
Natural Interaction in Virtual Environments

Gabriel Zachmann
University Bonn, Informatik II

Römerstraße 164
53117 Bonn, Germany

email: zach@cs.uni-bonn.de

Abstract

This paper presents a number of algorithms necessary
to achieve natural interaction in virtual environments;
by “natural” we understand the use of a virtual hand
as naturally as we are used to manipulate our real
environment with our real hand.

We present algorithms for very fast collision detec-
tion, which is a necessary prerequisite for natural in-
teraction. In addition, we describe a framework for
preventing object penetrations while still allowing the
object’s motion in a physically plausible way. Finally,
we explain a model for naturally grasping virtual ob-
jects without resorting to gesture recognition.

Keywords: Virtual prototyping, virtual reality, col-
lision detection, gesture recognition, physically-based
interaction.

1 Introduction

Virtual reality (VR) promised to allow users to experi-
ence and work with three-dimensional computer gen-
erated scenes just like with real environments. Yet,
after 15 years of research, this has come true only to
a very limited extent. Actually, in recent years, ap-
plications of VR have specifically turned away from
datagloves and virtual hands towards simpler input
devices and interaction paradigms. The success of VR
is mostly due to other benefits, such as the complete
surround-view, its use as a communication platform
for reviewing new CAD models of CAE results, and
6D tracking. So while VR offers a lot of other effi-
cient and more or less intuitive interaction paradigms
today, users still cannot interact with virtual environ-
ments just like they do in the real world, that is, by
grasping, pinching, pushing, etc., virtual objects with
their virtual hand. This is even more surprising, since
the human hand is probably our most important and
by far most frequently used tool in the real world.

There are, however, a number of applications which
would actually require an exact and faithful mod-
eling of the human real hand-environment interac-

tion. One of them is virtual assembly simulation
[JJWT99, Zac99, ZR01]. In order to be able to make
a correct verification of the assembly process (which
is performed by human workers), one must be able to
simulate the interaction between the worker’s hands
and the real car as complete and correct as possible.
Other applications are immersive ergonomic investi-
gations and 3D sketching. Such an interaction tech-
nique might even open up possibilities for novel types
of games (other than racing, shoot ’em up, fighting,
and quests).

In this paper, we present therefore a number of al-
gorithms which are needed to solve this problem. The
first are fast collision detection algorithms, because
any kind of collision handling must be triggered by
collision detection. Then, we turn to the problem of
making objects behave in a plausible, realistic manner,
so that VR users can manipulate and assemble objects
even in crowded and tight virtual environments (VEs).
Finally, we propose a framework which allows to grasp
and manipulate objects by the virtual hand in a nat-
ural way.

2 Collision detection algorithms

Collision detection can be regarded as a pipeline of
successive filters [Zac01]. This concept is somewhat
similar to the concept of a rendering pipeline or visu-
alization pipeline. The input of the collision detection
pipeline is a set of objects, while the output is a set of
pairs of objects (and possibly polygons).

During run-time, objects, together with their cur-
rent position, are entered in the queue when they have
been moved. Conceptually, the front end passes on all
possible pairs of objects down the collision detection
pipeline. After the front end, the collision interest
matrix filters out all object pairs of no interest. After
that, object pairs are filtered further by two neighbor-
finding stages and finally by an exact collision test
(polygonal collision algorithms can be considered an-
other filter before the polygon-polygon test).

In the following, we will present just two algorithms
for two stages of the collision pipeline. A complete

1

Figure 1: Our suite of test objects. They are (left to right): a car headlight, the lock of a car door, body and seats
of a car, hose of a car engine, sphere, hyperboloid, torus. (Data courtesy of VW and BMW)

treatise on the collision detection pipeline and the
algorithms involved in each stage can be found in
[Zac00, Zac01].

2.1 DOP trees

At the last stage of the collision detection pipeline,
we are given one pair of objects and have to deter-
mine their collision status. Research has shown that
hierarchical algorithms can solve this problem very ef-
ficiently [Hub95, OD99, GLM96, Zac97].

Here, we will describe only one such hierarchical al-
gorithm, namely the DOP tree. It is based on a hi-
erarchical BV tree, where each node is enclosed by
a discretely oriented polytope (DOP); see [Zac00] for
further details.

As with other hierarchical collision detection algo-
rithms, the main problem is to find a fast overlap test
for transformed BV hierarchies. Given two DOP-trees
O and Q, the basic step of the simultaneous traver-
sal is an overlap test of two nodes. In order to apply
the simple and very fast interval overlap test to DOP-
trees, they must be given in the same space. However,
at least one of the associated objects has been trans-
formed by a rigid motion, so the DOPs of its DOP-tree
are“tumbled”— in fact, in any other than the object’s
coordinate system the DOPs are no longer DOPs in
the strict sense.

The idea is to enclose a tumbled DOP by another,
“axis-aligned” DOP. We call this process (re-)aligning.
The re-aligned DOP is, of course, less tight than the
original one. On the other hand, the overlap test be-

tween two aligned DOPs is much faster than between
non-aligned ones.1

By choosing P ’s object space (w.l.o.g.), we need to
re-align only Q’s nodes as we encounter them during
traversal. We will show that this can be done by a sim-
ple affine transformation of the DOP’s plane offsets.
We would like to remark that, except for the interval
overlap test of DOPs, the alignment algorithm works
in the case of general DOPs as well.

Assume we are given a (non-aligned) DOP D of Q’s
DOP-tree, which is represented by d. Assume also,
that the object associated with Q has been trans-
formed by a rotation M and a translation o, with
respect to O’s reference frame. Then D is the inter-
section of k half-spaces

hi : bix− di + bio ≤ 0,

where bi = BiM
−1 (see Figure 2).

Now suppose we want to compute the d′i of the en-
closing DOP D′ of D. There is (at least) one extremal
vertex Pi of the convex hull of D with respect to Bi.
This vertex is the intersection of 3 (or more) half-
spaces hji

l
, 1 ≤ l ≤ 3. It is easy to see that

d′i = Bi

bji
1

bji
2

bji
3

−1

dji

1

dji
2

dji
3

 + Bio (1)

1 Of course, an incremental hill-climbing overlap test, which saves
closest features, could be applied to non-aligned DOPs. How-
ever, this would incur a lot of additional “baggage” in the data
structures. In fact, [HKM96] have reported that it is still less
efficient than brute-force re-alignment.

2

The correspondence established by ji
l is the same for

all (non-aligned) DOPs of the whole tree, if the follow-
ing condition is met: DOPs must not possess any com-
pletely redundant half-spaces, i.e., all planes must be
supported by at least one vertex of the convex hull of
the DOP. (We do allow almost redundant half-spaces,
i.e., planes which are supported by only a single ver-
tex of the convex hull.) Fortunately, this condition is
trivially met when constructing the DOP-tree.

The correspondence ji
l is established in two steps:

First, we compute the vertices of a“generic”DOP, con-
structed such that each vertex is supported by three
planes (i.e., no degenerate vertices). In an intermedi-
ate correspondence c we store with each vertex P i the
three orientations Bci

1
, . . . ,Bci

3
of the three supporting

planes.2 In the second step, another correspondence
is calculated telling which P i does actually support
a plane of the new axis-aligned DOP D′ (not all P ’s
will do that). The first and the second correspondence
together yield the overall correspondence j.

The first intermediate correspondence c has to be
computed only once at initialization time,3 so a brute-
force algorithm can be used. The second intermediate
one has to be computed whenever one of the objects
has been rotated, but it is fairly easy to establish: at
the beginning of each DOP-tree traversal, we trans-
form the vertices of a generic DOP (see below) by the
object’s rotation. Then, we combine these to establish
the final correspondence ji

l .
To establish the intermediate correspondence c, we

can choose any DOP satisfying the additional condi-
tion that all planes do support a non-degenerate face
(i.e., all planes are non-redundant in the strict sense).
We construct such a DOP in the following way: Start
with the unit DOP d = (1, . . . , 1). Then check that
each plane satisfies the condition. If there is a plane
which does not, increase its plane-offset. This algo-
rithm should be made probabilistic so as to avoid cy-
cles. Of course, it could still run into a cycle, but this
has not happened so far in countless runs.

2.1.1 Brute-force alignment

There is another way to realign DOPs [KHM+98]. The
idea is to represent DOPs by their vertices. Then, an
aligned enclosing DOP of a tumbled DOP can be found
trivially by transforming the vertices of the tumbled

2 Because of our loose definition of redundancy for planes, it
could happen that more than 3 planes pass through one point
in space. This is no problem, though, because this just means
that several vertices of the DOP will be coincident. Each of
them corresponds to exactly three planes.

3 We chose not to hard-code it, so we could experiment with
different sets of orientations.

d′2

d′5

d2

D

b3

b2

d5

b1

d1

b6

b5
b4

d4

B6

B4

B3

B2

B1

B5

Figure 2: A rotated DOP can be enclosed by an aligned
one by computing new plane offsets d′i. Each d′i can be
computed by an affine combination of 3 dji

l
, 1 ≤ l ≤ 3

(2 in 2-space). The correspondence ji
l depends only on

the affine transformation of the associated object and the
fixed orientations Bi.

DOP and then computing the min/max of all vertices
along each orientation.

Enclosing a non-aligned DOP by an aligned one
takes

affine trf. vertex trf.

FLOPs 6k 6k2 + 17k

where multiplications, additions, and comparisons
count equal (the constant terms have been omitted).
Both methods represent the resulting aligned DOP
in “slab form”. For the estimation of the brute-force
method, we have assumed that DOPs consist only of
triangles.

2.1.2 Comparison

Although a lot of hierarchical algorithms have been
published in recent years, it has not been clear how
they compare to each other. In order to optimize the
collision detection pipeline, one would like to know
which algorithm to use at the back end. Maybe there
is no single best algorithm, and different algorithms
perform best for different complexities or types of ob-
jects.

In this section, we will compare three algorithms:
OBB-trees [GLM96], BV-trees of k-DOPs [KHM+98],
and DOP-Trees [Zac98]. The latter two use the same
type of bounding volume, but different algorithms for
checking the overlap of two BVs. The former uses

3

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

10 20 30 40 50 60 70

a
v
g
.

ti
m

e
/

m
il
li
se

c

complexity / kilo-polygons

quickcd

♦
♦

♦

♦
rapid

+
+

+ +

+
dop-tree

� � � �

�

0

0.5

1

1.5

2

2.5

3

20 30 40 50 60 70 80

quickcd

♦

♦

♦

♦

♦
rapid

+
+

+ +

+
dop-tree

�
�

� �

�

0

0.5

1

1.5

2

2.5

10 20 30 40 50 60

quickcd

♦

♦

♦ ♦
rapid

+ + +
+

+
dop-tree

� � � �

�

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40

quickcd

♦

♦ ♦
rapid

+ + + +

+
dop-tree

� � � �

�

0
1
2
3
4
5
6
7
8
9

10

10 20 30 40 50 60 70 80 90

a
v
g
.

ti
m

e
/

m
il
li
se

c

complexity / kilo-polygons

quickcd ♦
rapid

+ + + + +

+
dop-tree

� � � � �

�

0
1
2
3
4
5
6
7
8
9

10

10 20 30 40 50 60 70 80 90

quickcd

♦
♦

♦
rapid

+
+

+
+

+
dop-tree

�
�

�

��

0

0.5

1

1.5

2

2.5

3

10 20 30 40 50 60 70 80 90

quickcd
♦

♦
rapid

+ + + + +

+
dop-tree

� � � � �

�

Figure 3: Results for the suite of benchmark object as shown in Figure 1 (headlight, door lock, car body, hose, sphere,
hyperboloid, torus). All times have been obtained on a R10000 194MHz, averaging over distance, orientation, and
object frame.

oriented bounding boxes. In contrast to [Zac98], we
have determined 24 as the optimal number of orienta-
tions. For the comparison, we used the implementa-
tions Rapid and QuickCD [Got97, KHM99].

We have found, that it is extremely difficult to com-
pare collision detection algorithms, because in general
they are very sensitive to conditions and scenarios,
such as the relative size of the two objects, the rel-
ative position to each other, the distance, etc. Even
the orientation of the object with respect to its object
frame can have a significant impact on the BV-tree
and hence on the efficiency [Zac00, Fig. 3.36].

Therefore, we propose a benchmark scenario which
tries to neutralize all of these effects (see [Zac00,
Zac01] and http://www.igd.fhg.de/~zach/coldet/
index.html).

We have carried out extensive experiments with
both synthetic and real-world CAD objects (see Fig-
ure 1). All timings include vertex and normal trans-
forms.

Figure 3 shows the results of our benchmark suite.
The QuickCD algorithm performs much worse than
Rapid and our DOP-tree. In addition, it depends
much more on the number of polygons. In contrast,
Rapid and DOP-tree depend very little on the number
of polygons, where Rapid depends less; in some cases,
collision detection time even decreases slightly as the
number of polygons increases. For most objects, the
DOP-tree is faster, for some it is significantly faster,
while Rapid is slightly faster for others.

With one object (the door lock), there is a remark-
able decrease in collision detection time; we are not
sure why that is, but we suspect this is because with a
finer tesselation the BV-tree construction algorithms
get a better chance of producing good BV hierarchies.

Another reason might be that with this particular ob-
ject the bulk of the polygons are interior ones.

2.2 Convex hull test

Convex hulls are much tighter bounding volumes than
bounding boxes, so they can be used as one component
of the neighbor-finding stage in the collision detection
pipeline to further reduce the number of polygonal
object-object tests. In particular, convex hulls offer a
lot of nice properties which make them attractive for
collision detection [LC92, CLMP95, vdB99, GJK88,
CW96].

We have chosen to use a probabilistic convex hull
algorithm which trades accuracy for speed. Since in
our case there is always an exact collision detection
check after the convex hull test, this does not introduce
wrong results.

The algorithm We have developed an algorithm
which just needs the set of vertices of the convex hull
and its adjacency map. The algorithm is based on
the notion of linear separability: P and Q do not
intersect iff there is a plane h such that all vertices
of P and Q are on different sides. Such a plane is
called a separating plane. Let P = {p1, . . . , pn}, Q =
{q1, . . . , qm} ⊆ R3; then, P and Q are linearly sepa-
rable, iff ∃w ∈ R3, w0 ∈ R∀i, j : (pi,−1) · (w,w0) >
0 , (−qj , 1) · (w,w0) > 0.

The algorithm is based on the perceptron learning
rule [HKP91]. Let Z = {zk} := {(pi,−1), (−qj , 1)}
be the set of vertices, and w0 an initial plane. If wl

is not a separating plane, i.e., ∃z : z · wl < 0, then a
new plane is computed by wl+1 := wl + η · z. η is a
“temperature” which is used for simulated annealing.

4

The algorithm terminates when a separating plane has
been found, or when the maximum number of loops
has been reached.

By saving the plane w for each pair of objects, this
algorithm can be turned into an incremental algorithm
very easily. In addition, checking whether or not a
plane is separating can be done very quickly by hill-
climbing, because the two sets of vertices are known
to be convex.

We have found that a maximum number of 300 loops
is sufficient, i.e., the algorithm either has determined
a separating plane or it will never determine one, no
matter how many more loops are being performed.

Comparison with Lin-Canny We compared the
separating planes algorithm with the Lin-Canny algo-
rithm as implemented in I collide [CLM+]. The bench-
marking procedure is comprised of two spheres, one
of them stationary, the other orbiting around the first
with various distances. For the separating planes algo-
rithm, the maximum number of steps was set to 300.
Times are averaged over 5,000 samples for each dis-
tance. At all distances, there were only 0–3 wrong re-
sults, except for distance 2.000060 which yielded 1256
wrong results.

Figure 4 shows how the two algorithms depend on
various parameters, namely distance, number of poly-
gons, and rotational velocity.

In addition to being about twice as fast, it seems
that the separating plane algorithm is much more ro-
bust than I collide [Zac00, Sec. 3.4.3]. Maybe these
problems persist because the Voronoi regions are mag-
nified a little bit in order to avoid other problems.

2.3 Parallelization

The collision detection pipeline offers several possibili-
ties of parallelization: pipelining, concurrency, coarse-
and fine-grain parallelization. We have not yet inves-
tigated a parallel pipeline, i.e., running each stage of
the pipeline concurrently to the others. Making the
whole collision detection pipeline concurrent to other
modules of the system is very easy: since our frame-
work already provides a queue at the front-end, this
only needs to be implemented as a double-buffer with
access control.4

At the back-end, several pairs of objects can be
checked simultaneously, using dynamic workload allo-
cation, which we call coarse-grain parallelization. This
yields very good speedups, provided there are always
enough pairs passing through the neighbor-filtering
stage, i.e., the environment is dense enough. Figure 5

4 We have, of course, implemented our collision detection module
concurrently, and the results are entirely satisfying.

1

1.5

2

2.5

3

3.5

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

sp
ee

d
u
p

effi
ci

en
cy

processors

speedup

♦

♦

♦

♦

♦

♦
efficiency

+

+
+

+
+

+

Figure 5: Coarse-grain parallelization of the back-end
yields good speed-ups, if there are enough object pairs
to be checked with each collision frame.

shows some timing results for a scenario where sev-
eral objects are bouncing off each other inside a cube.
The timing includes all stages of the collision detection
pipeline, although only the back-end has been paral-
lelized. It has been carried through on a 6-processor
194 MHz R10000 Onyx.

Sometimes, only one object pair passed through the
neighbor-filter. In that case, a parallel version of
the exact collision detection algorithm itself should be
used. For hierarchical algorithms, a dynamic load-
balancing scheme should be used, because different
branches of the BV-tree need to be descended to highly
different levels. The implementation must be careful,
otherwise synchronization overhead will be too high.

3 Sliding contact for interactive
part movement

As mentioned earlier, the sliding simulation of objects
is a necessity for virtual assembly simulation. In re-
cent years, packaging of parts in cars has become so
tight, that there are many parts for which there is no
assembly path such that the part never touches other
parts. In fact, the part usually touches other parts
over a relatively long interval along the path. And
even if there would be a collision-free path — a hu-
man worker will always “create” assembly paths with
touching collisions in the real world.

So, in the virtual world, we need a way to prevent
parts from penetrating each other, while still allowing
touching collisions such that the user can move parts
in a sliding fashion along the surface of other parts.

If the VR system has no control over the user’s real
hand (via force feedback), then the commonly used
rigid grasping metaphor has to be changed slightly to-
wards a less rigid one. This is a variant of grasping
where the transformation from hand coordinate sys-
tem to object coordinate system is no longer invariant.

5

0

100

200

300

400

500

600

700

800

1.7 1.8 1.9 2 2.1 2.2 2.3

ti
m

e
/

m
ic

ro
se

c

distance

bbox pipeline (132)

♦ ♦ ♦ ♦ ♦ ♦
♦ ♦ ♦ ♦ ♦

♦
i collide (132)

+
+ + + +

+ + + + + +

+
separating plane (132)�

�

�

� �

�

� � � � �

�
i collide (2652)

× × × × ×

×
separating plane (2652)

4

4

4

4 4 4 4 4

4

0

20

40

60

80

100

120

140

2 2.05 2.1 2.15 2.2 2.25 2.3

ti
m

e
/

m
ic

ro
se

c

distance

bbox pipeline (132)

♦ ♦ ♦ ♦ ♦

♦
i collide (132)

+ + + + +

+
separating plane (132)

�
� � � �

�
i collide (2652)

×
× × × ×

×
separating plane (2652)

4 4 4 4 4

4

10

15

20

25

30

35

40

45

50

55

60

0 2000 4000 6000 8000 10000

ti
m

e
/

m
ic

ro
se

c

polygons

bbox pipeline

♦

♦
i collide (1◦)

++ +
+

+

+
separating plane (1◦)

���
� �

�
i collide (20◦)

×

×

×

×

×
separating plane (20◦)

4
4
4

4

4

4

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40 45

ti
m

e
/

m
ic

ro
se

c

rot. velocity / degrees per rot. step

i collide (132)

♦

♦

♦

♦

♦
separating plane (132)

+
+ +

+

+
i collide (2652)

�

�

�

�
separating plane (2652)

×

×

×

×
×

Figure 4: Comparison of I collide and our separating planes algorithm with respect to distance, number of polygons,
and rotational velocity. In the upper two graphs, the numbers in parentheses denote the number of polygons of
each object. In the lower left graph, the numbers in parentheses denote rotational velocity. In the lower right graph,
the numbers denote polygon count.

For the sake of clarity, let us assume that the object
is collision-free at the time when it is being attached
to the hand. Let us assume further that at that mo-
ment we make a copy of the object which is allowed to
penetrate all other objects and which is being grasped
rigidly by the hand. We will call this copy the “ghost”
of the object. It marks the position where the object
would really be if there was no collision. There are, at
least, three non-rigid grasping metaphors:

� The rubber band metaphor: the object is con-
nected to the ghost by a rubber band. This tries
to pull the object as close to the ghost as possible
without penetrating.

� Rubber band and spiral spring: like the plain rub-
ber band metaphor, but the object is also con-
nected by a spiral spring to the ghost (this is a
little bit difficult to picture). In the plain rub-
ber band metaphor, the user has no control over
the orientation of the object — it is completely
determined by the simulation.

� Incremental motion: when the ghost has moved
by a certain delta the object will try to move
about the same delta (starting from its current
position). If there is a collision during that delta,

then the simulation will determine a new direc-
tion. So, alternatingly the object is under the
control of the user and under simulation control.

The algorithm we describe in the following allows for
implementation of any of these metaphors.

If the VR system does have control over the user’s
real hand via force feedback, then the rigid (and more
natural) grasping metaphor can be retained. Still, a
simulation algorithm is needed to create forces appro-
priate to keep the user’s hand from generating inter-
penetrations. The algorithm we will present below can
be used to render such forces.

In the remainder of this section, we will explain
that algorithm in more detail. The reader should
keep in mind, that the goal was not to make the slid-
ing behavior of objects as physically correct as pos-
sible. Readers interested in physically correct sim-
ulations should refer to the wealth of literature, for
instance [Bar94, GVP91, Hah88, SS98, BS98].

Instead, the goal was to develop an efficient algo-
rithm which helps the user to move the object ex-
actly where he wants it, in minimal time, and even
in closely packed environments (such as the interior of
a car door).

However, we believe that our approach is more gen-
eral than the one presented by [KYK98], where the ap-

6

proach is to constrain the motion of objects by certain
faces identified through collision detection; then, the
number of faces determines the number of remaining
degrees of freedom (for instance, with two faces only
one translational degree remains). In addition, con-
straining faces exhibit a certain“stickiness”. The over-
all approach is not physically-based, but just meant as
an aid for assembling simple “block-shaped” objects.

3.1 The main loop

For several reasons, the collision detection module
runs concurrently in our VR system. In order to han-
dle that, the sliding simulation is implemented as a fi-
nite state machine. This has the additional advantage,
that the simulation module itself runs concurrently in
our VR system. The three modules communicate with
each other as depicted in Figure 7.

In the simulation, there is a so-called collision object
(short collobj) which is invisible.5 It is used to check
intermediate position for collisions. The visible object
is the one users are really seeing. It is never placed at
invalid (i.e., colliding) positions. So the user only sees
a valid, i.e., collision-free path of the object.

The algorithm works, simply put, as follows:

loop:
while no collision
move visible and coll. object
according to hand motion

{now the coll.-object is penetrating}
approximate exact contact point
classify contact
calculate new direction

As mentioned before, this is implemented as a finite
state machine. A more detailed picture and descrip-
tion of that can be found in [Zac00]. There, you can
also find several algorithms for fast collision detection.
Figure 6 shows that in a little bit more detail.

In our algorithm, the contact approximation is done
by interval bisection and a number of static collision
checks. [ES99] propose a dynamic collision detection
algorithm. However, it is not clear that this would
really speed up the simulation in this case, since the
dynamic algorithm takes about 3–5 times longer and
an exact contact point is usually not needed here.

3.2 New directions

Let us assume that we have the exact contact position.
Let us further assume that we need to handle only

5 The geometry of the collision object is, usually, exactly the same
as that of the visible object. If the scene graph API allows for
it, they can share their geometry.

Figure 8: Contact classification can be done by looking at
adjacent polygons and counting edge/face intersections.

practically relevant contact situations. Then we will
need to deal only with the following cases: 1 contact
point, 2 contact points, and ≥ 3 contact points, which
we will discuss in the following.

In each case, we must be able to deal with “wrong”
surface normals. In general, polygonal geometry im-
ported from CAD programs has“random”surface nor-
mals in the sense that the vertex order is not consis-
tent across adjacent polygons. But even if it were, we
would have to be able to deal with such a situation,
because unclosed objects (like sheet metal) does not
have “inside” and “outside”. With such “sheet objects”
we might be colliding from either side.

Our implementation of the sliding algorithm pre-
sented here allows for arbitrarily pointing normals.
They can even be “inconsistent” in the sense that ad-
jacent polygons’ normals can point on different side.

In order to be able to compute new forces, each con-
tact point must be classified. In theory, we need to
handle only two contact situations: vertex/face and
edge/edge. Given one pair of touching polygons (p, q),
we can determine the contact situation by the follow-
ing simple procedure: let np be the number of polygons
adjacent to p and touching q; define nq analogously. If
np = nq = 1, then we have the edge/edge case. Oth-
erwise, either np or nq must be > 1 (but not both),
and we have the vertex/face (or face/vertex) case.

In practice, a few more cases can happen. Partly,
this is due to the mere approximation of the contact
position, partly, it is due to non-closed geometry.6

If np = 0, for instance, then this polygon might be at
the rim of the object. In order to decide that, we need
to check if any edge of p intersects q (see Figure 8).
If so, we have got the edge/edge situation. If not,
then it is the vertex/face situation. Note that both
np = nq = 0 is possible. It is not sufficient to just
check edge/face intersections of the two intersecting
polygons (counter-example: two intersecting wedges).

6 Non-closed geometry is fairly frequent in virtual prototyping:
all sheet metal is non-closed. Now imagine the possible contact
situations when a pipe is to be fitted into a hole of sheet metal.

7

no
coll.

no
coll.

steps
#slide

A D

G

T/Rmax := T/R

T/R := 1
2 (T/Rmin + T/Rmax)

T/Rmin := T/R

T := Tmin

R := Rmin

∆T/R∗ = 1
2

T/Rmin/maxwith collobj

move collobj

#iter.

#iter.

coll.

no coll.

coll.
coll.
no

∆ < ε

coll. ∆ > ε
B

C

K

J

I

H

E

L
start

≥ max.
#iter.

#iter.
≥ max.

≥ max

calc. new ∆T/R
T/R = contact pos.

to pos. of collobj

move visobj to T/Rmin

coll.

T/R := 1
m ∆T/R + T/Rmin

start iterationcalc ∆T/R,move visobj

no coll.

to pos. of visobj T := 1
m ∆T + Tmin

R := 1
m ∆R + Rmin

coll.

follow hand

steps
#slide

< max

F

< max.

< max.

Figure 6: The main loop of the sliding simulation is a finite state machine.

When all contact points have been classified, we can
compute new forces and velocities. See [Zac00] for
the mathematical details. Depending on the kind of
metaphor we have chosen (see above), we must then
evaluate a stopping criterion before iterating the next
sliding cycle. Actually, the kind of grasping metaphor
is determined by the stopping criterion. Our crite-
rion is a combination of several sub-criteria involving
the number of iterations so far and different distance
measures. See [Zac00] for more details.

4 Natural grasping

Grasping objects is one of the most fundamental in-
teraction techniques in VEs, in particular in virtual
assembly simulation, which comes as no surprise since
it is also one of the most frequent activities in the real
world.

Previous algorithms include [KH95], which is based
on the notion of a “finger-tip triangle”, and [BRT96],
in which a simple automaton is associated with each
finger.

In order to be able to make true verifications of as-
semblability and serviceability, it is important, that
the virtual hand grasps virtual parts just like the real
hand would grasp their real counterparts. So, the VR
system must make sure that the virtual fingers never
penetrate parts, but still allows them to close tight
around them (see Figure 9). In addition, in order to
make virtual grasping natural, the VR system has to
determine when an object is grabbed firmly. So, the

user would not need to remember a command, and
objects cannot be grabbed by the back of the hand.

Like with force-feedback devices, we need to distin-
guish between (at least) four types of grasping:

1. Precision grasping with three sub-types [Jon97]:
tip pinch, three-jaw chuck, and key grasp,

2. cigarette grasping,
3. 3-point pinch grasping,
4. Power grasping (or just grasping),
5. Gravity grasping (or cradling).

Precision grasping involves 2 fingers, usually the
thumb and one of the other fingers; it is used for
instance to grasp a screw. Cigarette grasping involves
two neighboring fingers; it is usually used to “park”
long thin objects, such as a cigarette or pencil. 3-point
grasping involves three fingers (one of them being
the thumb), giving the user a fairly firm grip, and
allowing him to rotate the object without rotating
the hand. Power grasping involves the whole hand,
in particular the palm. With this type of grasp the
object is stationary relative to the hand. Gravity
grasping is actually a way of carrying an object.

For power grasping, the algorithm consists of two
simple parts: clasping the fingers around the object
and analyzing the contact. The former will be done
by an iteration (see Figure 10), while the latter is im-
plemented by a simple heuristic.

The position of the hand is completely specified by
(M,F), where M is a matrix specifying the position
of the hand root, and F is the flex vector (usually
22-dimensional). Given a new target hand position
(Mn, Fn), the goal is to minimize (|MMn−1|, |F −

8

(de-)activate
sliding

calc new
direction

user

register

call
coll. callbacks

move
wait

check

interaction managercollision detection modulesliding module

collect
callbacks

Figure 7: The physically-based simulation module for sliding runs concurrently to the other two main loops of the
collision detection module and the interaction manager. Dashed arrows mark rendezvous points.

Fn|) such that (M, F) is collision-free. Note that the
position of a finger-joint depends on its flex value and
all flex values higher up in the chain and the position
of the hand root. Therefore, we suspect that there are
several local minima, even if we only consider flex val-
ues during optimization (and keep the position fixed).
However, this should not be a problem if the mini-
mization process is fast enough, so that consecutive
collision-free hand positions are not too “distant” from
each other.

Minimization must not be done using the visible
model of the hand; otherwise, the user would“witness”
the process (because the renderer runs concurrently).

moved
cart has

→ visible hand
last valid pos/flex

analyse touch

and # steps < max
still unfixed flex values

collision copy of hand
cart, pos/flex →

C

D

visible hand, valid pos/flex
current pos/flex →

start iteration
wait for new pos/flex

fix some flex values
set collision flags

set ”touching”flags

interpolate unfixed flex values
reset some coll. flags

or # steps > max
all flex values fixed

F

visible hand
cart, pos/flex →

A

cart has moved
collision

cart not moved

E

cart not moved

no collision
B

Figure 10: A simplified overview of the algorithm for
simulating natural grasping.

So, a copy of the hand tree is used for collision de-
tection, and only after minimization has finished, the
new position/flex values are copied to the visible hand.
This minimization should be as fast as possible, so it
runs as a concurrent process in our VR system; other-
wise, the user might notice considerable latency.

In order to find an optimal flex vector, our algorithm
uses an iteration process interpolating non-colliding
(i.e., valid), and colliding (i.e., invalid), flex values.
Here, a flex value is colliding if its associated finger-
joint is colliding or any finger-joint depending on it.
A finger-joint J ′ is depending on a finger-joint J , if it
is further down the kinematic chain, i.e., if J moves,
then J ′ moves, too (see [Zac00] for a detailed depiction
of the finite state machine of this process). Note that
a finger-joint can have many depending finger-joints.
(In this context, the palm is a “finger-joint” like all the
others.)

During the iteration process, the position M of the
hand is treated like any other flex value, i.e., it is inter-
polated. The only differences are that interpolation is
done on matrices instead of single real numbers. The
“joint” associated with it is usually the palm or the
forearm.

After a few iteration steps, some flex values will be
approximated“close enough”(when the range between
valid and invalid flex value is small enough). Then,
they will be fixed. Depending flex values must be con-
sidered for fixing, too: they may or may not be close
enough. So, several flex values in a row may become
fixed at the same time. As long as a flex value is not
fixed, it will be interpolated and all its depending flex
values.7

During iteration, the algorithm has to mark all
finger-joints (including the palm) which are touching
the object. If a finger-joint is not touching the object,
we will call it free. At the beginning of the iteration,
all finger-joints are free. When a finger-joint collides,
the algorithm sets a collision flag for it. When that flex

7 An alternative would be not to interpolate depending flex val-
ues, but since depending finger-joints need to be checked for
collision anyway, we can as well interpolate them, too. Thus,
we probably achieve an optimum faster.

9

Figure 9: Natural grasping is basically a minimization problem for the flex vector under the constraint that finger-
joints (and palm) must not penetrate the object.

value gets fixed, the finger-joint is marked as “touch-
ing” if the collision flag is set (the collision may have
happened several iterations earlier). After a flex value
has been fixed, the collision flag of all depending flex
values will be cleared again. This is because possible
collisions of depending finger-joints are due to motions
of up-chain finger-joints and not because the depend-
ing finger-joint is touching.

After all flex values have been fixed, the second
phase of the algorithm tries to analyze the type of
grasp. While the grasping algorithm is in general ap-
plicable to any hierarchical kinematic chain, the anal-
ysis algorithm needs to know more about its “seman-
tics”, i.e., it has to know about a palm, it needs to
know which finger-joints belong to the same finger,
etc. The heuristic we have implemented is very sim-
ple:

1. only one finger-joint or palm is touching → push;

2. several finger-joints are touching, and none of
them is part of the thumb, and the palm is not
touching → push;
This part of the heuristic would need to be more
sophisticated if cigarette grasping should be rec-
ognized. However, this type of grasp is not needed
for virtual assembly simulation.

3. one or more finger-joints is touching, one or more
thumb-joints is touching, and the palm is not
touching → precision grasp;

4. one or more finger-joints (possibly a thumb joint)
and the palm are touching, and at least one of the
finger-joints is a middle or outer joint → power
grasp;

5. one or more finger-joints and the palm are touch-
ing, but all finger-joints are inner joints → push.

In our algorithm, motion of the cart is handled spe-
cially (see [Zac00] for more details). A cart motion
indicates that the user’s (virtual) body is changing
place. Since the hand is attached below the cart, a
cart motion always brings on a motion of the hand. In
that case, the algorithm does not try to clasp the hand
tightly around an object, because that might cause the
hand to be left behind, which is probably not what the
user wanted. Unfortunately, navigation might cause
the hand to end up in an invalid (i.e., colliding) place,
so after navigation has stopped, the clasping algorithm
cannot begin until the whole hand has been moved to
a collision-free place by the user.

5 Conclusion

In this paper, we have presented several algorithms
which tackle various prerequisites for a solution to nat-
ural hand-object interactions in virtual environments.

One of the basic requirements is fast collision de-
tection. In this area, we have described two algo-
rithms: the first one solves the object-object polyg-
onal intersection test efficiently by a DOP tree, while
the second one is an efficient pre-check in the neighbor-
finding stage of the collision detection pipeline exploit-
ing properties of the convex hull and temporal coher-
ence.

The convex algorithm depends sub-linearly on poly-
gon count and rotational velocity with very small hid-
den constants. The algorithm gains additional effi-
ciency by hill-climbing on the convex hull and by main-
taining a separating plane in two different coordinate
frames simultaneously. Collision detection time is of
the order of microseconds when objects do not inter-
sect. A comparison with the renowned Lin-Canny al-
gorithm showed that the algorithm presented in this

10

work is about 2 times faster. In addition, it seems to
be more robust numerically.

The DOP tree algorithm gains its speed by an el-
egant way to enclose non-axis-aligned DOPs by axis-
aligned ones which is in O(k) while the previously pro-
posed method is in O(k2) (k being the number of ori-
entations). This algorithm can check a pair of objects
of 50,000 polygons each within 1

2–4 milliseconds.
Collision detection lends itself well to parallelization.

Our collision detection module features concurrency,
coarse-grain, and fine-grain parallelization. Experi-
ments demonstrate the efficiency of the implementa-
tion.

Another requirement for natural interaction is that
objects behave naturally and somehow “slide” along
the surface rather than penetrating it. This kind of
behavior has been implemented by a physically-based
algorithm. It does not try to be physically correct, but
to be as fast as possible while still providing intuitive
and plausible behavior. Experiments have shown that
our algorithm needs about 300 microseconds per con-
tact point (not counting collision detection time), and
it works well in practice.

Finally, we have described a general algorithm for
solving the problem of natural grasping and manip-
ulation of virtual objects with a virtual hand. This
enables a user to grasp objects just like in the real
world without having to resort to abstract gestures.
The algorithm presses the virtual hand’s fingers to an
object by a minimization procedure, and then grasps
it based on the analysis of the contact.

6 Future Work

In order to make the sliding simulation and natural
grasping even more efficient, collision detection algo-
rithms should provide some measure of the amount of
interpenetration. This information could be used to
estimate the contact points more quickly.

A particularly difficult problem for the sliding algo-
rithm is presented by the way slide-in units are de-
signed (for instance, car radios): these parts and their
compartments are usually designed such that their re-
spective hulls overlap precisely, so that the virtual
parts will actually have a collision when in final po-
sition.

Force feedback is currently an active area of re-
search. For simple cases, algorithms and devices are
available, but as of yet, there is no device suitable for
virtual assembly simulation. However, force feedback
would greatly increase intuitivity and user efficiency
as well as the transferability of the results obtained in
interactive simulations.

Finally, it would be necessary to represent the user’s
hand by a deformable virtual hand. This would also
include a more sophisticated model of the skin of the
user’s hand. In addition, efficient collision detection
algorithms for deformable models are needed.

A different problem, but related to natural inter-
action in VEs, is tracking the user’s real hand and
fingers. Until now, the user is still tethered by these
tracking devices. In order to increase acceptance of
VR in general, it seems necessary to us to be able
to precisely solve this tracking problem while allowing
the user to remain untethered.

References

[Bar94] David Baraff. Fast contact force computation for
nonpenetrating rigid bodies. In Proceedings of SIG-
GRAPH ’94 (Orlando, Florida, July 24–29, 1994),
Andrew Glassner, Ed., Computer Graphics Pro-
ceedings, Annual Conference Series, pages 23–34.
ACM SIGGRAPH, ACM Press, July 1994. ISBN
0-89791-667-0. 6

[BRT96] Ronan Boulic, Serge Rezzonico, and Daniel Thal-
mann. Multi-finger manipulation of virtual objects.
In Proc. of the ACM Symposium on Virtual Reality
Software and Technology (VRST ’96), pages 67–74.
Hong Kong, July1-4 1996. 8

[BS98] Matthias Buck, and Elmar Schömer. Interactive
rigid body menipulation with obstacle contacts.
The Journal of Visuazlization and Computer Ani-
mation, 9:243–257, 1998. 6

[CLM+] John Cohen, Ming C. Lin, Dinesh Manocha, Brian
Mirtich, M. K. Ponamgi, and John Canny. I -
COLLIDE. URL http://www.cs.unc.edu/~geom/

I_COLLIDE.html. Software. 5

[CLMP95] J. D. Cohen, M. C. Lin, D. Manocha, and M. K.
Ponamgi. I-COLLIDE: An interactive and exact
collision detection system for large-scale environ-
ments. In 1995 Symposium on Interactive 3D
Graphics, Pat Hanrahan and Jim Winget, Eds.,
pages 189–196. ACM SIGGRAPH, April 1995.
ISBN 0-89791-736-7. 4

[CW96] Kelvin Chung, and Wenping Wang. Quick collision
detection of polytopes in virtual environments. In
Proc. of the ACM Symposium on Virtual Reality
Software and Technology (VRST’96), Mark Green,
Ed., pages 125–131, July 1996. 4

[ES99] Jens Eckstein, and Elmar Schömer. Dynamic col-
lision detection in virtual reality applications. In
Proc. The 7-th International Conference in Central
Europe on Computer Graphics, Visualization, and
Interactive Digital Media ’99 (WSCG’99), pages
71–78. University of West Bohemia, Plzen, Czech
Republic, February 1999. 7

[GJK88] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A
fast procedure for computing the distance between
complex objects. Internat. J. Robot. Autom., 4(2):
193–203, 1988. 4

[GLM96] Stefan Gottschalk, Ming Lin, and Dinesh Manocha.
OBB-Tree: A hierarchical structure for rapid inter-
ference detection. In SIGGRAPH 96 Conference

11

Proceedings, Holly Rushmeier, Ed., Annual Confer-
ence Series, pages 171–180. ACM SIGGRAPH, Ad-
dison Wesley, August 1996. held in New Orleans,
Louisiana, 04-09 August 1996. 2, 3

[Got97] Stefan Gottschalk. Rapid library, 1997. URL http:

//www.cs.unc.edu/~geom/OBB/OBBT.html. Vers.
2.01. 4

[GVP91] Marie-Paule Gascuel, Anne Verroust, and Claude
Puech. Animation and collisions between complex
deformable bodies. In Proceedings of Graphics In-
terface ’91, pages 263–270, June 1991. 6

[Hah88] James K. Hahn. Realistic animation of rigid bod-
ies. In Computer Graphics (SIGGRAPH ’88 Pro-
ceedings), John Dill, Ed., vol. 22, pages 299–308,
August 1988. 6

[HKM96] Martin Held, James T. Klosowski, and Joseph S.B.
Mitchell. Real-time collision detection for motion
simulation within complex environments. In Sig-
graph 1996 Technical Sketches, Visual Proceedings,
page 151. New Orleans, August 1996. 2

[HKP91] John Hertz, Anders Krogh, and Richard G. Palmer.
Introduction to the Theory of Neural Computing.
Addison-Wesley, 1991. 4

[Hub95] P. M. Hubbard. Collision detection for interactive
graphics applications. IEEE Transactions on Vi-
sualization and Computer Graphics, 1(3):218–230,
September 1995. ISSN 1077-2626. 2

[JJWT99] Sankar Jayaram, Uma Jayaram, Yong Wang, and
Hrishikesh Tirumal. VADE: A virtual assembly de-
sign environment. IEEE Computer Graphics & Ap-
plications, 19(6):44–50, November, December 1999.
1

[Jon97] Lynette Jones. Dextrous hands: Human, pros-
thetic, and robotic. Presence, 6(1):29–56, February
1997. 8

[KH95] R. Kijima, and M. Hirose. Fine object manipula-
tion in virtual environments. In Virtual Environ-
ments ’95, M. Göbel, Ed., Eurographics, pages 42–
58. Springer-Verlag Wien New York, 1995. Proc’s
Eurographics Workshop, Barcelona, Spain, 1993,
and Monte Carlo, Monaco, 1995. 8

[KHM+98] James T. Klosowski, Martin Held, Jospeh S.B.
Mitchell, Henry Sowrizal, and Karel Zikan. Efficient
collision detection using bounding volume hierar-
chies of k-dops. IEEE Transactions on Visualiza-
tion and Computer Graphics, 4(1):21–36, January
1998. 3

[KHM99] Jim Klosowski, Martin Held, and Joe Mitchell.
QuickCD, software library for efficient collision de-
tection, 1999. URL http://www.ams.sunysb.edu/

~jklosow/quickcd/QuickCD.html. Vers. 1.00. 4

[KYK98] Yoshifumi Kitamura, Amy Yee, and Fumio Kishino.
A sophisticated manipulation aid in a virtual envi-
ronment using dynamic constraints among object
faces. Presence, 7(5):460–477, October 1998. 6

[LC92] Ming C. Lin, and John F. Canny. Efficient collision
detection for animation, September 1992. 4

[OD99] Carol O’Sullivan, and John Dingliana. Real-time
collision detection and response using sphere-trees.
In 15th Spring Conference on Computer Graph-
ics, pages 83–92. Budmerice, Slovakia, April 1999.
ISBN 80-223-1357-2. 2

[SS98] Jörg Sauer, and Elmar Schömer. A constraint-based
approach to rigid body dynamics for virtual reality
applications. In Proc. VRST ’98, pages 153–161.
ACM, Taipei, Taiwan, November 1998. 6

[vdB99] Gino Johannes Apolonia van den Bergen. Collision
Detection in Interactive 3D Computer Animation.
PhD dissertation, Eindhoven University of Technol-
ogy, 1999. 4

[Zac97] Gabriel Zachmann. Real-time and exact collision
detection for interactive virtual prototyping. In
Proc. of the 1997 ASME Design Engineering Tech-
nical Conferences. Sacramento, California, Septem-
ber 1997. Paper no. CIE-4306. 2

[Zac98] Gabriel Zachmann. Rapid collision detection by dy-
namically aligned DOP-trees. In Proc. of IEEE
Virtual Reality Annual International Symposium;
VRAIS ’98, pages 90–97. Atlanta, Georgia, March
1998. 3, 4

[Zac99] Antonino Gomes de Sá, and Gabriel Zachmann.
Virtual reality as a tool for verification of assembly
and maintenance processes. Computers & Graph-
ics, 23(3):389 –403, 1999. 1

[Zac00] Gabriel Zachmann. Virtual Reality in Assem-
bly Simulation — Collision Detection, Simula-
tion Algorithms, and Interaction Techniques. PhD
dissertation, Darmstadt University of Technology,
Germany, Department of Computer Science, May
2000. URL http://web.informatik.uni-bonn.de/

~zach/papers/diss.html. Fraunhofer IRB Verlag,
ISBN 3-8167-5628-X; also: http://www.geocities.
com/gabriel_zachmann/. 2, 4, 5, 7, 8, 9, 10

[Zac01] Gabriel Zachmann. Optimizing the collision de-
tection pipeline. In Proc. of the First Interna-
tional Game Technology Conference (GTEC), Jan-
uary 2001. 1, 2, 4

[ZR01] Gabriel Zachmann, and Alexander Rettig. Natu-
ral and robust interaction in virtual assembly sim-
ulation. In Eighth ISPE International Conference
on Concurrent Engineering: Research and Applica-
tions (ISPE/CE2001). West Coast Anaheim Hotel,
California, USA, July 2001. 1

12

	Introduction
	Collision detection algorithms
	DOP trees
	Brute-force alignment
	Comparison

	Convex hull test
	Parallelization

	Sliding contact for interactive part movement
	The main loop
	New directions

	Natural grasping
	Conclusion
	Future Work

