
International Conference on Artificial Reality and Telexistence
Eurographics Symposium on Virtual Environments (2024)
S. Hasegawa, N. Sakata and V. Sundstedt (Editors)

BlendPCR: Seamless and Efficient Rendering of Dynamic Point
Clouds captured by Multiple RGB-D Cameras

A. Mühlenbrock1 R. Weller1 and G. Zachmann1

1Computer Graphics and Virtual Reality Research Lab, University of Bremen, Germany

(a) Uniform Splats (b) Separate Meshes (c) TSDF192 (d) TSDF512 (e) BlendPCR (f) BlendPCR (HR)

Figure 1: Comparison of rendering techniques on the noisy CWIPC-SXR dataset in the S3 Flight Attendant scene. Besides comparing the
six techniques depicted here, these figures facilitate comparison with additional state-of-the-art methods such as Pointersect [CCR∗23]
and P2ENet [HGSW24], which are shown in the supplementary material of [HGSW24] and illustrate the same scene segment. Both the
baseline techniques (a-d) presented herein and the state-of-the-art methods depicted in the supplementary material of [HGSW24] exhibit
seam flickering artifacts. In contrast, our technique (e-f) effectively eliminates these artifacts while simultaneously preserving details.

Abstract
Traditional techniques for rendering continuous surfaces from dynamic, noisy point clouds using multi-camera setups often
suffer from disruptive artifacts in overlapping areas, similar to z-fighting. We introduce BlendPCR, an advanced rendering
technique that effectively addresses these artifacts through a dual approach of point cloud processing and screen space blend-
ing. Additionally, we present a UV coordinate encoding scheme to enable high-resolution texture mapping via standard camera
SDKs. We demonstrate that our approach offers superior visual rendering quality over traditional splat and mesh-based meth-
ods and exhibits no artifacts in those overlapping areas, which still occur in leading-edge NeRF and Gaussian Splat based
approaches like Pointersect and P2ENet. In practical tests with seven Microsoft Azure Kinects, processing, including upload-
ing the point clouds to GPU, requires only 13.8 ms (when using one color per point) or 29.2 ms (using high-resolution color
textures), and rendering at a resolution of 3580 x 2066 takes just 3.2 ms, proving its suitability for real-time VR applications.

CCS Concepts
• Computing methodologies → Rendering; Virtual reality; Point-based models; Mesh geometry models;

1. Introduction

Rendering dynamic 3D point cloud from RGB-D streams of mul-
tiple cameras is crucial for various applications, including the
use of point cloud avatars in VR for enhanced social presence
[GCC∗20,YGE∗21], performance capture systems [DKD∗16], and
dynamic geometry reconstruction, such as VR tele-assistance in
surgical settings [RYP∗21, GJS∗21, FMK∗22].

To address this, diverse approaches have been developed to op-
timally render point clouds, including volumetric techniques based
on TSDF [DKD∗16, DDF∗17, YZG∗21]. While learning-based
methods like NeRFs have been limited to static scenes due to ex-
tensive training times [ASK∗20, DZL∗20, XXP∗22, HXLJ23], re-
cent advancements have enabled the rendering of dynamic point
clouds using neural networks without prior scene-specific train-

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/egve.20241366 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-7836-3341
https://orcid.org/0009-0002-2544-4153
https://orcid.org/0000-0001-8155-1127
https://doi.org/10.2312/egve.20241366

2 of 10 A. Mühlenbrock, R. Weller & G. Zachmann / BlendPCR

ing [CCR∗23, HGSW24]. However, these techniques often strug-
gle with performance issues; volumetric methods, which usually
reconstruct the surface via Marching Cubes are computationally
expensive, and pixel-wise rendering in NeRF-related or ray-tracing
methods is costly at high resolutions, rendering them unsuitable for
real-time VR applications. A recent technique that transforms dy-
namic point clouds into Gaussian splats using neural networks has
been introduced for real-time rendering [HGSW24].

However, the use of multiple RGB-D cameras leads to visible ar-
tifacts not yet accounted for by current rendering techniques: When
multiple cameras are used for real-time capture of a scene, identical
surfaces are partially captured simultaneously by several cameras.
Since different cameras have different positions, specular reflec-
tions differ quite noticeably, especially in the overlapping surface
regions. This could be exacerbated by white balancing occurring in
the cameras, or slightly different color gamuts. Thus, some parts of
the surfaces in the scene are rendered multiple times, which leads
to artifacts such as noticeable seams or effects with similar appear-
ance to z-fighting. In the following, we will refer to these artifacts
together as seam flickering (see Figures 1, 5, and 6, as well as our
supplementary material).

We introduce a method for rendering continuous surfaces from
point cloud streams of multiple RGB-D cameras, which specifi-
cally addresses these undesirable seam flickering artifacts through
blending, offering significant advantages:

• Produces seamless transitions at overlaps between point clouds
from multiple cameras through weight-based blending.

• Supports real-time performance using multiple cameras with
screen resolutions and framerates suitable for VR.

• Allows for the use of different resolutions between depth images
and RGB images, enabling higher color resolution than the ac-
tual point cloud size.

• Our implementation,†, which relies solely on C++/OpenGL 3.3,
is thus compatible with a wide range of platforms.

Additionally, we present a universal encoding scheme that effi-
ciently and efficiently encodes 2D coordinates into 4D coordinates,
preserving integrity during channel-wise linear interpolation. By
applying this scheme to encode pixel coordinates (e.g. 16 Bit per
channel) into RGBA color values (e.g. 8 Bit per channel), we lever-
aging the APIs of standard RGB-D sensors to efficiently generate
UV coordinates for mapping the raw high-resolution color image
onto the lower-resolution point cloud, see Section 3.4.

2. Related Work

Point cloud rendering, particularly of dynamic clouds, has long
been a key challenge in computer graphics. We can roughly divide
the approaches into three different categories: splat-based render-
ing techniques (Section 2.1), volumetric approaches (Section 2.2),
and learning-based rendering methods (Section 2.3).

† GitHub: https://github.com/muehlenb/BlendPCR

2.1. Splat-based Rendering

While contemporary debug views frequently employ uniform ren-
dering of 2D points without reconstructing a continuous surface,
as exemplified by the Point Cloud Library [RC11] and Open3D
[ZPK18], surface reconstruction techniques have evolved signifi-
cantly over the decades. A pivotal advancement in this field is Sur-
face Splatting [ZPvBG01], which utilizes ellipsoidal splats com-
bined with EWA filtering for surface reconstruction. Subsequent
enhancements to splatting include GPU implementations [BK03],
rendering without preprocessing [WS06], and automatic surface
fitting on the GPU using Screen Space KNN search [PJW12].
A related field of research involves the high-performance render-
ing of large static point cloud datasets. In this domain, real-time
rendering of datasets containing over a billion points has been
achieved, designed explicitly for rendering static artifact-free point
clouds [SKW21, SKW22]. In point cloud rendering, addressing
the challenge of splats initially having only a single color has
led to the development of various methods to apply textures us-
ing pre-processed texture atlases. These methods aim to enhance
rendering performance by reducing the number of points with-
out significantly compromising quality or improving the quality it-
self [SSLK13, APS∗14, CTCG19]. These techniques are primarily
applied to static, pre-processed point clouds.

A significant contribution to current research is 3D Gaussian
Splatting [KKLD23], initially developed for the photorealistic re-
construction of static scenes using an array of RGB images and re-
quiring non-real-time preprocessing. Recent research has explored
the conversion of points from RGB-D images into Gaussian splats
using the neural network P2ENet [HGSW24], aiming to adapt the
differentiable Gaussian Splatting renderer for real-time rendering
of dynamic point clouds by RGB-D sensor streams.

2.2. Volumetric Fusion

Besides methods that render splats of separate cameras, volumet-
ric approaches integrate data from one or more depth sensors
into a unified 3D voxel grid. One of the earliest developments
in this field was [CL96], which utilized a Signed Distance Func-
tion (SDF) for reconstruction. KinectFusion expanded on this by
introducing a Truncated Signed Distance Function (TSDF) for
real-time applications and also developed an ICP-based tracking
algorithm for reconstructing static scenes using a moving cam-
era [NIH∗11]. Techniques like DynamicFusion and VolumeDe-
form adapted this approach for deformable objects by reconstruct-
ing a canonical model over time and applying detected deforma-
tions to this model. However, these methods are limited to mild
movements, deformations without topological changes, and sin-
gle camera usage [NFS15, IZN∗16]. More recent methods such
as Fusion4D, Function4D, and Motion2Fusion, which are also
known as multi-view performance capture systems, have advanced
the integration of multi-camera scenes into a common voxel grid
[DKD∗16, DDF∗17, YZG∗21]. They employ sophisticated tech-
niques like adapted ED graphs [SSP07], texture atlases, and neu-
ral networks for deep implicit surface reconstruction. Even though
methods for processing individually captured persons can be exe-
cuted in real-time on powerful hardware, the required performance

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://github.com/muehlenb/BlendPCR

A. Mühlenbrock, R. Weller & G. Zachmann / BlendPCR 3 of 10

Figure 2: Our pipeline for seamlessly rendering point clouds from multiple depth cameras involves various depth image-sized passes on the
structured point clouds to smooth edges, determine normals, and estimate reconstruction quality. Subsequently, the structured point clouds
are rendered as meshes on separate Frame Buffer Objects (FBOs) and blended, as explained in Section 3.

is typically high due to voxelization, which limits its suitability for
XR applications – especially in environments with multiple avatars.

2.3. Learning-based Rendering

Another approach involves learning-based methods that use a point
cloud as input and learn to render it realistically using ground
truth photos, for example, [ASK∗20,DZL∗20]. Additionally, some
methods adapt Neural Radiance Fields (NeRF) [MST∗20] to
use point clouds as inputs in the rendering pipeline, as seen in
[XXP∗22,HXLJ23]. While these techniques achieve impressive re-
sults on static point clouds akin to NeRFs and Gaussian Splatting,
their applicability to dynamic point cloud streams is constrained
due to the requirement for the static scene to be learned over min-
utes to hours of training. Yet, recent advancements, such as Point-
ersect [CCR∗23] using a NeRF-related approach or the Gaussian
Splatting adaptation using P2ENet by [HGSW24], aim to mitigate
this limitation for live point cloud streams. However, processing or
rendering times at moderate resolutions are typically high, exac-
erbating the challenge for resolutions needed in XR applications.
Furthermore, they usually do not take into account artifacts caused
by the overlapping of separate point clouds from multiple consumer
RGB-D cameras.

3. Our Method

In this section, we will first present an overview of our method, and
then present each step in more detail.

3.1. Overview

Our main goals are to meet the performance requirements for VR
applications while still visually merge continuous smooth surfaces
from multiple RGB-D cameras seamlessly. To achieve this goal,

we propose a new rendering method for dynamic point clouds that
reconstructs meshes and blends them without visibe artifacts. Ba-
sically, for each separate structured point cloud, we use the inher-
ent structure to reconstruct a canonical mesh (see Figure 3). We
start by removing triangles that connect the foreground with the
background, smoothing vertices at edges, generate normals, and
estimate a reconstruction quality factor of how well each camera
can reconstruct a specific area of the object, see Section 3.2. This
is performed directly on the separate structured point clouds that
are arranged in the 2D configuration of the original depth image.
In the second phase, we explicitly render the meshes to separate
framebuffers. Based on the estimated quality factor, we blend these
framebuffers together. This second phase is performed in screen
space and detailed in Section 3.3. This pipeline is depicted in Fig-
ure 2.

3.2. Point Cloud Processing

We manipulate a structured point cloud aligned with the depth
image from which it originates during the point cloud processing
stages. We apply standard techniques for edge smoothing, normal
estimation, and estimation of reconstruction quality. All of these
operations are performed at the depth image’s original resolution.
To achieve high compatibility and high performance through GPU
acceleration, we have implemented these passes in separate GLSL
fragment shaders, which are executed in order for each and every
RGB-D camera, and use textures to upload structured point clouds
and color textures.

3.2.1. Rejection Texture

Initially, the canonical meshes are created over the entire depth im-
age per camera (see Figure 3), causing background and foreground
objects to melt together. To sever these connections, we define a
binary rejection texture which defines whether a point is valid: for

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

4 of 10 A. Mühlenbrock, R. Weller & G. Zachmann / BlendPCR

each point i, we determine the distance edi to the nearest point in
the order of the 2D depth image that either exceeds a specific depth
threshold from its neighbors or is invalid. Assuming ci to be the
vector pointing from a point i to the RGB-D camera position, the
acceptable point-wise threshold ti is defined based on the camera
distance |ci| and a constant k (we chose k = 2.5 cm

m):

ti = k · |ci|

When we render the mesh later in the render pass (see Section
3.3.1), we remove all triangles that were marked as invalid by this
rejection texture.

3.2.2. Edge Smoothing

To eliminate uneven silhouettes due to the flying pixel effect and
sharp binary vertex deletion, we first identify vertices near object
edges and smooth them based on their proximity to these bound-
aries. To streamline this process, we calculate a truncated edge-
proximity texture (’Edge Prox.’ in Figure 2): For each pixel of that
texture, we calculate the pixel-wise edge proximity epi by scaling
edi between 0 and 1 and capping distances greater than 10 pixels to
enable its use as a straightforward influence factor.

epi = clamp(1− edi

10
,0,1)

To smooth the edges of the meshes, we calculate the Weighted
Moving Least Squares (MLS) for all points xi where epi > 0:

ai =
∑

k
j=1 θ(||xi− x j||)p j

∑
k
j=1 θ(||xi− x j||)

with k = 121 using only 11 x 11 points around xi in the structured
point cloud for efficiency reasons, and with

θ(d) = e−d2/h2
, h = 0.02

With these smoothed vertices ai, we can now update the position
xi of point i based on its proximity to an edge:

xi← epi ·ai +(1− epi) · xi

3.2.3. Normal Estimation

In order to render a smooth transition between meshes in over-
lapping areas, we propose to estimate the reconstruction quality
of each part of each mesh. This allows us, then, to weight the
parts of meshes during the blending according to the quality they
will contribute to the final image. To effectively determine which
mesh exhibits higher reconstruction quality in overlapping areas,
it is essential to estimate the normal (refer to Section 3.2.4). To
do so, we begin by calculating the weighted covariance matrix
B = (bi j) ∈ R3×3:

b jh = ∑
k
l=1 θ(||xi− xl ||)(xl, j− xi, j)(xl,h− xi,h)

Using the characteristic polynomial and trigonometric methods
to solve this polynomial, we calculate the eigenvalues of the matrix
and, subsequently, the third eigenvector using Cholesky decompo-
sition. For efficiency, we have implemented this in GLSL, too, us-
ing k = 121, i.e. 11×11 surrounding points for each point xi.

Figure 3: Conceptual view of generating separate meshes. From
the depth image, the generated 3D points are used as vertices for
a contiguous grid-like 3D mesh. Triangles with edges too large in
relation to camera distance are removed.

3.2.4. Estimation of Reconstruction Quality

The estimated quality of a mesh at a point i depends on several
factors:

1. Distance to Camera ||ci||: The closer a mesh is to the camera,
the higher the point density of the captured surface.

2. Surface Normal ni: The more parallel the surface normal ni is
to the vector ci pointing from the surface towards the camera,
the higher the point density.

3. Proximity to Edge epi: Pixels further from an object’s edge, as
viewed from the camera, experience fewer disturbances, such as
those from the flying pixel effect.

Assuming an ideal camera model, a factor r that estimates the
quality of reconstruction for a point can be approximated as fol-
lows, where cMax defines the maximal point-to-camera distance
that can occur, and where n̂i and ĉi are normalized (see ni and ci):

ri = ((cMax)
2−||ci||2) · (n̂i · ĉi)

For each point i in the point cloud, we estimate the reconstruction
quality ri. Additionally, the proximity to edge epi is calculated and
stored for each point in a secondary texture channel. To ensure that
smoothing operations in screen space do not compromise object
boundaries, we do not yet combine factors epi and ri.

3.3. Screen Passes

Screen passes are rendered at the resolution of the viewport and
from the perspective of the virtual camera. In this passes, the sepa-
rate meshes are ultimately rendered and subsequently blended.

3.3.1. Rendering Pass

In previous point cloud processing, we operated on structured point
clouds, implicitly treating points as vertices of a mesh without ex-
plicitly creating it. Now, we actually render each separate point
cloud in its own Frame Buffer Object (FBO) as mesh in a grid-like
structure, as depicted in Figure 3. During this process, we use the
Geometry Shader to remove all triangles with a vertex marked for
deletion. This ensures that foreground objects do not merge with
the background and that the triangle geometries remain distinct.
The edge smoothing and geometric approximation have already
been achieved through the modifications of xi in the point cloud
passes.

For further processing, we also output for each screen pixel the
value of the Edge Proximity epi, the normal vector n, and the es-
timated reconstruction quality ri and store them in their respective
frame buffer objects (FBO).

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

A. Mühlenbrock, R. Weller & G. Zachmann / BlendPCR 5 of 10

3.3.2. Camera Weight Pass

Various approaches can be employed to blend multiple mesh ren-
dering, each stored in a different FBO. One method involves
weighting all pixels based on their estimated reconstruction quality
ri to blend across large regions. However, blending over extensive
areas using multiple cameras can lead to blurring of color textures
due to camera-specific noise misalignment or minor registration er-
rors. This issue can be mitigated by predominantly rendering pixels
from the camera with the highest estimated reconstruction quality,
hereafter referred to as Major Cam. Blending should only occur
in regions where the dominant camera changes within the screen
space.

To implement this efficiently, our approach is twofold. Initially,
in the first screen pass, we determine the Major Cam for each pixel,
identified as the camera providing the highest estimated reconstruc-
tion quality ri for that pixel, and encode this information as an inte-
ger value in a texture (see Major Cam Est. in Figure 2). In a subse-
quent pass, we apply a simple smoothing operation using a 21×21
kernel on the Major Cam Est. texture and store in a separate chan-
nel of the output texture(s) a factor ranging from 0 to 1, indicating
the influence of each camera on the corresponding pixel. This cre-
ates camera weight textures in screen space, enabling blending only
in areas where a change in the optimal camera occurs. To conserve
resources, both the Major-Cam and the Cam-Weights textures have
a resolution of 1/16th of the screen resolution, equivalent to 1/4th
along each dimension of height and width. This allows us to uti-
lize the inherent smoothing of the GL_Linear texture option for
further optimization.

3.3.3. Blending Pass

In the final blending pass, the separate meshes rendered in the
Frame Buffer Objects (FBOs) at overlapping regions are blended
according to the Cam Weights cwh

i and Edge Proximity eph
i val-

ues for each FBO h and pixel i, to ensure a fading out at the object
edges. The rendered color of a pixel i is determined by the formula,
assuming colhi to be the color of FBO h at pixel i, and only includ-
ing the k FBO’s colors those fragments do not exceed a very small
distance threshold to the fragment nearest to the virtual camera:

coli =
∑

k
h=1 cwh

i · (1− eph
i) · colhi

∑
k
h=1 cwh

i · (1− eph
i)

3.4. BlendPCR (HR): Using High Resolution Textures

By employing separate continuous meshes for each camera, we
allow for the rendering of color data using textures. This ap-
proach facilitates the use of disparate resolutions for the depth and
color images—for instance, 640x576 for depth and 2048x1536 for
color images. Such a configuration allows for superimposing high-
resolution color information onto a lower-resolution mesh, as is of-
ten done in computer graphics.

However, devices such as the Azure Kinect, which utilize dis-
tinct sensors for capturing color and depth information, necessitate
a per-pixel mapping from the coordinates of the depth image to
those of the color image. This mapping, essentially a UV map for
the mesh, can be generated by creating an image that stores the 2D

Naive Bitshift Blockwise (part) Blockwise (full)

E
nc

od
ed

C
oo

rd
.

Te
xt

ur
ed

Figure 4: Effect of linear interpolation to different encoding
schemes when encoding 2D image coordinates into RGB values. On
the left, naïve bit shifting is shown, where the pixel ID (2048 ·y+x)
is split bitwise across r, g, b. In the center, our block-based ap-
proach is displayed without oscillation and vertical repair. On the
right, our full block-based method is applied as described in Sec-
tion 3.4. At the top, the coordinates encoded in RGB are displayed,
while at the bottom, the reconstructed textures using the decoded
coordinates are shown. The activation of linear interpolation leads
to the destruction of the encoded coordinates in the left and middle
case.

color pixel coordinates. This coordinate image is then transformed
from the color image coordinate into the depth image coordinate
using the camera’s API, an API that is usually meant to transform
the real color image into the depth image directly. It is important
to note that limitations exist within the camera API; for example,
the Azure Kinect SDK provides only a function for transforming
images from color camera coordinates to depth camera coordinates
that operates with BGRA32 format (8 bits per channel) and always
interpolates channels separately, since it was originally intended
for the transformation of the color image directly, and not an image
that stores coordinates in its pixels. However, when pixel coordi-
nates are naïvely encoded into BGRA32 values through bit shift-
ing, the coordinates in non-continuous regions are corrupted by the
interpolation, as shown in Figure 4.

To overcome this issue, we devised an encoding scheme for 2D
pixel coordinates into BGRA32-values that remain unaffected by
channel-wise linear interpolation. This scheme even leverages in-
terpolation to achieve subpixel precision in the resulting values.

To encode the pixel coordinates cx and cy, within the ranges
[0, 2047] and [0, 1535], respectively, into BGRA32 format, our
scheme segments the coordinate space into 64 x 64 blocks.

The blue channel (ib) encodes the id of an 64 x 64 block:

ib = int(
x

64
)+ int(

y
64

) ·32

The red channel (ir) oscillates along the x axis within each block.
The mode of oscillation—ascending or descending—is determined
by the even or odd nature of ib, ensuring a continuous and, therefore

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

6 of 10 A. Mühlenbrock, R. Weller & G. Zachmann / BlendPCR

interpolation-invariant encoding of the coordinates cx and cy:

ir =

{
(cx ·4) mod 256 if ib ≡ 0 mod 2
(255− cx ·4) mod 256 if ib ≡ 1 mod 2

Multiplying by 4 allows for a 2.5 mm sub-pixel precision of the
UV coordinates during interpolation and can be adapted for higher
precision. Similarly, the green channel (ig) modulates based on cy,
with the direction of modulation controlled by the parity of ib di-
vided by 32, reflecting its y-axis block positioning:

ig =

{
(cy ·4) mod 256 if ib

32 ≡ 0 mod 2
(255− cy ·4) mod 256 if ib

32 ≡ 1 mod 2

Due to the structured nature of this encoding, every 64 units
along the cy-axis correspond to a jump of 32 in the block ID (ib), the
only vulnerable point for errors due to interpolation in this encod-
ing scheme. However, this kind of error in the interpolated block
ID can be rectified quite easily because the constructed block id ib
remains constant over a larger area of the image: For each pixel,
the block ID is corrected based on the most frequent block IDs
observed in the few pixels directly above and below, effectively
eliminating aberrant interpolations.

When the block ID exceeds 255, we simply store its upper bits in
the alpha channel ia. By first decoding the blue and alpha channels
together and then correcting the errors along the y-axis, aberrant
interpolations are also eliminated here.

4. Evaluation

In the subsequent sections, we evaluate the visual rendering qual-
ity and compare it both with traditional techniques suitable for VR
applications, as well as further state-of-the-art techniques, as de-
tailed in Section 4.1. Furthermore, we assess performance metrics
in Section 4.2.

4.1. Visual Comparison

In the subsequent sections, we evaluate our method’s visual quality,
specifically its ability to smooth overlapping regions between mul-
tiple cameras. To benchmark the visual quality against other stud-
ies, we utilize the CWIPC-SXR dataset for evaluation [RAJ∗21].‡

This dataset consists of 45 unique dynamic sequences of peo-
ple in typical Social XR use cases, recorded simultaneously with
seven co-registered Microsoft Azure Kinects. Depth images were
captured at 640× 576, while simultaneous color recordings were
made at a resolution of 2048× 1536, enabling us to test our high-
resolution texture mapping.

We compare traditional rendering techniques currently em-
ployed or potentially suitable for real-time VR applications. Each

‡ Note that other datasets often used for comparison, like THuman 2.0
[YZG∗21], which contains static captured meshes of people in various
poses, and BlendedMVS [YLL∗20], which provides large static scenes as
ground truth for Multi-View Stereo networks (e.g., NeRFs), are only par-
tially suitable as they do not exhibit the typical artifacts that RGB-D cam-
eras generate in multi-camera scenarios.

method is discussed in the context of its application and expected
performance:

• Uniform Splats: Points from point clouds are rendered as uni-
formly sized splats to form a continuous surface. Variations of
these techniques have been successfully applied in various VR
applications, e.g. [GCC∗20], [GJS∗21], and [FMK∗22].

• Separate Meshes: Points are considered as vertices of a grid-like
mesh, from which overly large triangles are removed. This serves
as a foundation for our approach and has also been built upon in
previous work, e.g., [YGE∗21], [RYP∗21], and [FMK∗22].

• TSDF192 : Uses a 3D TSDF with a voxel grid of size 192×
192× 192 ≈ 7 M voxels with a density of 1 voxel per cubic
cm, combined with a Marching Cubes algorithm implemented
in CUDA, upon which volumetric performance capture systems
are often built.

• TSDF512 : Represents the same volume as TSDF192, but with a
voxel grid of size 512×512×512≈ 134 M voxels, resulting in
a density of ≈ 19 voxels per cubic cm.

• BlendPCR : Our method without the high-resolution textures de-
scribed in Section 3.4. Each vertex contains a color value based
on the resolution of the original depth image.

• BlendPCR (HR) : Our advanced method with high-resolution
textures (see Section 3.4), generated from depth images of size
640×576 and color textures of size 2048×1536 per camera.

For the visual comparison with additional state-of-the-art tech-
niques, we utilized the CWIPC-SXR dataset [RAJ∗21] that was
also used by [HGSW24] and selected segments comparable to
those shown there. By doing so, the comparative images in Fig-
ures 1 and 5 are also comparable to the state-of-the-art techniques
showcased in the paper and supplementary material of [HGSW24].
Please refer to these materials for further comparison. Note that due
to the noisy point cloud data, we employ a very simple spatial hole-
filler and a basic erosion filter for object edges. These have also
been applied to our other displayed techniques such as Uniform
Splats, Separate Mesh, and TSDF to achieve a fair comparison.

Our results presented in Figures 1 and 5 demonstrate that our
method effectively generates seamless transitions between the point
clouds of multiple RGB-D sensors and achieves the highest quality
in terms of preserving details, compared to uniform splatting, Sep-
arate Meshes, and the techniques described in [HGSW24], which
suffer from seam flickering artifacts. Additionally, Figure 6 high-
lights the effectiveness of artifact removal by our rendering method
in fully rendered scenes. Particularly, artifacts at the edges of ob-
jects in the Separate Meshes approach were almost completely
eliminated using our simple processing strategy with Weighted
Moving Least Squares (MLS), weighted by the Truncated Edge
Proximity Texture. Compared to the TSDF-based method, it is ev-
ident that our approach preserves details significantly better. Com-
pared to uniform splats, our method does not compromise detail by
using overly large points, nor does it result in a porous surface due
to excessively small points. Furthermore, as illustrated in Figures
1 and 5, as well as in our supplementary material, our BlendPCR
(HR) method achieves a higher level of detail through the use of
higher-resolution color textures. Our encoding scheme facilitates
the straightforward application of these raw textures by the color
camera.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

A. Mühlenbrock, R. Weller & G. Zachmann / BlendPCR 7 of 10

(a) Uniform Splats (b) Separate Meshes (c) TSDF192 (d) TSDF512 (e) BlendPCR (f) BlendPCR (HR)

Figure 5: Comparison of rendering techniques applied to the noisy CWIPC-SXR dataset in the S13 Card Trick scene. This figure demon-
strates that our techniques (e-f) achieves superior detail preservation and effectively eliminates seam flickering artifacts. Additionally, this
figure enables comparison with state-of-the-art methods such as Pointersect [CCR∗23] and P2ENet [HGSW24], which are also depicted
in [HGSW24] and display visible seam flickering artifacts.

(a) Separate Meshes (b) BlendPCR (HR)

Figure 6: Removal of disruptive seam flickering artifacts in com-
plete scenes. The image highlights the significant visibility of seam
flickering when rendering full scenes. Compared to the Separate
Mesh rendering (a) and other techniques, our BlendPCR technique
effectively eliminates such artifacts.

4.2. Runtime

Runtime performance of point cloud rendering is crucial for VR
applications due to high demands on frame rate and resolution. In
addition, there are numerous other tasks, such as decoding point
cloud streams for telepresence applications, rendering the rest of
the scene, and managing application mechanics, which must be
executed alongside rendering. Therefore, we comprehensively test
the performance of our approach in terms of the number of cam-
eras, rendered screen resolution, and the contribution of individual
passes to total execution time. All benchmarks were conducted on
a workstation with an AMD Ryzen 9 3900X, an NVIDIA GeForce
RTX 4090, and 32 GB of RAM, using the complete point clouds
without clipping.

Runtime considerations in our evaluation are distinctly seg-
mented between (a) the integration of point clouds, mainly through
the Point Cloud Passes, and (b) the rendering of point clouds, par-
ticularly through the Screen Passes, as these processes have dif-
ferent frame rate requirements and are typically parallelizable. It
is important to note that within our BlendPCR method, the inte-
gration process (a) encompasses not only the Point Cloud Passes
but also the uploading of point clouds from RAM to VRAM via

(a) Integration (b) Integration (HR) (c) Rendering

Figure 7: Performance analysis of point cloud processing with
varying numbers of RGB-D cameras, demonstrating the feasibility
of real-time rendering. The analysis includes scenarios with high-
resolution color textures (a), without high-resolution color textures
(b), and screen passes that are executed in all cases (c). Dashed
lines indicate the maximum runtime allowed for real-time render-
ing. Since point cloud passes are executed for each new point cloud,
this corresponds to a refresh rate of 30 Hz on an Azure Kinect, as
shown by the red dashed line. For rendering, we have set 120 FPS
as the minimum required frame rate considered real-time, as it is
deemed an optimal frame rate for VR applications, indicated by
the yellow dashed line. Note that the increased overhead in sce-
nario (b) arises solely from uploading up to seven color textures,
each 2048x1536, via glTexSubImage2D. Screen rendering was
performed at a resolution of 3580x2066.

glTexSubImage2D. This step is time-intensive, especially when
dealing with high-resolution color images from the cameras.

We evaluate runtime performance relative to the number of cam-
eras used, as illustrated in Figure 7. The results indicate that even
with seven cameras, real-time capability is maintained, with the
processing of all seven point clouds from a single frame taking only
13.8 ms without high-resolution (HR) textures, and only 29.2 ms
with HR textures on average. Rendering for seven RGB-D cameras

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

8 of 10 A. Mühlenbrock, R. Weller & G. Zachmann / BlendPCR

(a) Processing (b) Rendering

Figure 8: Performance analysis across various resolutions reveals
that screen resolution does not impact point cloud passes but, as
expected, affects screen passes. Notably, even at high resolutions,
such as 3580x2066, less than 4 ms is required for screen passes.

Figure 9: Comparison of runtime for individual tasks or passes
with seven RGB-D cameras and a screen resolution of 3580 x 2066
is depicted. We observed that uploading point cloud data to GPU
consumes the most performance. During the processing of the point
clouds, the Edge Proximity, MLS, and Normal Passes require sub-
stantially more performance than the Rejection and Quality Es-
timation Passes. For the sake of completeness, we also show the
performance of the Hole Filling (H.F.) and Erosion (Eros.) filters,
which were used upstream of all rendering techniques in the visual
comparison and were not a dedicated part of BlendPCR.

at a resolution of 3580 x 2066 is consistently achievable in 3.2 ms
on average, rendering our method suitable for VR applications. Fig-
ure 8 illustrates that, as expected, the performance of the Point
Cloud Passes is independently of screen resolution. Additionally,
the runtime of the Screen Passes (rendering) per frame decreases
significantly with a reduction in resolution. Furthermore, Figure 9
details the runtime of individual passes, as depicted in Figure 2.

4.3. Discussion and Limitations

Our BlendPCR method for rendering point clouds, as demonstrated
in the previous section, is highly efficient. Conceptually, it should
be feasible to distribute the processing of structured point clouds
and the individual rendering passes across multiple GPUs or dis-
tributed systems to support more than seven cameras in real-time.

In terms of GPU memory requirements, our BlendPCR method
can be executed on modern consumer hardware, even when han-
dling multiple cameras. For processing structured point clouds, in-
cluding pre-processing with hole-filling and erosion filters, we gen-

erate 8 textures requiring a total of 70 bytes per pixel in uncom-
pressed memory. Each separate rendering pass per camera uses a
framebuffer with 32 bytes per pixel at screen space resolution. For a
depth resolution of 640 x 576, we allocate 24.6 MiB of GPU mem-
ory per camera, and for the separate rendering passes at a screen
resolution of 3580 x 2066, we allocate an additional 225.7 MiB of
GPU memory per camera. Additionally, there is a constant memory
requirement for components like the default framebuffer, the Major
Camera, and Camera Weights textures. However, the latter textures,
due to their lower resolution and minimal memory need (9 bytes per
pixel), consume approximately 4 MiB. Note that our current imple-
mentation has significant potential for further optimization through
clever reuse of buffers.

Typical noise and minor errors in calibrating and registering
depth sensors can cause slight color blurring at the boundaries
where point clouds blend. However, our method minimizes this
issue by reducing the blend areas and selecting a major camera
for each fragment, as detailed in Section 3.3.2. While methods
that reconstruct separate meshes are prone to producing small vis-
ible holes due to invalid pixels in depth images—as all triangles
containing an invalid vertex are discarded—we mitigate this issue
with an initial hole-filling filter. Note that when point cloud passes
(e.g., at 30 Hz) and screen passes (e.g., at 120 Hz) are computed
concurrently on a single GPU, distributing the point cloud passes
over multiple frames and scheduling them in between screen passes
might be crucial to avoid micro-stutters.

5. Conclusion

We have developed an efficient method for rendering continuous
surfaces of dynamic point clouds in multi-camera scenarios. Our
method effectively solves the issue of seam flickering artifacts sim-
ilar to z-fighting, while preserving very high levels of detail of the
original point cloud. Our method is particularly well-suited for VR
applications that demand low latency rendering and high frame
rates. On average, it requires only 3.2 ms for the screen passes at
a resolution of 3580 x 2066, while simultaneously blending point
clouds from seven RGB-D cameras. In addition, our method is
fairly easy to implement in shaders, which can be seen in the source
code we provide at www.github.com/muehlenb/BlendPCR.

Future research could investigate the selective uploading of only
essential parts of high-resolution textures, which significantly im-
pact performance during processing. Furthermore, integrating our
blending approach with other rendering techniques, such as Neural
Radiance Fields (NeRFs) or Gaussian Splatting, could be explored
to similarly prevent seam flickering. Moreover, developing algo-
rithms for completing point clouds suitable for use with BlendPCR
to address gaps caused by self-shadowing could advance the field
of multi-camera point cloud setups significantly. Finally, a subjec-
tive comparative study could be conducted to compare BlendPCR
with other state-of-the-art rendering techniques, particularly in VR,
and the development of standardized benchmarks using objective
metrics should also be pursued.

6. Acknowledgements

This work was partially supported by BMBF grant 16SV9239.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://github.com/muehlenb/BlendPCR

A. Mühlenbrock, R. Weller & G. Zachmann / BlendPCR 9 of 10

References

[APS∗14] ARIKAN M., PREINER R., SCHEIBLAUER C., JESCHKE S.,
WIMMER M.: Large-scale point-cloud visualization through localized
textured surface reconstruction. IEEE Transactions on Visualization and
Computer Graphics 20 (2014), 1280–1292. 2

[ASK∗20] ALIEV K.-A., SEVASTOPOLSKY A., KOLOS M., ULYANOV
D., LEMPITSKY V.: Neural point-based graphics. In Computer Vision –
ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part XXII (Berlin, Heidelberg, 2020), Springer-
Verlag, p. 696–712. doi:10.1007/978-3-030-58542-6_42. 1,
3

[BK03] BOTSCH M., KOBBELT L.: High-quality point-based render-
ing on modern gpus. In 11th Pacific Conference onComputer Graph-
ics and Applications, 2003. Proceedings. (2003), pp. 335–343. doi:
10.1109/PCCGA.2003.1238275. 2

[CCR∗23] CHANG J.-H. R., CHEN W.-Y., RANJAN A., YI K. M.,
TUZEL O.: Pointersect: Neural rendering with cloud-ray intersection.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2023). 1, 2, 3, 7

[CL96] CURLESS B., LEVOY M.: A volumetric method for building
complex models from range images. In Proceedings of the 23rd Annual
Conference on Computer Graphics and Interactive Techniques (New
York, NY, USA, 1996), SIGGRAPH ’96, Association for Computing
Machinery, p. 303–312. doi:10.1145/237170.237269. 2

[CTCG19] COMINO TRINIDAD M., CALAF A. C., GRAN C. A.: View-
dependent Hierarchical Rendering of Massive Point Clouds through Tex-
tured Splats. In Spanish Computer Graphics Conference (CEIG) (2019),
Casas D., Jarabo A., (Eds.), The Eurographics Association. doi:
10.2312/ceig.20191203. 2

[DDF∗17] DOU M., DAVIDSON P., FANELLO S. R., KHAMIS S., KOW-
DLE A., RHEMANN C., TANKOVICH V., IZADI S.: Motion2fusion:
real-time volumetric performance capture. ACM Trans. Graph. 36, 6
(nov 2017). doi:10.1145/3130800.3130801. 1, 2

[DKD∗16] DOU M., KHAMIS S., DEGTYAREV Y., DAVIDSON P.,
FANELLO S. R., KOWDLE A., ESCOLANO S. O., RHEMANN C., KIM
D., TAYLOR J., KOHLI P., TANKOVICH V., IZADI S.: Fusion4d: real-
time performance capture of challenging scenes. ACM Trans. Graph. 35,
4 (jul 2016). doi:10.1145/2897824.2925969. 1, 2

[DZL∗20] DAI P., ZHANG Y., LI Z., LIU S., ZENG B.: Neural point
cloud rendering via multi-plane projection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2020), pp. 7830–7839. 1, 3

[FMK∗22] FISCHER R., MÜHLENBROCK A., KULAPICHITR F., US-
LAR V. N., WEYHE D., ZACHMANN G.: Evaluation of point cloud
streaming and rendering for vr-based telepresence in the or. In Vir-
tual Reality and Mixed Reality: 19th EuroXR International Conference,
EuroXR 2022, Stuttgart, Germany, September 14–16, 2022, Proceed-
ings (Berlin, Heidelberg, 2022), Springer-Verlag, p. 89–110. doi:
10.1007/978-3-031-16234-3_6. 1, 6

[GCC∗20] GAMELIN G., CHELLALI A., CHEIKH S., RICCA A., DU-
MAS C., OTMANE S.: Point-cloud avatars to improve spatial com-
munication in immersive collaborative virtual environments. Personal
Ubiquitous Comput. 25, 3 (jul 2020), 467–484. URL: https://
doi.org/10.1007/s00779-020-01431-1, doi:10.1007/
s00779-020-01431-1. 1, 6

[GJS∗21] GASQUES D., JOHNSON J. G., SHARKEY T., FENG Y.,
WANG R., XU Z. R., ZAVALA E., ZHANG Y., XIE W., ZHANG X.,
DAVIS K., YIP M., WEIBEL N.: Artemis: A collaborative mixed-reality
system for immersive surgical telementoring. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems (New
York, NY, USA, 2021), CHI ’21, Association for Computing Machinery.
doi:10.1145/3411764.3445576. 1, 6

[HGSW24] HU Y., GONG R., SUN Q., WANG Y.: Low latency point
cloud rendering with learned splatting. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR) Work-
shops (June 2024), pp. 5752–5761. 1, 2, 3, 6, 7

[HXLJ23] HU T., XU X., LIU S., JIA J.: Point2pix: Photo-realistic
point cloud rendering via neural radiance fields. In 2023 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) (Los
Alamitos, CA, USA, jun 2023), IEEE Computer Society, pp. 8349–8358.
doi:10.1109/CVPR52729.2023.00807. 1, 3

[IZN∗16] INNMANN M., ZOLLHÖFER M., NIESSNER M., THEOBALT
C., STAMMINGER M.: Volumedeform: Real-time volumetric non-rigid
reconstruction. In Computer Vision – ECCV 2016 (Cham, 2016), Leibe
B., Matas J., Sebe N., Welling M., (Eds.), Springer International Publish-
ing, pp. 362–379. 2

[KKLD23] KERBL B., KOPANAS G., LEIMKUEHLER T., DRETTAKIS
G.: 3d gaussian splatting for real-time radiance field rendering. ACM
Trans. Graph. 42, 4 (jul 2023). doi:10.1145/3592433. 2

[MST∗20] MILDENHALL B., SRINIVASAN P. P., TANCIK M., BARRON
J. T., RAMAMOORTHI R., NG R.: Nerf: Representing scenes as neural
radiance fields for view synthesis. In ECCV (2020). 3

[NFS15] NEWCOMBE R. A., FOX D., SEITZ S. M.: Dynamicfusion:
Reconstruction and tracking of non-rigid scenes in real-time. In 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2015), pp. 343–352. doi:10.1109/CVPR.2015.7298631. 2

[NIH∗11] NEWCOMBE R. A., IZADI S., HILLIGES O., MOLYNEAUX
D., KIM D., DAVISON A. J., KOHI P., SHOTTON J., HODGES S.,
FITZGIBBON A.: Kinectfusion: Real-time dense surface mapping and
tracking. In 2011 10th IEEE International Symposium on Mixed and
Augmented Reality (2011), pp. 127–136. doi:10.1109/ISMAR.
2011.6092378. 2

[PJW12] PREINER R., JESCHKE S., WIMMER M.: Auto splats: Dy-
namic point cloud visualization on the gpu. In Proceedings of Eu-
rographics Symposium on Parallel Graphics and Visualization (May
2012), Childs H., Kuhlen T., (Eds.), Eurographics Association 2012,
pp. 139–148. 2

[RAJ∗21] REIMAT I., ALEXIOU E., JANSEN J., VIOLA I., SUBRA-
MANYAM S., CESAR P.: Cwipc-sxr: Point cloud dynamic human
dataset for social xr. In Proceedings of the 12th ACM Multimedia Sys-
tems Conference (New York, NY, USA, 2021), MMSys ’21, Associa-
tion for Computing Machinery, p. 300–306. URL: https://doi.
org/10.1145/3458305.3478452, doi:10.1145/3458305.
3478452. 6

[RC11] RUSU R. B., COUSINS S.: 3D is here: Point Cloud Library
(PCL). In IEEE International Conference on Robotics and Automation
(ICRA) (Shanghai, China, May 9-13 2011), IEEE. 2

[RYP∗21] ROTH D., YU K., PANKRATZ F., GORBACHEV G., KELLER
A., LAZAROVICI M., WILHELM D., WEIDERT S., NAVAB N., ECK
U.: Real-time mixed reality teleconsultation for intensive care units
in pandemic situations. In 2021 IEEE Conference on Virtual Reality
and 3D User Interfaces Abstracts and Workshops (VRW) (Los Alami-
tos, CA, USA, apr 2021), IEEE Computer Society, pp. 693–694. doi:
10.1109/VRW52623.2021.00229. 1, 6

[SKW21] SCHÜTZ M., KERBL B., WIMMER M.: Rendering point
clouds with compute shaders and vertex order optimization. Computer
Graphics Forum 40, 4 (2021), 115–126. doi:10.1111/cgf.14345.
2

[SKW22] SCHÜTZ M., KERBL B., WIMMER M.: Software rasterization
of 2 billion points in real time. Proc. ACM Comput. Graph. Interact.
Tech. 5, 3 (jul 2022). doi:10.1145/3543863. 2

[SSLK13] SIBBING D., SATTLER T., LEIBE B., KOBBELT L.: Sift-
realistic rendering. In 2013 International Conference on 3D Vision -
3DV 2013 (2013), pp. 56–63. doi:10.1109/3DV.2013.16. 2

[SSP07] SUMNER R. W., SCHMID J., PAULY M.: Embedded deforma-
tion for shape manipulation. ACM Trans. Graph. 26, 3 (jul 2007), 80–es.
doi:10.1145/1276377.1276478. 2

[WS06] WIMMER M., SCHEIBLAUER C.: Instant Points: Fast Rendering

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://doi.org/10.1007/978-3-030-58542-6_42
https://doi.org/10.1109/PCCGA.2003.1238275
https://doi.org/10.1109/PCCGA.2003.1238275
https://doi.org/10.1145/237170.237269
https://doi.org/10.2312/ceig.20191203
https://doi.org/10.2312/ceig.20191203
https://doi.org/10.1145/3130800.3130801
https://doi.org/10.1145/2897824.2925969
https://doi.org/10.1007/978-3-031-16234-3_6
https://doi.org/10.1007/978-3-031-16234-3_6
https://doi.org/10.1007/s00779-020-01431-1
https://doi.org/10.1007/s00779-020-01431-1
https://doi.org/10.1007/s00779-020-01431-1
https://doi.org/10.1007/s00779-020-01431-1
https://doi.org/10.1145/3411764.3445576
https://doi.org/10.1109/CVPR52729.2023.00807
https://doi.org/10.1145/3592433
https://doi.org/10.1109/CVPR.2015.7298631
https://doi.org/10.1109/ISMAR.2011.6092378
https://doi.org/10.1109/ISMAR.2011.6092378
https://doi.org/10.1145/3458305.3478452
https://doi.org/10.1145/3458305.3478452
https://doi.org/10.1145/3458305.3478452
https://doi.org/10.1145/3458305.3478452
https://doi.org/10.1109/VRW52623.2021.00229
https://doi.org/10.1109/VRW52623.2021.00229
https://doi.org/10.1111/cgf.14345
https://doi.org/10.1145/3543863
https://doi.org/10.1109/3DV.2013.16
https://doi.org/10.1145/1276377.1276478

10 of 10 A. Mühlenbrock, R. Weller & G. Zachmann / BlendPCR

of Unprocessed Point Clouds. In Symposium on Point-Based Graphics
(2006), Botsch M., Chen B., Pauly M., Zwicker M., (Eds.), The Euro-
graphics Association. doi:/10.2312/SPBG/SPBG06/129-136.
2

[XXP∗22] XU Q., XU Z., PHILIP J., BI S., SHU Z., SUNKAVALLI K.,
NEUMANN U.: Point-nerf: Point-based neural radiance fields. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (2022), pp. 5438–5448. 1, 3

[YGE∗21] YU K., GORBACHEV G., ECK U., PANKRATZ F., NAVAB
N., ROTH D.: Avatars for teleconsultation: Effects of avatar embodi-
ment techniques on user perception in 3d asymmetric telepresence. IEEE
Transactions on Visualization and Computer Graphics 27, 11 (2021),
4129–4139. doi:10.1109/TVCG.2021.3106480. 1, 6

[YLL∗20] YAO Y., LUO Z., LI S., ZHANG J., REN Y., ZHOU L., FANG
T., QUAN L.: Blendedmvs: A large-scale dataset for generalized multi-
view stereo networks. Computer Vision and Pattern Recognition (CVPR)
(2020). 6

[YZG∗21] YU T., ZHENG Z., GUO K., LIU P., DAI Q., LIU Y.: Func-
tion4d: Real-time human volumetric capture from very sparse consumer
rgbd sensors. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR2021) (June 2021). 1, 2, 6

[ZPK18] ZHOU Q.-Y., PARK J., KOLTUN V.: Open3D: A modern library
for 3D data processing. arXiv:1801.09847 (2018). 2

[ZPvBG01] ZWICKER M., PFISTER H., VAN BAAR J., GROSS M.: Sur-
face splatting. In Proceedings of the 28th Annual Conference on Com-
puter Graphics and Interactive Techniques (New York, NY, USA, 2001),
SIGGRAPH ’01, Association for Computing Machinery, p. 371–378.
doi:10.1145/383259.383300. 2

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://doi.org//10.2312/SPBG/SPBG06/129-136
https://doi.org/10.1109/TVCG.2021.3106480
https://doi.org/10.1145/383259.383300

