
AstroGen – Procedural Generation of Highly Detailed Asteroid Models

Xi-zhi Li, René Weller, Gabriel Zachmann

Abstract— We present a novel algorithm, called AstroGen, to
procedurally generate highly detailed and realistic 3D meshes of
small celestial bodies automatically. AstroGen gains it’s realism
from learning surface details from real world asteroid data.
We use a sphere packing-based metaball approach to represent
the rough shape and a set of noise functions for the surface
details. The main idea is to apply an optimization algorithm to
adopt these representations to available highly detailed asteroid
models with respect to a similarity measure. Our results show
that our approach is able to generate a wide variety of different
celestial bodies with very complex surface structures like caves
and craters.

I. INTRODUCTION

The study of small celestial bodies in the solar system
(e.g. asteroids, comets) has become an area of great interest
for astronomy science in the past decades. For instance,
Galileo and Cassini are successful missions to investigate
small celestial bodies and collected abundant interesting data
about several asteroids. More recently, JAXA’s Hayabusa2
spacecraft will, after studying Ryugu in depth from orbit
for about a year, drop three rovers and a lander onto the
asteroid’s surface this month and hopefully, some samples
will be sent back.

Such long distance missions are challenging for several
reasons: first, the communication takes a very long time.
Hence, it is not possible to immediately react on complica-
tions during e.g. the landing phase by the mission control
on earth. Consequently, spacecrafts operating in such envi-
ronments are usually equipped with some sort of autonomy.
Second, the terrain of the asteroids is usually unknown in
advance during the planning phase of the mission. The most
economic and common way to observe asteroids from earth
is to obtain data radar or lightcurve inversion. However,
these methods do not deliver surface details. Nevertheless,
the landing spacecrafts and rovers has to be designed with
such very limited information.

Usually, space missions are planned with support of virtual
testbeds (VTBs) before building physical mock-ups (See
Fig. 1). These testbeds consist of physically-based simulation
of terrain that provide a real-time, immersive and 3D inter-
action environments which give engineers the opportunity
to interact with the simulated spacecraft or rover to gain
comprehensive understanding of possible design flaws during
the early design process as well as later mission stages like

This work was not supported by any organization
X.Z. Li, University of Bremen, Germany

lixizhi@uni-bremen.de
R. Weller, University of Bremen, Germany

weller@cs.uni-bremen.de
G. Zachmann, University of Bremen, Germany

zach@cs.uni-bremen.de

training and supervision [1]. In order to simulate a large
amount of possible scenarios to be prepared for a lot of
circumstances, it is essential to have a large number of highly
detailed and realistic 3D asteroid models available in such
a virtual testbed. In the case that autonomous algorithms on
board of the spacecraft support the landing operation or the
energy-efficient navigation of a rover on the terrain, there
is even more need for such 3D models because these AI
algorithms usually have to be trained with a large amount of
such data.

The generation of such models has two major challenges:
the lack of ground truth data and the missing of appropriate
methods to synthesize realistic models of irregular shaped
small bodies. Actually, the only available highly detailed
asteroid model is that of Itokawa1. Moreover, traditional
terrain generation algorithms are almost all optimized for
spheroidal planetary models where a simple heightmap can
be used. This is not directly applicable to irregular celestial
objects such as asteroids especially if terrain details such as
caves have to be considered.

We present, to our knowledge, the first algorithm that
is able to compute realistic highly detailed 3D models of
irregular celestial bodies fully automatically. The main idea
is to combine different implicit object representations with
an optimization algorithm to adapt their implicit parameters
to real world models. These parameters can be varied or
applied to completely different basic shapes while remaining
the overall surface texture.

More precisely, we use a two-tier approach: For a given
ground truth asteroid shape, we first approximate the basic
asteroid shape by a polydisperse sphere packing. A first
optimization step adapts parameters of a metaball approach.
In a second optimization step, we learn the surface details
by optimizing the parameters of several noise functions that
are well chosen to represent typical surface structures of
celestial bodies such as craters and caves. This makes it
easy to transfer the surface details to other basic shapes.
During the training phase, we allow small intervals of all
parameters with respect to the distance function. This enables
us to further vary the surface details but also the underlying
metaball shape.

Our algorithm, called AstroGen supports:

• Full automatic generation of almost endless variations
for a given ground truth asteroid model within a pre-
defined error bound. However, the parameters of the

1The data from the Rosetta mission was published simultaneously to this
submission. Hence, we could not include this in our algorithm. However,
our algorithms would obviously also work with this model.

2018 15th International Conference on
Control, Automation, Robotics and Vision (ICARCV)
Singapore, November 18-21, 2018

978-1-5386-9582-1/18/$31.00 ©2018 IEEE 1771

Fig. 1. Simulated rover cruise on the virtual testbed of unknown asteroid
stein [2].

synthetization algorithm are easy to understand which
makes it easy to manually adjust the generated models.

• High performance due to an almost full GPU imple-
mentation of all time consuming parts of the algorithm.

• Arbitrary Resolutions: due to the implicit representation
it is easy to generate polygonal models at any resolution
with the marching cube algorithm.

In a use case scenario we have applied AstroGen to the
currently only available high resolution asteroid model of
Itokawa and generated several variations of it. Moreover, we
applied the surface details to low-poly models of Stein [2],
Ceres [3] and Lutetia [4].

II. RELATED WORK

There are four main approaches to generate terrain fea-
tures: procedural, physics-based, sketch-based and example-
based [5]. Physics-based methods generate terrain features
geologically correct, but often computationally expensive
and lack of scalability in simulation different natural phe-
nomenons. Sketch-based methods require heavy manual in-
tervention while example-based methods are limited by the
input data and restricted to two-dimensional terrain fea-
tures [5]. In contrast, procedural methods are fast and easy
to generate arbitrary resolution of realistic terrain in the
virtual world, see [6], [7] for a broader overview. Often, such
methods rely on some kind of noise function. Perlin noise is
known as efficient and its inherent self-similarity, consistency
properties are suitable for terrain generation [8]. Enhanced
version, like simplex noise [9] reduce some artifacts or
generate particular terrain features, such as ridges or rolling
hills [10]. The Commercial software Terragen [11] and e.g.
a bunch of researcher papers [12], [5], [13] created diverse
and realistic terrain based on noise method. Togelius [12]
introduced evolutionary algorithm with noise method to
generate terrain map and balanced on several objectives,
such as playability and realistic of terrain. [5] focused on
Hydrology terrain simulation by using fractal interpolation
to connect predefined physical-based terrain features such as
river networks, mountain ridges and valleys. [13] proposed
a method based on real elevation statistics and utilize value

noise – a variant of perlin noise – to generate geotypical
terrain. Recently, compact mathematical definition [14] and
sparse procedural [15] method are proposed which effi-
ciently combine different terrain primitives and give user
more intuitive control about the scene. However, noise-based
methods usually tend to create terrain that is uniform at fixed
amplitude and frequency values, and often require massive
post-process to generate interesting features and choosing
the correct parameters for this post-processing is often un-
intuitive. Moreover, none of these algorithms supports the
generation (or variation) of irregular celestial bodies.

III. OUR APPROACH

The goal of our algorithm is to generate a wide variety of
different asteroid models considering the underlying basic
irregular shape as well as the surface details. We want to
achieve high realism and detailed high polygon models. In
order to guarantee realism, AstroGen relies on the usage
of real world data, namely surface details from previous
space missions, like that of Itokawa and data from earth
observation that delivers the rough shape and can be found
in extensive asteroid databases [16]. Due to the flexibility of
our algorithm, it is easy to also include more data (like that
from the Rosetta mission that was just released or from the
Hayabusa2 mission).

The two different kinds of data already suggest a two-tier
approach. Consequently, AstroGen consists mainly of two
stages:

1) We use an implicit shape approach to represent the
underlying rough shape. The advantage is that it easily
allows to make small variations in the rough shape and
additionally, we can generate high-poly meshes from
it.

2) The surface details are represented by different noise
functions. Again, this enables us to generate poly
meshes in arbitrary resolution.

In order to adapt our asteroids to the real world data men-
tioned above, we use an optimization algorithm to optimize
the parameters of our rough shape as well as the surface
details. However, we allow small variations in the parameter
range to generate an almost infinite number of variations.
Finally, we present a method to generate a polygonal mesh
from our implicit asteroid representation based on marching
cubes.

All these steps can be performed entirely massively par-
allel on the GPU what guarantees a high performance.
However, the optimization steps are required only once per
ground truth data. For the generation of a wide variety of
asteroid models it is sufficient to simply vary the parameters
and generate a mesh using the final step in our algorithm.
Fig. 2 shows an overview on the complete process. In the
following, we will present the details of the individual steps
of our automatic pipeline.

A. Implicit Shape Representation

Generally, there are two main types of method to represent
a free-form surface: parametric surfaces and implicit sur-

1772

Fig. 2. The pipeline of two parts simulation.The dark box means the
program running on the GPU while the white box on the CPU side.

faces. In the first case, Hermite-spline, B-spline and NURBS
are most commonly used. For the latter, metaballs, skeleton
and convolution surfaces are the most popular methods.
Implicit surface modeling produce smooth and aesthetic
shapes that can be seamlessly modified while keeping a
consistent structure. In addition, their function definition is
compact and require quite simple primitives such as sphere or
ellipsoid to construct a model which is suitable for real-time
simulation. Finally, it is possible to adapt this representation
to existing polygonal shapes, like the low-poly models from
the asteroid database. These are the main reasons, we decided
to use an implicit surface representation for the basic shape
of our celestial bodies.

In principal, implicit surfaces define a ℜ2 2-D manifold,
a surface S embedded in the three-dimensional space ℜ3:

S = {(x,y,z)|F(x,y,z) = T} (1)

For a skeleton implicit surface, we usually have given a set
of distinct n constraint points c1, ...,cn, and a set of potential
functions F(ci) for each point. These define a smooth surface
M with:

M = {(c)|F(ci) =
n

∑
i

ωiF(ci))+ t} (2)

The challenge is to select an appropriate set of points and
potential function.

Polydisperse Sphere packing

Our idea is based on the approach by Wyvill and
Brian [17] that extends the metaballs algorithm [18] by using
a so-called BlobTree to represent the skeleton. However, with

Fig. 3. The sphere packing representation of asteroid Itokawa by Proto-
sphere [19].

this method, the points are located on the medial axis of
the object. This makes it complicated to add e.g. additional
hills or to remove parts to form valleys. Hence, we decided
to modify this idea by adopting a sphere packing-based
approach. Originally invented for collision detection, the
Protosphere [19] algorithm delivers a polydisperse sphere
packing of arbitrary 3D objects. This is ideal for metaball-
based modeling systems and for our application in particular
because the greedy choice of the algorithm automatically
leads to a level-of-detail representation for the model, i.e. it
offers an easy trade between speed and accuracy. Moreover,
it is easy to simply add or remove individual spheres to create
a small variety of the basic shape. Finally, the algorithm is
fast and works completely on the GPU. These spheres define
our constraint points in Equation 2. Fig. 3 shows a sphere
packing of Itokawa generated by Protosphere.

Blending

After defining the constraint points, we have to define the
potential functions in Equation 2. Remember, that the surface
details are added in the second step, hence, we first want to
create a smooth surface. To do that, we slightly modified
Blinn’s [18] original potential function to fit our constraint
points:

f (ri) =

{
ea−br2

i i f ri ∈ [0,5R]
0, otherwise

(3)

with
• a and b are the tension factors that control the smooth-

ness in the overlapping areas and the softness of each
metaball

• and ri is the radius of each spheres and R = max{ri}
Summarizing, we get the complete potential function of P
in 3D space as:

f (r) =
n

∑
i=1

f (ri(P,Ci)) (4)

While implicit surface deformation is represented by mul-
tiple metaballs, bulge, crease and tearing frequently appear
in overlapping areas. In order to eliminate multiple metaball
influences on an overlapping area we additionally added
some blending function according to [17]:

f (A ·B) = (f m(A)+ f m(B))
1
m (5)

1773

Fig. 4. The implicit metaball shape of Itokawa (892k vertices).

with
• f (A) and f (B) represent two metaball’s potential func-

tions
• and m controls the influence of the overlap in the

distance field; With m= 1 we get the traditional overlap-
ping method. In case of high convexity we can modestly
change this parameter.

Fig. 4 shows the metaball surface of Itokawa.

B. Noise Based Surface Features

In order to generate a realistic surface features, we apply
several noise functions to the underlying metaball model
described above. In the following, we will describe the
different layers of noise we used.

Perlin Noise

Perlin noise is a type of noise that is often used to
generate terrain because it fulfills Tobler’s First Law of
Geography [20]. Basically, Perlin noise is a lattice-based
gradient noise (see Equation 6). However, simple Perlin noise
often leads to repetitive patterns. Hence, we use different
combination of Perlin noise to created more complex terrains.
The complexity of the generated terrain can be controlled
by several parameters. The most important is the number
of octaves. For a given frequency and amplitude we can
generate an octave by doubling the frequency and halving the
amplitude or vice versa. For instance, progressively adding
lower frequencies (with higher amplitudes) generates larger
terrain structures, such as large mountains and trenches [21].
Accumulation of eight octaves is called Fractional Brown-
ian Motion (FBM). In our implementation, we used FBM.
Moreover, we use simplex noise, a derivative of Perlin noise
that uses a simplex instead of a quadrangular lattice. This
improves the performance significantly. Additionally, the
combination allows us to enhance the control of the gen-
erated details. Fig. 5 shows the surface created by different
combinations of Perlin noise.

perlin(x) =
∞

∑
i=0

pini(2ix), x ∈ [0,1], p ∈ [0,1] (6)

with
• p defines the scaling factor of the amplitude on succes-

sive octaves,
• 2i controls the scaling along the x for the octaves

Fig. 5. The rough shape of the asteroid Itokawa with surface details
generated by Perlin noise.

Fig. 6. The cave occurs through warping the coordinate.

• and the function ni() is a function that generates random
values

Caves

Using too many octaves of Perlin and simplex noise results
in isotropic details that can give the terrain an artificial
look. A usual way to overcome this problem is to modulate
the original shape (in our application, the rough shape
generated by the metaballs) with another noise function.
This technique, called warping is very common in computer
graphics for generating procedural textures or geometry.
Using medium frequencies and mild amplitudes results in
surreal ropey organic-looking terrains. Lower frequencies
and higher amplitudes increase the occurrence of caves,
tunnels, and arches [21]. Fig. 6 shows the Itokawa model
with warped coordinates.

Craters

Craters are one of the most prominent visual terrain ele-
ments of celestial bodies without atmosphere. Unfortunately,
Perlin noise is not able to generate structures that look like
craters, or at least, it is not known how to set the parameters
until now. Consequently, we use another type of noise to
support this sort of terrain.

In contrast to Perlin noise, Worley noise [22] is not
gradient-based, but value-based. The basic idea of Worley
noise is to grow points until another growing point is hit [23].
This leads exactly to terrains that look like craters. We
adopted a simplified GPU-based version similar to [24].
Fig. 7 shows the result when applying Worley noise only
(without adding additionally Perlin noise).

1774

Fig. 7. The rough shape of Itokawa with pure Worley noise and craters
appear.

C. Optimizing Noise Parameters

For simulations in VTBs or the training of autonomous
algorithms to steer landing spacecrafts it is essential that the
generated asteroids are as realistic as possible. Hence, we do
not choose the parameters of our generation methods arbi-
trary. Manually, selecting the parameters is also not an option
because they often behave unexpectedly. Consequently, we
add an initial optimization step to adapt the parameters
automatically.

Optimization Algorithm

Given some ground truth data, e.g. the detailed model
of Itokawa and asteroid databases that provide polygonized
rough shapes of asteroids, we can use any optimization
algorithm for the parameter adaption provided a good fitness
function is available. For several reasons, we decided to
apply particle swarm optimization (PSO) [25]. PSO is a
stochastic convergence analysis algorithm containing pa-
rameter selection and changing. In principle, PSO is a
population-based iterative algorithm and the swarm behavior
guide the particle in the population to search for globally
optimal solutions: The standard PSO algorithm maintains
a population of N particles, and each particle defines a
potential solution in a D-dimensional solution domain. There
exists many factors that influence the convergence property
as well as performance of the standard PSO algorithm. In
our implementation we rely on fixed parameters according
to [26].

The structure of PSO makes it easy to map our param-
eters to the algorithm. Moreover, PSO is fast and stable
with respect to the initial parameter values and it does not
require gradient information. We optimize the implicit shape
representation and the noise-based (Sec. III-A) surface details
(Sec. III-B) individually.

Fitness Function

Choosing a good fitness function to compare the result
generated by PSO to the real-world model is essential for
the success of the optimization. In our implementation we
used a histogram-based shape descriptor presented in [27]. It
was developed with the special scope of considering large-
scale models with local similarities that typically appear in
celestial bodies. Moreover, it is fast and works completely

TABLE I
THE NUMBER OF PARAMETERS OF THE SOLUTION DOMAIN IN THE

SURFACE DETAIL OPTIMIZATION FOR THE INDIVIDUAL NOISE

FUNCTIONS.

Para Perlin Simplex Worley Gradient
Weight 1 1 1 1

Frequency 1 1 1 0
Octave 1 1 1 0

Amplitude 1 1 1 0
Coords w 3 3 3 0
Coords b 3 3 3 0

on the GPU, thus, it fits perfectly in our pipeline. However,
it is easy to include other fitness functions.

Implicit Shape Optimization

In order to optimize the rough shape defined by the sphere-
packing in combination with the metaball approach (Sec. III-
A), we simply use the parameters from its description for
PSO, namely, the number of spheres, the two tension factors
of the potential function (see Equation 3) and the blending
parameter from Equation 5. This defined a 4D parameter
space. Fig. 4 shows the results of this first optimization stage
for Itokawa.

D. Surface Detail Optimization

The surface details are represented by three different
noise functions – Perlin, simplex and Worley noise – and
additionally, the noise modulation of the gradient of the
Perlin and simplex noise. In addition to the individual pa-
rameters (like frequency, amplitude, the number of octaves)
of the particular noises, we add four weight parameters to
control their individual amount. Moreover, we include three
parameters to scale the input grid point’s 3D coordinate axis
and another three parameters to define biases to the axis.
Another important parameter is the gradient; it is based on
the grid point’s shape value and we directly multiply our
fractal noise with its gradient value. What’s more, we have
another three parameters to control the number of perlin
noise, simplex noise and worley noise. In total we have
34 parameters to control the possible pattern of the surface
details (see Table I).

E. Polygonization

VTBs usually require the 3D objects as polygon meshes
instead of implicit representations. However, it is easy to
generate such a polygonal mesh by using marching cubes
to compute an isosurface. In our recent implementation, we
use an hierarchical GPU-based version in order to quickly
at generate any required resolution. Please note, also our
fitness function described above requires a polygonal rep-
resentation to generate an appropriate histogram based on
the vertices [27]. However, we do not generate a complete
high-poly model, but our experiments have shown, that it is
sufficient to content with only a subset of around 10% of
a full two Million vertex model when using Possion disk
sampling [28] .

1775

Fig. 8. We use a hierarchical marching cubes algorithm to polygonize our
implicit object representation. The blue grid divides the object into several
smaller blocks. The marching cubes algorithm is then performed on these
smaller blocks individually.

Fig. 9. The time required by our algorithm to generate 3D models of
Itokawa in several resolutions.

IV. RESULTS AND DISCUSSIONS

We have implemented AstroGen in C++ and CUDA,
including the implicit generation and the optimization algo-
rithm. The computation of the noise values is implemented
using computer shaders and marching cubes algorithm relies
on geometry shaders in OpenGL. We performed our experi-
ments on a machine with Intel Core i7 8-core processor with
8GB of RAM and an Nvidia GTX1080Ti. We have evaluated
the performance as well as the quality in two different test
scenarios. The basis is the optimization of all parameters
for an available high poly-asteroid model of Itokawa. We set
the problem space to D = 34 according to Section III-D. The
population size of PSO was set to N = 20 and we allowed
at most 100 generations.

First, we investigated the performance to generate 3D
objects from our implicit representation with respect to the
polygon count. Fig. 9 shows the mean average computation
time for the specific resolutions. The time increases almost
linear with an increasing number of polygons. Please note,
that our current marching cubes implementation is not yet

(a)

(b)

(c)

(d)

Fig. 10. (a) The original model of the asteroid Itokawa (1,780k vertices).
Generated asteroid models with a similarity of (b) 95% (1,986k vertices),
(c) 90% (2,173k vertices) and (d) 85% (2,335k vertices).

fully optimized. In the future, we hope to improve the per-
formance e.g. by additionally applying an octree to accelerate
the generation time. The training phase took approximatively
8 hours for the implicit shape representation and 100 hours
for the noise-based surface features. Most time was spend
on the generation of the high-resolution model (90%), while
the computation of the fitness function required 10% of the
overall time.

In our first test scenario, we applied our method to
automatically generate similar asteroids with small variations
that are below a δ < 20% with respect to the fitness function.

1776

Fig. 11. The original low-resolution Stein model (10k vertices) and our
automatically generated model with surface details (710k vertices).

Fig. 12. The original low-resolution Ceres model (128k vertices) and our
automatically generated model with surface details (1,063k vertices).

Fig. 10 shows the original model and some of the results2.
Fig. 10(b) exhibits most similarity with the original Itokawa
model, followed by a rapidly decreasing in similarity but two
different terrain patterns in Fig. 10(c) and Fig. 10(d).

In our second scenario, we transferred the parameter set
for the surface details that were trained with the Itokawa
model to other (low-poly) basic shapes from an aster-
oid database that were never explored with a spacecraft.
Fig. 11, 12 and 13 show the results for Stein, Ceres and
Lutetia, respectively.

V. CONCLUSIONS AND FUTURE WORKS

We have presented the first fully automatic method to
generate highly detailed realistic models of small celestial
bodies. The main idea is to combine a two-tier approach of
implicit shape representation and different noise functions
with an optimization algorithm. This enables us to ”learn”
from real world or hand crafted models and automatically
generate an almost infinite number of small (or larger)
variations. Even more, our results have shown that we can
apply the learned parameters also to other, e.g. low-poly,

2For more results please visit https://github.com/XZ-CG/asteroid-result

Fig. 13. The original low-resolution Lutetia model (122k vertices) and our
automatically generated model with surface details (778k vertices).

models to generate a similar surface structure. AstroGen runs
completely massively parallel on the GPU which indicates a
high performance. As the trend in future space exploration
tends to focus on objects in deep space, the importance of
autonomy increases on-board of spacecraft. Hence, AstroGen
could be an important step to enable decision making in
virtual testbed by considering different scenarios and for the
training of autonomous algorithms in space crafts. Moreover,
our sphere based implicit surface be can easily extended to
support a mascons-based model to simulate the gravity of
asteroid more accurately, even within the Brouillon-sphere.

However, AstroGen also offers interesting avenues for
future work. For instance, we want to investigate hetero-
morphic shape reproduction and improve the quality of
the mesh in general. For instance, we want to consider
different basic shapes, instead of spheres, for the implicit
surface reconstruction with metaballs such as cubes, tori or
ellipsoids. This can be further combined with a tree-like
structure similar to BlobTrees [29]. For the surface details,
we want to investigate other noise functions and more param-
eters, but also thermal erosion, hydraulic erosion algorithms
are interesting [30]. This could improve the naturalness of
AstroGen. Finally, we want to improve the mesh generation,
for instance by adopting dual marching cube [31] to enhance
the visual fidelity of the isosurfaces.

REFERENCES

[1] P. Lange, R. Weller, and G. Zachmann, “Multi agent system optimiza-
tion in virtual vehicle testbeds.” in SimuTools, 2015, pp. 79–88.

[2] J. Farnham, “Shape model of asteroid 2867 steins, ro-a-osinac/osiwac-
5-steins-shape-v1.0,” NASA Planetary Data System, 2013.

[3] P. Thomas, J. W. Parker, L. McFadden, C. T. Russell, S. Stern,
M. Sykes, and E. Young, “Differentiation of the asteroid ceres as
revealed by its shape,” Nature, vol. 437, no. 7056, p. 224, 2005.

[4] H. Sierks, P. Lamy, C. Barbieri, D. Koschny, H. Rickman, R. Rodrigo,
M. F. AHearn, F. Angrilli, M. A. Barucci, J.-L. Bertaux et al., “Images
of asteroid 21 lutetia: a remnant planetesimal from the early solar
system,” science, vol. 334, no. 6055, pp. 487–490, 2011.

1777

[5] J.-D. Génevaux, É. Galin, E. Guérin, A. Peytavie, and B. Benes,
“Terrain generation using procedural models based on hydrology,”
ACM Transactions on Graphics (TOG), vol. 32, no. 4, p. 143, 2013.

[6] A. Lagae, S. Lefebvre, R. Cook, T. DeRose, G. Drettakis, D. S. Ebert,
J. P. Lewis, K. Perlin, and M. Zwicker, “A survey of procedural noise
functions,” in Computer Graphics Forum, vol. 29, no. 8. Wiley Online
Library, 2010, pp. 2579–2600.

[7] R. M. Smelik, T. Tutenel, R. Bidarra, and B. Benes, “A survey
on procedural modelling for virtual worlds,” in Computer Graphics
Forum, vol. 33, no. 6. Wiley Online Library, 2014, pp. 31–50.

[8] K. Perlin, “An image synthesizer,” ACM Siggraph Computer Graphics,
vol. 19, no. 3, pp. 287–296, 1985.

[9] ——, “Improving noise,” in ACM Transactions on Graphics (TOG),
vol. 21, no. 3. ACM, 2002, pp. 681–682.

[10] D. Ebert, F. Musgrave, D. Peachey, K. Perlin, S. Worley, W. Mark,
and J. Hart, Texturing and Modeling: A Procedural Approach: Third
Edition. United States: Elsevier Inc., 2003.

[11] H. Zhou, J. Sun, G. Turk, and J. M. Rehg, “Terrain synthesis from
digital elevation models,” IEEE Transactions on Visualization and
Computer Graphics, vol. 13, no. 4, pp. 834–848, July/August 2007.

[12] J. Togelius, M. Preuss, and G. N. Yannakakis, “Towards multiobjective
procedural map generation,” in Proceedings of the 2010 workshop on
procedural content generation in games. ACM, 2010, p. 3.

[13] I. Parberry, “Designer worlds: Procedural generation of infinite ter-
rain from real-world elevation data,” Journal of Computer Graphics
Techniques, vol. 3, no. 1, 2014.

[14] J.-D. Génevaux, E. Galin, A. Peytavie, E. Guérin, C. Briquet, F. Gros-
bellet, and B. Benes, “Terrain modelling from feature primitives,” in
Computer Graphics Forum, vol. 34, no. 6. Wiley Online Library,
2015, pp. 198–210.

[15] E. Guérin, J. Digne, E. Galin, and A. Peytavie, “Sparse representation
of terrains for procedural modeling,” in Computer Graphics Forum,
vol. 35, no. 2. Wiley Online Library, 2016, pp. 177–187.

[16] J. Ďurech, V. Sidorin, and M. Kaasalainen, “Damit:
a database of asteroid models.” Astronomy & As-
trophysics, vol. 513, no. A46, 2010. [Online].
Available: http://www.aanda.org/articles/aa/abs/2010/05/aa12693-
09/aa12693-09.html

[17] B. Wyvill, A. Guy, and E. Galin, “Extending the csg tree. warping,
blending and boolean operations in an implicit surface modeling
system,” in Computer Graphics Forum, vol. 18, no. 2. Wiley Online
Library, 1999, pp. 149–158.

[18] J. F. Blinn, “A generalization of algebraic surface drawing,” ACM
transactions on graphics (TOG), vol. 1, no. 3, pp. 235–256, 1982.

[19] J. Teuber, R. Weller, G. Zachmann, and S. Guthe, “Fast sphere
packings with adaptive grids on the gpu,” In GI AR/VRWorkshop
(Würzburg, Germany, vol. 4, 2013.

[20] H. J. Miller, “Tobler’s first law and spatial analysis,” Annals of the
Association of American Geographers, vol. 94, no. 2, pp. 284–289,
2004.

[21] H. Nguyen, Gpu gems 3. Addison-Wesley Professional, 2007.
[22] S. Worley, “A cellular texture basis function,” in Proceedings of

the 23rd annual conference on Computer graphics and interactive
techniques. ACM, 1996, pp. 291–294.

[23] J. L. Patricio Gonzalez Vivo, “The book of shaders,”
https://thebookofshaders.com/, 2015.

[24] S. Gustavson, “cellular noise in glsl: Implementation notes,” 2011.
[25] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm

theory,” in Micro Machine and Human Science, 1995. MHS’95.,
Proceedings of the Sixth International Symposium on. IEEE, 1995,
pp. 39–43.

[26] N. R. Samal, A. Konar, S. Das, and A. Abraham, “A closed loop stabil-
ity analysis and parameter selection of the particle swarm optimization
dynamics for faster convergence,” in Evolutionary Computation, 2007.
CEC 2007. IEEE Congress on. IEEE, 2007, pp. 1769–1776.

[27] X. Li, P. Lange, R. Weller, and G. Zachmann, “Invariant local shape
descriptors: classification of large-scale shapes with local dissim-
ilarities,” in Proceedings of the Computer Graphics International
Conference. ACM, 2017, p. 9.

[28] M. S. Ebeida, S. A. Mitchell, A. A. Davidson, A. Patney, P. M. Knupp,
and J. D. Owens, “Efficient and good delaunay meshes from random
points,” Computer-Aided Design, vol. 43, no. 11, pp. 1506–1515, 2011.

[29] E. P. De Groot, Blobtree modelling. University of Calgary, 2008.
[30] A. Lagae, S. Lefebvre, R. Cook, T. Derose, G. Drettakis, D. S.

Ebert, J. P. Lewis, K. Perlin, and M. Zwicker, “State of the art in

procedural noise functions,” in EG 2010-State of the Art Reports. The
Eurographics Association, 2010.

[31] S. Schaefer and J. Warren, “Dual marching cubes: Primal contouring of
dual grids,” in Computer Graphics and Applications, 2004. PG 2004.
Proceedings. 12th Pacific Conference on. IEEE, 2004, pp. 70–76.

1778

