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ABSTRACT

We present a new dataset for use in training inverse gravity model-
ing algorithms, developed with approaches based on convolutional
neural networks in mind. This dataset comprises hundreds of aster-
oids with homogeneous or random mass distributions and the cor-
responding gravitational fields. We also modify the GeodesyNet, a
neural network based inverse gravity modeling technique, to be able
to incorporate additional information into the gravity inversion pro-
cess, apart from the gravitational field. We call this “guiding” the
GeodesyNet, and compare it to a more classical inversion method,
for which we also implement guidance. Both methods are able to
generate mass distributions that match the input graviational field
well, while incorporating additional guidance information.

Index Terms: Neural Networks, Inverse Gravity Modeling,
GeodesyNet, Asteroids, Gravitational Fields, Mass Distribution.

1 INTRODUCTION

In the recent decades, there have been multiple space missions with
the goal to visit and gather data about small-bodies in our solar sys-
tem. These include the NEAR mission to the asteroid 433 Eros
[11], Hayabusa to the asteroid Itokawa [4], the Dawn mission to the
proto-planets Vesta and Ceres [7] and most recently the OSIRIS-
REX mission to the asteroid Bennu. Some of these missions were
able to get close enough to the body to measure detailed gravita-
tional potentials. The gravitational potential outside of a body is
produced by its internal mass distribution, which is why it can be
used to reconstruct the internal mass distribution of a body. This
process is called gravity inversion [1]. Studying the internal struc-
ture of a small-body can give insight into its history and how the
body has changed over time. Knowledge about the internal struc-
ture also helps to build more accurate models of small bodies [20].
Information about the internal mass distribution of a body can also
be obtained through other methods than analyzing the gravitational
field, for example through radar measurements or analysis of col-
lected dust particles [17]. Recently, a gravity inversion method
based on Neural Networks has been developed, which requires
fewer assumptions about the internal mass distribution and shape
of a body, and can yield more accurate results in some situations,
compared to classical inversion methods [6]. There also have been
recent works that employ Machine Learning based approaches to
perform gravity inversion on earth [23] [9] [24]. Our goal in this
work is to incorporate available information about the mass dis-
tribution of a small-body into the gravity inversion process of the
Machine Learning based method most suited to this task, and thus
obtain a mass distribution that is consistent with this information.
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2 FORWARD MODELING OF GRAVITATIONAL FIELDS

In order to do inverse gravity modeling, gravitational data which
the chosen inverse gravity modeling method should try to match as
closely as possible, is needed. In the case of a space mission like
NEAR visiting the asteroid Eros [19] or more recently OSIRIS-
REx visiting the asteroid Bennu [8], this data might come from a
spacecraft taking measurements around the body of interest. The
other option is to use data generated through forward modeling,
where the gravitational field around a body is calculated from the
shape of the body as well as an assumption about the distribution
of mass inside the body. For the development of inverse gravity
modeling methods this approach is suited well, because it allows
the easy generation of multiple variants of mass distributions and
their corresponding gravitational fields to test with. Data generated
by this method is also much more easily accessible as gravitational
data measured by spacecraft.

Commonly used methods to calculate gravitational fields
through forward modeling include using Spherical Harmonics, the
Polyhedral Method and the Mass Concentation Method. Spheri-
cal Harmonics have issues for bodies which differ strongly from a
sphere in shape, like asteroids often do. For details see the work
of Heiskanen and Moritz [5], Werner [21] and Sebera et al. [15].
The polyhedral method does not suffer from this issue and provides
an exact solution at any point outside of the body [21], but is com-
putationally expensive when adapted to heterogeneous bodies [18].
This property makes it unsuitable for this work, since the main ob-
jective is to study heterogenous bodies. The mascon method can
get close to the solution provided by the polyhedral method [12]
while making it easy to model heterogenous bodies, which is why
we chose it for this work.

When calculating the gravitational field of a body using the mass
concentration method, the body is approximated as a set of point
masses. The gravitational acceleration or potential at a given point
p is then derived by summing up the contributions of every point
mass.
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Equation 1 shows the formula for the gravitational acceleration,
with G denoting the gravitational constant, p; and V; the density
and volume of the mass concentration point or mascon i and with r;
denoting the distance between the mascon x; and the sample point
p [13]. The vector r; runs from the sample point p to the mascon x;
and can be calculated as shown in equation 2 [14].
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Implementations of the mascon method differ in how the body of
interest is subdivided into smaller sections and how these sections
are placed throughout the body. Park et al. [12] work with uniform
disitribution, while MeiBlenhelter et al. [10] utilize sphere packing
to achieve smaller errors near the bodies surface. Chanut et al. [2]
propose a solution where they subdivide a polyhedral shape model
to determine mascon locations and masses.

3 RELATED WORK

There are two kinds of approaches used to do inverse gravity mod-
eling with machine learning in previous work. The Convolutional



Neural Network based approach, exemplified by the works of Wu
et al. [23], Li et al. [9] and Yu-Feng et al. [24], and the NeRF
inspired approach presented by 1zzo and Goméz [6].

3.1 Inverse Gravity Modeling with Convolutional Net-
works

Approaches which employ convolutional networks to do inverse
gravity modeling usually apply their method to gravitational mea-
surements on the surface of the earth, to predict the density in the
earths crust underneath. An example for this is the work of Wu et
al. [23], where the authors train a U-Net and apply it to gravity
data from East Antarctica as well as synthetic data. The model is
able to reconstruct the general shape of high densities regions in the
synthetic data well, although the density values are not exact, espe-
cially when more complex shapes are tested. The model is more
exact in regions closer to the surface, with higher divergences in
the deeper sections. When applying their method to real data from
East Antarctica, the authors find that their model yields a density
distribution which is consistent with previous studies [23].

Li et al. [9] use a similar method, the main difference being
the addition of residual connections to a U-Net based approach.
They attain slightly better results in comparison to a U-Net based
approach. Another similar approach is presented by Yu-Feng et
al. [24], where the authors use a similiar data creation method, but
use a 3D-Unet instead of the two dimensional version. Results are
difficult to compare with the other presented works, as F1-Scores
are given instead of attained errors.

The models developed in these works perform well on the ap-
plications on earth for which they were designed. In the context
of this work however, they would have to be adapted to work on
small-bodies in space. The main difference between these applica-
tions is the kind of gravitational data available. Where in the case of
earth the data is usually measured or generated in a two dimensional
plane with the mass distributed underneath, measurements in space
are usually taken by space probes in orbit around a body of inter-
est, see for example Lauretta et al. [8]. This leads to measurements
in the shape of spherical trajectories around the body, and this spa-
tial information should be utilized when adapting approaches based
on convolutional networks. If input data for a network to predict
a small-bodies density distribution were limited to a two dimen-
sional plane on one side of the body, the model would probably
yield less accurate results in the parts farthest away from the grav-
itational measurements, as could be seen in Wu et al. [23]. There
have been approaches to adapt the U-Net to work on spherical data,
for example in Zhao et al.[25], where the authors adapt the convo-
lution operation to spherical surfaces and build a Spherical U-Net
with it. The concept of the 3D U-Net as proposed by Cigek et al.
[26] and adapted to gravitational inversion in the work of Yu-Feng
et al. [24] is also interesting in the context of this work, as the out-
put of the inversion is a density distribution in three dimensional
space. The inversion might thus benefit from the additional 3D pro-
cessing capabilities the 3D U-Net provides. Ideally, a U-Net based
network for gravity inversion on small-bodies would process the
spherical gravitational data of the input with spherical convolutions
in the encoder part of the network, similar to [25]. In the decoder
3D operations similar to the ones in [26] would be used to arrive at
the three dimensional output of the density distribution. The prob-
lem with this approach is the fact that the architecture of the U-Net
is symmetrical, which results in the shape of the inputs and out-
puts being usually similar. For example, the Spherical U-Net takes
a spherical surface as an input and also yields a spherical surface
as an output [25]. Similarly the 3D U-Net gets three dimensional
input data and outputs three dimensional data. Wu et al. are able
to generate three dimensional output from two dimensional input
by encoding the third dimension in the channels of their output im-
age, but the data flowing through the U-Net is still two-dimensional

[23]. This is important because one of the features of the U-Net is
the concatenation of features from the encoding part with features
from the decoding path. This would be difficult to accomplish with
two representations in the encoder and decoder part of the network
that are as different as the spherical representation of the Spherical
U-Net and the three dimensional representation of the 3D U-Net.
Due to these challenges we chose to focus on the NeRF inspired
approaches instead, which will be presented in the following.

3.2 Inverse Gravity Modeling with a NeRF inspired ap-
proach

Izzo and Goméz propose a solution to the inverse gravity modeling
problem, where they train a neural network to represent a mapping
from Cartesian coordinates to the body density [6], a representation
similar to the one used by NeRFs. The input in the form of Carte-
sian coordinates is fed into the network, flowing through a number
of fully connected layers with the output of the network being the
predicted density at the input point. An arbitrary number of points
and their corresponding densities can be sampled from the network
like this. The gravitational field corresponding to these densities
can then be calculated and compared to either a gravitational field
obtained through forward modeling or actual measurements of a
gravitational field. The error between the predicted and ground-
truth gravitational field is calculated and used in backpropagation
to update the neural networks parameters, to minimize the error.
This makes the gravitational field the predicted density produces
more closely resemble the ground-truth gravitational field step by
step. Notably, the GeodesyNet does not require a shape model to
be given and can learn the shape of the body from the gravitational
data. However, GeodesyNets can incorporate a shape model for
improved results.

1zzo and Goméz compare their method to the work of Wittick
and Russell [22], where a hybrid mascon and spherical harmonics
method is used. In this work, the parameters of the model are deter-
mined using least-squares estimation. The GeodesyNet is found to
reach comparable accuracies to some of those presented by Wittick
and Russell [22], even though no shape model is used. 1zzo and
Goméz note that the usage of a shape model with the GeodesyNet
“would ... result in orders of magnitude smaller errors”[6, Supple-
mentary Method 5]. They point out that it is generally difficult to
compare results of gravity modeling across the literature, as a com-
mon validation practice does not exist. To allow for better quan-
titative comparison, the authors implement their own mascon ap-
proach, which does not require shape information. When looking at
the performance farther away, both models perform well, with the
better performing method depending on the studied body. Closer
to the surface, the GeodesyNet performs consistently better than
the mascon method. The authors also test the performance of the
GeodesyNet when utilizing a shape model on the heterogeneous
ground-truth data. They find that this improves the error in com-
parison to not utilizing a shape model, especially at low altitudes
above the bodies surface. Utilizing the shape model also results
in a density distribution that is closer to the ground-truth density
distribution.

4 DATASET

In anticipation of utilizing an approach based on a convolutional
neural networks to do inverse gravity modeling as described in sec-
tion 3.1, we created a training dataset for such an approach. The
dataset consists of a number of asteroid density distributions and
their corresponding gravitational fields. It is based on the shape
models and additional information about small-bodies provided on
the 3D Asteroid Catalogue website [3]. The shape models and in-
formation on this website were gathered from different sources, for
more details refer to the sources provided on the pages for the dif-
ferent small bodies on the website.
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Figure 1: Predicted body mass with Polynomial Regression and
Random Forest using the mean diameter.

We noticed that only 26 out of the 1635 asteroids came with in-
formation about their mass, although 1563 came with a diameter.
Since the total mass of a body is needed to calculate a gravitational
field that is scaled correctly, we decided to reconstruct the masses of
the bodies by using the diameter. We assumed that the volume and
total mass of a body would be roughly correlated. Since the volume
and radius of a sphere are in a cubical relation we fit a polynomial
of degree three to the available data. To make sure that the resulting
function would yield a mass of zero for a mean diameter of zero,
we disabled the fitting of the intercept. We also forced the regres-
sion to have positive coefficients to make sure positive diameters
would always yield positive masses. The result of this experiment
is shown in figure 1. The regression fits the data well and seems to
represent the relation between mean diameter and body mass mean-
ingfully. We also tested other regression methods like the Random
Forest. We were able to get a better score with the Random For-
est in comparison to the Polynomial Regression when we split the
available data with mass into a train and test set, but in a case with
so little training data the Random Forest is prone to overfit. It looks
like this happened when looking at the plot of the Random Forests
predictions in figure 1. To avoid overfitting, in this case the sim-
pler model which can be more easily derived from the real physical
relationship of these two properties is the better choice.

4.1 Modeling and calculating the gravitational field

‘With the masses for most of the asteroids restored, we started work-
ing on the mascon method to calculate the asteroids gravitational
fields. After loading an asteroids mesh, we scale the maximum ex-
tent of the asteroid to be its diameter, since the real extents in x,
y and z direction are again only available for a limited number of
asteroids. This is only an approximation of the actual size of the
asteroid, but the size is in the correct order of magnitude. The next
step is the subdivision of the asteroid into multiple mascons. As
we were building the dataset in anticipation of training a model like
the ones presented in section 3.1, our aim was to create mascon
models with the same dimensions for all asteroids. These meth-
ods require all of their inputs to have the same dimensions. Mascon
models usually produce different numbers and volumes of mascons,
depending on the shape of the modeled body. Our initial solution
to this problem was to fill the bounding box of the asteroid with
mascons shaped like cuboids. The length of each cuboid in each di-
mension is the length of the bounding box in this dimension divided
by the desired number of subdivisions per dimension. This leads to
the volume of the bounding box being completely covered by mas-
cons. Figure 2 shows this method with ten subdivisions leading to
1000 mascons. The advantage of this method is the relatively small
number of mascons which do not overlap with the asteroid while
always providing the same dimensions no matter the shape of the

Figure 2: Filling the bounding box with mascons. Here ten subdi-
visions were used, leading to 1000 mascons.

Figure 3: The sampled points creating a sampling sphere around
the asteroid.

asteroid. A potential issue is the fact that information about the po-
sition and proportions of the mascons gets lost when the mascons
masses are the only input to a machine learning model. This leads
to the property that an asteroid can be scaled in different dimensions
and will still yield the same mascon representation from the view
of a machine learning model, as long as the volume of the mas-
cons stays the same. For example, an asteroid with a bounding box
of dimensions (10,1,1) will yield the same representation as the
same asteroid rescaled to a bounding box of (1,10,1). To address
this issue, we implemented a different subdivision method, which is
similar in layout to the mascon based approach by Izzo and Goméz
[6], which they compare the GeodesyNet to. With this approach,
we place the asteroid into a cube, which is then subdivided into a
grid of cubes. This method leads to the same number of mascons
for all asteroids as well, but the mascons are all cubes and therefore
have the same relative dimensions across asteroids. This method
also does not have the scaling invariance problem discussed before.
A potential drawback of this method might be the greater number of
mascons that do not overlap with the asteroid. This leads to a lower
resolution of mascons covering the asteroid compared to subdivid-
ing the bounding box with the same total number of mascons. Both
of these methods need to be compared in practice, but subdividing
the cube has fewer theoretical issues.

After subdividing, densities can be assigned to all of the mas-
cons. We implemented both a uniform distribution of density, as
well as a random one. For the uniform distribution, the total mass
is divided equally between the mascons whose centerpoints lie in-
side of the asteroid. We then calculate the density by dividing this
mass by the volume of each mascon. For the random distribution
we sample a random value from the continuous uniform distribution
in the interval [0, 1) for every mascon whose centerpoint lies within
the asteroid. We then scale these values so their sum equals the to-
tal mass of the asteroid. The densities are then calculated again by
dividing the masses by the mascons volume.

To be able to calculate the gravitational field corresponding to the
density distributions, we create a sphere of points at which the grav-
itational acceleration or potential can be calculated. To describe the
points on the sphere we use spherical coordinates similar to the ones



described bei Heiskanen and Moritz [5, p. 18]. A point P on the
sphere is described by its radius r from the center of the sphere, as
well as the angles A and 6. The angle A describes the angle be-
tween P and the x-axis in the x-y plane and the angle 6 is the angle
between the line connecting the center of the sphere and the point
P and the z-axis. By subsampling the angles A and 6 we create
evenly spaced rings of points around the z-axis, which are them-
selves evenly spaced in the range of 0. Figure 3 shows the resulting
sampling sphere. With the mascons and the sampling points de-
termined, we calculate the gravitational accelerations or potentials
with equation 1 or the corresponding formula for potentials.

4.2 Usage

After creating the dataset we decided to implement the incorpora-
tion of additional information into the inversion process, based on
the GeodesyNet by 1zzo and Goméz [6]. Since this method does not
need the amount of data in this dataset to be trained, we were unfor-
tunately unable to use this dataset in this work. It can still serve as a
basis for future work, for example to train gravity inversion models
like the ones described in section 3.1.

5 MODIFYING THE GEODESYNET

The aim of this work is to achieve an inverse gravity modeling
method whose performance is comparable to other inversion meth-
ods and which is able to incorporate additional expert information
into the inversion process, in the form of regions inside of the
asteroid with predefined density. We have presented different
machine learning based methods for inverse gravity modeling in
sections 3.1 and 3.2 and decided to use the most promising for
asteroids, which are the GeodesyNets introduced by Izzo and
Goméz [6]. In addition to this approach already working for
asteroids and the shape of graviational information commonly
used with them, we also chose this approach because it seemed the
most straightforward to implement the introduction of additional
information into the inversion process for. We will refer to methods
which incorporate regions of predefined density as guided inverse
gravity modeling from hereon.

5.1 The Loss Function

In the unmodified form implemented by Izzo and Goméz [6], a
training iteration of the GeodesyNet starts with sampling its out-
put on a grid inside the hypercube with dimensions [—1,1]>. The
gravitational acceleration or potential is then calculated at a num-
ber of target points outside of the asteroid using the densities sam-
pled from the GeodesyNet. This gravitational field represented by
the GeodesyNet is used to calculate the loss of the neural network
together with the gravitational field calculated from the mascon
ground-truth. After comparing a number of different loss functions,
1zzo and Goméz [6] settle on a modified version of the Mean Abso-
lute Error. They introduce a mass normalization factor k¥ which is
multiplied with the networks predictions to scale them. This allows
the network to focus on learning the difference to a homogeneously
filled volume and not on finding the correct absolute mass of the
body as well. The value of k is calculated analytically in each train-
ing iteration of the network and the authors find the optimal value
for it to be

Y Sy
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with y;,i = 1..n being the ground-truth accelerations or potentials
from the mascon model and y;,i = 1..n the predicted accelerations
or potentials of the network [6, Supplementary Method 1]. When

incorporated into the Mean Absolute Error, the resulting loss func-
tion is
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To implement the guided inverse gravity modeling for the
GeodesyNets, we took inspiration from an optional part of the train-
ing implemented by 1zzo and Goméz called Vision Loss. The Vi-
sion Loss is an additional term that is added to the loss calculated
on the gravitational field. It is calculated by sampling a number of
points outside of the body, for which a shape model is needed. The
expectation is for these points to have a mass of zero, as they are
outside of the body. Deriving the Vision Loss now involves cal-
culating the Mean Absolute Error between the sampled points and
zero. The result is added to the loss calculated on the gravtiational
field to form the total loss. This urges the densities at the points to
be zero.

To implement guided inverse gravity modeling, we added a si-
miliar term to the loss based on the gravitational field, which we
call the guidance loss. The predefined regions of density can be
given by the user either in the form of spheres or a plane that splits
the asteroid into two halves. The spheres are characterized by their
centerpoints and radii, as well as densities which define the desired
densities in the volumes covered by the spheres. The plane is de-
fined by a point in the plane and the planes normal vector. The
density corresponding to the plane describes the desired density on
the positive side of the plane. We calculate the guidance loss by
first sampling a number of points inside of the spheres or inside
the asteroid on the positive side of the plane. The output of the
GeodesyNet is sampled at these points and the guidance loss calcu-
lated using
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with ys,. representing the predefined guidance density and J;,i =
1..n the predicted densities at a number of points inside of the pre-
defined regions or region. The mass normalization factor x is also
used to scale the networks predictions, so that the densities y; are
correct. Incorporating the guidance loss into the total loss leads to
the following equation for the total loss:

L= Lymae + Lic (0)

Initial testing with this approach revealed that it performed worse
when compared to the ground-truth based on the mascon model
than the unmodified GeodesyNet, which does not incorporate addi-
tional density information. We looked at how the two components
of the loss, gravitation based and guidance density based, developed
over the duration of a training run. Figure 4 shows both loss com-
ponents as well as the loss of an unmodified GeodesyNet for the
last 2000 iterations of the run. It looked to us like the network was
optimizing the guidance loss at the detriment of the gravitational
field based loss, which would explain the increased error with re-
gard to the ground-truth data. To test this hypothesis and correct
this potential issue, we introduced a factor g,0 < g < 1 to be able
to scale both losses. This results in the modified equation

L=(1-g) Lemae +8-Lxc (7

to calculate the total loss. Introducing the factor and finding a
suitable value for it through empirical means lead to all three losses
being much closer in magnitude. The loss based on the gravitational
field is now an order of magnitude smaller and is close to the loss
of the unmodified GeodesyNet. The guidance loss nearly doubles
after introducing the scaling factor when comparing the iterations
with the smallest overall loss across both runs. This is a worthwhile
trade-off for the improvement in the gravitational field based loss.
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Figure 4: Comparing the last iterations of a training run with the
initial implementation. The separated components of the loss are
shown, one based on the ground-truth gravitational field and the
other on the given guidance density for one guidance volume, with
the loss of an unmodified GeodesyNet depicted for comparison.

With the addition of scaling the losses the guidance loss works
well and achieves the goal of being able to incorporate expert
information and previous knowledge about the density in certain
regions into the inversion process of the GeodesyNet.

The optimal scaling factor varies between different bodies and
guidance regions. Since it is impractical to do an empirical study
for every new body and guidance region to find the optimal scaling
factor, we introduced a method to scale the guidance loss automati-
cally. As described before, introducing a good scaling factor found
through empirical means leads to the gravitational field based loss
and the guidance loss ending in the same order of magnitude. To
force this throughout the whole training run, we scale the guidance
loss to always be the same absolute number as the gravitational field
based loss:
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The resulting automatically scaled guidance loss Lgg is then
added to the gravitational field based loss to form the total loss.

L= Lyyae +Lsc )

5.2 Heterogeneous Ground Truth Data

To accurately reflect the use-case that a scientist with expert knowl-
edge might use the guidance density to specify areas that in fact
match the actual density of an asteroid, we created versions of
the ground-truth data that reflect the predefined guidance densi-
ties. Izzo and Goméz provide mascon models with homogeneous
mass distributions for “the asteroids 433 Eros, 25,143 Itokawa,
and 10,1955 Bennu and the comet 67P Churyumov—Gerasimenko,
as well as a fictitious Planetesimal and a toroidal-shaped body
(...) [they] call Torus” [6]. For Bennu, Itokawa and Planetesi-
mal the authors provide models with heterogeneous mass distri-
butions as well. We chose to work on the model for the comet
67P Churyumov-Gerasimenko, as well as the asteroid Bennu.
Churyumov-Gerasimenko has a density of about 1.7, Bennu of 0.7,
in the unmodified version. Our first heterogeneity is a small sphere
in the middle of Churyumov-Gerasimenko, with a density of 1, for

Bennu we placed a small sphere of density 1.2 close to the sur-
face. The second type of heterogeneity was created by placing three
spheres of different sizes inside of the asteroid. For Churyumov-
Gerasimenko we generated two versions of this, one with densi-
ties 1, 0.5 and 2.5 for the spheres, the other with density 0 for all
spheres, to simulate cavities inside the body. For Bennu we choose
densities of 1, 0.5 and 1.5. To test specifying the guidance density
by a plane and evaluate a heterogeneity much bigger proportion-
ally to the rest of the asteroid, we introduced a heterogeneity for
the head of the comet similar to the way 1zzo and Goméz did for
the asteroid Itokawa. The result can be seen in figure 5. We gen-
erated a similar version for Bennu, with the guidance density being
specified for about a third of the asteroids volume.

Figure 5: 67P Churyumov-Gerasimenko with a density heterogene-
ity introduced for its head.

The ground-truth is generated by subdividing the interior volume
of the surface mesh of a given small body into tetrahedrons, using
TetGen [16]. A mascon is placed at the center of each tetrahedron
and a mass proportional to the tetrahedrons volume is assigned to
it, with all masses totalling the bodies mass, in case of a homoge-
neous mass distribution. In the version used by Izzo and Goméz,
this method results in a mascon model with about 57000 mascons
for the comet 67P Churyumov-Gerasimenko, and about 38000 for
Bennu. To create the heterogeneous versions of the bodies, we first
selected all tetrahedrons whose centers overlapped with any of the
guidance spheres or are on the positive side of the plane defining
the guidance area. We then assigned a mass to each mascon, so
that the density calculated with respect to the tetrahedrons volume
matched the guidance density. This process results in either a loss
or a gain of total mass of the body, as mass is removed or added to
the mascons in question. To bring the total bodies mass back to its
state before the modifications, we removed or added a proportion-
ally equal amount of mass to each mascon that was not affected by
the modifications. While modifying the generation of the mascon
model to create the heterogeneity of the small sphere in the middle
of the body for Churyumov-Gerasimenko, we noticed that the vol-
ume of the tetrahedrons whose centerpoints overlap with the sphere
is about double the volume of the sphere, leading to a mass hetero-
geneity about double the size it should be. The reason for this is
the relatively coarse resolution of tetrahedrons on the inside of the
body compared to the spheres size, leading to only two tetrahedrons
overlapping with the sphere which are unable to accurately approx-
imate the sphere. To solve this problem we increased the number
of tetrahedrons used to subdivide the body, leading to a model with
about one million mascons for Churyumov-Gerasimenko and about
175000 for Bennu. The higher resolution leads to more tetrahe-
drons centerpoints overlapping with the sphere which results in a
better approximation and a volume of the tetrahedrons that is much
closer to the volume of the sphere.

5.3 Performance Considerations

The results in this work were mostly generated with 10000 iter-
ations of training with a batch size of 1000 points (samples of
the gravitational field around the asteroid) and 300000 integration



points sampling the density inside the unit cube, to allow for com-
parisons with the results of 1zzo and Goméz [6]. Testing these pa-
rameters with the unmodified code provided by the authors, a full
training run took eight to nine hours. The machine we were testing
with was equipped with a Nvidia RTX 2080 Super, an AMD Ryzen
3900X and 32GB of RAM. In one of the notebooks from the code
accompanying [6] the authors write that a full training should take
roughly one hour on a Nvida RTX 2080ti. While investigating the
codebase for bottlenecks, we found that the most computationally
intensive part of a training iteration by far is the calculation of the
gravitational field at the target points around the asteroid based on
the densities sampled in the unit cube. We adapted this code so that
the gravitational accelerations are calculated in batches, allowing
for multiple target points to be processed at the same time on the
GPU. With enough GPU memory to process all target points in one
batch, this leads to a speedup greater than 2x, reducing the time for
a full training run down to between three and a half and four hours,
tested on a Nvidia V100 GPU with 32GB of GPU memory. On
GPUs with less memory like the 8GB of the RTX 2080 super, the
batch size needs to be carefully selected, so that the data fits into
the GPUs memory, while still allowing the maximum number of
points to be processed at the same time. We have found process-
ing the points in 25 batches, leading to a batch size of 40 points
to work well on the RTX 2080 super. Interestingly, processing the
points in batches also leads to a speedup on GPUs where the full
data would fit into the memory at the same time. Using a batch size
of 40 points leads to a final training time of between two and three
and a half hours, depending on the guidance regions used.

5.4 Post Training

The training time of a GeodesyNet of three and a half to four hours
makes it difficult for a user to test different guidance regions quickly
and see which one fits the given gravtiational field best. To address
this issue we split the training of the GeodesyNet into two steps.
First an unmodified GeodesyNet gets trained for 10000 iterations
to fit the given gravitational field, without specifying any guidance
regions. The resulting model serves as the base for the next step,
where the training is continued with the addition of guidance re-
gions. To evaluate the performance we compare the training in two
steps to a training run that is trained with the guidance loss from the
start, for 10000 iterations.

5.5 Mascon based comparative method

1zzo and Goméz [6] use a mascon based approach they call mascon-
CUBE, to evaluate the performance of the GeodesyNet in compari-
son to, as discussed in section 3.2. We adapted this approach to be a
suitable comparative method for the GeodesyNet with guidance, by
implementing guidance for this approach as well. We implemented
a guidance loss similar to the one for the GeodesyNet, described in
section 5.1. To calculate the loss we first select all points of the mas-
conCUBE which lie inside the guidance regions. We then calculate
the corresponding densities for the mascon masses at these points
by dividing by the volume of a mascon V,,,45c0n. With the densities,
we can calculate the guidance loss using the Mean Absolute Error:

2
m;

] n
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The mascon masses are represented by m;,i = 1..n, and the
guidance density by pg. The scaling factor k is used like in the
GeodesyNet to scale the predictions to their correct absolute value.
The guidance losses for all guidance regions are added up and then
added to the gravitational field based loss, using a guidance factor
determined from the results of 6.2. Training a masconCUBE for
10000 iterations takes about an hour on a Nvidia V100 GPU.

5.6 Validation procedure

To assess the performance of the GeodesyNet and the mascon-
CUBE and to compare the results, we use the validation procedure
used by 1zzo and Goméz [6]. It consists of two different approaches
to selecting the validation points at which a model is compared to
the ground-truth. The first approach was introduced by the authors
to enable a comparison to the work by Wittick and Russell [22].
The validation points are sampled randomly at a low altitude be-
tween the surface and about 0.15 length units above the surface,
as well as at a higher altitude between about 0.15 and about 0.3
length units above the surface. While testing this method on the
comet 67P Churyumov—Gerasimenko, we noticed that some of the
validation points ended up inside of the body, which was distort-
ing the results. We modified the method to discard those points to
remedy this problem. The other method involves sampling valida-
tion points at three different altitudes, for which we chose to use
the standard values in the code provided by 1zzo and Goméz. This
results in 10000 points being sampled at 0.05, 0.1 and 0.25 length
units above the body respectively.

We used the same number of integration points sampled in
the unit cube for the forward modeling as in the training of the
GeodesyNet, because the authors state in one of the provided note-
books that using a different number leads to worse results. The
authors use the Normalized L1 Loss, as well as the Normalized Rel-
ative Component Loss to compare their results, which can be seen
in one of the provided notebooks as well. We used the Normalized
Relative Component Loss as our performance metric to compare
validation results.

6 RESULTS AND DISCUSSION

In this section we will present how well the GeodesyNet and the
comparable masconCUBE perform while learning a density and
mass distribution for different kinds of heterogeneities, both with
and without guidance. The approaches will be studied on the comet
67-P Churyumov-Gerasimenko and the asteroid Bennu. All of the
results where generated while training for 10000 iterations for both
the GeodesyNet and the masconCUBE, unless otherwise specified.
For the GeodesyNet we used 300000 sampling points inside the
unit cube for the forward modeling, and the gravitational field was
evaluated at 1000 target points in every training iteration.

6.1 GeodesyNet vs. masconCUBE

For the GeodesyNets with guidance, we chose the guidance factor
which produced the best performance regarding the gravitational
field from section 6.2. We chose the same guidance factor for the
corresponding masconCUBE model with guidance, as we expect
the tradeoff between gravitational field loss and guidance loss to
be similar in the masconCUBE. For the version of Churyumov-
Gerasimenko with three spheres of different densities, we did not
perform a full guidance factor study. Here, we used the same guid-
ance factor that performed the best in the same three sphere version,
but with the densities set to zero. In the figures, the GeodesyNets
are labeled “GN” and the masconCUBEs “mC”.

When looking at the results, it becomes clear that the mascon-
CUBE is able to match the ground-truth gravitational field far better
than the GeodesyNet for the heterogeneities defined through sin-
gle and multiple spheres, on both Churyumov-Gerasimenko and
Bennu. An example for this can be seen in figure 6. The better
performance of the masconCUBE in this regard holds true for both
the guided and unguided version. On the versions of the bodies with
the heterogeneities defined through a plane, the unguided mascon-
CUBE is still the best method by far, but the errors of the mas-
conCUBE with guidance are closer to the GeodesyNets. Here, the
GeodesyNets with guidance outperform the guided masconCUBE
at the low altitude intervals for both bodies. We visualized these
results in figure 7.
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Figure 6: Excerpt from the results for Churyumov-Gerasimenko
with three spherical heterogeneities distributed through the body.
The spheres have radii of 0.05, 0.035 and 0.05 and densities of 1,
0.5 and 2.5. A guidance factor of 0.0125 was used for the guidance
models.
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Figure 7: Excerpt from the results for Churyumov-Gerasimenko
with the heterogeneity defined through a plane. The density is set to
1.83 on the positive side of the plane. A guidance factor of 0.0125
was used for the guidance models.

Comparing our versions to the model trained by Izzo and
Goméz [6] revealed similar results for Bennu. For Churyumov-
Gerasimenko the results where comparable for the interval altitudes
and altitude 0.05, but the unmodified GeodesyNet exhibited a
much greater error for the altitudes 0.1 and 0.25. We were not able
to replicate the finding of the authors that the GeodesyNet and
masconCUBE reach comparable errors, in our results the unguided
masconCUBE outperformed the unguided GeodesyNet in every
case.

In this section we will be evaluating how well both the guided
masconCUBE and the guided GeodesyNet are able to match a
given guidance density. For the GeodesyNets, we calculated the
guidance loss in the guidance regions for the best model of a given
training run, with regard to how well it matched the ground-truth
gravitational field. We did the same for the masconCUBEs. For
the models with multiple guidance regions, we calculated the
mean of the guidance losses. Table 1 shows the results. For the
single sphere and the multiple sphere versions of Churyumov-
Gerasimenko, as well as the for the multiple sphere version of
Bennu the masconCUBE has the smaller loss by a margin. Note
that for the result of the masconCUBE for the multiple sphere
version of Churyumov-Gerasimenko with the densities set zero,
the masconCUBE sets the corresponding masses in the guidance
regions to zero, leading to a density of zero, which makes the

guidance loss also zero, which is the desired result. For the version
of Bennu with one sphere, both methods perform similarly well.
The GeodesyNet produces the smaller guidance loss for the plane
versions of both bodies by a margin. Summing up, both methods
are able to get close to the specified guidance density. In light of the
results, a masconCUBE seems to be the better choice with regard
to the guidance loss when small guidance regions are needed,
while the GeodesyNet performs better on larger guidance regions.
The unguided versions of both methods produce guidance losses
between 0.16 and 2.84, meaning they do not fit the ground truth
well in the guidance regions. This means guidance is needed if
a given model is meant to match a certain density in a certain region.

Ground-truth GeodesyNet masconCUBE
name

CG sphere 4.448e-04 4.341e-05

CG multi-zero 2.320e-05 0.000e+00
CG multi 1.751e-04 7.840e-05

CG plane 7.732e-03 1.203e-02
Bennu sphere 1.251e-04 1.146e-04
Bennu multi 1.229e-04 2.864e-05
Bennu plane 7.470e-03 2.490e-02

Table 1: Final guidance losses for the studied ground-truths, for
GeodesyNets and masconCUBEs.

In conclusion, the results in this section have shown that the mas-
conCUBE is the better choice of model, if no guidance is needed, as
it performs better than the unguided GeodesyNet in all studied con-
figurations, relative to the ground-truth gravitational field. Another
benefit of the masconCUBE is the faster training time. When guid-
ance is needed, the masconCUBE is still the better choice in most
situations, unless a situation requires the specific strengths of the
GeodesyNet. It performs comparatively well on target points very
close to the bodies surface and beat the masconCUBE at the low
interval altitude, when the guidance region was specified through
a plane. This is also the situation in which the GeodesyNet out-
performs the masconCUBE with regard to the guidance density. It
should also be noted that the GeodesyNet provides a continuous
function of the density inside the body. This means that if a highly
detailed interior model of a body is needed and the resolution of the
studied masconCUBE is not sufficient, the GeodesyNet should be
chosen for the task.

6.2 Finding a good guidance factor

We did an empirical study to find out which guidance factor works
best, and if it differs from body to body and between different kinds
of guidance regions. We also wanted to evaluate how well the au-
tomatic scaling of the guidance factor works in comparison to a
guidance factor found through empirical means. We studied dif-
ferent guidance values and heterogeneities defined through one and
multiple spheres, as well as through a plane for both Churyumov-
Gerasimenko and Bennu. The results show that there is no guidance
factor that performs best across all studied bodies and altitudes. The
guidance factors 0.05 and 0.025 are generally amongst the best per-
formers in most situations, which is why they should be used in
a new situation. The automatic guidance loss scaling is not com-
petitive in performance, and should not be used over the defined
guidance factors.

6.3 Post Training

We tested the post training method described in section 5.4 on
Churyumov-Gerasimenko with a heterogeneity of one sphere and
on Bennu, with the heterogeneity defined through a plane. The re-
sults show that for the fixed altitudes, as well as for the high altitude



interval, the post training model reaches the loss of the normally
trained GeodesyNet and improves from thereon. For the low alti-
tude interval, the post training has lower loss after the first 1000 it-
erations. For Churyumov-Gerasimenko the loss of the post-trained
models gradually declines towards the loss of the normally trained
guidance model, but never reaches it, for the interval altitudes and
altitude 0.05. For altitude 0.1 the loss of the normally trained model
gets reached after 10000 iterations of post-training, and for the alti-
tude 0.25 this is the case after 7000 iterations.

These results suggest that this method of post-training is a worth-
while avenue for further research, to be able to get good results
with guided GeodesyNets after fewer iterations of training, espe-
cially for larger guidance regions. It might be worthwhile to ex-
plore loss weighting that is specifically designed for this kind of
post-training, to be able to preserve the optimization to the given
gravitational field from the pre-trained model, while optimizing the
guidance loss quickly.

7 FUTURE WORK

Firstly, a possible avenue for future research would be to utilize
the dataset we built in section 4 to train a machine learning model
similar to the ones we presented in section 3.1. It would be inter-
esting to see how such a model would compare performancewise to
the GeodesyNets presented here, and if it would be able to gener-
alize to unseen small bodies. If it could, this would improve upon
the long training times for the GeodesyNet and masconCUBE. As
an addition to this, implementing guidance for this kind of model
would be interesting as well.

Building on the results of our work on the GeodesyNets, a next
step would be to utilize more sophisticated techniques from multi-
task learning to weight the guidance loss and the gravitational field
based loss. These might be able to incorporate the guidance loss
into the training, while preserving the gravitational field based loss
better than the guidance factors in this work. They could also re-
move the necessity to chose a good guidance factor. Exploring the
approach from section 5.4 further would also be worthwhile, and
it might benefit from the utilization of techniques from multi-task
learning as well.

8 CONCLUSION

In conclusion, we built a dataset, which can be used to experiment
with and train future machine learning models for inverse gravity
modeling. In order to incorporate additional information into the
gravity inversion process, we modified the GeodesyNets introduced
by Izzo and Goméz [6], and implemented a guidance loss, so that
they are able to optimize for a specific density in a specified re-
gion inside of the body, in addition to the given gravitational field.
We implemented the same loss for a more classical mascon based
method and compared the results. We found that the mascon based
method performed better than the GeodesyNet in most of the cases
we studied, both regarding the gravitational field and how close the
methods were able to get to the specified guidance density. Ad-
ditionally, we identified some scenarios in which the GeodesyNet
would be the better choice. To determine good guidance factors
to scale the guidance loss for the different ground-truths, we per-
formed an empirical search, and also experimented with automati-
cally scaling the guidance loss. To mitigate the long training times
of the GeodesyNet we tested post-training on an already trained
model without guidance, which showed promising results in some
situations.
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