of their own design.

Upon completion of the task, each participant was asked to
fill out two questionnaires. The first was the industry-standard
System Usability Scale (SUS) [Brooke 1996], a 10-item questionnaire
that provides a reliable, quantitative measure of a system’s overall
usability. The second was a custom 10-item questionnaire, using
a 7-point Likert scale, designed to gather specific feedback on the
core features of Earthbender, such as the sense of creative control
and its potential utility in an artistic pipeline.

4.6.2 Results. The feedback from the study was highly positive.
The Earthbender system achieved an average SUS score of 86.33,
which corresponds to a grade of "A" and is considered an "Excellent"
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(a) ControlNet with Default Loss

(b) ControlNet with Hybrid Loss

Figure 4: Training and validation loss curves for the two
ControlNet models. The validation loss (orange, dashed line)
was used to select the optimal checkpoint for each model
before significant overfitting occurred.

result. This strong score indicates that users found the interface to
be highly usable and easy to learn.

While the SUS score provides a robust measure of overall us-
ability, it does not capture the specific nuances of the creative
experience. To gain deeper insights, we also analyzed the results
from our custom-designed questionnaire, visualized as a violin plot
in Figure 5. The responses were overwhelmingly positive, with
the distribution for most questions heavily concentrated in the
"Agree" (6) and "Strongly Agree" (7) range. Participants reported a
strong sense of overall control and a high degree of fidelity to their
artistic intent. The core drawing tools for mountains, lakes, and
carving also received very high and consistent ratings, validating
our sketch-based interaction paradigm.

Notably, the response to the "Necessity of Post-Processing Util-
ity" was the most positive of all, with nearly all participants rating it
as essential. This provides strong evidence that the post-processing
filters can help the creative workflow and provide more control. The

only area with significant variance in feedback was the "Guidance
Scale Utility," suggesting that while some users found it powerful,
its function may be less intuitive for others. Overall, this initial
feedback validates our artist-centric design philosophy, confirming
that Earthbender is not only a functional tool but also an effective
creative partner.

1 2 3 4 5 6 7
Score (1-7)

Overall Control

Artistic Intent Fidelity

Mountain Control

Lake Control

Carving Control

Necessity of Post-Processing Utility

Guidance Scale Utility

Overall Practical Utility

Enhances Creativity

Feature Blending Control
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Figure 5: Distribution of participant responses (1–7 Likert
scale) to our 10-item qualitative questionnaire (N = 15 par-
ticipants). Each violin shows the distribution of individual
participant responses for that item. The questionnaire items
(y-axis labels) were:

• Overall Control: "I felt in control of the creative process."
• Artistic Intent Fidelity: "The final heightmap accurately
reflected my artistic intent."

• Mountain Control: "I had fine-grained control over the
placement and shape of the mountains (red)."

• Lake Control: "I had fine-grained control over the place-
ment and shape of the lakes (green)."

• Carving Control: "I had fine-grained control over my carv-
ing tool (blue)."

• Post-Processing Utility: "The post-processing sliders
(brightness, blur) were a necessary and useful feature for
refining the final image."

• Guidance Scale Utility: "The Guidance Scale slider gave
me meaningful control over the output’s detail."

• Practical Utility: "I would find this tool useful in a real
game development or artistic pipeline."

• Enhances Creativity: "This tool enhances my creativity
rather than replacing it."

• Feature Blending Control: "I had control over blending
the features with the combination of colors."

5 Discussion
Our experiments demonstrate that a ControlNet-based approach,
guided by a multi-channel semantic sketch, is a highly effective
method for interactive terrain authoring. This section interprets
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the broader implications of our results, discusses the limitations of
our system, and proposes avenues for future work.

While our user study indicated a wide variance in how partici-
pants initially perceived the guidance scale feature (as seen in Figure
5), we observed that users typically settled on a preferred value and
did not change it later. Each user, based on their own artistic vision,
had a preference for a certain level of creative deviation versus
strict adherence to their sketch. To quantify the impact of this pa-
rameter, we analyzed its effect on our 40-image test set. As shown
in Table 2, increasing the guidance scale from 1.0 to 1.7 resulted in
a significant and consistent improvement in the reconstruction and
perceptual metrics (PSNR and LPIPS) for both ControlNet models.
This confirms that the guidance scale is a powerful parameter that
provides meaningful control over the output’s quality and visual
fidelity.

Table 2: Analysis of the effect of the ControlNet Guidance
Scale. We compare the performance of our two ControlNet
models on the test set using the default scale (1.0) versus a
higher value (1.7). The results show that a higher guidance
scale consistently improves the reconstruction and percep-
tual metrics (PSNR and LPIPS), while the distributional met-
rics (FID andKID) show amore complex trade-off. Best scores
are highlighted in bold.

Model PSNR ↑ LPIPS ↓ FID ↓ KID (x100) ↓

Default (Guidance Scale 1.7) 13.36 0.5098 297.39 13.56 ± 0.00
Hybrid (Guidance Scale 1.7) 12.96 0.5226 305.47 15.73 ± 0.00

Default (Guidance Scale 1) 12.08 0.5424 280.93 15.46 ± 0.00
Hybrid (Guidance Scale 1) 11.91 0.5587 287.13 14.52 ± 0.00

Limitations and User Feedback.While the feedback from our
participant study was overwhelmingly positive, it also highlighted
areas for improvement. Some of our users with more experience in
the field of game design provided quotes that clearly stated some
of the weaknesses of our approach. One user said, “I can’t choose
how tall each mountain is”. Another critical observation was, “I
don’t have any idea on what scale we are working on, and I don’t
know anything about the size of these features on the map.”. These
problems have been a constant limitation in all previous works
that have attempted to generate a heightmap using deep generative
models. However, hearing these quotes from our users provided
valuable information about possible roadmaps for future feature
work.

These comments on explicit control naturally lead to a related
consideration: the system’s handling of implicit variations in an
artist’s input style. It is expected that leveraging a pre-trained stable
diffusion model makes the model robust, even when facing a less-
detailed sketch as input. The robustness of the model with different
levels of detailed input is an interesting research question that
can be explored, particularly in terms of how much the generated
output differs from the artist’s expectation with respect to each
level of input detail.

Furthermore, our research revealed several extensions that high-
lighted the current limitations of our approach. An attempt to train
the model on a combination of our sketch and a text prompt was

unsuccessful; we found that the strong, explicit spatial guidance
from the ControlNet sketch consistently overpowered the weaker,
more abstract guidance from the text. We also attempted to train a
version for 1024x1024 output, but fine-tuning a model pre-trained
at 512x512 did not successfully generalize to the higher resolution.
The small size of our dataset likely exacerbated these challenges.
We expect that changing the pre-trained model to one that has been
trained with higher resolution will give the Earthbender the ability
to produce higher-resolution output. Still, we were unable to con-
duct the experiment due to the hardware limitations necessary for
both training and inference. To achieve higher resolution with the
current pre-trained model, Earthbender can utilize up-scaling; how-
ever, selecting the correct algorithm for up-scaling our heightmaps
is an interesting research question that we aim to explore in our
feature work.

6 Conclusion and Future Work
In this work, we presented Earthbender, a novel interactive system
that pushes the boundaries of sketch-based terrain authoring. We
have shown that it is a viable and effective tool, capable of producing
high-quality, detailed heightmaps that are qualitatively superior
to traditional GAN-based approaches. Our core philosophy is that
generative AI models will only be viewed as a positive force by
artists if they serve to enhance, rather than replace, creative control.
Earthbender is a step in this direction, demonstrating an artist-
centric workflow that is both powerful and intuitive.

Our findings and limitations point to several clear directions
for future work. A critical next step is to tackle higher-resolution
generation, perhaps by exploring new U-Net backbones or cascaded
refinement models. Further studies are needed to findmore effective
methods for combining sketch and text conditioning, which may
require novel datasets and architectures. To enhance its practical
utility, the system could be trained to understand real-world scales
and to provide per-feature height control, allowing artists to specify
the exact elevation of individual mountains. Finally, to better align
the model’s output with its intended application, future iterations
could be trained on datasets where the ground truth heightmaps
are already specialized and optimized for use in game development
pipelines.
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